
1.  Introduction
Ocean biogeochemical cycles have much to do with vertical transport of carbon and other elements via 
particle sinking and other processes (Boyd et al., 2019). Net primary production (NPP) by phytoplankton 
largely controls how much carbon is available to the rest of the ecosystem (Osmond, 1989); most of this 
sustains the heterotrophic communities living in the euphotic zone, but a fraction is transported to deeper 
depths. This fraction is comparably small in the context of the carbon cycle (Muller-Karger et al., 2005) but 
results in a vertical flux that redistributes carbon and other elements from the surface all the way to the 
seafloor, connecting the ocean as a global ecosystem while also storing thousands of petagrams of carbon 
in deep waters for climatically relevant timescales (Ito & Follows, 2005). Quantitative understanding of this 
flux remains limited, however, not only because measurements of sinking particle flux are challenging and 
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expensive (and commensurately sparse), but also because these measurements are highly variable (Buesse-
ler & Boyd, 2009; Buesseler et al., 2007; Cael et al., 2018; Mouw et al., 2016). Estimates of the global export 
of organic carbon out of the upper ocean vary by more than a factor of three (Bisson et al., 2018; Boyd & 
Trull, 2007; Henson et al., 2011), with fluxes to the deep ocean being less constrained.

One long-standing question is whether the majority of mass and energy is delivered as a steady back-
ground level or from rare deposition events (Rokop, 1974; Smith et al., 2014). Addressing this question is 
not straightforward. Although NPP and deep-sea flux are undoubtedly linked, predicting flux from NPP 
is challenging on a point-by-point basis because such observations decouple over space and time and be-
cause flux-generating processes are not directly a function of primary production (Buesseler, 1998; Cael 
et al., 2018; Plattner et al., 2005; Footnote 1 in the supporting information). Yet, quantitative understanding 
of the vertical fluxes of carbon and other elements requires characterizing their variability. Capturing the 
probability distribution of deep-sea flux allows one to quantify how episodic it is, and can provide a simple 
yet comprehensive way to describe the flux of carbon, its variability, and its relationship with other fluxes. 
Cael et al. (2018) showed that NPP is robustly well-characterized by a log-normal probability distribution, 
meaning its extensive variability can be described by just two parameters (the log-mean μ and the log-stand-
ard deviation σ; Footnote 2 in the supporting information). Similarly as for many other natural phenomena 
(Limpert et al., 2001), this distribution is thought to emerge because NPP is the product of both structured 
(e.g., average nutrient supply to the surface) and stochastic (e.g., turbulent mixing) processes. POC export 
out of the upper ocean also follows a log-normal distribution, though the statistical power behind this state-
ment is limited by sample size (Cael et al., 2018).

Here, we show that the log-normal character of NPP propagates down to deep-sea measurements of POC 
flux, further demonstrating that the log-normal is a robust feature of variations in ocean carbon fluxes. We 
show that log-normality holds not only for a collection of global open ocean measurements, but also for 
measurements from individual time-series, indicating its consistency across scales. Furthermore, log-nor-
mality holds not only for POC but also for calcium carbonate and opal, which are thought to play an impor-
tant role in the vertical transport of POC (Armstrong et al., 2001; Wiedmann et al., 2020). So-called “ballast” 
minerals are known to be strong predictors of POC flux, although it is still disputed whether this effect is 
mechanistic or coincidental (Footnote 3 in the supporting information; Passow & De La Rocha, 2006). Our 
results suggest (1) an updated global relationship between mineral and POC fluxes, (2) that POC deposition 
to the seafloor, and hence supplied to benthic communities, is episodic, but not enough so to meet the 80/20 
Pareto principle benchmark for a heavily imbalanced phenomenon in other contexts (Sanders, 1987), and 
(3) that marine heterotrophs may dampen variability in NPP by consuming a higher fraction of NPP when 
NPP is larger (Footnote 4 in the supporting information).

