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Cells are designed to be sensitive to a myriad of external cues 
so they can fulfil their individual destiny as part of the greater 
whole. A number of well-characterised signalling pathways 
dictate the cell’s response to the external environment and 
incoming messages. In healthy, well-ordered homeostatic 
systems these signals are tightly controlled and kept in 
balance. However, given their powerful control over cell 
fate, these pathways, and the transcriptional machinery they 
orchestrate, are frequently hijacked during the development 
of neoplastic disease. A prime example is the Wnt signalling 
pathway that can be modulated by a variety of ligands 
and inhibitors, ultimately exerting its effects through the 

β-catenin transcription factor and its downstream target 
genes. Here we focus on the interplay between the three-
member family of RUNX transcription factors with the Wnt 
pathway and how together they can influence cell behaviour 
and contribute to cancer development. In a recurring theme 
with other signalling systems, the RUNX genes and the Wnt 
pathway appear to operate within a series of feedback loops. 
RUNX genes are capable of directly and indirectly regulating 
different elements of the Wnt pathway to either strengthen 
or inhibit the signal. Equally, β-catenin and its transcriptional 
co-factors can control RUNX gene expression and together 
they can collaborate to regulate a large number of third party 
co-target genes.
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THE WNT SIGNALLING PATHWAY IN CANCER

The identification and analysis of the top molecular drivers 

of cancer has been essential for the development of target-

ed therapies against the disease. One such driver, the Wnt 

signalling pathway, is an evolutionarily conserved pathway 

involved in numerous cellular and developmental process-

es including cell proliferation, differentiation, and stem cell 

self-renewal (Grigoryan et al., 2008; Steinhart and Angers, 

2018; Wang et al., 2012). This key pathway and its compo-

nents have been well characterised for their roles in the de-

velopment and progression of several cancer types (Clements 

et al., 2002; Clevers, 2000; 2006; Luis et al., 2012; Satoh et 

al., 2000; Segditsas and Tomlinson, 2006). The functions of 

Wnt ligands can be facilitated through both the canonical 

and non-canonical branches of the pathway, with the former 

operating through β-catenin accumulation and translocation 

to the nucleus where it is able to activate its downstream 

targets (Anastas and Moon, 2013). Although Wnt signalling 

has been most intensively studied in colorectal cancer, where 

almost all tumours present with altered Wnt signalling (Can-

cer Genome Atlas Network, 2012), aberrant Wnt signalling is 

also observed in several other cancer types (Fig. 1A). One no-
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Fig. 1. Wnt pathway and RUNX gene alterations in a pan-cancer analysis of the TCGA database. Top 20 cancer types where alterations 

in Wnt pathway components (A) or all three RUNX genes (B) are most frequently observed, including matched information on the 

percentage of samples with reciprocal RUNX/Wnt alterations. Shown in bold are the cancer types that appear in both top 20 lists. (C) 

The top 20 cancer types with RUNX alterations were each analysed for their percentage alteration of individual RUNX genes (RUNX1, 

blue; RUNX2, orange; RUNX3, green). Note that alterations of the RUNX genes are not always mutually exclusive and there can be co-

occurrence in RUNX alterations (as demonstrated in Fig. 1D). Therefore, the maximum alteration frequency (%) displayed in Figure 1C is 

not necessarily representative of the total RUNX alteration frequency in Figures 1A and 1B, particularly in cancer types where more than 

one RUNX family member is altered. (D) A co-occurrence matrix was generated to observe co-occurrence between alterations in RUNX 

genes and listed Wnt pathway components in a pan-cancer analysis. The heat map, showing the log2 odds ratio, quantifies how strongly 

the presence or absence of alterations in gene X are associated with the presence or absence of alterations in gene Y. The heat maps 

are displayed only in the boxes of gene matches where the co-occurrence or mutual exclusivity was shown to be significant using the 

q-values (Derived from Benjamini–Hochberg false discovery rate [FDR] correction procedure). Wnt pathway components were selected 

for these analyses from the Wnt homepage, created by the Nusse Lab (http://web.stanford.edu/group/nusselab/cgi-bin/wnt/). All data 

for this figure was obtained through cBioPortal for Cancer Genomics (https://www.cbioportal.org/) using the TCGA PanCancer Atlas 

