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ABSTRACT 

 

Nonconforming Formulations with Spectral Element Methods. (August 2003) 

Cuneyt Sert, B.S., Middle East Technical University; 

M.S., Middle East Technical University 

Chair of Advisory Committee: Dr. Ali Beskok 

 

A spectral element algorithm for solution of the incompressible Navier-Stokes and 

heat transfer equations is developed, with an emphasis on extending the classical 

conforming Galerkin formulations to nonconforming spectral elements. The new 

algorithm employs both the Constrained Approximation Method (CAM), and the Mortar 

Element Method (MEM) for p-and h-type nonconforming elements. Detailed 

descriptions, and formulation steps for both methods, as well as the performance com-

parisons between CAM and MEM, are presented. This study fills an important gap in the 

literature by providing a detailed explanation for treatment of p-and h-type 

nonconforming interfaces. A comparative eigenvalue spectrum analysis of diffusion and 

convection operators is provided for CAM and MEM. Effects of consistency errors due to 

the nonconforming formulations on the convergence of steady and time dependent 

problems are studied in detail. Incompressible flow solvers that can utilize these 

nonconforming formulations on both p-and h-type nonconforming grids are developed 

and validated. Engineering use of the developed solvers are demonstrated by detailed 

parametric analyses of oscillatory flow forced convection heat transfer in two-

dimensional channels.  
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CHAPTER I

INTRODUCTION

A. Background

1. Spectral and Spectral Element Methods

Spectral Methods (SM) are generally considered as a sub-category of Method of

Weighted Residuals (MWR) [1]. A typical MWR formulation for solving a partial

differential equation includes the following steps:

Step 1. Put the partial differential equation into a residual form and equate it

to zero

R = 0

Step 2. Represent the unknowns by a truncated series expansion

u(x) ≈ uN(x) =
N∑

i=0

ûiSi

where N is the order of the approximation, Si are the approximation (trial, basis,

shape) functions and ûi are the unknown coefficients. This step will yield to an

approximated residual

RN ≈ 0

Step 3. Equate the weighted integral of this approximated residual to zero.

∫ x1

x0

RN w dx = 0

where w is the weight (test) function.

Step 4. By selecting different weight functions for each unknown, form a

The journal model is IEEE Transactions on Automatic Control.
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(N + 1) ∗ (N + 1) set of algebraic equations and solve for the unknown coefficients

ûi.

Spectral Methods provide global approximations, i.e. the truncated series ap-

proximation given in the second step covers the whole problem domain. Depending

on the choice of weight functions, one can end up with one of the three commonly used

techniques: collocation, Galerkin and Tau methods. In the collocation (pseudospec-

tral) method, weight functions are Dirac delta functions based on a set of collocation

points. This method forces the residual to be exactly zero at the collocation points.

Collocation method is sometimes referred as the nodal method, because it calculates

the unknowns at the nodes of the physical space. Collocation method formulates the

non-linearities very easily but it suffers from aliasing errors [2]. Galerkin formulation

is the case where the weight functions are selected to be the same as the approxima-

tion functions. Weight functions cover the whole domain and satisfy the boundary

conditions. Tau method is a slightly different version of the Galerkin method, where

the weight functions do not necessarily satisfy the boundary conditions. Instead,

boundary conditions are enforced by a separate set of constraints. In Galerkin and

Tau methods the unknowns are just the coefficients of a series expansion that are not

in the physical space and therefore these methods are sometimes referred as modal

methods.

Choice of the approximation functions provide another categorization of the Spec-

tral Methods. Commonly used functions are trigonometric polynomials, Chebyshev

polynomials and Legendre polynomials. The use of trigoneometric polynomials is

known as the Fourier Spectral Method [3]. It is mostly used with periodic boundary

conditions, such as the simulation of three-dimensional homogeneous turbulence in

simple domains. Chebyshev and Legendre polynomials belong to the family of Ja-

cobi polynomials, which are the eigenfunctions of singular Sturm-Liouville problems
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[1]. Chebyshev polynomials can also be interpreted as a Fourier cosine expansion

with a change of variable. All these three types of polynomials provide spectral ac-

curacy (exponential convergence with increased order of approximation) for smooth

(C∞) solutions. Thus SM is the preferred solution technique for problems where high

resolution is required.

One big disadvantage of SMs is that they provide global approximations and

therefore are not suitable for complex domains. Problems with arbitrarily shaped

boundaries can be solved with domain discretization methods, such as the Finite

Element Method (FEM) [4]. FEM introduces a new domain discretization step to

our summary of MWR formulation. In this step the problem domain is subdivided

into simple elements (sub-domains), such as triangles, quadrilaterals, tetrahedrals,

etc. Complexity of the domain is no longer a problem, because one can arrange these

elements of different shapes and sizes in any desired way. Unlike SMs, test and trial

functions used in FEM are local, i.e. they are defined on each element separately.

Another step used in FEM is the global assembly, where the local set of equations,

written individually for each element are assembled by a direct-stiffness-summation

procedure. The locality of the test and trial functions results in a sparse global system

of equations, which is advantageous in regards to computational resources.

FEM is first designed and used as a low-order approximation for the analysis of

structural problems. Still today, many FEM codes use first or second order polynomial

approximations. For many fluid flow problems, which require high resolution and

accuracy, this is a major limitation. One alternative is provided by the Spectral

Element Method (SEM), which combines the competitive advantages of Spectral and

Finite Element Methods [5]. Similar to FEM it discretizes the domain into elements

but not as many or as fine as utilized in a typical finite element mesh. On these

small number of elements SEM uses high order Chebshev or Legendre polynomials to
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(a) Spectral Method

(b) Finite Element Method

(c) Spectral Element Method

Fig. 1. Domain and element discretization of a one-dimansional problem. Vertical

lines show element boundaries. Circles show collocation points. (a) SM uses a

single element approximated with very high order polynomial expansions (b)

FEM uses many small elements with low order approximations. (c) SEM uses

larger elements with higher order approximations.

achieve high accuracy. A visual comparison of the discretization of a one-dimensional

domain with different methods are shown in Fig 1. In SEM codes, polynomial orders

of 6-12 are typically used. SEM is first designed for the solution of incompressible

Navier-Stokes equations. Similar to Spectral Methods, SEM applications are still

mostly fluid flow oriented.

The most important advantage of high order methods (SM and SEM), compared

to low order ones (FEM) is the higher accuracy they provide. Another advantage

of high-order methods is that they are memory minimizing [3], which is the reason

why they are preferred for computationally demanding meteorology problems. How-

ever, compared to low-order methods, they require more computations per degree of

freedom. Also they suffer more from the geometric singularities such as corners or
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discontinuities inherent in the solution such as shock waves.

2. Nonconforming Formulations

In numerical simulations, local (non-propagating) mesh refinement is a key require-

ment for efficient and accurate solvers. For example in the typical test case of flow

over a cylinder, the thin boundary layer around the cylinder and the wake behind it

are the regions where most flow physics happens. Therefore these regions need to be

resolved better than the inflow or far field regions. Another example is the lid-driven

cavity problem, where finer elements are required near the corners in order to prop-

erly confine the geometric singularities. If one has a priori idea of what the solution

will be, the simulation can be performed with a properly refined mesh. But usually

adaptive strategies are required, where the mesh is refined continuously during the

solution process, according to the error estimations. For time dependent problems,

such as a travelling wave, adaptive strategies are necessary in order to capture the

moving gradients properly.

In domain decomposition methods, three types of refinement strategies are used

when more accuracy is needed. These are summarized in Fig. 2, where a four element

mesh is refined in order to resolve the sharp gradients in the upper right corner of the

domain. The most basic technique is to use smaller size elements in the regions where

higher resolution is required. This is called h-type refinement because the element

sizes, which are usually denoted by h, are changed. Number of elements is increased,

but approximation orders inside the elements are kept the same. As seen in Fig. 2 this

may result in elements which are not geometrically conforming. By geometrical non-

conformity we mean the situation where the intersection of neighboring elements are

not a whole face or a vertex. In this study for geometrical nonconformity we use the

term h-type nonconformity because it is usually generated by an h-type refinement.
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Second type of refinement is the p-type refinement. In this case the number of

elements and their sizes are kept the same but the approximation order inside the

elements, where higher resolution is required, is increased. This type of refinement

results in polynomial order nonconformity, which is called p-type nonconformity. This

is the case, where the interfaces of the neighboring elements match geometrically but

the unknowns defined on those faces do not match.

Third type of refinement is the r-type refinement, which keeps the number of

elements and their approximation orders the same but changes the shapes and the

distribution of them. It moves the elements closer to the locations, where more res-

olution is required. Although sounds simple, this is the most difficult of all three

refinement strategies due to the requirement of clever relocating algorithms. It is

also limited in the sense that too much mesh movement may result in too distorted

elements, in which case, remeshing might be necessary. It is useful in case of dis-

continuous solutions and used effectively for shock capturing in compressible flows.

r-type refinement does not result in any type of nonconformities and is not covered in

this study. Note that mesh coarsening is the opposite of refinement and the discussion

about refinement equally applies to it. In adaptive simulations, mesh refinement and

coarsening are usually used together.

Both h- and p-type nonconformities require special treatment, because non-

matching unknowns at nonconforming interfaces can not simply be assembled. There

are several techniques to formulate these nonconformities. Constrained Approxima-

tion Method (CAM) is one of the very early ones and is very simple in theory [6].

It is based on the interpolation of unknowns at nonconforming interfaces and pro-

vides a pointwise projection. CAM is popular in the Finite Element community and

usually used with low-order methods. Mortar Element Method (MEM) is another

technique, in which the jump accross nonconforming interfaces are minimized in a
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Original mesh of four

1   order elementsst

h-type

r-type

p-type

Fig. 2. Three commonly used refinemet strategies. Lines show element boundaries,

circles show collocation points. (a) h-type refinement keeps the approximation

orders the same but introduces new elements. (b) p-type refinement keeps

number of elements the same but increases the approximation order. (c) r-type

refinement keeps both the number of elements and approximation order in each

element the same, but resize and relocate the elements.
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weighted integral sense. It is first developed by the Spectral Element community and

today it is mostly used in spectral solvers [7]. There are other formulations to handle

nonconformities but in this study we will study CAM and MEM in detail.

Before finishing this section, it is important to note that Spectral Element

Method is usually compared with p-type Finite Element Method (pFEM), which

is an extension to the classical FEM, providing p-type refinements [8]. The main dif-

ference between pFEM and SEM lies in the choice of the trial and test functions. In

pFEM case, hierarchical polynomials based on an equispaced elemental discretization

are used as basis functions. In SEM, on the other hand, the basis in each element are

formed using the Lagrange interpolants at the the Gauss-Lobatto quadrature points.

B. Literature Survey

Although mathematical background of global approximations, such as the Fourier

expansion, goes back much earlier, the first practical use of Spectral Methods started

in the beginning of 1970s. Earliest spectral Galerkin applications were given by

Orszag [9]. He was also among the first to use the spectral collocation method [10].

A review of the fluid flow applications can be found in [11]. There are many excellent

textbooks devoted to Spectral Methods. One of the pioneering work is the monograph

by Gottlieb and Orszag [12], which provides the foundation of the modern SM. This

study is than followed by many others such as Canuto et al. [1] which focuses on fluid

mechanics applications. Boyd [3] discusses Fourier and Chebyshev methods in great

detail. A more recent book by Peyret [13] concentrates on incompressible viscous

flows.

The Spectral Element Method is first presented by Patera [5] for the solution of

Navier-Stokes equations. Korczak and Patera [14] provided the foundations of the
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iso-parametric SEM . More recent examples were given by Maday and Patera [15].

Spectral element multigrid formulations can be found in Ronquist and Patera [16].

Parallel applications are provided by Fischer [17]. A recent review of incompressible

flow applications is given by Karniadakis and Henderson [18]. The book by Karni-

adakis and Sherwin [19] presents the spectral element formulations for unstructured

elements and provides many large scale applications of the Navier-Stokes equations.

Nonconforming formulations goes back as early as the Finite Element Method.

One of the earliest studies of the Constrained Approximation Method is given by Tsai

and Szabo as an extension to FEM. [20]. A similar approach, called the transition

element method, applied to low order elements is discussed in [21]. A recent and more

complete discussion of CAM can be found in a series of papers by Demkowicz et al.

[6] and Rachowicz and Demkowicz [22]. An hp adaptive strategy coupled with CAM

is given by Ainsworth and Senior [23]. One of the few number of CAM and SEM

combinations can be found in [24]. Zanolli patching technique, introduced by Funaro

et al. [25], is an iterative procedure where Dirichlet and Neumann boundary condi-

tions are imposed on the opposing sides of the nonconforming interface. Later the

technique is modified by Henderson and Kardiadakis [26]. Mortar Element Method

is introduced by Patera and his associates [7, 27]. A comparison of Zanolli patching

and MEM can be found in [28]. One of the few number of papers studying CAM and

MEM together is given by Ronquist [29]. Mavriplis [30] and Henderson [31] studied

the adaptive refinement strategies using MEM. Finally, a modified version of MEM,

called the FETI method, is discussed in [32]. As observed from these references, CAM

is mostly used with low-order formulations, and MEM is preferred for high-order ones.

This makes it quite difficult to find comparasions of these two techniques, which we

intend to provide in this study.
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C. Specific Objectives

In this study we are focusing on two different nonconforming extensions to the clas-

sical Galerkin Spectral Element formulation, namely the Constrained Approximation

Method and the Mortar Element Method. The following are our specific objectives

• Setup a consistent terminology for h- and p-type nonconformities.

• Provide visual descriptions and step by step formulations of CAM and MEM,

for easy comparisons.

• Study and compare the stability and consistency characteristics of CAM and

MEM using advection and diffusion operators.

• Develop efficient Stokes and Navier-Stokes solvers that can use nonconforming

formulations and validate them using test problems.

• Utilize the developed solvers in engineering applications, such as the analysis of

oscillatory flow forced convection heat transfer in two-dimensional channels.

D. Organization of Thesis

In Chapter II, we review the conforming Galerkin spectral element formulation. In

Chapter III, this formulation is extended to cover nonconforming elements using CAM

and MEM. These two nonconforming formulations are tested in Chapter IV, using

diffusion and advection operators. Chapter V provides formulations for Stokes and

Navier-Stokes equations and validates them using test problems. Chapter VI demon-

strates use of these new solvers for a detailed parametric study of oscillatory flow

forced convection heat transfer. Finally, a summary of our work and recommenda-

tions for future studies are provided in Chapter VII.
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E. Nomenclature

A Convection matrix, pressure gradient amplitude.

C Conformity matrix.

cp Specific heat at constant pressure.

D Diffusion matrix.

f, F Known force function and force vector.

H Channel height.

k Heat conduction coefficient.

K Stiffness matrix.

L Gauss Lobatto Legendre interpolant, total channel length.

Lp Penetration length.

Lh Heated channel length.

M Mass matrix.

N Polynomial expansion order.

Nu Nusselt number.

p Pressure.

Pe Peclet number.

Pr Prandtl number.

q Heat flux.

Re Reynolds number.

Re′ Reynolds number based on volumetric flowrate per channel width.

S Two-dimensional shape function, pressure matrix.

t Time.

T Temperature.

u, v Velocity components.

x, y Cartesian coordinates.
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Greek symbols:

α Diffusivity, Womersley number.

Γ Domain boundary.

λ Eigenvalue.

ξ, η Local coordinates of the master element.

ν Kinematic viscosity.

ρ Density, Gaussian integration weights.

θ General scalar unknown.

τ Period.

ω Weight function, frequency.

Ω Domain.

Subscripts and superscripts:

b Bulk quantity.

e Elemental.

o Reference value, side-wall value.

˙ Time derivative.

ˆ Related to the original element.

˜ Related to the Gauss Lobatto points.