2.  Global Open Ocean Fluxes
The POC flux through the water column at a particular location and time follows a flux profile ( )z  
(mg C m−2 d−1) that attenuates with depth (Suess, 1980). This implies that an initial flux from some refer-
ence depth zo, is attenuated through the water column by an “attenuation factor” a so that the flux making 
it to the seafloor  ( )s oa z  . We may further define an export efficiency ef (Eppley & Peterson, 1979) as 
the ratio between POC flux and NPP such that    ( )s oa z a ef   NPP. Since the log-normal emerges 
from the product of multiple random variables, one might expect that if POC export ( )oz  or NPP are 
log-normally distributed (Cael et al., 2018), we should expect s  to be log-normally distributed as well, as 
one is just multiplying by more terms. Log-normality would propagate through depth as long as a (or a × 
ef) scales with ( )oz  (or NPP) in some way, is roughly constant, or randomly varying according to some 
well-behaved probability distribution (i.e., a probability distribution with finite variance). Log-normality 
would not extend to s  if, for instance, a × ef had a more complex dependence on NPP such as if a × ef sharp-
ly increases above a threshold NPP value, or a × ef ≈ 0 for large NPP values (SI). Given that attenuation and 
export efficiency are both quite variable (Cael & Follows, 2016; Henson et al., 2012), we hypothesize that 
this log-normality of NPP should propagate all the way to the seafloor flux s (Footnote 5 in the supporting 
information).
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This hypothesis is readily testable on the global scale thanks to the comprehensive database of particle flux 
measurements assembled by Mouw et al. (2016). We extracted from this database all of the measurements 
which were made at or below 1 km depth, and within 1 km of the seafloor, totaling 3,337 sediment trap 
measurements of bathypelagic POC flux ( OC , [mg C m−2 d−1]), which we consider sufficiently near the 
seafloor to make inferences about the statistics of seafloor fluxes (Footnote 6 in the supporting information). 
As OC  is generally tightly correlated with mineral fluxes (Armstrong et al., 2001; Francois et al.,  2002; 
Henson et al., 2012; Klaas & Archer, 2002), we apply the same selection criteria for fluxes of calcium car-
bonate (calcite and aragonite, IC ) and opal ( Si ), resulting in 2,968 IC  measurements and 2,821 Si  meas-
urements (we also corroborate these correlations here). While these data are spatially biased, for example, 
toward under-representing polar or shelf regions (§Episodicity) we take them to be a representative random 
sample of near-seafloor bathypelagic particle fluxes for the global open ocean. We test the log-normali-
ty of these data using the standard Kolmogorov-Smirnov cumulative distribution function (CDF) metric 

 1 2max ( ) ( )D P P   , where P1 and P2 are the CDFs of  ; here we are comparing the empirical CDF 
of the data itself with a hypothesized log-normal distribution's CDF. As in Cael et al. (2018) we fit a log-nor-
mal distribution to each of these three measurement sets ( OC , IC , and Si ), estimating the log-moments 
by minimizing this fitting statistic. We use D because it is the simplest such statistic (Stephens, 1974); other 
choices yielded the same results.