Studies (Cerami et al., 2012; Gao et al., 2013).
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table example is breast cancer, where Wnt pathway compo-

nents are amplified and overexpressed in ~50% of patients 

and where expression positively correlates with poor progno-

sis (Dey et al., 2013; Khramtsov et al., 2010; Li et al., 2014; 

Lin et al., 2000; Monteiro et al., 2014). The role of Wnt in tu-

morigenesis was initially discovered in mouse models where 

the mouse Wnt gene was found to be a preferential inte-

gration site for the mouse mammary tumour virus (MMTV), 

a retrovirus capable of inducing mammary carcinomas with 

long latency (Nusse and Varmus, 1982). Transcriptional acti-

vation of the Wnt1 gene via proviral insertion mutations or 

using an MMTV promoter to drive transgenic overexpression 

of Wnt1 caused mammary gland hyperplasia and tumorigen-

esis, establishing a connection between the Wnt pathway 

and cancer (Bocchinfuso et al., 1999; Nusse and Varmus, 

1982; Tsukamoto et al., 1988). A key early demonstration 

that the Wnt pathway had a major role in human cancer 

arose from the observation that mutations of the adeno-

matous polyposis coli (APC) gene, which encodes a protein 

that negatively regulates Wnt/β-catenin signalling (Korinek 

et al., 1997; Rubinfeld et al., 1993; 1997; Su et al., 1993), 

were the cause of familial adenomatous polyposis, a hered-

itary colon cancer syndrome (Kinzler et al., 1991; Nishisho 

et al., 1991). Since these initial discoveries, many important 

regulatory genes have been identified in the Wnt signalling 

pathway, and their function characterised. Such information 

will be valuable in designing future therapies that block or 

attenuate the pathway in neoplastic disease. Because Wnt 

signalling has been identified to be a key player in several as-

pects of tumorigenesis — including metastasis, metabolism, 

immune evasion, and stemness (Zhan et al., 2017) — the 

Wnt pathway, particularly the highly characterised canonical 

(β-catenin-dependent) pathway, provides a promising poten-

tial as a future therapeutic target (Barker and Clevers, 2006; 

Goldsberry et al., 2019; Novellasdemunt et al., 2015; Wang 

et al., 2018; Zhang et al., 2018).

RUNX TRANSCRIPTION FACTORS IN DEVELOPMENT, 
REGULATION, AND CANCER

Consisting of three individual proteins with distinct functions, 

the RUNX family of transcription factors are essential for sev-

eral cellular and developmental processes, as was elegantly 

reviewed recently by Mevel et al. (2019). RUNX1, RUNX2, 

and RUNX3 each form complexes with their obligate cofac-

tor, core binding factor beta (CBFβ), which is essential for 

facilitating the binding of the transcription factors to DNA 

in order for them to either activate or repress their down-

stream targets. Interaction between the RUNX transcription 

factors and CBFβ, and between the CBF complex and DNA, 

is enabled through the highly conserved runt-homology 

domain (RHD) in the N-terminus of all RUNX proteins. Gene 

knockout studies in mice have helped to reveal the discrete 

functions of each Runx family member in specific systems in 

the body (Brenner et al., 2004; Komori et al., 1997; Levanon 

et al., 2002; Li et al., 2002; North et al., 1999; Okuda et al., 

1996; Otto et al., 1997) with subsequent studies illuminating 

their functions in other tissues, comprehensively reviewed 

elsewhere (Mevel et al., 2019).