¯ Time-averaged quantity.

¯̄ Time and space averaged quantity.

∗ Dimensional quantity.
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CHAPTER II

CONFORMING GALERKIN SPECTRAL ELEMENT FORMULATION

In this chapter, we present a Conforming Galerkin Spectral Element Formulation, to

form the basis for the non-conforming extensions, which will be studied in the next

chapter. We will first consider a steady two-dimensional Poisson problem, starting

from its strong form and work step-by-step all the way to the final algebraic matrix

form. Then the semi-discrete formulation will be presented which can be used to

solve time dependent problems.

A. Steady Formulation

Step 1 - Strong Formulation: For a steady two-dimensional Poisson problem, strong

form is expressed as, find θ such that

−∇2θ = f on Ω (2.1a)

θ = g on Γg (2.1b)

n · ∇u = h on Γh (2.1c)

where θ is the scalar unknown. Ω is the domain of the problem and Γ = Γg

⋃
Γh is

the boundary of Ω (Fig. 3a). Eqs. (2.1b) and (2.1c) are the essential and natural

boundary conditions, respectively. The unit normal n, points outward from boundary

Γ, and f, g and h are known functions of the space coordinates.

Step 2 - Weighted Residual Formulation: Define the “residual” of Eq. (2.1a) as

R = −∇2θ − f (2.2)
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Γg

Γh

Ω Ωe

(a) (b)

Fig. 3. Model problem. (a) Domain and boundary, (b) Domain discretization

In order to end up with a well defined algebraic set of equations (number of unknowns

being equal to the number of equations) we force the approximate solution to satisfy

the residual equation in a “weighted” integral sense

∫
Ω

Rw dΩ =

∫
Ω

(−∇2θ − f) w dΩ = 0 (2.3)

where the approximate solution θ and the weight function w belong to the following

Hilbert spaces

L = {θ : θ ∈ H1(Ω), θ = g on Γg}

V = {w : w ∈ H1(Ω), w = 0 on Γg}

Step 3 - Weak Formulation: In order to balance the order of differentiation

between the approximation and weight functions, we apply integration by parts to

the first term of Eq. (2.3)

∫
Ω

∇θ · ∇w dΩ =

∫
Ω

fw dΩ +

∮
Γh

hw ds (2.4)

Step 4 - Domain Discretization: Divide domain Ω into conforming subdomains

(elements) Ωe and apply the weak formulation in each subdomain individually
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ξ
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1

η

Fig. 4. Element discretization for a typical two-dimensional quadrilateral element. A

4×5 discretization yields 30 collocation points.

∫
Ωe

∇θe · ∇we dΩe =

∫
Ωe

f ewe dΩe +

∮
Γe

h

hewe dse (2.5)

Figure 3b shows a sample discretization with quadrilateral elements.

Step 5 - Element Discretization: Map each element to a master element in (ξ, η)

coordinate system and discretize further by introducing a set of collocation points

(Fig. 4). The discretized form of θ can be written as

θ(ξ, η) =
M∑

m=0

N∑
n=0

θe
mn LM(ξm) LN(ηn) (2.6)

where LM(ξm) is the value of the M th order Gauss-Lobatto-Legendre (GLL) inter-

polant at the mth point in ξ direction. It is defined as

LM(ξm) = − (1 − ξ2)P
′
M(ξ)

M(M + 1)PM(ξm)(ξ − ξm)
, m ∈ [0,M ] (2.7)

where PM and P
′
M are the M th-order Legendre polynomial and its derivative, respec-

tively. GLL collocation points are defined implicitly as
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(1 − ξ2
m)L

′
M(ξm) = 0 (2.8)

By combining the two interpolants in Eq. (2.6) in a single shape function

Sj(ξ, η) = LM(ξm) LN(ηn) , j ∈ [1, ncp] (2.9)

Eq. (2.6) can be simplified to

θ(ξ, η) =

ncp∑
j=1

θe
j Sj(ξ, η) (2.10)

where ncp = (M +1)(N +1) is the number of collocation points in element e. Sj is the

two-dimensional shape function associated with the collocation point j, which is the

tensor product of one-dimensional interpolants [19]. Sample GLL interpolants and

the shape function obtained by their product are given in Fig. 5. Note that another

common choice for element discretization is the Chebyshev points [3]. Although

they provide similar accuracy, GLL points are known to have advantages in terms

of computational efficiency, since they are orthogonal with respect to a unity weight

function [33].

Step 6 - Weight Function Selection: In the Galerkin formulation weight function

w in Eq. (2.5) is selected to be the same as the shape functions used for the unknown

w = Si , i ∈ [1, ncp] (2.11)

Step 7 - Elemental Matrix Form: Substitute Eqs. (2.10) and (2.11) into Eq.

(2.5) to obtain

∫
Ωe

ncp∑
j=1

θe
j ∇Sj · ∇Si dΩe =

∫
Ωe

f eSi dΩe +

∮
Γe

h

heSi dse (2.12)
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Fig. 5. Sample Gauss-Lobatto-Legendre (GLL) interpolants and shape function

which can be put into the following elemental matrix form

[K]e{θ}e = {F}e = {f}e + {Q}e (2.13)

where [K]e is the elemental stiffness matrix given by

Ke
ij =

∫
Ωe

∇Sj · ∇Si dΩe , i, j ∈ [1, ncp] (2.14)

and {F}e is the elemental force vector which includes the contribution from the

actual forcing function {f}e, as well as the contribution from the natural boundary

conditions {Q}e. It is given by

F e
i =

∫
Ωe

f eSi dΩe +

∮
Γe

h

heSi dse , i ∈ [1, ncp] (2.15)

Step 8 - Numerical Integration: For a robust and problem-independent imple-
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mentation, the integrals in Eqs. (2.14) and (2.15) need to be evaluated numerically.

One obvious choice is to use the already available GLL points, given by Eq. (2.8), and

corresponding integration weights. Numerical integration will convert the integrals

to summations

Ke
ij =

ncp∑
k=1

∇Sj · ∇Si ρk (2.16)

F e
i =

ncp∑
k=1

f eSi ρk +

nfp∑
k=1

heSi ρk (2.17)

where ncp is the number of collocation points of element e and nfp is the number of

collocation points at the boundaries with natural boundary condition. Above, ρk are

the GLL integration weights. Note that the differential operator ∇ in Eq. (2.16) acts

on the real coordinates (x, y) and need to be converted to a corresponding operator

acting on the local coordinates (ξ, η) of the master element. This requires evaluation

of the Jacobian matrix, details of which can be found in [4].

Step 9 - Assembly and Matrix Form: After repeating steps 8 and 9 for all the

elements, the global system can be assembled as

[K] =

ne∑′

e=1

[K]e , {F} =

ne∑′

e=1

{F}e (2.18)

which yields the following final set of algebraic equations

[K]{θ} = {F} (2.19)

It is worth here to note that conformity between the element interfaces is implic-

itly used during the assembly process. That is there is a one to one matching between

the unknowns of the elements sharing an interface and these matching points con-

tribute to the same entry of the global matrix. However, as we will see in the next



19

section, in case of nonconforming elements a modified assembly process is required.

B. Semi-discrete Formulation

Let’s extend the formulation presented in the previous section, to include time deriva-

tives. The unsteady Poisson problem is given as

∂θ

∂t
−∇2θ = f (2.20)

Using the boundary conditions given in Eq. (2.1) and a proper initial condition,

will yield to the following weak form

∫
Ω

(
∂θ

∂t
w + ∇θ · ∇w) dΩ =

∫
Ω

fw dΩ +

∮
Γh

hw ds (2.21)

Element discretization still involves only spatial variation. In other words, shape

functions, given in Eq. (2.9) that are functions of ξ and η will be used. Discretized

unknown is given as

θ(ξ, η, t) =

ncp∑
j=1

θe
j(t) Sj(ξ, η) (2.22)

where the time variation is separated from the space variation.

Similar to the steady formulation, one can still use weight functions w to be the

same as shape functions S, as given in Eq. (2.11). Substituting Eqs. (2.11) and

(2.22) into Eq. (2.21) will give

∫
Ωe

ncp∑
j=1

∂θe
j

∂t
Sj Si dΩe+

∫
Ωe

ncp∑
j=1

θe
j ∇Sj · ∇Si dΩe =

∫
Ωe

f eSi dΩe+

∮
Γe

h

heSi dse (2.23)

which can be put into the following elemental matrix form

[M ]e{θ̇}e
+ [K]e{θ}e = {F}e (2.24)
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where θ̇ represents the time derivative of the approximation. The elemental stiffness

matrix [K]e and the elemental force vector {F} are given in Eqs. (2.14) and (2.15),

respectively. [M ]e is the elemental mass matrix, given by

M e
ij =

∫
Ωe

SiSj dΩe (2.25)

Next step is the numerical evaluation of the integrals in elemental matrices and

vectors, and assemble them into the following set of algebraic equations

[M ]{θ̇} + [K]{θ} = {F} , i, j ∈ [1, ncp] (2.26)

Semi-discrete formulation continues by approximating the time derivative of the

unknown θ̇ in terms of unknowns at various time steps. At this point it is important

to note that the mass matrix, obtained after the numerical integration of Eq. (2.25)

is diagonal. This is because of the fact that the collocation points used for numerical

integration, and the points at which the shape functions are evaluated, are the same.

This is an important property of spectral element methods, which is not found in

classical finite element formulations [4]. Unfortunately, this property will be lost

when the Galerkin formulation is modified with nonconforming formulations [28].
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CHAPTER III

NONCONFORMING FORMULATIONS, CAM AND MEM

In this chapter we present details of the Constrained Approximation Method (CAM)

and the Mortar Element Method (MEM). In the coming sections, we demonstrate the

principles of both techniques on p-type and h-type nonconforming interfaces. Each

method is studied sequentially using step by step instructions, which enables a better

comparison between them.

A. Definitions About Nonconformities

First, we will provide several definitions that will be used in the coming sections.

Some of them are first introduced to the literature in this study. We will start with

the definitions of interfaces. We will distinguish three types of interfaces, conforming,

p-type nonconforming and h-type nonconforming. Samples can be seen in Fig. 6.

A conforming interface has two geometrically matching faces, with the same order

of expansion used at each face. It results in matching collocation points. A p-

type nonconforming interface has two geometrically matching faces, but different

orders of expansion is used in each element. An h-type nonconforming interface

has geometrically non-matching faces. The most popular one is shown in Fig. 6c,

which is known as 1-irregular interface. It is the only kind of h-type nonconforming

interface used in this study. It is shared by one long element and two short elements.

There is just one hanging point, which is the middle collocation point. The order

of expansions at the three faces, sharing an h-type nonconforming interface, can be

the same or different. As seen in Fig. 6 both p-type type and h-type nonconforming

interfaces result in non-matching collocation points.

At a nonconforming interface one should decide on which face(s) to be con-
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(c)(a) (b)

Fig. 6. Types of interfaces: (a) conforming. (b) p-type nonconforming. (c) h-type

type nonconforming. Thick lines show element boundaries and intersection of

thin lines show the collocation points.

strained. This depends on the selection of active and passive faces. A passive face is

the one, the collocation points of which, will be replaced by the points of the corre-

sponding active face. This is called constraining a face. Therefore not all the faces

sharing a nonconforming interface are constrained. The selection of active and pas-

sive faces depend on the type of nonconformity and the formulation used (CAM or

MEM).

At a p-type interface one can either use the maximum rule, which selects the

face with higher expansion order as the active face, or the minimum rule, which is

just the opposite. An example is given in Fig. 7a. The freedom of choosing between

maximum and minimum rules is available for both CAM and MEM.

Selection of constrained faces at an h-type interface is different and depends on

whether we use CAM or MEM. Maximum and minimum rules do not apply at an h-

type interface, since the nonconformity is not related to the order of expansions. The

nonconformity is related to the shapes of the elements and the selection of constrained

faces is now determined by the long and short rules. The long rule selects the long

face as the active face and the two short faces as passive faces. The short rule is

just the opposite. In this study, for the reasons which will be discussed later in this

chapter, at an h-type interface CAM and MEM can only use the long and short rules,
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maximum rule

minimum rule

long rule (CAM)

short rule (MEM)

(a)

(b)

Fig. 7. Selection of active and passive faces at (a) a p-type nonconforming interface

using maximum and minimum rules, and (b) an h-type nonconforming interface

using long and short rules. Original configurations are the ones on the left of the

arrows. Modified configurations on the right show the active points (squares)

and passive points (circles), only at the interface.
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respectively. Examples of long and short rules are given in Fig. 7b.

The collocation points of the modified configurations of Fig. 7 shown by squares

are called the active points. The circles are called the passive points. As we will

demonstrate shortly, CAM and MEM provide ways to express the unknowns at the

passive points in terms of the ones at the active points. In other words, passive

points are removed from the mesh and only the active points contribute to the global

assembly process. Note that the corner points (end points of the faces), inner points

(points that do not lie at a face) and points of a face that is not constrained are

always active points.

B. Constrained Approximation Method (CAM)

As described in the previous section, at a non-conforming interface there is no one-to-

one matching between the collocation points of the neighbor elements. This can also

be viewed as the loss of continuity of the unknowns at the nonconforming interfaces.

CAM is a method where we regain this lost C0 continuity. This is done by a pointwise

projection and matching of the unknowns of one face to the other. It is mostly used

with the p-version of the finite element method [6, 22, 23], with very limited number

applications to high-order spectral methods [24].

We will demonstrate this method using the configuration given at Fig. 8, which

shows an element surrounded with five neighbors. We will concentrate on the shaded,

middle element and study its interaction with its neighbors. In the expanded view of

Fig. 8 only the faces of the neighbors’ that are shared with the middle element are

shown. Although the method is general and can use any combination of expansion

orders, in this example we use 3rd order expansions in both x and y directions. Local

point numbering from 1 to 16 can be done in any way and different choices do not
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Fig. 8. An element with Nx = Ny = 3rd order expansion and ncp = 16 collocation

points. Faces shared with five neighboring elements are also shown. South

interface has p-type, East and North interfaces have h-type nonconformities.

West interface is conforming. Points of the middle element and points of the

neighbors are shown with circles and squares, respectively.

affect the following formulation.

Step 1 - Determine the nonconforming interfaces and type of nonconformities:

In our example South interface has p-type, East and North interfaces have h-type

nonconformities. West interface is conforming.

Step 2 - Decide on active and passive faces: At the nonconforming interfaces

collocation points of two neighboring faces are not matching (circles are not matching

with squares). Both set of points can not be used in the assembly process. A decision

should be made on which set of points to be used. The points that will be used

in the assembly process are the active points and remaining set of points are the

passive points. Let’s first concentrate on the South interface where we have p-type

nonconformity. As discussed in the previous section, there are two possibilities in

determining the active/passive faces: minimum and maximum rules. In this example

maximum rule will be used. Now let’s look at the East and North interfaces where we
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Fig. 9. CAM: (a) Original element with ncp = 16. (b) Constrained element with

n̂cp = 1̂8. Passive points are shown with an extra circle around them. Active

points are shown by squares.

have h-type nonconformity. At these interfaces there is only one choice: the long rule.

East face is a long face, and therefore is active. That is, it will not be constrained.

North face is a small face, and therefore is passive. It will be constrained. Later it

will be clear why the other possibility, the short rule is not suitable for CAM. To

summarize, we identified the South and the North faces to be passive, and West and

East faces to be active.

Step 3 - Generate the modified element: Figure 9a shows the original element

whose (according to the above discussion) South and North faces are passive. Figure

9b shows the modified element obtained by replacing the passive points of the original

element by the points of the active neighboring faces. To make the discussion more

clear, deleted points of the original element (2, 3, 8, 9) are the passive points (shown

with an extra circle around them). By definition all the points of the modified element,

shown as squares, are active points. These are the points that will go into the global

assembly process. Points of the modified element are distinguished from that of the

original element by a hat (̂) on them.