We find that all three of these measurements are well-described as log-normal, with D values well below 
the thresholds to reject this hypothesis at the 5% significance level (Stephens, 1974). Figure 1 shows the 
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Figure 1.  Top: Empirical cumulative distribution functions for bathypelagic near-seafloor particulate organic carbon, calcium carbonate, and opal fluxes (black 
lines) from Mouw et al. (2016), with fitted log-normal distributions overlaid (colored lines). D is the Kolmogorov-Smirnov statistic; (μ, σ) are the log-mean and 
log-standard deviation of the log-normal distributions corresponding to the colored lines. Bottom: Percentiles of the empirical (x-axis) versus log-normal (y-axis) 
distributions from the top panels. Solid black line is the 1:1 line and the dotted lines represent a standard 30% measurement error (Buesseler et al., 2000, 2007; 
Cael & Bisson, 2018; Stanley et al., 2004).
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hypothesized and empirical CDFs as well as the percentile-percentile plots which indicate that the log-nor-
mal approximation predicts the percentiles of all three measurement fluxes' distributions within a standard 
measurement error of 30% (Buesseler et al., 2000, 2007; Cael & Bisson, 2018; Stanley et al., 2004; Footnote 7 
in the supporting information) except for the smallest percentiles of the mineral fluxes where the absolute 
deviations are still small (<0.3 mg C m−2 d−1). Altogether there is clear statistical evidence that globally all 
of these fluxes are log-normally distributed, and errors introduced by this approximation are either within 
standard measurement error and/or very small.

3.  Time-Series Fluxes
Is this observed log-normality just a coincident feature of where and when these measurements have histor-
ically been taken, or of large-scale biogeochemical cycles? Or is it a robust feature of ocean particle fluxes? 
The argument presented in the previous section is, in principle, equally applicable on smaller scales. A 
stricter test of our hypothesis is whether it holds for individual locations, that is, data from time-series sta-
tions; encouragingly, these fluxes are known to be episodic (Karl et al., 2012; Smith et al., 2018), consistent 
with log-normality.

We apply the log-normal fitting procedure from the previous section to data from six deep-sea sediment trap 
time-series locations:

•	 �A Long-term Oligotrophic Habitat Assessment (ALOHA) in the North Pacific Subtropical Gyre, a sys-
tem which despite being perennially oligotrophic exhibits surprising variability in community structure 
and export (Follett et al., 2018; Karl et al., 2012) and even interannual variations in nutrient limitation 
(Letelier et al., 2019)

•	 �The Carbon Retention in a Colored Ocean (CARIACO) time-series in the Caribbean Sea, a near-coastal 
site also affected by terrestrial processes (Muller-Karger et al., 2019)

•	 �Station K2 in the subarctic Northwest Pacific, a mesotrophic system with important dust-borne inputs of 
the limiting micronutrient iron (Honda, 2020; Lam & Bishop, 2008)

•	 �Station M in the Northeast Pacific, a site within the California Current, an upwelling system that is 
productive and highly variable not only seasonally but also on short timescales as well as interannually 
(Smith et al., 2018)

•	 �The Oceanic Flux Program (OFP) time-series in the Sargasso Sea (Conte & Weber,  2014; Conte 
et al., 2001, 2003, 2019), an oligotrophic system with significant blooms and interannual variability (Lo-
mas et al., 2013; Steinberg et al., 2001)

•	 �The Porcupine Abyssal Plain (PAP) time-series in the North Atlantic Ocean, a temperate system exhib-
iting spring blooms, but also strong influences by turbulent ocean features as well as climatic drivers 
(Lampitt et al., 2010)

Further details about each time-series can be found in the above references. Collectively, the near-seafloor 
sediment traps from these time-series span measurements from a diversity of ocean settings; for example, 
eutrophic/oligotrophic environments, nutrient and oxygen status, or seafloor depth (Lampitt et al., 2010). 
The trap depths are 4,000 m (ALOHA), 1,210 m (CARIACO), 4,810 m (K2), 3,400 m (M), 3,200 m (OFP), 
and 3,000 m (PAP). We obtained 452/325/305 measurements from Station ALOHA of / /OC IC Si , 665/665/400 
measurements from OFP of / /OC IC Si , 232/240/240 measurements from Station K2 of / /OC IC Si , 723/557 
measurements from Station M of /OC IC , 294/166 measurements from PAP of /OC IC , and 371/366/345 
measurements from CARIACO of / /OC IC Si . Some of these sample sizes are somewhat small to rigorously 
test for log-normality for individual data sets, but collectively they can demonstrate the robustness (or lack 
thereof) of the log-normal distribution on different spatial scales and at different locations; our conclusions 
are not sensitive to the inclusion/exclusion of any particular time-series.