	 It is no surprise that, given the essential roles of the RUNX 

proteins in fundamental cellular and developmental process-

es, disrupted expression of these transcription factors has 

been frequently observed in various cancer types (Figs. 1B 

and 1C). However, it has also been revealed that context is 

key, as both pro-tumour and anti-tumour roles have been 

observed for each of the RUNX proteins (Blyth et al., 2005; 

Ito et al., 2015). For example, RUNX1 mutations are found to 

be among the most common mutations observed in a wide 

variety of haematological malignancies (De Braekeleer et al., 

2009; Niini et al., 2000; Osato, 2004). Paradoxically, RUNX1 

has been shown to act as a dominant oncogene in some 

subtypes of leukaemia, and acute leukaemia cells actually 

rely on the presence of wild type RUNX1 expression for their 

survival (Ben-Ami et al., 2013; Choi et al., 2017; Goyama et 

al., 2013). Similar contradictory roles for RUNX1 have been 

identified in solid tumours (Riggio and Blyth, 2017; Taniuchi 

et al., 2012) as is reviewed elsewhere in this special issue by 

Lie-a-ling et al. (2020). RUNX2 has been associated with sev-

eral cancer types in which it is often overexpressed compared 

to matched normal tissues, including osteosarcoma where it 

also correlates with poor response to chemotherapy (Kurek 

et al., 2010; Martin et al., 2011; Sadikovic et al., 2010), pap-

illary and thyroid carcinomas (Dalle Carbonare et al., 2012; 

Endo et al., 2008), and in breast and prostate cancer where 

there are associations with metastasis (Akech et al., 2010; 

Barnes et al., 2003; 2004; McDonald et al., 2014; Owens et 

al., 2014; Pratap et al., 2006; Rooney et al., 2017). Previous 

research has indicated a role for RUNX3 in gastric cancers 

(Ito et al., 2005; Li et al., 2002), as well as cancers of the 

pancreas (Whittle and Hingorani, 2017; Whittle et al., 2015), 

lung (Araki et al., 2005; Lee et al., 2013; Sato et al., 2006), 

and hepatocellular carcinoma (Shiraha et al., 2011; Tanaka 

et al., 2012; Xiao and Liu, 2004). In most cases, RUNX3 has 

been reported to be downregulated with cancer progression 

(Chuang et al., 2017) although there is also compelling evi-

dence that RUNX3 may modulate epithelial cancer indirectly 

through its effects on immune regulation and inflammation 

(Lotem et al., 2015; 2017).

RUNX/WNT INTERACTIONS IN DEVELOPMENT AND 
CANCER

There is a large overlap in the cancers most commonly associ-

ated with Wnt pathway activation and RUNX gene alteration 

(Fig. 1, Table 1), with significant co-occurrence between cer-

tain Wnt pathway components and the RUNX genes across 

all cancer types (Fig. 1D). Indeed there is evidence in the lit-

erature that some of the developmental and regulatory func-

tions of the RUNX family are enabled through interactions 

with (or modulation of) the Wnt pathway, particularly the 

canonical Wnt/β-catenin pathway (Gaur et al., 2005; Haxaire 

et al., 2016; Jarvinen et al., 2018; Kahler and Westendorf, 

2003; Luo et al., 2019; Osorio et al., 2011; Qin et al., 2019; 

Wu et al., 2012). In the sections below we briefly discuss the 

interaction with the Wnt signalling pathway and the indi-

vidual RUNX genes. It should be appreciated, however, that 

due to their use of a common binding site and considerable 

homology between the family members, that a reported in-
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teraction with one member could potentially extend to other 

members of the family in different contexts or lineages.

RUNX1 and Wnt signalling in leukaemia and epithelial tu-
mours
Interaction between Wnt and RUNX1 activity was reported 

over 20 years ago when it was shown that the β-catenin 

co-factor lymphoid enhancer factor 1 (LEF1) enhanced 

RUNX1 binding to chromatin and potentiated transcriptional 

activity of the T-cell receptor alpha (TCRα) enhancer (Mayall 

et al., 1997). Subsequently the mutual interdependence of 

these pathways has been described in systems as diverse as 

haematopoietic stem cells and ovaries, with RUNX1 capable 

of affecting the Wnt pathway at several discreet components 

of the pathway (Cheng et al., 2011; Friedman, 2009; Naillat 

et al., 2015; Wu et al., 2012).