Step 4 - Write the unknowns at the passive points in terms of the unknowns at the
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Fig. 10. Graphical interpretation of how pointwise projection of CAM works at a

p-type interface

active points: This is the key step which is different for each nonconforming technique.

CAM is one of the easiest ones, in which we enforce a projection of unknowns at the

passive points onto the active faces.

Step 4a - Find the conformity equation for the South face: Let’s start with the

South face. The following formulation should be followed by referring to Fig. 10. We

want to write the unknowns at the passive points 2 and 3 in terms of unknowns at

the active points 1̂, ..., 1̂8. For this purpose, Eq. (2.10) can be used on the modified

element. For example at point 2,

θ2 =

n̂cp∑
ĵ=1̂

θe
ĵ

Sĵ(ξ2, η2) (3.1)

Note that point 2 is at a face where two-dimensional shape functions reduce to

one-dimensional Lagrange interpolants (see Eq. (2.6)). Using this fact, Eq. (3.1) can
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be simplified to

θe
2 = θe

1̂
L1̂(ξ2) + θe

2̂
L2̂(ξ2) + θe

3̂
L3̂(ξ2) + θe

4̂
L4̂(ξ2) + θe

5̂
L5̂(ξ2) (3.2)

This is called the constrained approximation for the passive point 2. A similar

equation can be written for point 3 and together they can be expressed in the following

vector equation,




θ2

θ3




e

=

[
CS

]e




θ1̂

θ2̂

θ3̂

θ4̂

θ5̂




e

=




L1̂(ξ2) L2̂(ξ2) L3̂(ξ2) L4̂(ξ2) L5̂(ξ2)

L1̂(ξ3) L2̂(ξ3) L3̂(ξ3) l4̂(ξ3) L5̂(ξ3)




e




θ1̂

θ2̂

θ3̂

θ4̂

θ5̂




e

(3.3)

where CS is the conformity matrix for the South face.

Step 4b - Find the conformity equation for the North face: Following the above

procedure an equation similar to Eq. (3.3) can be written for the passive points of

the North face




θ8

θ9




e

=

[
CN

]e




θ8̂

θ9̂

θ1̂0

θ1̂1

θ1̂2




e

=




L8̂(ξ
∗
8) L9̂(ξ

∗
8) L1̂0(ξ

∗
8) L1̂1(ξ

∗
8) L1̂2(ξ

∗
8)

L8̂(ξ
∗
9) L9̂(ξ

∗
9) L1̂0(ξ

∗
9) L1̂1(ξ

∗
9) L1̂2(ξ

∗
9)




e




θ8̂

θ9̂

θ1̂0

θ1̂1

θ1̂2




e

(3.4)

where the transformation

ξ∗i =
ξi − 1

2

is used in order to project the local coordinates of the North face of the original

element onto the modified face properly (Fig. 11). This projection is necessary
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Fig. 11. Graphical interpretation of how pointwise projection of CAM works at an

h-type interface

because in Eq. (3.4) Lagrange interpolants based on the modified face are evaluated

at the collocation points of the original face, and the local coordinates of these two

faces (ξ and ξ̂) do not match. It is also clear from Fig. 11 why the short rule is not

suitable for CAM. Because that would require evaluation of Lagrange interpolants

based on a short face at the collocation points of a long face, e.g. L9(ξ̂11), which is

not defined (L9 is only defined in 0 < ξ̂ < 1).

Now unknowns at all four passive points (2,3,8,9) are expressed in terms of the

unknowns at the active points.

Step 5 - Setup the elemental conformity matrix: One can write similar constraint

equations for East and West faces as well as corner points and inner points. However,

they will all give unity conformity matrices. For the sake of completeness they are

given below:
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East:




θ5

θ6




e

=

[
CE

]e




θ7̂

θ8̂




e

West:




θ11

θ12




e

=

[
CW

]e




θ1̂1

θ1̂2




e

Corner:




θ1

θ4

θ7

θ10




e

=

[
CC

]e




θ1̂

θ5̂

θ8̂

θ1̂0




e

Inner:




θ13

θ14

θ15

θ16




e

=

[
CI

]e




θ1̂5

θ1̂6

θ1̂7

θ1̂8




e
(3.5)

Now all the conformity matrices given in Eqs. (3.3, 3.4, 3.5) can be assembled

into an elemental conformity matrix C, to relate the unknowns of the original element

to the unknowns of the modified element.

{θ}e = [C]e{θ̂}e where, [C]e =




1• • • • •• • • • •
1 0

1
1

1• • • • •• • • • •
1

1
1

0 1
1

1
1




ncp×n̂cp

(3.6)

where, {θ̂} represents the unknowns of the modified element. As seen from this

equation, elemental conformity matrices are very sparse. This is because only the

passive face points are affected by the constraint functions. Unity entries are due to

one-to-one matching points of the original and modified elements. Non-unity entries

coming from CS and CN are shown with dots.

Step 7 - Modified global assembly process: After setting up the elemental confor-

mity matrices for each element, these can be used in the modified assembly process
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[K] =

ne∑′

e=1

[C]eT [K]e[C]e, {F} =

ne∑′

e=1

[C]eT{F}e (3.7)

Here it is very important to note that up to the assembly process, having nonconfor-

mities does not make any difference. Elemental stiffness matrices and force vectors

are constructed using original elements as if there were not any nonconformities.

Therefore CAM requires very little direct programming and computational overhead

due to the nonconformities. The challenge is the design and efficient management of

elemental data, which is more flexible compared to a conforming mesh.

C. Mortar Element Method (MEM)

Unlike CAM, MEM does not regain the lost C0 continuity at the nonconforming

interfaces via pointwise projection. Instead, it minimizes the jump across such inter-

faces in a weighted integral sense [7, 27, 31]. Again we will end up with elemental

conformity matrices and use them in the modified assembly process, but the numer-

ical values of these matrices and the way they are obtained are quite different. Let’s

continue working on the same configuration given at Fig. 8 and see how MEM works

step by step.

Step 1 - Determine the nonconforming interfaces and type of nonconformities:

This is the same as the first step of CAM.

Step 2 - Decide on active and passive faces: At p-type nonconforming South

interface there is again the freedom to choose either the minimum or the maximum

rule. Let’s again choose the maximum rule. At h-type nonconforming East and North

interfaces short rule will be used. These selections make the South and East faces

passive.

Step 3 - Generate the modified element: Figure 12a shows the original element.
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Fig. 12. MEM: (a) Original element with ncp = 16. (b) Constrained element with

n̂cp = 1̂9. Passive points are shown with an extra circle around them. Active

points are shown by squares.

Points with an extra circle around them are the passive points. Figure 12b shows the

modified element obtained by replacing the points on the passive faces of the original

element by the points of the active neighboring faces. Therefore this time passive

points are 2, 3, 5, 6, and again all the points of the modified element are active. In

the following discussion, at a p-type interface, expansion orders of the passive and

active faces will be denoted by N1 and N2, respectively. Therefore for the South face

of our example, N1 = 3, N2 = 4. At an h-type interface, expansion order of the long

face will be denoted by N1 and expansion orders of the two small faces by N2 and

N3. For our example’s East face, N1 = 3, N2 = 3, N3 = 2.

Step 4 - Write the unknowns at the passive points in terms of the unknowns

at the active points: This step is different than the fourth step of CAM, and it is

implemented as follows.

Step 4a - Find the conformity equation for the South face: Let’s first work on the

South face. Fig. 13 shows the details about this p-type interface. We want to write

the unknowns at the passive points 2 and 3 in terms of unknowns at the active points.

This time the constraint functions will not enforce a pointwise matching, but rather
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a weaker, integral type matching. We will start by taking a weighted line integral at

the South face of the original element,

I1 =

∮
1−4

θψ ds (3.8)

where ψ is a weight function. In order to get two equations for unknowns at the

two passive points (2 and 3), two weight functions are necessary. They are usually

selected to be modified GLL interpolants that are two order less than the order of

the original face (see Fig. 13).

ψi = (−1)N1−i P
′
N1

(ξ)

ξi − ξ
i = 1, . . . , N1 − 1 (3.9)

Two order less because the end point conditions (θ1 = θ1̂, θ4 = θ5̂) removes two

degrees of freedom from the constraint at each passive face. Using the discretized

form of the unknown θ given by Eq. (2.10), Eq. (3.8) becomes

I1 =
4∑

j=1

∮
1−4

θjLj ψ ds (3.10)

Note that the summation includes only the points of the South face. There will be no

contribution from other points because shape functions associated with those points

have zero values at the South face (the face where the line integral is being evalu-

ated). Also note that two-dimensional shape functions S, reduce to one-dimensional

Lagrange interpolants L, on the faces. Now let’s take a similar line integral but this

time at the South face of the modified element

I2 =
5̂∑

j=1̂

∮
1̂−5̂

θjLj ψ ds (3.11)

Constraint functions for the two passive points can now be obtained by equating

I1 and I2. But before doing that the two line integrals should be evaluated using
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Fig. 13. Details about how MEM works at a p-type interface. 3rd order original face is

shown at the top. Points 2 and 3 are the passive points. 4th order modified face

is at the bottom. MEM uses the weight functions ψ, shown in the middle, for

an integral projection of the unknowns at the passive points onto the modified

face.
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GLL quadratures. However, the important question is what order quadrature rule

should be used. From Eq. (3.10), it can be seen that I1 includes polynomials of order

(N1 + N1 − 2), which can be calculated exactly with N th
1 order GLL quadrature (N th

order GLL quadrature can evaluate (2N−1)-order polynomials exactly). On the other

hand, I2 has polynomials of order (N1 + N2 − 2), which can be calculated exactly

using a GLL quadrature of order N = max(N1, N2). For this example N2 > N1,

therefore N th
2 order integration will be used for I2. After performing the numerical

integrations, I1 and I2 take the following forms

I1 =



2

4∑
k=1

4∑
j=1

θjLj(ξk)ψ(ξk)ρk (3.12a)

I2 =



2

max(N1,N2)∑
k=0

5̂∑
j=1̂

θjLj(ξk)ψ(ξk)ρk (3.12b)

where 
/2 comes from the Jacobian transformation, with 
 being the physical length

of the p-type interface. ξk and ρk are the integration points and weights for GLL

integration, respectively. Note that for I1, following the cardinality condition of the

Lagrange interpolants, one can write Lj(ξk) as δjk which drops one of the summations.

This simplification can be applied to I2 only if the maximum rule is used, which is

the case in this example.

As discussed above, we need two constraint functions for two passive points. This

can be done by using the two weight functions given by Eq. (3.9) in Eq. (3.12) and

equating I1 and I2. This will yield to the following vector equation
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
ψ1(ξ1)ρ1 ψ1(ξ2)ρ2 ψ1(ξ3)ρ3 ψ1(ξ4)ρ4

ψ2(ξ1)ρ1 ψ2(ξ2)ρ2 ψ2(ξ3)ρ3 ψ2(ξ4)ρ4







θ1

θ2

θ3

θ4




e

=

max(N1,N2)∑
k=0

ρk


ψ1(ξk) 0

0 ψ2(ξk)




L1̂(ξk) L2̂(ξk) L3̂(ξk) L4̂(ξk) L5̂(ξk)

L1̂(ξk) L2̂(ξk) L3̂(ξk) L4̂(ξk) L5̂(ξk)







θ1̂

θ2̂

θ3̂

θ4̂

θ5̂




e

(3.13)

where the summation sign individually applies to all the terms inside the matrices

following it. This system can further be reduced by using the end point conditions of

the interface, i.e. the fact that point 1 and 4 are exactly matching with points 1̂ and

5̂ (see Fig. 13). This allows us to reduce the left hand side of Eq. (3.13) by moving

θ1 and θ4 (which are equal to θ1̂ and θ5̂, respectively) to the right hand side. The

reduced system is

[BS]




θ2

θ3




e

= [PS]




θ1̂

θ2̂

θ3̂

θ4̂

θ5̂




e

⇒




θ2

θ3




e

= [CS]




θ1̂

θ2̂

θ3̂

θ4̂

θ5̂




e

(3.14)

where [CS] = [BS]−1[PS] is the conformity matrix for the South face of the element

we are studying. It is important to note that Eq. (3.14) has the exact same form as
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Eq. (3.3) derived with CAM, but of course with different numerical values. Another

point worth to mention is that [BS] is always a diagonal matrix because the weight

functions ψ are nothing but reduced Lagrange interpolants and they have the cardi-

nality property (i.e. in Eq. (3.13) ψi(ξj) = δij). Therefore taking the inverse [BS] is

not a costly numerical operation.

Step 4b - Find the conformity equation for the East face: East interface, which

has h-type nonconformity, requires a similar procedure to calculate the conformity

matrix CE. As sketched in Fig. 14, the original long face has to be projected to two

short faces of the modified element. This time the weighted line integral taken along

the original face (I1) will be equated to the summation of two line integrals, one for

each short face (I2 and I3)

I1 =
7∑

j=4

∮
4−7

θψ ds (3.15a)

I2 =
8̂∑

j=5̂

∮
5̂−8̂

θjLj ψ ds (3.15b)

I3 =
1̂0∑

j=8̂

∮
8̂−1̂0

θjLj ψ ds (3.15c)

where weight functions ψ are the same as the ones given in Eq. (3.9) for the South face.

These integrals can again be evaluated using GLL quadratures. I1 has polynomials

of degree 2N1−2, which can be evaluated exactly by N th
1 order quadrature. I2 and I3

has polynomials of order N1 +N2−2 and N1 +N3−2, and require max(N1, N2)
th and

max(N1, N3)
th order quadratures, respectively (Note that in this example N1 = 3,

N2 = 3 and N3 = 2). After performing the numerical integrations Eqs. (3.15) take

the following form
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Fig. 14. Details about how MEM works at an h-type interface. 3rd order original long

face is shown at the left. Points 5 and 6 are the passive points. The modified

short faces, of order 3 and 2, are at the right. MEM uses the weight functions

ψ, shown in the middle, for an integral projection of the unknowns at the

passive points onto the modified faces.
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I1 =



2

7∑
k=4

7∑
j=4

θjLj(ηk)ψ(ηk)ρk (3.16a)

I2 =



4

max(N1,N2)∑
k=0

8̂∑
j=5̂

θjLj(ηk)ψ(η∗
k)ρk (3.16b)

I3 =



4

max(N1,N3)∑
k=0

1̂0∑
j=8̂

θjLj(ηk)ψ(η∗∗
k )ρk (3.16c)

where 
 is the physical length of the long face. Length of the short faces are 
/2,

and ηk and ρk are the integration points and weights, respectively. η∗ and η∗∗ are the

projections of the local coordinates of short faces (η̂, η̃) onto the long face (η) given

by (see Fig. 14)

η∗
k =

ηk − 1

2
, η∗∗

k =
ηk + 1

2

Here one can understand why the short formulation is not suitable for MEM.

Short formulation for MEM would require evaluation of weight functions based on

short faces at collocation points of a long face, which is not possible. In other words,

full projection of η onto η̂ or η̃ is not possible.