Figure 2 shows the results of fitting the individual time-series' data. As for the global data sets, the devia-
tions between the empirical and theoretical distributions are not statistically significant, and the percentiles 
tend to stay within standard measurement error and/or represent small absolute deviations in the low tails, 
one exception being the very highest percentiles of the PAP IC  distribution, which is likely attributable to 
this having the smallest sample size (N = 166), and therefore these percentiles being very sensitive to the 
exact values of the largest two to three measurements. The other exception is the highest few percentiles 
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of the ALOHA Si  distribution, which are more intriguing and suggest that the processes governing the 
diatom-diazotroph-association-dominated summer export pulse (Follett et al., 2018; Karl et al., 2012) in 
the North Pacific Subtropical Gyre may be capable of “breaking” this distributional description of particle 
flux and generate deep-sea fluxes substantially larger than would be otherwise predicted. Outside of these 
anomalously large opal fluxes, however, these time-series data corroborate the robustness of the log-normal 
description of deep-sea particle fluxes.

4.  Mineral Scaling
As mineral fluxes and POC fluxes are both log-normally distributed, this implies that a scaling relationship 
is a more appropriate way to relate the two fluxes than multi-linear regression (Armstrong et al., 2001; Fran-
cois et al., 2002; Henson et al., 2011; Klaas & Archer, 2002). The global / /OC IC Si  measurements present an 
opportunity to update the classic multi-linear regression equations for mineral flux, though it is important 
that variation in depth is also accounted for, as depth-normalization can introduce substantial uncertain-
ty (Cael & Bisson, 2018; Olli, 2015). For these regressions, we restrict the global measurements of Mouw 
et al. (2016) shown in Figure 1 to the 2,798 coincident measurements of all three fluxes and fit the function:

  


 
   

 3500

b

OC IC Si
z

  �

where κ and γ are the parameters of a standard scaling relationship, that is, y = κxγ, b is the standard “Martin 
curve” exponent, and β then represents the ratio of organic carbon association per unit mass for opal ver-
sus calcium carbonate, which some may interpret as a ballast effect. In effect, this equation is asking how 

OC , normalized (Footnote 2 in the supporting information) to a uniform depth of 3,500 m by a power law 
(Martin et al., 1987), scales with mineral flux. We also assume multiplicative (i.e., % rather than absolute) 
errors, consistent with these variables scaling with one another and being log-normally distributed. As both 

OC  and IC Si   have errors, a model II regression is necessary; we use major axis regression, but our 
results are insensitive to this choice. We identify the (β, b) pair that yields the best fit regression between 
( / 3500)b

OCz   and IC Si  , and repeat this procedure 1,000 times with bootstrap resampling to estimate 
uncertainty in all of the parameters (κ, β, γ, b).