	 The role of RUNX1 in leukaemia has been studied in the 

context of Wnt signalling whereby β-catenin is associated 

with the ability of leukaemia stem cells to self-renew. Treat-

ment of haematopoietic progenitor cells with purified Wnt3a 

ligand increased the transcription of ETO and RUNX1 in addi-

tion to enhancing their spatial proximity. These events could 

precipitate translocation events between RUNX1 and ETO 

genes, resulting in the formation of the RUNX1-ETO fusion 

protein, which is a common mutation found in AML patients 

(Ugarte et al., 2015). Following from this work, it was found 

that, through Wnt3a treatment of leukaemia-derived cell 

lines and CD34+ progenitor cells, the distal P1 promoter of 

RUNX1 harboured a T-cell factor/lymphoid enhancer factor 

(TCF/LEF) binding site identifying this isoform as a bona fide 

target of β-catenin (Medina et al., 2016). It can be hypoth-

esised that dysregulation of the Wnt pathway in haemato-

poietic progenitor cells leads to increased P1-Runx1 and ETO 

transcription and fusion, facilitating the development of leu-

kaemia.

	 A number of studies have noted that RUNX1 mutation 

and putative loss of function is restricted to the ER+ subset 

of breast cancers (Banerji et al., 2012; Ellis et al., 2012). In 

an elegant study Chimge et al. (2016) provided one possible 

rationale for this observation when they showed that RUNX1 

could act to block oestrogen-mediated inhibition of AXIN1 

and that loss of RUNX1 could therefore release the onco-

genic effects of oestrogen through stabilization of β-catenin. 

Conversely, in other cell lineages (for example, bone mar-

row), RUNX1 has been shown to potentiate β-catenin activity 

through other mechanisms, including the upregulation of 

activating Wnt ligands (Luo et al., 2019). However, studies 

in mouse skin demonstrated that the effects of RUNX1 on 

the Wnt signalling pathway are lineage dependent (Scheitz 

and Tumbar, 2013). As noted, reciprocal regulation between 

RUNX1 and β-catenin has been identified in a number of sys-

tems and may be expected given the complexity of gene reg-

Table 1. Overlapping incidence of RUNX gene and Wnt pathway alterations in cancer

Cancer type
Alteration frequency (%)

RUNX Wnt RUNX + Wnt RUNX/Wnt analysis RUNX/Wnt overlap

Colorectal adenocarcinoma 6.4 83 89.4 83.33 6.07

Endometrial carcinoma 9.9 72.35 82.25 72.87 9.38

Oesophagogastric adenocarcinoma 11.87 71.6 83.47 73.54 9.93

Melanoma 8.78 70.95 79.73 72.75 6.98

Non-small cell lung cancer 5.51 66.76 72.27 67.9 4.37

Hepatocellular carcinoma 4.07 65.85 69.92 66.67 3.25

Ovarian epithelial tumour 6.68 65.24 71.92 66.78 5.14

Bladder urothelial carcinoma 8.52 63.99 72.51 65.69 6.82

Cervical squamous cell carcinoma 5.58 54.58 60.16 56.97 3.19

Head and neck squamous cell carcinoma 5.16 54.3 59.46 56.21 3.25

Sarcoma 6.67 52.16 58.83 52.94 5.89

Invasive breast carcinoma 8.12 50.92 59.04 54.15 4.89

Mature B-cell neoplasms 6.25 47.92 54.17 47.92 6.25

Cervical adenocarcinoma 4.35 43.48 47.83 45.65 2.18

Pancreatic adenocarcinoma 3.8 38.04 41.84 38.59 3.25

Adrenocortical carcinoma 3.3 32.97 36.27 34.07 2.2

Cholangiocarcinoma 5.56 30.56 36.12 33.33 2.79

The cancer types that appeared in both top 20 lists for RUNX and select Wnt pathway alterations in Figures 1A and 1B were further an-

alysed for overlapping occurrence of Wnt pathway and RUNX alterations. RUNX refers to alteration in any of the three genes (RUNX1, 