Finally the two constraint functions for passive points 5 and 6 can be obtained

by using two different weight functions in Eq. (3.16) and forcing I1 = I2 + I3
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
ψ1(η4)ρ4 ψ1(η5)ρ5 ψ1(η6)ρ6 ψ1(η7)ρ7

ψ2(η4)ρ4 ψ2(η5)ρ5 ψ2(η6)ρ6 ψ2(η7)ρ7







θ4

θ5

θ6

θ7




e

=

max(N1,N2)∑
k=0

ρk


ψ1(η

∗
k) 0

0 ψ2(η
∗
k)




L5̂(ηk) L6̂(ηk) L7̂(ηk) L8̂(ηk)

L5̂(ηk) L6̂(ηk) L7̂(ηk) L8̂(ηk)







θ5̂

θ6̂

θ7̂

θ8̂




e

+

max(N1,N3)∑
k=0

ρk


ψ1(η

∗∗
k ) 0

0 ψ2(η
∗∗
k )




L8̂(ηk) L9̂(ηk) L1̂0(ηk)

L8̂(ηk) L9̂(ηk) L1̂0(ηk)






θ8̂

θ9̂

θ1̂0




e

(3.17)

where the summation signs again individually apply to every term of the matrices

following them. Using the endpoint conditions (θ4 = θ5̂, θ7 = θ1̂0) this system can be

reduced to

[BE]




θ5

θ6




e

= [PE]




θ5̂

θ6̂

θ7̂

θ8̂

θ9̂

θ1̂0




e

⇒




θ5

θ6




e

= [CE]




θ5̂

θ6̂

θ7̂

θ8̂

θ9̂

θ1̂0




e

(3.18)

where [CE] is the conformity matrix for the East face.

Step 5 - Setup the elemental conformity matrix: Similar to the 5th step of

CAM formulation, it is time to assemble the conformity matrices into one elemental
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conformity matrix

{θ}e = [C]e{θ̂}e where, [C]e =




1• • • • •• • • • •
1 0• • • • • •• • • • • •

1
1

1
1

1
0 1

1
1

1
1




ncp×n̂cp

(3.19)

where the entries shown with dots are coming from CS and CE.

Step 7 - Modified global assembly process: This step is again the same as that of

the CAM formulation. Elemental conformity matrices are used to modify the global

assembly process as shown in Eq. (3.7)

As demonstrated in the last two sections, formulation of CAM and MEM end up

modifying the classical Galerkin formulation in very similar ways. However, they do

not always perform equally well. In the next chapter we will compare their conver-

gence and stability characteristics using simple test problems involving both p- and

h-types of nonconformities.
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CHAPTER IV

CONVERGENCE AND EIGENVALUE ANALYSIS OF THE DIFFUSION AND

CONVECTION OPERATORS

In the previous chapter we presented two methods (CAM and MEM) that allows us

to extend the conforming Galerkin Spectral Element Formulation to include p- and

h-type nonconformities. Although they modify the classical formulation in similar

ways, they do not always perform equally well. In this chapter, we will compare

the convergence and eigenvalue characteristics of these two methods using steady and

time dependent diffusion and convection operators. The behavior of the methods with

these simple equations are important, because more complex equations can generally

be seen as compositions of these equations.

A. Steady Diffusion Operator

Consider the following two-dimensional steady Poisson equation with Dirichlet bound-

ary conditions

−∇2θ = f on Ω ∈ [0, 1] × [0, 1] (4.1a)

θ = θexact on Γ (4.1b)

The following force function

f = 4πsin(4πA)

(
(
∂A

∂x
)2 + (

∂A

∂x
)2

)
+ 4πcos(4πA)

(
∂2A

∂2x
+

∂2A

∂2y

)
(4.2)

results in the exact solution of

θexact = sin(4πA) (4.3)
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Fig. 15. (a) Two-element and (b) three-element meshes to test p-type and h-type non-

conformities. (c) Exact solution given by equation Eq. (4.3)

where A =
√

(x − 2)2 + (y − 2)2

We will solve this problem using two different meshes shown in Fig. 15 (a and

b), while Fig. 15c shows the exact solution given by Eq. (4.3).

1. Spectral Convergence on a Conforming Mesh

In the first test, defined below, we will utilize a fully conforming mesh to demonstrate

the spectral convergence upon p-type refinement (p-type refinement is term used for

increasing the expansion orders inside the elements without changing their geometry).

Test 1: Solve the system given in Eqs. (4.1) and (4.2) using the mesh shown in

Fig. 15a. Use expansion orders of N = N1x = N1y = N2x = N2y, where Nix and Niy

denotes the expansion order of the ith element in the x and y directions, respectively.
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Fig. 16. Spectral convergence obtained for Test 1. Errors decrease exponentially upon

increasing the expansion order N.

Figure 16 shows the convergence plot (maximum error vs expansion order) for

this test. Exponential decay (straight line on a log− lin plot) of the errors is a typical

indication of spectral convergence. Spectral element methods provide exponential

convergence for sufficiently smooth problems [1].

2. Convergence on a p-type Nonconforming Mesh

In the second test, defined below, convergence of CAM and MEM will be compared

on a p-type nonconforming mesh.

Test 2: Use the same problem as in Test 1, but this time introduce p-type

nonconformity by using expansion orders of N1x = N1y = N2x = 16 and various

values for N2y. Test both CAM and MEM with minimum and maximum rules.

As seen from Fig. 17, maximum and minimum rule performs quite differently for

CAM, but not much different for MEM. Let’s first analyze the minimum rule cases,

which are almost identical for CAM and MEM. Up to N2y = 16 minimum rule curve
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Fig. 17. Convergence obtained for Test 2. Two-element p-type nonconforming mesh is

used with (a) CAM and (b) MEM. Thick line corresponds to the conforming

case shown in Fig. 16 and provided for comparison.

follows the conforming convergence curve (thick line) closely (Note that N1y is fixed

at 16). In this interval, N2y < N1y and maximum error occurs in element 2. Errors

are slightly higher than the conforming case due to the additional “consistency error”

paid for the nonconformity [34]. For N2y > 16 maximum error shifts to element 1 and

stays constant because the expansion order inside the first element is kept constant.

Data points at N2y = 16, shown with an extra circle around them, correspond to the

special conforming case. That is why the curves make a dip at this point. Other

than this special point, for both CAM and MEM, minimum rule curves show an

almost exponential decay in the first interval and stay constant after that. This

is the expected behavior. For MEM, maximum rule results are very close to the

minimum rule ones, with slightly more consistency error. It is worth to mention that

minimum rule uses less number of collocation points (degrees of freedom) and gives

better results. With CAM, as shown in Fig. 17a, maximum rule behaves completely

different. Up to N2y = 16 it is clear that the spectral convergence is lost, and after

that errors start increasing. This is not an expected behavior and shows a problem
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that will be investigated in detail in the next section.

3. Convergence Problems of CAM with the Maximum Rule

Previous section showed that CAM, when used with the maximum rule, does not

perform as expected. In this section we will study this behavior in more detail.

Test 3: This is an extended version of Test 2. We will solve the same problem by

both varying N1y and N2y. Expansion orders in the x-direction are still kept constant

at 16, which is high enough to make sure that the maximum errors are due to the

discretization in the y-direction.

The discussion we made in the previous section about Fig. 17 is also true for

Fig. 18. Fig. 18a and 18c shows that CAM and MEM performs as expected with the

minimum rule. For the interval N2y < N1y, error curves closely follow the spectral

convergence curve and stays constant after that. Results for MEM with maximum

rule (Fig 18d) is very similar to the ones with minimum rule. However, CAM with

maximum rule (Fig. 18b) does not show spectral convergence and results in much

higher error levels. In this case “consistency errors” due to the formulation of the

nonconformity clearly dominates the approximation errors, which exist in every case.

We believe that these results are generalizations of the polynomial order incompat-

ibility problem mentioned in [34], where the relative importance of consistency and

approximation errors is analyzed for pointwise matching (CAM) and integral match-

ing (MEM). They worked with polynomials and showed that for CAM, when used

with maximum rule, consistency errors due to the nonconformity is not bounded for

certain combinations of N1y and N2y. It is easy to demonstrate the findings in [34]

by solving a Poisson problem with a polynomial exact solution.
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Fig. 18. Convergence curves obtained for Test 3. Two-element h-type nonconforming

mesh is used with combinations of (a) CAM, minimum rule (b) CAM, max-

imum rule, (c) MEM, minimum rule, and (d) MEM, maximum rule. Thick

line corresponds to the conforming case shown in Fig. 16 and provided for

comparison.
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Fig. 19. Convergence obtained for Test 4. Three-element, h-type nonconforming mesh

is used with (a) CAM and (b) MEM. Note that CAM uses the long rule and

MEM uses the short rule.

4. Convergence on an h-type Nonconforming Mesh

This is another detailed test similar to the previous one, but this time on a three-

element, h-type nonconforming mesh.

Test 4: Use the same problem as in Test 3, but this time use the three-element

mesh with h-type nonconformity as shown in Fig. 15b. Take N1x = N2x = N3x = 16,

and use various values for N1y, N2y and N3y. Test both CAM and MEM.

Figure 19 shows the convergence curves for this test. For h-type nonconformities,

instead of maximum and minimum rules, we use long rule with CAM and short rule

with MEM. Convergence curves follow a similar trend to those obtained in previous

sections. Let’s consider the curve obtained with MEM for N1y = 16. Up to N2y =

12 the error decays exponentially. Maximum error occurs inside one of the small

elements. After N2y > 12 maximum error shifts to the big element, i.e. element 1,

and the error stays constant because the expansion order of element 1 is kept constant.

Similar behavior is obtained for other values of N1y. Curves for CAM deviate from the
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straight line of spectral convergence in the interval N2y < N1y. Compared to MEM,

CAM requires higher expansion orders to get the same level of error. For N2y > N1y

errors stay constant with values slightly lower than the corresponding MEM cases.

However, in a physical problem it is not likely that the order of expansion in the small

elements (N2y, N3y) to be higher than that of the large element (N1y).

B. Eigenvalue Analysis of the Diffusion Operator

In this section we will analyze the eigenvalue spectrum of the diffusion operator.

Test 5: Analyze the eigenvalue spectrum of the diffusion operator using two-

element p-type and three-element h-type nonconforming meshes. Unsteady Poisson

equation given by

∂θ

∂t
−∇2θ = 0 (4.4)

gives (after a semi-discrete formulation) the global discrete system of θ̇ = M−1Dθ,

which can be put into the following eigenvalue problem

(M−1D − λI)φ = 0 (4.5)

where λ and φ are the eigenvalues and corresponding eigenvectors, respectively. M

and D are the mass and diffusion matrices. All the boundaries are taken to be

Dirichlet type.

Figure 20 shows the growth of maximum eigenvalues with the expansion order.

Figure 20a is for a conforming mesh. The straight line has a slope of two, suggesting

that the maximum eigenvalue increases linearly with the square of the expansion

order, i.e. |λ|max ∼ O(N2). This agrees with the global spectral methods [28].

Similar trends are obtained for p-type and h-type non-conforming meshes. In Fig.

20c eigenvalues for MEM are slightly higher than those of CAM because MEM uses
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Fig. 20. Maximum eigenvalues for Test 5. Using (a) conforming mesh with same ex-

pansion order in both elements in both directions, (b) p-type nonconforming

mesh with N = N1x = N1y = N2x and N2y = N +2, (c) h-type nonconforming

mesh with same expansion order in all elements in both directions.

the short rule resulting in more degrees of freedom. Note that for every case shown

in Fig. 20, all the eigenvalues are real and negative. Therefore nonconformities do

not bring any instability problems for the diffusion operator, if one uses absolutely

stable implicit schemes.

C. Eigenvalue Analysis of the Convection Operator

Let’s repeat similar eigenvalue tests for the convection operator.

Test 6a, 6b: Analyze the eigenvalue spectrum of the convection operator using

the four-element, p-type nonconforming mesh shown in Fig. 21a. Unsteady convec-

tion equation is given by

∂θ

∂t
+ u · ∇θ = 0 (4.6)

where u is a two-dimensional velocity field. For simplicity we will use a velocity with
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Fig. 21. Four-element meshes used in the convection tests

a magnitude of 1.0 and perform tests with flow going from left-to-right and right-to-

left. After a semi-discrete formulation, Eq. (4.6) gives the global discrete system of

θ̇ = −M−1Aθ, which can be put into the following eigenvalue problem

(−M−1A − λI)φ = 0 (4.7)

where A is the convection matrix. Two different sets of boundary conditions will be

used.

(a) Dirichlet conditions on all four boundaries,

(b) Dirichlet conditions on the top and bottom boundaries, periodic conditions

on the left and right boundaries.

These two cases will be referred to as Test 6a and Test 6b, respectively. Eigen-

value spectrums for Test 6a and 6b are shown in Fig. 22. Same results are obtained

for CAM and MEM, so this figure will be referred without making a distinction be-

tween CAM and MEM. All the plots in this figure are for the case when the velocity

field is from left-to-right. For cases when the velocity field is in the reverse direction

we got symmetric plots with respect to the imaginary axis, which are not shown. In

these plots, we are mostly concerned about the eigenvalues with positive real parts

because they are known to create stability problems for long time integrations.
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Fig. 22. Eigenvalue spectrums for Test 6a (top) and 6b (bottom). Using (a) conform-

ing mesh, (b) nonconforming with minimum rule, (c) nonconforming with

maximum rule. For conforming cases N = 4 is used in all elements. For

nonconforming cases, expansion orders of N1 = N2 = 4 and N3 = N4 = 5 are

used.
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As seen from Figs. 22a and 22d, conforming configurations result in all imaginary

eigenvalues, as expected for the convection operator. Fig. 22b is for a case when the

flow is going from lower order N = 4 to higher order N = 5 using the minimum

rule. We noticed that some of the eigenvalues shifted to the negative real plane. If

we reverse the flow direction (the case when the flow is going from higher order to

lower order, which is not shown) the eigenvalues will shift to the positive real plane,

which is not desired. Fig. 22e is for periodic boundaries, which means low and high

order elements repeat one after the other continuously. In other words, flow will

pass from lower order to higher order and vice versa regardless of its direction. This

configuration results in eigenvalues with symmetric real parts, and eigenvalues on the

positive real plane can not be avoided.

Fig. 22c uses all Dirichlet boundary conditions and maximum rule with flow

going from lower order to higher order. The results are similar to the case with

minimum rule (Fig. 22b) with the exception of some eigenvalues with large positive

real parts. Finally, Fig. 22f uses maximum rule with periodic boundaries. Similar

to Fig. 22c, eigenvalues have symmetric real parts, that is the flow direction is not

important.

Unlike the diffusion operator discussed in the previous section, eigenvalues of

the convection operator behaves very different with conforming and nonconforming

interfaces. The eigenvalues obtained by CAM and MEM are very close to each other.

They depend on the choice of minimum or maximum rule. They also depend on the

direction of the flow, that is passing from a high order element to a low order one or

vice versa makes a difference. Positive real eigenvalues seen in most cases are due to

the consistency errors, and make the solution of this time dependent problem difficult.

Note that with the maximum rule (Figs. 22c and 22f) this problem is more severe

compared to the minimum rule (Figs. 22b and 22e). Later in this chapter we’ll solve
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Fig. 23. Maximum real part of the eigenvalues for Test 6b using maximum and mini-

mum rules. Four-element mesh of Fig. 21a, with periodic inlet outlet is used

with expansion orders of N1 = N2 = N and N3 = N4 = N + 1.

a pure convection problem to demonstrate the effects of the positive eigenvalues.

We will continue by solving Test 6b using various orders of expansions to under-

stand the relationship between the maximum real part of the eigenvalues Re(λ)max,

and the expansion order N (This is similar to Test 5 that was performed for the

diffusion operator). Results are shown in Fig. 23. Minimum and maximum rules

behaves very similarly. Re(λ)max increases almost linearly with the expansion order,

which makes the problem numerically more difficult to solve.

Test 7a, 7b: Previous test considered only p-type nonconformities. In this test

we will study the eigenvalue spectrum of the convection operator using the three-

element, h-type nonconforming mesh shown in Fig. 15b. Again we will distinguish

two cases, Test 7a: all four boundaries are Dirichlet type, and Test 7b: top and

bottom boundaries are Dirichlet type and right and left boundaries are Periodic.