Figure 3 shows the results of fitting this model; we see that a scaling relationship is an effective description 
of this relationship (r2 = 0.66 for the dashed line in Figure 3; Footnote 9 in the supporting information), with 
depth-normalized POC flux scaling with mineral flux to the γ = 1.06 ± 0.01. This exponent is slightly – but 
statistically significantly – larger than 1, corresponding to a slightly systematically increasing POC/mineral 
ratio with increasing mineral flux. Furthermore, we find β = 0.26 ± 0.01 suggesting that roughly four times 
as much organic carbon is associated with calcium carbonate per unit mass relative to opal. Interestingly, 
we find a slightly high (Footnote 10 in the supporting information) b value of 1.16 ± 0.03.
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Figure 2.  As in the bottom row of Figure 1, but for the individual time-series' data. Color indicates station and shape indicates measurement. Solid black line is 
the 1:1 line and the dotted lines represent a standard 30% measurement error (Buesseler et al., 2000, 2007; Cael & Bisson, 2018; Stanley et al., 2004).
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Analogous scaling relationships are found for the four time-series that 
have measurements of both minerals alongside POC flux – ALOHA, 
CARIACO, K2, and OFP – though the depth-normalization parameter 
b does not need to be estimated as each time-series' measurements are 
made at a single depth (Figure S4). CARIACO, K2, and OFP have simi-
larly good fits (r2 = 0.81, 0.88, and 0.84, respectively) and slightly sub-lin-
ear scaling relationships (i.e., non-linear with a scaling exponent lower 
than unity: γ = 0.93 ± 0.03, 0.85 ± 0.02, and 0.92 ± 0.02, respectively), 
corresponding to a slightly systematically decreasing POC/mineral ratio 
with increasing mineral flux. Interestingly, CARIACO, K2, and OFP also 
have much larger β values (β = 1.45 ± 0.33, 1.84 ± 0.40, and 1.63 ± 0.46, 
respectively), indicating that per unit mass, opal has more organic carbon 
associated with it per unit mass in these locations. This underscores the 
important role that both minerals play, and that their relative importance 
can vary. The ALOHA time-series yields a much higher γ = 1.40 ± 0.11 
and β = 15.6 ± 10.9, and a poorer fit (r2 = 0.47). The large β value fur-
ther underscores the importance of opal flux depending on the time and 
place – it is known to be critical for deep export at Station ALOHA (Karl 
et  al.,  2012) – but also is highly unconstrained, so we caution against 
its overinterpretation. The spread in scaling exponents γ between the 
time-series may be indicative of spatial variation in the mineral-POC flux 
dynamics around the global, approximately linear relationship; the global 
γ = 1.06 is close to the average (1.03) of the time-series' γ values.

As the global β we find is 0.26 ± 0.01, these findings suggest that perhaps aggregates containing, for ex-
ample, diatom cells are ingested and remineralized more than, for example, aggregates containing cocco-
lithophore cells and plates (liths). We cannot say from this work if these biominerals are truly ballasting 
POC because in some situations, these refractory biominerals may be all that remains after the labile POC 
is remineralized into the water column. Nonetheless, Figures 3 and S4 demonstrate that depth-normalized 
POC flux does scale approximately linearly with a weighted sum of these minerals; the scaling relationship 
is also quite strong given the variability in location and depth considered, and also appears to hold similarly 
for individual locations, though the relative weights of calcium carbonate versus opal differ between the 
global case and the local cases.