RUNX2, RUNX3). When the incidence of RUNX and Wnt pathway alterations were analysed individually, the total percentage of these 

was higher than the alteration frequency obtained by analysing the frequency of RUNX and Wnt pathway alterations simultaneously, in-

dicating that these alterations co-occur (and supporting the data shown in Fig. 1D). The percentage overlap in Wnt pathway and RUNX 

alterations was obtained for each of the analysed cancer types by calculating the difference between the RUNX/Wnt simultaneous analy-

sis alteration frequency and the individual RUNX and Wnt pathway alteration frequencies added together. The same Wnt pathway com-

ponents analysed in Figure 1, selected from the Wnt homepage (http://web.stanford.edu/group/nusselab/cgi-bin/wnt/), were also used 

for this analysis. Data was mined from cBioPortal for Cancer Genomics using the TCGA PanCancer Atlas Studies (https://www.cbioportal.

org/) (Cerami et al., 2012; Gao et al., 2013).
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ulation and cross talk between key regulators of survival, dif-

ferentiation and proliferation. A more unique connection was 

reported by Jain et al. (2018) who suggested that RUNX1-in-

duced changes in the structure of the cell membrane may 

render cells more sensitive to extracellular Wnt signals.

	 RUNX1 was found to be upregulated in colorectal can-

cer and this overexpression was linked to poorer survival 

in patients, as well as metastasis and induction of epitheli-

al-to-mesenchymal transition (EMT) in colorectal cancer cells 

(Li et al., 2019). This aggressive phenotype was caused by 

RUNX1 activating the Wnt pathway via direct interaction with 

β-catenin, and interactions with the enhancer and promot-

er regions of KIT to promote its transcription and enhance 

Wnt/β-catenin signalling. Conversely, Runx1 deficiency in 

the mouse intestine was sufficient for tumour formation and 

significantly enhanced tumorigenesis in an ApcMin model of 

intestinal tumorigenesis (Fijneman et al., 2012). Gene expres-

sion analysis of colons from Runx1 KO mice revealed upregu-

lations in genes previously described as transcriptional targets 

of β-catenin; Angiogenin4 (Ang4) and serine peptidase 

inhibitor, Kazal type 4 (Spink4); both of which were also pre-

viously found to be upregulated in Apc
–/– colon cells (Andreu 

et al., 2008; Fijneman et al., 2012; Gregorieff et al., 2009). 

This potentially provides a mechanism by which Runx1 loss 

in the colon results in the expansion of stem cell populations 

and subsequent susceptibility to tumour initiation. The role 

of RUNX1/Wnt interactions in solid cancers may also extend 

to other major tumour types, for example high RUNX1 ex-

pression was predictive of a poor prognosis in clear cell renal 

cell carcinoma while Wnt signalling pathway was significantly 

enriched in tissues with high RUNX1 expression (Fu et al., 

2019).

Interactions between RUNX2 and the Wnt pathway
Bone is a highly dynamic tissue and both the Wnt signalling 

pathway and RUNX2 are integral to its formation and ho-

meostatic control. As such, the bone field has been a rich 

source for studying the intricate relationship between these 

players. Runx2 is itself a downstream target of the canonical 

Wnt pathway (Fig. 2) and β-catenin/TCF activate Runx2 ex-

pression through a TCF binding site in the proximal promoter 

(Gaur et al., 2005), or through protein-protein interactions 

on Runx2 enhancer elements (Kawane et al., 2014). These 

studies reveal direct linkage between the osteogenic activity 

of the Wnt/β-catenin pathways and the key transcription fac-

tor mediating osteoblastic differentiation and bone develop-

ment. Wnt induction of Runx2 is not restricted to osteoblasts 

and direct regulation by β-catenin/LEF1 has also been shown 

in chondrocytes (Dong et al., 2006). The importance of this 

applies to other systems, including pathophysiological pro-

cesses inducing the calcification of vascular smooth muscle 

cells, where two other TCF binding sites were identified in the 

Runx2 proximal promoter (Cai et al., 2016).