Eigenvalue spectrums for Test 7a and 7b are shown in Fig. 24. The flow is going
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in all elements.
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Four-element mesh of Fig. 21b, with periodic inlet outlet, is used with expan-

sion orders of N in each element.

in the positive x direction. Unlike p-type nonconformities, results for CAM and MEM

are different, because the former uses the long rule while the latter uses the short rule.

Eigenvalues obtained with MEM (Figs. 24b and 24d) are spread more on the real

axis with larger real parts. Different than p-type nonconformities, Figs. 24a and 24c

are symmetric with respect to the imaginary axis, meaning that the direction of the

flow is not important.

Fig. 25 shows the relationship between the maximum real part of the eigenvalues

Re(λ)max, and the expansion order N . Behavior of CAM is similar to the one obtained

for the p-type refinement (Fig. 23). Re(λ)max for MEM increases more rapidly.

D. Convergence Analysis of the Pure Convection Equation

In the last section we studied the eigenvalue spectrum of the convection operator in

case of nonconforming interfaces. Now we will study the convergence characteristics
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of the unsteady convection problem. Our focus will be on the eigenvalues with real

positive parts and their affects on the stability of the time integration.

Consider the following two-dimensional unsteady convection-diffusion equation

∂θ

∂t
− α∇2θ +

∂θ

∂x
= f on Ω ∈ [0, 1] × [0, 1] (4.8)

which, for a zero force function, will yield the following exact solution

θexact = sin(2π(x − t)) sin(πy) e−5π2αt (4.9)

where α is the constant diffusivity. To get a pure convection equation we will take

α to be zero. The solution for this problem is a modified sine wave traveling in the

positive x-direction. The initial condition, obtained by setting t = 0 in Eq. (4.9), is

shown in Fig. 26. We will use the four-element meshes shown in Fig. 21. On the

top and bottom boundaries, exact solution will be specified as a Dirichlet boundary

condition. Left and right boundaries will be periodic. Time integration will be done

by the second-order, implicit Crank Nicolson scheme, with a time step of 0.0002.

Test 8: Let’s start with a fully conforming four-element mesh, using same expan-

sion order in all elements and in both x and y-directions. Note that we are solving a

pure convection problem with zero diffusivity.

Figure 27 shows the time history of the errors for various expansion orders. Error

levels decrease exponentially as expansion order is increased from N = 4 to N = 8.

Small time step of 0.0002 results in errors dominated by space discretization, which

accumulate slightly as time passes. All three cases are stable.

Test 9: Let’s repeat the previous test with expansion orders of N1 = N2 =

N,N3 = N4 = N + 2 so that there will be p-type nonconforming interfaces. CAM

with the maximum rule will be used. Note that MEM gives the same results as CAM

and minimum rule differs only slightly from the maximum rule (see Figs. 22 and 23).
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Fig. 27. Time history of the error for Test 8. Uses a conforming mesh with all four

elements having the same expansion order N. t = 1 corresponds to one cycle

of the sine wave.
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generated by using expansion orders of N1 = N2 = N,N3 = N4 = N + 1.

t = 1 corresponds to one cycle of the sine wave.

Figure 28 shows the time history of the errors for various expansion orders. Only

the case for N = 4 runs successfully for six cycles of the sine wave. Cases for N = 6

and N = 8 goes unstable after couple of cycles. Eigenvalues with positive real parts,

introduced by the nonconforming formulation, are responsible for these blow-ups.

The rate at which the error increases for N = 8 is larger than that of for N = 6.

These error growth rates are directly related to the maximum positive real part of

the eigenvalues (see Fig. 23).

Test 10: We will repeat Test 8 using the h-type nonconforming, four-element

mesh shown in Fig. 21b. Same expansion order will be used in all elements.

Figure 29a and 29b show the time history of the errors for various expansion

orders, for CAM and MEM, respectively. CAM results are very similar to the results

of the previous test shown in Fig. 29. This is expected because of the similarity seen

between the the max eigenvalue results shown in Figs. 23 and 25. For MEM, insta-
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bilities setup earlier and errors increase with higher slopes, which can be explained by

Fig. 25, which shows higher positive eigenvalues for MEM compared to CAM. Even

the case N = 4 is giving problems with MEM.

In the last three tests (8, 9, 10), a semi-discrete formulation with Crank-Nicolson

time integration is used. Crank-Nicolnson scheme is an absolutely stable scheme, with

the stability region covering the whole 2nd and 3rd quadrants of the eigen-plane. But

nonconforming formulations produces eigenvalues with positive real parts, which are

responsible for the blow-ups. Additional consistency errors due to the nonconforming

formulations are causing convergence problems. To understand further if this is a sta-

bility or a consistency problem, we repeated all three runs using a fully-coupled space

time formulation (instead of the previously used semi-discrete formulation). Similar

to the spatial discretization, Lagrange interpolation functions based on GLL points

are used for the time discretization. Although the coupled formulation practically

has no stability restrictions, we obtained the same results. Therefore we conclude

that for the pure convection problem, the additional consistency errors due to the

nonconforming formulations result in difficulties for unsteady problems. Our eigen-

value results are similar to those presented in [29], although in that study only p-type

nonconformities are considered and CAM and MEM are only used with the minimum

and maximum rule, respectively. The conclusion was that CAM and MEM behaves

differently and MEM results in stability problems for certain cases. However, we

showed that these behaviors can be explained by the use of minimum and maximum

rules (compare Fig. 22b and 22c), not CAM and MEM. Therefore, the stability prob-

lems they reported are due to the use of the maximum rule, rather than the use of

MEM.
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E. Convergence Analysis of the Convection-Diffusion Equation

In the previous section we considered the pure convection problem. Now we will

study the generalized convection-diffusion equation given by Eq. (4.8) with a nonzero

diffusivity. Same travelling wave problem will be solved, exact solution of which is

given by Eq. (4.9).

Test 11: Solve the convection-diffusion equation with a diffusivity of α = 0.01

and periodic side boundaries. Use the four-element meshes shown in Fig. 21 to study

fully conforming, p-type nonconforming and h-type nonconforming cases.

For the conforming case all four elements have expansion orders N . For the p-

type nonconforming case, elements 1 and 2 have expansion orders N , and elements 3

and 4 have expansion orders N + 2. For the h-type nonconforming case, all elements

have expansion order Nx = N in the x direction, elements 1 and 4 have expansion

orders Ny = N , and elements 2 and 3 have expansion orders Ny = 2 in the y-

direction. Convergence results are shown in Fig. 30. As given by Eq. (4.9), the

analytical solution decreases exponentially by time, and so is the error. In order to

circumvent this, we normalized the error by dividing it with e−5π2αt. Crank-Nicolson

scheme is used for time integration. All four cases shown in Fig. 30 ran successfully

for 10 cycles (first 5 is plotted), providing spectral convergence upon increasing the

expansion order. The added diffusion is enough to shift all the eigenvalues to the left

eigen-plane (in other words, enough to suppress the consistency errors), resulting in

successful solutions. For the p-type nonconforming cases (b and c), maximum rule

results in larger errors, although it uses more degrees of freedom. The difference

between minimum and maximum rule is more apparent for lower expansion orders,

especially with CAM. For the h-type nonconforming case CAM and MEM provides

very similar results.
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Fig. 30. Time history of the error for Test 11. Using (a) conforming mesh, (b) p-type

nonconforming mesh with CAM, (c) p-type nonconforming mesh with MEM,

(d) h-type nonconforming mesh. t = 1 corresponds to one cycle of the sine

wave.
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CHAPTER V

INCOMPRESSIBLE STOKES AND NAVIER-STOKES EQUATIONS

In this section we will develop Stokes and Navier-Stokes solvers for two-dimensional,

steady and unsteady, laminar, incompressible flows, with the emphasis on the utiliza-

tion of nonconforming meshes. We will start with the governing equations, summarize

popular solution techniques and continue with the Galerkin Spectral Element formu-

lation. Than we will validate the solvers using a number of test problems. These

problems will be solved using both for conforming and nonconforming meshes to

observe the affects of nonconforming formulations on spectral convergence. Non-

conforming problems will be solved using both CAM and MEM to compare their

convergence and stability characteristics.

A. Governing Equations

Dynamics of laminar, incompressible fluid flow is governed by the Navier-Stokes equa-

tions (written using the primitive variables)

∂v

∂t
+ (v · ∇)v − ν∇2v + ∇p = f (5.1a)

∇ · v = 0 (5.1b)

where v = ui+vj is the velocity vector on the Cartesian coordinates, p is the pressure,

ν is the kinematic viscosity and f = fxi + fyj is the body force vector. For simplicity

we assume that the density is ρ = 1. Eq. (5.1b) is the incompressibility constraint,

and it is usually treated as a part of the Navier-Stokes equations. First term on

the left hand side of the Eq. (5.1a) drops for steady problems. Second term of this

equation represents the inertial affects and they are negligible for low speed flows. If
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this term is dropped, one ends up with the Stokes equation. Although Stokes equation

is a simplified form of the Navier-Stokes, it accurately represents many physical flows.

For example, most microflows exhibit Stokes flow conditions [35].

B. Typical Numerical Solution Techniques

Although there are countless research papers and textbooks devoted to the numerical

solution of incompressible Navier-Stokes equations, this topic still remains to be an

open research area [36]. The main difficulty in solving incompressible Navier-Stokes

equations is due to the incompressiblity constraint. In the set of equations given

by (5.1), pressure is not a thermodynamic variable because there is no equation of

state for an incompressible fluid [37]. For incompressible flows, pressure is responsible

for maintaining a divergence free velocity field, and it achieves this without actually

appearing in the continuity equation (5.1b). This makes it impossible to solve both

pressure and velocity field at once and brings many challenges to the numerical solu-

tion process. Another difficulty is due to the nonlinear inertial terms (which are not

present in the Stokes equations). For time dependent problems these nonlinear terms

are usually treated explicitly in an effort to increase computational efficiency. But

for stability, implicit schemes are preferred for the remaining terms, which results in

multi-step solution procedures. Other difficulties arise for advection dominated (high

Reynolds number) flows, which are usually handled with upwinding techniques.

The most widely used methods for solving incompresible Navier-Stokes equations

fall into one the following categories:

1. Projection methods: These methods decouple solution of the pressure and ve-

locity fields in a very efficient and easy to implement way. They involve two steps: a

convection-diffusion problem is solved to obtain an intermediate velocity field (which
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is not divergence free) and a Poisson problem is solved to find the pressure. Presure

correction methods and fractional-step (splitting) methods are commonly used exam-

ples of this method. Although widely used, the basic principles of these methods are

still open for discussion (see the “biharmonic miracle” discussion in [38]). For exam-

ple the boundary conditions that are necessary for the pressure Poisson equation are

not well understood. The use of simple but improper boundary conditions are not

uncommon, which yields unphysical numerical boundary layers [37]. These methods

are known to perform better for advection dominated flows and not preferred for low

Reynolds number problems [14, 19]. They are mostly first-order in time, although

high-order splitting schemes based on stiffly-stable time integration rules are also

developed [39].

2. Penalty method: This is an effective technique that is used to eliminate

the pressure from the momentum equation (Eq. (5.1a)) [4, 19]. It is based on the

simple fact that, for incompressible flows pressure acts like a Lagrange multiplier to

maintain a divergence free velocity field. A concern with the penalty formulation is

the selection of a penalty parameter, which affects the accuracy of the scheme. This

parameter is generally problem dependent and needs some trial and error process

for a good estimate. Large penalty parameters result in solutions that satisfy the

incompressibility condition better, but also result in stiff systems that are difficult to

solve.

3. Uzawa method: This is probably the simplest and the “most clean” method

among the ones discussed here. It involves two steps: In the first step, the incom-

pressibility constraint, Eq. (5.1b), is substituted into the momentum equation, Eq.

(5.1a), to solve for the pressure. Next step simply solves for the velocity field using

the already computed pressure. It enables to staisfy the incompressibility constraint

exactly [39]. In order to satisfy the inf-sup or Ladhyzenskaya-Bubuska-Brezzi (LBB)
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condition [15] and to eliminate spurious pressure modes [40] it uses lower order expan-

sions for the pressure approximation, which usually requires use of a semi staggered

grid. A semi staggered grid does not have any pressure nodes at the boundaries,

therefore no pressure boundary condition is needed. It also makes nonconforming

formulations easier because pressure is not evaluated at element interfaces, therefore

no special treatment is necessary for it. The only disadvantage of the Uzawa method

is that it is computationaly demanding. It is usually used with iterative solvers, al-

though direct solutions are possible with the use of Schur complement decomposition

(static condensation) technique [14, 19]. Details of the Uzawa formulation will be

discussed in the following sections.

C. Galerkin Spectral Element Formulation of the Navier-Stokes Equations

In this section we will provide and discuss the set of algebraic equations that can be

obtained after following a procedure similar to the one given in Chapter 2. This pro-

cedure basically involves the strong formulation, residual equation, weight functions

and integration by parts. Skipping the intermediate steps (details of which can be

found in Reddy [4]) a typical semi-discrete Galerkin formulation of the incompressible

Navier-Stokes equations results in the following global set of equations




[M11] [0] [0]

[0] [M22] [0]

[0] [0] [0]






{u̇}
{v̇}
{ṗ}




+




[K11] [K12] [K13]

[K12]T [K22] [K23]

[K13]T [K23]T [0]






{u}
{v}
{p}




=



{F 1}
{F 2}
{0}




(5.2)
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where the elemental matrices are

M11
ij

e
= M22

ij
e
=

∫
Ωe

SiSj dΩe

K11
ij

e
=

∫
Ωe

ν

(
2
∂Si

∂x

∂Sj

∂x
+

∂Si

∂y

∂Sj

∂y

)
dΩe +

∫
Ωe

Si

(
ū
∂Sj

∂x
+ v̄

∂Sj

∂y

)
dΩe

K12
ij

e
=

∫
Ωe

∂Si

∂y

∂Sj

∂x
dΩe

K13
ij

e
= −
∫

Ωe

∂Si

∂x
S̃j dΩe

K22
ij

e
=

∫
Ωe

ν

(
∂Si

∂x

∂Sj

∂x
+ 2

∂Si

∂y

∂Sj

∂y

)
dΩe +

∫
Ωe

Si

(
ū
∂Sj

∂x
+ v̄

∂Sj

∂y

)
dΩe

K23
ij

e
= −
∫

Ωe

∂Si

∂y
S̃j dΩe

F 1
i

e
=

∫
Ωe

fxSi dΩe +

∮
Γe

tx dse

F 2
i

e
=

∫
Ωe

fySi dΩe +

∮
Γe

ty dse

(5.3)

where ū and v̄ are known values of the velocity components of the previous iteration

level (or time step for unsteady problems). tx and ty are the traction terms represent-

ing the Neumann boundary conditions. S is the GLL based shape function for the

velocity approximation, given by Eq. (2.9). S̃ is the shape function for the pressure

approximation, which is the tensor product of one-dimensional Gauss Lobatto (GL)

interpolants L̃, given by

L̃M(ξm) =
PM+1(ξ)

P
′
M+1(ξ̃m)(ξ − ξ̃m)

, m ∈ [0,M ] (5.4)

where P and P
′
are Legendre polynomial and its derivative, respectively. ξ̃ are the

GL collocation points. Using GLL points for velocity and GL points for pressure

results in a semi staggered grid, an example of which is shown in Fig. 31. As seen

from the figure, there are no pressure points on the element faces, which means

that for nonconforming meshes no special treatment is necessary for the pressure.

This is an advantage of using semi staggered grids in nonconforming formulations.
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Fig. 31. A typical semi staggered grid element. It uses 7th and 5th order polynomials

for velocity and pressure approximations, respectively. GLL points for velocity

are shown by dots and GL points for pressure are shown by squares.

In such a grid configuration, pressure approximation becomes two order less than

the velocity approximation, which is necessary to satisfy the inf-sup condition [15].