5.  Dampening
We find an interesting consistency in the relationship between variability in NPP and variability in deep-sea 
flux, globally and across time-series, which is also consistent with the NPP-shallow flux relationship found 
in Cael et al. (2018). We estimate the log-standard deviation σ of NPP at each site in the same manner as 
above and as in Cael et al. (2018), using 14C measurements taken as a part of the Hawai'i Ocean Time-se-
ries (HOT; Karl & Lukas, 1996), CARIACO time-series, and Bermuda Atlantic Time-series Study (BATS; 
Lomas et al., 2013; Steinberg et al., 2001) respectively for those locations, and all of the measurements in 
the data set used in Buitenhuis et al. (2013) and Cael et al. (2018) within 5° of the PAP and M sites for those 
locations; global σ for NPP (σNPP) is taken from Cael et al. (2018) (Footnote 11 in the supporting informa-
tion). As in Cael et al. (2018), we take the statistics of 14C measurements (Footnote 12 in the supporting 
information) to be reflective of the statistics of NPP, noting that all of the measurements used herein are 
subject to caveats, ambiguities, and uncertainties. We then compare the σ for deep-sea POC flux () with 
the corresponding σNPP in Figure 4. In Cael et al. (2018) we showed that if shallow flux scales with NPP 
and both are log-normal, the scaling exponent should correspond to a constant ratio of    / NPP , and 
we found α ∼ 0.65 ± 0.14. The same is true here for deep flux; we regress the deep flux data in Figure 4 
using the model   NPP  and find α = 0.62 ± 0.04 (r2 = 0.89), in excellent agreement with the previous 
value. This implies that deep flux scales similarly with NPP to shallow flux, which in turn implies deep flux 
scales roughly linearly with shallow flux. As α < 1, this also implies that all of the processes that collec-
tively transform NPP eventually into deep-sea flux tend to dampen the variability in NPP. Ecologically, this 
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Figure 3.  Scaling relationship predicting depth-normalized POC flux 
from a weighted sum of mineral fluxes. Color indicates ratio of calcium 
carbonate flux versus opal flux, weighted by β; dash-dotted black line 
is the inferred global scaling relationship y = κxγ. See Figure S3 for 
alternate version with smaller scatterpoints to show density of data. POC, 
particulate organic carbon.
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dampening effect could likely be caused by enhanced grazing, or hetero-
trophy in general, when NPP is high; if heterotrophs tend to consume a 
higher fraction of NPP when and where NPP is high, this would result in 
a negative correlation between a × ef (see §Global open ocean fluxes) and 
NPP, leading to   NPP  (Campbell, 1995). Such ecological dampening 
by the heterotrophic community would likely occur at shallower depths, 
that is, in the epipelagic and upper mesopelagic, where flux attenuation 
and organism abundances are highest (Iversen et  al.,  2010; Jackson & 
Checkley, 2011; van der Jagt et al., 2020). This is corroborated by the com-
paratively small differences between upper ocean export σ values globally 
and for HOT, CARIACO, and BATS/OFP and their corresponding   val-
ues (Cael et al., 2018; Figure 4), and the closeness of the α values derived 
from shallow and deep fluxes versus NPP. In Figure 4, σ for shallow flux 
(flux measurements at ∼150 m, a.k.a. export) is always between that of 
deep flux and NPP, but closer to that of deep flux, supporting the argu-
ment that most of the dampening of variability occurs at shallow depths. 
It has been argued that zooplankton act as gatekeepers for export flux at 
the base of the mixed layer (Jackson & Checkley, 2011); there is experi-
mental evidence that zooplankton-phytoplankton dynamics follow such 
dampening patterns and that this dampens carbon export variability (van 
der Jagt et al., 2020) but this dampening has not been demonstrated on 

the global scale. Globally representative measurements similar to those made in van der Jagt et al. (2020) 
would be valuable for testing whether similar mechanisms underlie this variability dampening at the global 
scale. Because NPP and flux observations are taken over different space and timescales, however, it is not 
clear how much of these σ differences can be attributed to ecological processes. The difference in measure-
ment scales should reduce deep-sea   relative to shallow  , and shallow   relative to σNPP; regardless of 
this measurement-produced offset, however, the coherence in the differences between σ values in Figure 4 
does imply a consistent relationship between the variability in NPP and the variability in deep-sea POC flux 
across scales and locations.