	 Reciprocal regulation of major signalling pathways is a 

common theme with the Runx genes and in turn RUNX2 

has been shown to regulate a variety of Wnt ligands (Qin et 

al., 2019), Wnt inhibitors (James et al., 2006; Mendoza-Vil-

lanueva et al., 2011; Perez-Campo et al., 2016) and TCF/LEF 

co-activators (Hoeppner et al., 2009; Mikasa et al., 2011), 

and in this way modulate the strength and specificity of the 

canonical Wnt pathway (Fig. 2). Although Wnt signalling and 

RUNX2 can clearly collaborate in bone development, it has 

been shown that enforced expression of RUNX2 in osteoblast 

cells can reduce levels of β-catenin and inhibit its transcrip-

tional activity, perhaps to ensure fine tuning in the control of 

terminal differentiation (Haxaire et al., 2016). Intriguingly, 

GSK3β, the central player of the β-catenin destruction com-

plex, also phosphorylates and negatively regulates RUNX2, 

suggesting a coordinated approach to the regulation of these 

transcription factors (Kugimiya et al., 2007).

	 In addition to their ability to regulate each other, β-catenin 

and RUNX2 also collaborate in the regulation of common 

target genes (Fig. 2). RUNX2 and canonical Wnt interact to 

regulate FGF18 (Reinhold and Naski, 2007) and Osteocalcin 

(Tang et al., 2009), whilst in other systems RUNX2 has been 

shown to be a fully paid-up member of the Wnt enhanceo-

some, the transcription complex that brings together TCFs 

and β-catenin (Fiedler et al., 2015). In some scenarios, how-

Fig. 2. Overview of RUNX/Wnt pathway interactions and co-regulation. A summary of the interaction between RUNX and Wnt 

signalling showing that RUNX can transcriptionally regulate a number of Wnt pathway genes whilst the RUNX genes themselves are 

subject to regulation by β-catenin, the transcriptional mediator of the canonical Wnt pathway. Also highlighted is the cooperation 

between both β-catenin and RUNX in the regulation of Wnt target genes. The kinase GSK3β is an important component of the β-catenin 

destruction complex but can also phosphorylate RUNX and inhibit function.
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ever, β-catenin/LEF can block RUNX2 transcriptional activa-

tion by interacting directly with the DNA binding domain of 

RUNX2 (Kahler and Westendorf, 2003).

	 Wnt signalling has been implicated in different aspects 

of cancer development and progression. The role of this 

pathway in stem cell biology and tumour initiating cells is 

one area of intense interest. Our own work has shown that 

Runx2 expression is upregulated by Wnt3a; enriched in cells 

with the capacity to form mammospheres; and is required for 

mammary gland reconstitution in vivo (Ferrari et al., 2015). 

Importantly, RUNX2 was upregulated in Wnt-driven mam-

mary tumours, suggesting that Runx2 was a Wnt target that 

could participate in both stem cell activity and tumour growth 

(Ferrari et al., 2015). The relationship between Wnt signalling 

and Runx genes in stem cells may extend to other lineages 

and may be ancestral as studies in C. elegans have revealed 

that the RUNX homologue RNT-1 acts on Wnt signalling 

through the suppression of POP-1 (TCF/LEF) to ensure stem 

cell renewal via symmetrical proliferation (van der Horst et al., 

2019). At later stages of tumour development, RUNX2 has 

been associated with a more invasive phenotype of mamma-

ry cancer, an effect that may require co-activation of the Wnt 

pathway (Chimge et al., 2011). Conversely, RUNX2-induced 

inhibition of Wnt signalling in bone tissue may be involved in 

preparing the tumour site for colonisation (Mendoza-Villan-

ueva et al., 2011).