Although staggered grids are commonly used for incompressible Navier-Stokes equa-

tions, nonstaggered grids with equal order velocity and pressure approximation were

also reported to give successful results. One typical use of nonstaggered grids involves

a velocity approximation based on GLL interpolants and same order of pressure ap-

proximation based on Legendre functions. Many other examples can be found in [40].

Eq. (5.2) is not symmetric due to the nonlinear terms in [K11] and [K22]. These

nonlinear terms will be dropped for the Stokes equations, resulting in a symmetric

system. It is important to mention that the convective terms in equation Eq (5.2) are

written using a conservative form. Other forms are available, such as skew-symmetric

or convective. Although mathematically they are equivalent, each has advantages and
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disadvantages considering numerical calculations. For example, when the convective

form is used for the Stokes equations, a rearrangement of the terms in Eq. (5.3) will

result in zero matrices for [K12] and [K21]. A detailed discussion about different ways

of implementing the convective terms can be found in [29].

D. Uzawa Method

The system of equations given in (5.2) has zero diagonal entries, and can not be

inverted and solved as it is. As mentioned earlier in this chapter, Uzawa method pro-

vides a simple way to solve for velocity and pressure separately. It is straightforward

and enforces the incompressibility constraint as accurately as possible. Let’s start by

writing Eq. (5.2) as two separate equations


[M11] [0]

[0] [M22]





{u̇}
{v̇}


+


[K11] [K12]

[K21] [K22]





{u}
{v}


+


[K13]

[K23]


{p

}
=



{F 1}
{F 2}




(5.5a)

[
[K31] [K32]

]

{u}
{v}


 =

{
0

}
(5.5b)

which can be put into the following compact form

[M ]{V̇ } + [L]{V } + [D]T{p} = {F} (5.6a)

[D]{V } = {0} (5.6b)

For the sake of clarity let’s present the Uzawa method separately for steady and

unsteady equations.
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1. Uzawa Method for Steady Problems

For steady Navier-Stokes equations first term in Eq. (5.6) will drop.

Firt step of the Uzawa method: Premultiplying Eq. (5.6a) by [D][L]−1 gives

[D]{V } + [D][L]−1[D]T{p} = [D][L]−1{F} (5.7)

First term of Eq. (5.7) can be eliminated using Eq. (5.6b), to get the following

pressure equation

{p} =
(
[D][L]−1[D]T

)−1
[D][L]−1{F} (5.8)

where [S] = [D][L]−1[D]T is called the pressure matrix.

Second step of the Uzawa method: Velocity field can now be calculated by using

the already calculated pressure in Eq. (5.6a)

{V } = [L]−1
({F} − [D]T{p}) (5.9)

First step is numerically costly, since the pressure matrix [S] is a full matrix and

its inversion is not easy. Usually conjugate gradient type iterative methods are used

for this step, because [S] can be preconditioned effectively [19]. For unsteady prob-

lems, especially the preconditioning becomes more involved. In this study however,

we will use a direct solution approach and reduce the computational requirements

(both storage and computational time) using the Schur complement decomposition

technique.

2. Uzawa Method for Time Dependent Problems

The method described in the previous section can be extended to time dependent

problems. Here we will present the formulation for general α-schemes [4]. For the
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following general system of equations

[M ]{θ̇} + [K]{θ} = {F} (5.10)

α-schemes result in the following time discretization

[K̂]n+1{θ}n+1 = [K̄]n{θ}n + {F̂}n,n+1 (5.11)

where

[K̂]n+1 = [M ] + α∆t[K]n+1

[K̄]n = [M ] − (1 − α)∆t[K]n

{F̂}n,n+1 = ∆t [ α{F}n+1 + (1 − α){F}n ]

(5.12)

with subscripts n and n + 1 representing the values at the current and the next time

levels, respectively. ∆t is the constant time step. When we apply this to the unsteady

Navier-Stokes equations, Eqs. (5.6) take the following form

[L̂]n+1{V }n+1 + [D̂]T{p}n+1 = {F̂}n,n+1 + [L̄]n{V }n − [D̂]T{p}n (5.13a)

[D̂]{V }n+1 = [D̂]{V }n ≈ {0} (5.13b)

where

[L̂]n+1 =


[M ] [0]

[0] [M ]


+ α∆t


[K11] [K12]

[K21] [K22]




n+1

(5.14a)

[L̄]n =


[M ] [0]

[0] [M ]


− (1 − α)∆t


[K11] [K12]

[K21] [K22]




n

(5.14b)

[D̂] = α∆t[D] (5.14c)

[D̄] = (1 − α)∆t[D] (5.14d)
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In the first step, we multiply Eq. (5.13a) by [D̂][L̂]−1
n+1 to eliminate the first step,

and end up with the following pressure equation

{p}n+1 = [Ŝ]−1
(
{F̂}n,n+1 + [L̄]n{V }n − [D̂]T{p}n

)
(5.15)

where [Ŝ]−1 = [D̂][L̂]−1
n+1[D̂]T is the pressure matrix for the unsteady formulation. In

the second step, velocity field at the new time level is calculated by

{V }n+1 = [L̂]−1
n+1

(
{F̂}n,n+1 + [L̄]n{V }n − [D̂]T{p}n − [D̂]T{p}n+1

)
(5.16)

The α-schemes take different names for different α values. In this study we will use

the second-order, implicit Crank-Nicolson scheme, which corresponds to α = 0.5.

E. Test Problems

In this section we’ll solve three test problems to validate our Navier-Stokes solvers.

First one is the time-periodic oscillatory flow in a channel with known exact solution,

which is used to test the time stability of the solvers. Second one is the steady

Kovasznay flow, which resembles the flow behind a set of cylinders. Finally we will

study the lid-driven cavity problem at Re = 500. In each problem we will use CAM

and MEM on both p- and h-type nonconforming meshes and compare the results.

1. Oscillatory Flow in a Channel

Later in Chapter 6 we will study the heat transfer in two-dimensional channels by

oscillatory forced convection. Velocity field for this problem has a known analytical

solution, which will be used here to test the time stability of our Navier-Stokes solver.

For the sake of completeness, we preferred to keep the details of this problem in

Chapter 6. As shown in Fig. 37 we are considering the flow between two parallel
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plates, driven harmonically in time with a pressure gradient given in Eq. (6.6). The

resultant velocity profile is given by Eq. (6.7) [41]. Here we will study this problem

for a Womersley number of 10 (see Eq. (6.2)), by solving the unsteady Navier-Stokes

equations and compare the results with the analytical solution. The following three

strategies will be used

a) Conforming: Four element mesh shown in Fig. 21a is used (with a different

range in the y-axis, −0.5 < y < 0.5). In the y-direction, same expansion order Ny is

used for all elements. Since the flow is not changing in the x-direction, a low order

expansion Nx = 3 is used for all elements. This is also true for the following cases.

b) p-type nonconforming: Same four element mesh is used. Elements 1 and 4

have expansion orders Ny, and elements 2 and 3 have expansion orders Ny + 2.

c) h-type nonconforming: Geometrically nonconforming four element mesh shown

in Fig. 21b is used. Elements 2 and 3 have expansion orders Ny, and elements 1 and

4 have expansion orders Ny + 4.

Exact solution at time zero is provided as the initial condition and the Navier-

Stokes equations are integrated in time for 10 cycles. All cases run without any

stability problems, with the errors shown in Fig. 32. As seen, spectral convergence

is obtained for all cases. For the p-type nonconforming cases, despite it uses more

degrees of freedom, maximum rule does not perform as good as the minimum rule.

These findings are in agreement with the results of the diffusion operator study given

in Chapter 4 (see Fig. 18). For the h-type nonconforming case CAM performs better

than MEM, as expected. This is because of the short rule CAM uses, which uses

more degrees of freedom.
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Fig. 32. Convergence results for the solution of the oscillatory flow in a channel. For

(a) conforming (b) p-type nonconforming (c) h-type nonconforming cases.

Nx = 3 for all elements in all cases.

2. Kovasznay Flow

Kovasznay flow is a steady, laminar flow with a known exact solution. It was first

studied by Kovasznay in 1948. Later it became a popular test problem for high-order

methods [19, 39]. The flow looks similar to the low-speed flow of a viscous flow past

an array of cylinders as seen in Fig. 33a. The analytical solution to the Navier-Stokes

equations is given by

u = 1 − eλxcos(2πy)

v = λ/2π eλxsin(2πy)

p = 0.5(1 − eλx)

(5.17)

where λ = 0.5/ν − (0.25/ν2 + 4π2)0.5 and we choose ν = 1/40. Similar to the

previuous test problem we will perform conforming, p-type nonconforming and h-



76

x

y

-0.5 0 0.5. 1

-0.5

0

0

1

1.5

Element  1

3

5

7 8

6

4

2

5

4

2

1

6

3

(a) (b) (c)

Fig. 33. Streamlines for the exact solution of the Kovasznay flow and two-different

meshes used for the Kovasznay problem

type nonconforming solutions, as follows

a) Conforming: Eight element mesh shown in Fig. 33b is used. Same expansion

order N is used in all elements.

b) p-type nonconforming: Same eight element mesh is used. Elements 1, 3, 5,

7 has expansion orders N , whereas elements 2, 4, 6, 8 has expansion orders N − 2.

Only the maximum rule is tested.

c) h-type nonconforming: Six element mesh shown in Fig. 33c is used. All

elements has expansion order N , except elements 3 and 6 has expansion orders N +4

in the y-direction.

Known exact solution is specified at all boundaries. Fig. 34 shows convergence

results obtained from the steady Navier-Stokes solver. This time maximum error is

plotted against the square root of total number of degrees of freedom (including both

velocity and pressure dof). Nonconforming solutions use more than one expansion

order, therefore in order to provide a fair comparison of different solutions on a single
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Fig. 34. Convergence results for different solutions of the Kovasznay flow. Maximum

rule is used for the p-type nonconforming case. ndf is the total degrees of

freedom including both velocity and pressure.

plot ndf is used instead of N . Taking the square root of ndf makes sure that the

exponential convergence appears as a straight line on a log-lin graph. As seen from

the figure, all three strategies result in spectral convergence. Similar to the previous

case when we use maximum rule with p-type nonconformity MEM performs better

than CAM. For the h-type nonconformity case, CAM and MEM results are practically

the same.

3. Lid-Driven Cavity Problem

Lid-driven cavity problem is a classical Navier-Stokes test case due to its simple

geometry, yet challenging nature. The problem geometry and boundary conditions

are shown in Fig. 35. Top wall is moving with a velocity of u = −1, while all

other walls are stationary. Although this problem does not have a closed form exact
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Fig. 35. Lid-driven cavity problem. Top wall is moving with a velocity of u = −1.

Other walls are stationary.

solution, it has been studied extensively and many highly accurate benchmark results

are available [42, 43]. The challenging aspect of this problem is due to the resolution

of the corner singularities. Pressure and vorticity are not finite at the top corners,

which makes the problem difficult for high-order formulations. At the bottom corners,

singularities are much weaker.

Using a Reynolds number of 500, we performed a series of h- and p-type refine-

ments. Results are shown in Fig. 36 as contour plots of u velocity. Case (a) uses

four elements of order N=8. In order to resolve the top corners better, in case (b),

top two elements are divided into four. Further h-type refinement results in case (c),

which has 24 elements. Finally in case (d) elements at the top corners are further

refined and approximation orders of the shaded elements are increased to 10 or 12.

This last case has both h- and p-type nonconformities. Although we are not present-

ing any numerical values, smoothness of the velocity contours clearly shows that h-

and p-type refinements provide better resolution. Similar to the previous test prob-

lems, the results for CAM and MEM are practically the same. The results shown are
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(a)

(b)

(c)
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Fig. 36. Meshes used and u-velcoity contours obtained for the lid-driven cavity problem

at Re = 500. h-type refinement is done from (a) to (b) and (b) to (c). p-type

refinement is done from (c) to (d) only on the shaded elements. Contour

plots are produced by Tecplot, which can not perform polynomial expansions,

creating coarser looking results than the actual high-order ones.
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obtained with the steady Navier-Stokes solver starting from a stationary condition.

The problem is also solved with the unsteady solver successfully, without any time

instabilities.
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CHAPTER VI

APPLICATION: OSCILLATORY FLOW FORCED CONVECTION IN

TWO-DIMENSIONAL CHANNELS

In this chapter we will use the developed solvers to study a practical engineering

problem, oscillatory forced convection cooling in two-dimensional channels. We will

perform a detailed analysis and comparison of the heat transfer characteristics of os-

cillatory and unidirectional flows for a channel with heated top wall. Time dependent

velocity and temperature profiles, instantaneous and time-averaged surface and bulk

temperature distributions, and Nusselt number variations will be presented.

A. Background

Fluid flow and heat transfer in circular tubes, ducts and channels have extensive

engineering applications, including heat exchanger design, biomedical engineering and

micro-fluidics. Steady forced convection heat transfer in channels and tubes is well

understood. Simple geometry and steady flow conditions enable analytical solutions

and collection of reliable experimental data. This results in analytical and empirical

relations for the Nusselt number variations in terms of the flow parameters [44].

However, there are relatively fewer investigations of oscillatory-flow heat transfer,

which has more stringent time and spatial resolution requirements. Oscillatory flows

can be grouped into two categories: pulsating (modulated) and reciprocating (fully

reversing) flows. Pulsating flows are always unidirectional and can be decomposed

into steady and unsteady components, such as in the case of blood flow in arteries

[45]. For reciprocating flows, the flow direction changes cyclically. Hence, these flows

convect zero net mass. With the advent of micro-electromechanical systems (MEMS)

and micro-fluidics, pulsating and reciprocating flows are finding more engineering
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applications. For example, membrane driven micro-pumps and peristaltic micro-

mixers result in pulsating flows [46, 47]. Several novel heat exchanger devices for

electronic cooling applications utilize reciprocating flow and heat transfer [48, 49].

Reciprocating flows are also utilized to enhance mixing in micro-scales [50, 51].

Analyses of pulsating and reciprocating flow heat transfer differ from each other,

mainly due to the thermal and velocity boundary conditions. Pulsating flows are uni-

directional. Hence, they have permanent inflow and outflow regions, where one can

easily define the inlet velocity and temperature boundary conditions. Reciprocating

flows require interchange between the inflow and outflow boundaries during a cycle.

For most applications, it is difficult to determine the inflow/outflow boundary condi-

tions, since fluid particles exiting the flow domain during a part of the cycle are fed

back into the domain, later in the cycle. Although the momentum equation yields an

analytical solution for two-dimensional fully developed reciprocating channel flows,

analytical solution of the heat transfer problem is not possible, unless the thermal

boundary conditions are simplified. In this study, we mainly concentrate on recipro-

cating flow heat transfer. Hence, we will discuss the previous work on reciprocating

flow heat transfer in detail. Some experimental, numerical and analytical studies on

pulsating flow heat transfer can be found in [52, 53, 54, 55, 56, 57].

A literature survey on reciprocating flow heat transfer shows two different cat-

egories of investigations. The first one is focused on heat conduction enhancement

with high frequency, low amplitude oscillations, while the second one is focused on

forced convection with low frequency, large amplitude oscillations in relatively short

channels. One of the early studies of the former category is due to Chatwin [58], who

showed enhancement of species diffusion under high frequency oscillations. Later

this phenomenon was applied to enhance heat transfer, where effective thermal dif-

fusivities, that are about three orders of magnitudes higher than the values due to
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molecular thermal diffusion, are achieved [59, 60].

Regarding the second category, Li and Yang [61] investigated heat transfer in

reciprocating flows at low frequencies and large amplitudes by numerical simulations.