6.  Episodicity
Is the benthos supplied by episodic flux events or a steady rain of particles? This question can be assessed 
quantitatively in terms of how heavy the tail of the probability distribution of fluxes is. Log-normals are one 
of a class of “heavy-tailed” distributions for which values much larger than the mean are not uncommon, 
but are not as heavy-tailed as other probability distributions commonly found in nature, such as a pow-
er-law distribution. The degree of heavy-tailedness or episodicity can be quantified simply in terms of the 
joint ratio (Footnote 13 in the supporting information): The (100 − X)/X such that X% of the largest values 
contribute (100 − X)% of the sum of all the values. For the global OC  data, both the observations and the 
log-normal fit yield a joint ratio of 71/29, corresponding to an imbalanced distribution, but a less imbal-
anced one than the classical 80/20 “Pareto principle” benchmark of a heavily imbalanced distribution in so-
cial, economic, and other natural systems (Sanders, 1987). This also holds for minerals and for time-series; 
all of the global distributions' joint ratios were between 70/30 and 75/25, and all of the time-series' distribu-
tions' joint ratios were between 60/40 and 75/25 (Footnote 14 in the supporting information). This implies 
an intermediate answer to the episodicity question; the deep-sea flux distributions are heavy-tailed enough 
that high-flux pulses do play an important role in supplying the benthos, but not heavy-tailed enough that 
such pulses dominate total supply. This measure of episodicity is however only in terms of the (∼weekly or 
longer) time intervals over which these deep flux measurements are taken. There will be variations in flux 
during these time intervals and so the true flux will be more episodic than the calculated episodicity from 
these time-averaged values. Furthermore, other relevant supplies to the benthos, such as energy (Grabowski 
et al., 2019) or genes linked to particular substrates (Boeuf et al., 2019), appear to be more episodic than 
organic carbon; the composition, nature and value of the supplied material may therefore be more episodic 
as well. Finally, these global and time-series data are heavily representative of temperate and subtropi-
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Figure 4.  Log-standard deviation of net primary production versus deep-
sea (purple) and shallow (yellow) organic carbon flux globally and for the 
time-series. Black line corresponds to   / 0.62NPP .
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cal systems. Polar or shelf systems are known to be extremely episodic, sometimes with total export/sup-
ply dominated by a single regular seasonal event (e.g., Amiel and Cochran (2008), Ducklow et al. (2015), 
and references therein). We thus expect different degrees of episodicity in these systems, and potentially 
non-log-normally distributed fluxes.

7.  Discussion
It is important to recognize that while the propagation of log-normality from NPP, to export out of the 
upper ocean, to deep-sea flux is intuitive when cast in terms of an export efficiency and an attenuation 
factor; in reality particle fluxes are very complicated and that this over-simplification appears to work so 
well is rather surprising. Deep-sea traps integrate over large spatial areas (Siegel & Deuser, 1997) that can 
be strongly influenced by lateral advection and stirring. Productivity and even export can vary greatly on 
much smaller scales (Estapa et al., 2015; Mahadevan, 2016). Particles sinking with a wide range of settling 
velocities contribute appreciably to total flux (Trull et al., 2008) meaning a deep-sea flux measurement 
is also a convolution of productivity at different times; deep-sea particle fluxes are also measured on 
timescales of weeks, unlike those of NPP or upper ocean export, which are measured on timescales of 
a day or days, respectively. NPP occurs throughout the euphotic layer and its depth-dependence varies 
(Behrenfeld & Falkowski, 1997). All of these factors complicate any one-to-one relationship between the 
value of a NPP measurement and the value of a corresponding deep-sea flux measurement. Nonetheless, 
our results indicate that these complications do not prevent log-normality from propagating into deep-
sea fluxes. We also note that the log-normal description is agnostic as to the driver(s) of these fluxes and 
their variations.

To conclude, we have shown that the log-normality of NPP measurements propagates from upper-ocean 
fluxes through the water column to near-seafloor fluxes, both globally and for individual time-series, both 
for organic carbon and for opal and calcium carbonate. This provides a simple way to characterize the varia-
bility of these fluxes, the organic carbon associations of these minerals, and the link between NPP and deep-
sea flux on large scales. The issue of spatial and temporal measurement scale is an important one to address 
in future work, and will make it possible to capitalize on these distributional relationships, for example, to 
link satellite models of NPP with upper-ocean and even deep-sea carbon fluxes.

Data Availability Statement
OFP data are available from the NSF Biological and Chemical Oceanography Data Management Office 
(BCO-DMO). Data and code are available at https://doi.org/10.5281/zenodo.4675075. For review, the glob-
al data can be found from the Cael et al. (2018) and Mouw et al. (2016) sources cited in the text, and the 
time-series data can be found at https://github.com/bbcael/grl-deep-flux-preliminary-data.
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