Attenuation of Wnt signalling by RUNX3 in cancer
A body of work has implicated RUNX3 as a tumour suppres-

sor in the gastrointestinal tract as well as other cancer lineag-

es, and a number of potential mechanisms have been pro-

posed to explain this property. In this context RUNX3 was re-

ported to form a complex with β-catenin and TCF4, the most 

predominant TCF/LEF factor in the intestine responsible for 

the recruitment of β-catenin to its target genes, resulting in 

reduced DNA binding and transcriptional activity at the c-Myc 

and Cyclin D1 promoters (Ito et al., 2008). These results sug-

gest, at least in part, that the tumour suppressor function of 

RUNX3 in the intestinal epithelium maybe facilitated through 

the attenuation of β-catenin/TCF4 factor activity. A follow up 

study added weight to the view that RUNX3 could physically 

interact with, and block, the activity of β-catenin/TCF (Ito et 

al., 2011), although it has also been reported that the same 

interaction could enhance β-catenin/TCF activity in gastric 

cell lines (Ju et al., 2014). The tumour-suppressing poten-

tial of RUNX3, through its attenuation of Wnt signalling, is 

not unique to the gastrointestinal tract as RUNX3 reduced 

β-catenin expression levels and the transactivation potential 

of β-catenin/TCF4, resulting in reduced proliferation and inva-

sion of glioma cells (Sun et al., 2018). Further support for the 

concept that RUNX3 might negatively regulate β-catenin and 

act as a tumour suppressor came from examining oncogenic 

pathways in laryngeal cancer cells. This work showed that the 

polycomb protein, enhancer of zeste homolog 2 (EZH2), in-

directly stimulates β-catenin activity by epigenetically silencing 

RUNX3 (Lian et al., 2018).

DISCUSSION

It is clear, from the evidence laid out in the studies above, 

that interactions between RUNX factors and Wnt signalling 

are relevant to both normal tissue and in cancer settings, and 

that the consequences of such interactions often depend on 

the specific context in which these connections occur. The 

apparently paradoxical functions of RUNX1 in breast cancer 

may be at least partially explained by their alternative interac-

tions with the Wnt signalling pathway in different subtypes 

(Chimge et al., 2017). In studies relating to the role of RUNX2 

in cancer, it has been shown that the oncogenic functions 

of the protein in both osteosarcomas and breast cancer are 

related to the regulation of RUNX2 by the Wnt pathway and 

reciprocal modulation of the Wnt pathway by RUNX2. There 

is evidence from several studies to suggest that RUNX3 atten-

uates the function of the Wnt pathway in some gastric and 

intestinal cancers.

	 Knowledge of the Wnt pathway and its modulators is es-

sential in aiding the discovery of new ways to target cancer, 

especially since the canonical Wnt/β-catenin pathway is seen 

as such a promising target in cancer therapy. As outlined 

above, the RUNX proteins are key modulators and influencers 

of the downstream pathways and the phenotypic impact of 

Wnt signalling, and specific targeting of these RUNX/Wnt 

interactions may be a more elegant approach to therapy. 

β-Catenin itself is classified as a difficult-to-drug and yet-to-

be-drugged target in cancer and inhibition of this protein 

could potentially lead to unpleasant side effects in patients 

(Cheng et al., 2019; Cui et al., 2018). It could, however, be 

possible to modulate canonical Wnt pathway activation by 

targeting the RUNX proteins. It is exciting that small molecule 

inhibitors against RUNX1 and RUNX2 have shown prom-

ise for treating some cancer types in which RUNX function 

drives pro-oncogenic effects, although their effects on the 

Wnt/β-catenin pathway were not specifically investigated 

(Bushweller, 2019; Illendula et al., 2016; Kim et al., 2017). 

However, it should be noted that, depending on context and 

tumour type, upregulation of RUNX rather than inhibition 

may augment approaches to therapy (Speidel et al., 2017). 

Nonetheless, this information offers an additional insight into 

one of the ways that oncogenic β-catenin signalling can be 

modulated in cancer, and may be vital for the development 

of targeted therapies.
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