They showed heat transfer enhancement due to the intra-cycle oscillations, which

were caused by “sudden changes of the inlet and exit boundary conditions”. Liao et

al. [48] performed forced-convection experiments on microprocessor chips by means

of channelled zero-mean oscillatory air flow. They measured the surface temperature

of several power generating components in a typical personal computer, and reported

heat transfer enhancement by oscillatory forced convection, compared to the con-

ventional fan cooling. Based on the Reynolds number (Re), they distinguished two

different heat transfer enhancement mechanisms. In the low Re regime, heat transfer

enhancement was observed due to the reduction in the Stokes layer thickness with in-

creased flow frequency. While for the high Re regime, heat transfer enhancement was

observed due to the presence of “higher-order harmonics of imposed flow frequency”.

Cooper et al. [62] investigated forced convection heat transfer by heating the bottom

wall section of a rectangular duct. Experiments were performed at low frequencies

with large tidal displacements. The results showed enhanced heat transfer rates for

increased oscillation frequencies and tidal displacements, and decreased duct heights.

Chou et al. [63] used oscillatory flow to cool electronic devices. Their idea was to

carry the heat away from the source using bubbles oscillating in a micro channel.

Preliminary results show heat transfer enhancement caused by the oscillatory flow.

In this study, we present numerical solutions of reciprocating fluid flow and heat

transfer in two-dimensional channels. This chapter is organized as follows. First, we

further define the problem, and state the boundary conditions. Then the governing

equations are presented. Fluid flow problem will be discussed by referring to the

Navier-Stokes test problem we solved in Chapter 5. Next, the temperature field
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results are presented and the effects of various flow and heat transfer parameters on

time-periodic oscillatory forced convection are discussed. Finally, the results obtained

for oscillatory flows will be compared with the ones for unidirectional flows.

B. Problem Definition and Important Parameters

A schematic view of the computational domain along with the associated boundary

conditions is shown in Fig. 37. We consider fully reversing flow driven by an oscilla-

tory pressure gradient. The middle portion of the top plate is uniformly heated, while

its two sides are kept at constant temperature, and the bottom plate is insulated. The

presence of constant temperature zones allows a time-periodic solution for the heat

transfer problem. Periodic boundary conditions are specified at the two ends. The

periodicity condition is such that fluid coming out of one side enters through the

other side. Therefore, the velocity and temperature values are always the same at

both ends. For a better understanding of the periodic boundary conditions, this

problem can be visualized as a portion of an infinitely long channel with repeated

constant temperature and constant heat flux sections as shown in Fig. 38. Such a

configuration can be observed in electronic cooling applications, where the IC boards

usually have a repeating pattern. For this application, our analysis would be valid

sufficiently away from the device inlet/exit regions, where flow development effects

are negligible.

In our simplified two-dimensional model, there are four important geometric

length scales: channel height H∗, total channel length L∗, length of the heated portion

of the channel L∗
h, where heat flux is applied, and the penetration length L∗

p (tidal

displacement). Penetration length is the average distance travelled by fluid particles

during one-half of an oscillation period (τ ∗/2). Considering sinusoidal oscillations,
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Fig. 37. The geometry and thermal boundary conditions used for the oscillatory flow

forced convection problem. On the top surface, uniform heat flux is specified

at 5 < x < 15. For 4 < x < 5 and 16 > x > 15, the heat flux varies from

zero to unity sinusoidally. Zero wall temperature is specified for x < 4x < 16.

Bottom wall is insulated, while side surfaces are periodic.
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Fig. 38. Schematic view of a hypothetical problem that consists of a channel with

repeating heated and constant temperature boundaries
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the penetration length is defined as

L∗
p = ¯̄u∗ π

ω∗ (6.1)

where ω∗ = 2π/τ ∗ is the oscillation frequency and ¯̄u∗ is the time- and cross-channel

averaged axial velocity. The parameter L∗
p is a practical measure of the oscillation

amplitude. For efficient cooling, L∗
p should be large enough so that the heated fluid

under the constant heat-flux region will travel towards the constant temperature

boundaries, where efficient heat transfer to the surroundings can take place.

For oscillatory flows the Womersley number is an important non-dimensional

parameter, defined as

α =

√
ω∗H∗2

ν∗ (6.2)

The Womersley number determines the velocity profile. Small α values result in

a quasi-steady flow with oscillatory parabolic velocity profiles. However, large α

values lead to the well-known “Richardson’s annular effect” that results in near-wall

velocity overshoots, where the maximum velocity no longer occurs at the symmetry

plane [56, 64]. This has direct effects on heat transfer, since high velocities with large

gradients increase the heat removal rate from the surfaces. Zhao and Cheng [56]

reported observing annular effects in the temperature profiles. This is also verified in

our current study. The Womersley number is sometimes called the “kinetic Reynolds

number” because it plays the same role as the Reynolds number in unidirectional

steady flows. The Prandtl number (ratio of momentum and thermal diffusivities) is

also important in heat transfer. For reciprocating flows, the thermal boundary layer

thickness is determined by both the Prandtl and Womersley numbers.

Selecting the channel height H∗ as the characteristic length scale, the important

non-dimensional parameters are L (= L∗/H∗), Lh (= L∗
h/H

∗), Lp (= L∗
p/H

∗), α and
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Pr. This five-parameter space makes it difficult to study the importance of every

parameter in detail. Therefore, we fixed the normalized channel length L and the

heated region length Lh, and varied Lp, α and Pr, by using two different values

for each of these parameters. This results in eight different conditions, which are

summarized in Table 1. The parameters appearing in Table 1 are all non-dimensional.

In our simulations the input parameters are Lp α and Pr. The flow is driven by

an oscillatory pressure gradient given by,

∂p∗

∂x∗ = −A∗cos(ω∗t∗) (6.3)

where p∗ and A∗ are the pressure and the pressure gradient, respectively. The am-

plitude A∗ is directly related to ¯̄u∗ introduced in Eq. (6.1). Its value is calculated

using the analytical velocity profile, which will be demonstrated in the forthcoming

sections.

Table I. Non-dimensional parameters used in the oscillatory forced convection simu-

lations

Case no. L Lh Lp α Pr Re′

1 20 12 5 1 1 5/π

2 20 12 5 1 10 5/π

3 20 12 5 10 1 500/π

4 20 12 5 10 10 500/π

5 20 12 10 1 1 10/π

6 20 12 10 1 10 10/π

7 20 12 10 10 1 1000/π

8 20 12 10 10 10 1000/π
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C. Non-Dimensionalization and Governing Equations

Numerical simulations are performed using non-dimensional parameters. The length,

time, velocity, pressure, temperature and heat flux are normalized as follows:

x =
x∗

H∗ y =
y∗

H∗ t =
t∗

1/ω∗ u =
u∗

ω∗H∗

p =
p∗

ρ∗(ω∗H∗)2
T =

T ∗ − T ∗
o

∆T ∗ q =
q∗

k∗∆T ∗/H∗ = 1

(6.4)

where the velocity is normalized by ω∗H∗ due to the lack of a characteristic velocity

scale in the problem. In Eq. (6.4), T ∗ and q∗ represent the temperature and heat

flux, respectively, while the specified wall temperature is T ∗
o , and ∆T ∗ is a reference

temperature difference in the domain. Since there is only one reference temperature

value on the wall (T ∗
o ) and uniform or zero heat flux conditions are specified on the

rest of the boundary, ∆T ∗ is determined in the post-processing stage. We calculate

the appropriate value for ∆T ∗ using the maximum allowable temperature difference

in the flow domain (based on the design considerations) and the calculated maximum

nondimensional temperature (Tmax). As an example, lets consider an electronic cool-

ing application, where the maximum temperature difference between the ambient and

the chip surface is 30oC. If our simulation results in Tmax = 2, then ∆T ∗ = 15oC.

We can calculate the maximum possible heat dissipation q∗ from the system using

q∗ = qk∆T ∗/H∗. Alternatively, one can select the desired heat flux q∗, and calculate

∆T ∗ to find the maximum surface temperature. This normalization makes it easier

to utilize dynamic similarity for obtaining the dimensional temperature and heat flux

values.

Governing equations are the conservation of mass, incompressible Navier-Stokes
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and heat transport equations, presented in the following non-dimensional form,

∇ · �u = 0 (6.5a)

∂�u

∂t
+ (�u · ∇)�u = −∇p +

1

Re
∇2�u (6.5b)

∂T

∂t
+ (�u · ∇)T =

1

Pe
∇2T (6.5c)

where Re = α2 for oscillatory flows. Thermal conduction coefficient and viscosity

are assumed to be constant and the viscous heating terms in the heat transport

equation are neglected. These assumptions and approximations are consistent with

the previous analytical and numerical studies. As will be discussed in the next section,

the velocity field for this problem has an available analytical solution. Therefore

solution of only the heat transport equation, which is a scalar convection-diffusion

equation, is sufficient.

At this point it is worthwhile to mention that the flow inside the channel is

hydrodynamically-fully-developed (i.e. the streamwise gradient of the velocity vector

is zero) at all times. Based on Fig. 38 and the discussion about the periodic end

conditions, fully-developed flow is automatically satisfied. Therefore, the entry and

flow development effects are excluded in the current study.

D. Analytical Solution of the Velocity Field

As studied in Chapter 4, the analytical solution of the oscillatory flow in a two-

dimensional channel is known. Consider the flow between two parallel plates, driven

harmonically in time with a pressure gradient of the following form,

∂p

∂x
= −Ae−it (6.6)
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Fig. 39. Analytical solution of the velocity profiles at various times during a cycle for

(a) α = 1, (b) α = 10 flow. Index i represents time within a period of the

pressure pulse (t = (i − 1)/8τ).

where A is the pressure gradient normalized with (ρ∗ ω∗2 H∗3), and i =
√−1. The

velocity profile for this flow is given by [41]

u(y, t) = Real


iAe−it


1 −

cos
(

(i+1)
√

2
α

y
)

cos
(

(i+1)√
2α

)



 (6.7)

where y is the cross channel distance normalized by the channel height H∗. Fig. 39

shows the velocity profiles at various instances during a cycle for α = 1 and α = 10

flows. Quasi-steady flow behavior is observed for α = 1, while the Richardson’s

annular effect is present for α = 10.

The time- and cross-channel-averaged velocity ¯̄u is obtained by integrating Eq.

(6.7) as follows,

¯̄u =
1

τH

τ∫
0

H/2∫
−H/2

u(y, t) dy dt (6.8)

where τ = 2π (radians) is the normalized oscillation period and H = 1 is the nor-

malized channel height. This integral is evaluated numerically, and ¯̄u = 0.0528A and

¯̄u = 0.5647A are obtained for α = 1 and α = 10, respectively. For a desired tidal dis-

placement Lp, we calculate the corresponding pressure amplitude A, using ¯̄u = Lp/π,
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Fig. 40. A typical mesh used for the solution of the heat transfer problem that takes

advantage of h- and p-type nonconforming elements, as well as anisotropic

expansions (elements with Nx �= Ny).

which is a non-dimensional form of Eq. (6.1).

The spatial convergence characteristics of our solver is already discussed in the

first test problem solved in Chapter 4 (see Fig. 32). For the solution of the heat

transfer part of the problem a typical mesh shown in Fig. 40 will be used. This

mesh takes advantage of h- and p-type nonconforming elements, as well as anisotropic

expansions (elements with Nx �= Ny). At the top wall, temperature is discontinuous at

two locations, where the Neumann and Dirichlet boundaries meet. These boundary

condition singularities can be handled with proper h-type refinement. As will be

seen from the results, close to the side walls, solution does not have sharp gradients,

therefore the use relatively large elements are appropriate. Accurate approximation

of the specified heat flux conditions at the top and bottom walls are crucial to the

overall accuracy of the solution. This can effectively be achieved by using anisotropic

expansion in the elements adjacent to the top and bottom walls, i.e. using higher

order expansions in the direction perpendicular to the walls.

E. Results

In this section we present detailed analyses of temperature field and heat transfer

results for the cases presented in Table 1. We examine the effects of the Prandtl and
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the Womersley numbers as well as the tidal displacement on heat transfer. The results

presented in the following sections are obtained after the simulations have reached

their corresponding time-periodic states.

1. Temperature Contours

We present snapshots of temperature contours for cases 2, 4, 6 and 8 (Pr=10) in Fig.

41. These snapshots are synchronized with the pressure pulse, and they are obtained

at 0τ, 1/8τ, 1/4τ and 3/8τ . Comparisons of cases in the horizontal and vertical

directions indicate the effects of α and Lp, respectively. The left column (cases 2

and 6) shows temperature contours oscillating back and forth with rather monotonic

shapes. Especially for case 2, temperature contours across the channel are almost

uniform at any time. Small Lp and α values for case 2 result in the lowest axial

velocities. Hence, conduction (in the axial direction) dominates over convection, as

can be deduced from the temperature contours. For case 2, the hot fluid pocket under

the heat source is not effectively convecting towards the cold walls. Case 6 has twice

the tidal displacement of case 2, and it shows stronger cross-channel temperature

variations. Values of the normalized temperature are significantly reduced from case

2 to case 6, indicating increased convective cooling with increased tidal displacement

Lp. Large cross-channel temperature variations are observed for cases 4 and 8, which

correspond to α = 10 flows. Case 8 has the highest Lp and α values used in this work.

Temperature contours for this case concentrate near the top surface, which indicates

thin thermal boundary layers and enhanced forced convection. Temperature values

are also significantly lower than the other cases. Our overall observation from Fig. 41

is that the normalized fluid temperature in the channels are decreased with increased

tidal displacement Lp and Womersley number α, and the temperature distribution in

the channel is highly affected by the velocity profile.
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Fig. 41. Instantaneous temperature contours for cases 2, 4, 6 and 8. Index i represents

time within half a period of the pressure pulse (t = (i− 1)/8τ). The flow and

thermal conditions are presented in Table 1.
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2. Temperature Profiles

Detailed descriptions of temperature profiles for reciprocating flows are not common

in the literature. In Fig. 42, we present the temperature distribution at x = 5 (solid-

lines) and x = 10 (dashed-lines) for all cases. Each figure shows the temperature

profiles obtained at eight different instances. These snapshots are synchronized with

the velocity profiles, which are shown at the bottom of the figure. The abscissa

shows the temperature value, while the ordinate shows the cross-channel coordinate.

The location x = 10 corresponds to the geometric center of the channel, where non-

dimensional heat flux of q = 1 is imposed on the top wall. Due to the symmetry

plane at x = 10, temperature profiles at this location repeat twice cyclically from

i = 1 to 4, while the temperature profiles at x = 5 cycle from i = 1 to 8. In Fig. 42,

the top four cases (1, 2, 5 and 6) are obtained under oscillatory parabolic velocity

profiles (α = 1), while the bottom four cases (3, 4, 7 and 8) are obtained for α = 10

flow. For α = 10 cases, sharp velocity gradients near the walls result in enhanced

oscillations in the temperature profiles. For example, the temperature profile in case

7 has as many as five inflection points at times i = 2, 3, 5, 6. It is clear from these

results that the Richardson’s annular effect, which exists in the velocity profiles at

large frequencies, affects the temperature profiles. For case 1, temperature profiles

are almost uniform at all times. An increase in the tidal displacement Lp results in

monotonic temperature variations, as shown in case 5. In cases 1 and 2, temperature

values at x = 10 are higher than the values at x = 5, which is an indication of hot

fluid being stuck under the heated region. The comparison of cases 6 and 7 in Fig. 42

shows that an increased Womersley number results in localized temperature gradients

near the top wall with sudden temperature fluctuations. An increase in the Prandtl

number creates sharper temperature variations in the cross-flow direction, as can be
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seen by a comparison of cases 7 and 8. It is interesting to note that for a given axial

location, the bottom wall temperature for cases 4, 7 and 8 remains almost constant

throughout the cycle. All of these cases have a large α value, which corresponds to a

large Re and enhanced convection. Heat supplied from the top plate rapidly convects

along the channel and most of the thermal activity is occurring near the top wall.

These cases result in bulk temperatures that are significantly lower than the surface

temperatures, which results in high Nusselt numbers, as discussed in detail in the

following sections.

3. Top-Wall Temperature Variations

In electronic cooling applications, exceeding a certain temperature may result in chip

failure. Therefore, the maximum surface temperature is an important design param-

eter. In addition to the maximum surface temperature, the time of exposure to high

temperatures also plays an important role. Figure 43 shows top wall temperatures at

five different instances during half a cycle. Comparison of the left (Lp = 5) and right

(Lp = 10) columns shows that the maximum top wall temperature for low penetra-

tion length simulations occurs in a narrowly bounded region near the channel center.

However for Lp = 10, the location of the maximum surface temperature is oscillating

throughout the entire heated region. Comparisons of all eight cases show that the

maximum surface temperature decreases with increased Lp, α and Pr.
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Fig. 42. Instantaneous temperature and velocity profiles at axial locations of x = 5

(solid-lines) and x = 10 (dashed-lines). Index i represents time within a period

of the pressure pulse (t = (i − 1)/8τ). Simulation parameters are presented

in Table 1.
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4. Bulk Temperature and the Nusselt Number

Bulk temperature is an important parameter, used in the calculation of the Nusselt

number. Classical definition of the bulk temperature is

Tb(x, t) =

1
H

H/2∫
−H/2

u(y, t) T (x, y, t) dy

1
H

H/2∫
−H/2

u(y, t) dy

(6.9)

This definition is not preferred in a reciprocating flow, because the denominator

becomes zero twice during a cycle. To overcome this difficulty, we defined a time-

averaged bulk temperature in the following form,

T̄b(x) =

1
τH

τ∫
0

H/2∫
−H/2

|u(y, t)| T (x, y, t) dy dt

¯̄u
. (6.10)

The absolute value in the numerator is used in order to avoid negative bulk temper-

atures during the flow reversal. An alternative definition can utilize time integration

over a half cycle rather than a full cycle, which will yield the same result due to the

half-period symmetry of the velocity and temperature fields.

Figure 44 shows axial variations of time-averaged top-wall (solid lines) and bulk

(dashed lines) temperatures. The dashed-dotted and dashed-dotted-dotted lines in

the figure correspond to unidirectional steady forced convection cases, which will be

discussed in the next section. This figure shows that both the time-averaged wall

temperature and bulk temperature decrease with increasing Lp, α and Pr. For α = 1

cases (top four plots), the bulk temperature values are close to the time-averaged

wall temperature at 5 < x < 15. This is especially noticeable for cases 1 and 2.

On the other hand, bulk temperatures for cases 7 and 8 are almost half of the time-

averaged wall temperatures at 5 < x < 10. Here we mention that cases 7 and 8 are
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Fig. 44. Time-averaged wall-temperature (solid lines) and time-averaged bulk tem-

perature (dashed-lines) variations for reciprocating flows. Wall temperature

(dashed-dotted lines) and bulk temperature (dashed-dotted-dotted lines) vari-

ations for unidirectional steady flows are also shown. Simulation parameters

are presented in Table 1.
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the most effective in evenly spreading heat to the entire channel, as can be seen from

their almost flat bulk temperature distributions. This also shows enhanced forced

convection cooling for these cases.

In the simulations we specified a nondimensional constant heat flux value of

unity in the region 5 < x < 15. For q = 1, the time-averaged Nusselt number can be

calculated as [49]

Nu(x) =
2

T̄w − T̄b

(6.11)

Variations of time-averaged Nusselt number along the heated portion of the channel

are shown in Fig. 45a. We separated the low and high Womersley number cases. For

α = 1 (cases 1, 2, 5 and 6), the maximum Nu occurs at the middle of the channel

(x = 10). For these cases, slight increases at x = 5 and x = 15 are due to the

change in the boundary conditions (See Fig. 37). Specifically, the wall temperature

suddenly drops to zero at x = 4 and x = 16, while the bulk temperature is decreasing

gradually. These variations in the boundary conditions result in localized increases

in the Nusselt number. It is interesting to notice that the tidal displacement and

Prandtl number are both important here. Case 6 shows an almost uniform time

averaged Nusselt number in the heated zone, which is an indication of effective heat

transfer. The results for α = 10 are shown on the top left figure. For cases 3, 4, 7 and

8, the maximum Nu occurs at both ends of the heated region, whereas the minimum

Nu occurs at the channel center. Comparing case 3 with case 4 (or case 7 with case

8), we observe that the time averaged Nusselt number is increased by increasing the

Prandtl number. Comparing case 3 with case 7 (or case 4 with case 8) shows that

increasing the tidal displacement increases the Nusselt number. Finally, comparing

cases 6 and 8 shows that Nu increases with the Womersley number.
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5. Steady Unidirectional Forced Convection

In this section, previously obtained oscillatory flow temperature and Nusselt num-

ber results are compared against the steady, unidirectional forced convection. We

match the oscillatory and unidirectional flows by matching the time-averaged flowrate.

Reynolds number of the corresponding unidirectional flows is calculated by

Re′ =
¯̄u∗H∗

ν∗ =
α2Lp

∗

πH∗ (6.12)

which is presented in Table 1. The velocity and temperature boundary conditions at

the channel ends are periodic. Flow is from left to right, and it is maintained by a

constant pressure gradient. The resultant velocity profiles are parabolic, typical of

pressure driven laminar flows. Due to the periodic temperature boundary conditions,

fluid leaving from the right boundary is entering from the left with a temperature

equal to the exit temperature. Numerical results correspond to the steady state

conditions.

Bulk and wall temperature variations along the channel are shown in Fig. 44

using dashed-dotted-dotted and dashed-dotted lines, respectively. For cases 1, 2 and

5, bulk and wall temperatures increase linearly with the same slope in most of the

heated region, indicating thermally developed flow. We also observe that case 6 is

almost thermally developed. Cases 1, 2, 5 and 6 correspond to low Reynolds numbers

(Re′ < 4), resulting in relatively small Peclet numbers. Cases 3, 4, 7 and 8 correspond

to Reynolds numbers that are two orders-of-magnitude higher than the corresponding

low Reynolds number cases (See Table 1). This is due to the quadratic dependence of

the Reynolds number on the Womersley number, given by Eq. (6.12). For these cases,

thermally developed conditions are not observed. In all of the cases, unidirectional

forced convection results in smaller bulk and surface temperatures than the recipro-
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cating flow, with the exception of case 5. In addition, we note that time-averaged

top wall temperatures in Fig. 44 are less than the instantaneous maximum wall tem-

perature shown in Fig. 43. Low Lp cases (cases 1, 2, 3 and 4) give considerably

higher maximum wall temperatures than their unidirectional flow counterparts. For

cases 4 and 8, the bulk temperature of the unidirectional flows are almost uniform

throughout the channel, and these cases correspond to the maximum Peclet numbers

simulated in our work. Unidirectional flows result in increasing surface temperatures

in the downstream direction, where oscillatory flows experience oscillating tempera-

ture maxima, as can be seen from Figs. 44, and 43, respectively. This basic difference

may become important for various applications.

Nusselt number variations of unidirectional steady flows in the heated region

are shown in Fig. 45b. Maximum Nusselt number is observed at the entrance of the

heated region and decreases continuously. Two exceptions are the slight increases seen

at x = 15 for cases 1 and 5. These cases have the lowest Pe, and local increase in the

Nusselt number is due to noticeable heat conduction in the upstream direction. Cases

1, 2 and 5 have reached thermally developed conditions with constant Nusselt number

of 5.387, a value very close to 5.3846 given by [44]. Cases 3, 4, 7, and 8 correspond

to high Peclet numbers. For these cases, high Nusselt numbers are observed due to

the thermally developing flow conditions.

F. Summary of Oscillatory Forced Convection Studies

Motivated by its potential in electronic cooling and microfluidics applications, we

simulated reciprocating flow forced convection in two-dimensional channels, and com-

pared our results with the corresponding unidirectional flows. We assumed a cyclically

repeating flow section and imposed periodicity of velocity and temperature fields at
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the sides of the computational domain. To our knowledge, periodic thermal bound-

ary conditions in reciprocating flows have not been investigated before. Simulation

results indicate that the instantaneous and time-averaged surface temperatures, and

the time-averaged bulk temperature are reduced by increasing the penetration length,

Womersley and Prandtl numbers. Therefore, it is possible to determine a combination

of Lp, α and Pr that will keep the maximum surface temperature below a desired

value, which is important for cooling applications. Unlike unidirectional flows, re-

ciprocating flows convect heat to both sides of the heated region. This results in

oscillation of the maximum surface temperature along the heated region of the chan-

nel, which may be advantageous over unidirectional forced convection, where the

maximum surface temperature occurs at the exit of the heated region.

Numerical simulations show an increase of the time-averaged Nusselt number

with increasing α, Pr and Lp. Variation of the time-averaged Nusselt number along

the heated region of the channel shows different trends for α = 1 and α = 10 flows,

indicating that velocity profiles have strong influences on the heat transfer character-

istics. Richardson’s annular effect, observed in the velocity profiles for high frequency

oscillatory flows, affects the temperature profiles and heat transfer characteristics, as

shown by the instantaneous temperature contours and profiles. Unidirectional flows

corresponding to α = 1 cases show thermally fully developed conditions towards the

downstream portion of the channel. For these cases, the reciprocating flow Nus-

selt numbers is comparable to or higher than the corresponding unidirectional flow

cases. Overall unidirectional flows resulted in smaller surface temperatures than the

reciprocating flows. However, we believe that with proper combinations of the pa-

rameters, heat transfer rates higher than the corresponding unidirectional flows can

be achieved. In future studies, a larger parameter space will be explored by varying

the heated length (Lh) and the total length (L) of the channel.
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Finally, temperature dependence of fluid properties, viscous heating and three-

dimensionality effects are not considered. Temperature dependence of fluid properties

is significant for large temperature variations. This may be checked by calculating the

maximum temperature difference ∆T ∗ obtained for a desired heat flux value. Viscous

heating may become important for high Re flows. Three-dimensionality effects are

important for turbulent channel flows; but all cases studied here, including the steady

unidirectional flows, fall into the laminar flow regime.
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CHAPTER VII

SUMMARY AND DISCUSSIONS

Spectral Element Methods (SEM) combine the exponential convergence properties of

global Spectral Methods with the domain discretization capability of low-order Fi-

nite Elements Methods (FEM). SEM provides fast convergence and small diffusion

and dispersion errors. It enables easier implementation of the inf-sup condition for

incompressible Navier-Stokes equations. Due to the elemental structure, it exhibits

larger volume-to-surface data ratio that is suitable for efficient parallel processing. It

provides better input/output handling due to the smaller volume of data compared

to low-order methods that require relatively larger degrees of freedom [19]. However,

SEM divides the problem domain into macro elements, much larger than the elements

required by a finite element solution. These rather large elements limits the geomet-

ric discretization flexibility, especially when domains have boundaries with fine scale

details. Also for domains with geometric singularities and for solutions with low reg-

ularity, high-order methods may not provide better accuracy than the low-order ones

[34]. These deficiencies might be resolved by the implementation of nonconforming

formulations. Nonconforming elements are also a necessity for adaptive refinement

strategies.

Motivated by the geometric flexibility and high accuracy they offer, we inves-

tigated the Galerkin SEM on nonconforming configurations, with an emphasis on

thermo-fluidics applications. Galerkin SEM solvers, based on Legendre polynomials

on isoparametric elements, are developed for common differential operators and in-

compressible Navier-Stokes equations. Below is a summary of the contributions of

this work.
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• A review of the existing literature clearly shows a lack of consistent terminology

for nonconforming formulations. We defined the following terms, many of which

are first used in this study

p-type nonconformity: The condition of having an interface of two elements,

which are geometrically matching, but the polynomial orders used in each ele-

ment are different. h-type nonconformity: The condition of having an interface

of multiple elements (three in case of a 1-irregular grid), which are geometri-

cally not matching, i.e. the intersection of the faces sharing the interface is

not a whole face or vertex. Maximum rule: For a p-type nonconformity, using

the face with higher expansion order as the active face. Minimum rule: For a

p-type nonconformity, using the face with lower expansion order as the active

face. Long rule: For an h-type nonconformity, using the longer face as the ac-

tive face. Short rule: For an h-type nonconformity, using the two short faces as

the active faces (valid for 1-irregular grids).

• Two most popular nonconforming configurations, namely the Constrained Ap-

proximation Method (CAM) and the Mortar Element Method (MEM) are dis-

cussed in detail for both p- and h-type nonconformities. CAM is the preferred

method in finite element community, whereas MEM is mostly used with spec-

tral formulations. The literature studying these two methods together are very

limited. In this thesis we studied them in a comparative way. We began with

the basic formulations, providing visual descriptions and step by step formula-

tions of CAM and MEM. The formulations for p- and h-type nonconformites

are discussed separately using sample mesh configurations.

• We studied the convergence characteristics of CAM and MEM for the steady

diffusion operator. We discussed in detail the problems of using the maximum
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rule with CAM, where consistency errors dominates, resulting in the loss of

spectral convergence. The problem is more severe with p-type nonconformities,

but does not exist for MEM. In case of the minimum rule CAM and MEM

provide results with comparable accuracy.

• We studied the eigenvalue spectrum of CAM and MEM for the unsteady con-

vection operator. p- and h-type conformities are investigated separately. We

concluded that, for p-type nonconformities CAM and MEM has the same eigen-

value spectrums. When maximum rule is used for p-type nonconformities, the

consistency errors due to the nonconforming configurations shift some of the

eigenvalues into the positive real eigen-plane. The direction of the flow (whether

it is going from a low order element to a high order one or vice versa) plays

a role in this shift. We correctly linked this shift of eigenvalues to the use of

maximum or minimum rules and not to the use of CAM or MEM. The situ-

ation is similar for h-type nonconformities, where the shift is larger for MEM

(due to the use of the short rule) compared to CAM (which uses the long rule).

Effect of the eigenvalues with positive real parts on the convergence of the un-

steady convection problem are also studied. It is shown that pure convection

problems on nonconforming grids do not provide successful results due to con-

sistency problems. Coupled space-time formulations are also used to correctly

identify the source of these problems to be the consistency errors coming from

nonconforming formulations.

• Steady and unsteady incompressible Stokes and Navier-Stokes equations are

studied using the Uzawa technique. The developed flow solvers are validated

using a number of test problems on nonconforming grids. For the problems

with known exact solution, spectral convergence is demonstrated using both
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CAM and MEM. Once again, it is shown that, although it uses more degrees

of freedom, the maximum rule does not perform as good as the minimum rule.

We reported that CAM and MEM provide comparable results, with no distinct

advantage of one over the other.

• Finally we used the developed solvers in a detailed parametric analysis of the

oscillatory flow forced convection cooling in two-dimensional channels. We took

advantage of p- and h-type nonconformities and anisotropic expansions to prop-

erly resolve boundary condition singularities and thin thermal boundary lay-

ers. We studied the affects of the penetration length, Womersley number and

Prandtl number on the heat transfer characteristics of oscillatory flows. We

provided temperature profiles and contours, bulk and wall temperature and

Nusselt number distributions. We compared the results with corresponding

unidirectional flows and concluded that in the investigated parameter range,

unidirectional flows provide higher heat removal rates.

Based on the present study we make the following suggestions for future work

• We plan to optimize our algorithms to enable efficient use of computational time.

We want to continue to take advantage of the simplicity of direct solvers with

the help of the static condensation technique. Studies about the implementation

of multi-level static condensation [19] that provides effective parallelization, will

be helpful.

• Nonconforming formulations becomes more effective when coupled with adap-

tive refinement strategies. We plan to work on the effective use of adaptive

algorithms, which includes studies on posteriori error estimators and efficient

and easy to use data storage mechanisms [23, 30, 31].
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