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Abelian oil and water dynamics does not have an

absorbing-state phase transition

Elisabetta Candellero∗ Alexandre Stauffer† Lorenzo Taggi‡

July 23, 2020

Abstract

The oil and water model is an interacting particle system with two types of par-
ticles and a dynamics that conserves the number of particles, which belongs to the
so-called class of Abelian networks. Widely studied processes in this class are sand-
piles models and activated random walks, which are known (at least for some choice
of the underlying graph) to undergo an absorbing-state phase transition. This phase
transition characterizes the existence of two regimes, depending on the particle den-
sity: a regime of fixation at low densities, where the dynamics converges towards an
absorbing state and each particle jumps only finitely many times, and a regime of
activity at large densities, where particles jump infinitely often and activity is sus-
tained indefinitely. In this work we show that the oil and water model is substantially
different than sandpiles models and activated random walks, in the sense that it does
not undergo an absorbing-state phase transition and is in the regime of fixation at all
densities. Our result works in great generality: for any graph that is vertex transitive
and for a large class of initial configurations.

1 Introduction

We consider an interacting particle system called oil and water, which is defined as follows.
There are two types of particles, which we call oils and waters. Take G = (V (G), E(G)) to
be an infinite graph, and let ν be a probability measure on the set of non-negative integers
N. The initial configuration of particles is distributed as a product of independent random
variables distributed as ν; that is, at each vertex x ∈ V (G) place a random number of oils
and independently a random number of waters, both values sampled from the distribution
ν. We denote by µ = µ(ν) the expected number of particles at a given vertex; thus µ/2
is the expectation of a random variable distributed as ν. We shall refer to this initial
configuration as oil and water at density µ.

Starting from the above configuration, particles move according to the following dy-
namics. Each vertex of G has an independent Poisson clock of rate 1. Whenever the clock
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of a vertex x rings, if x hosts at least one oil and one water then it fires an oil-water pair:
one water and one oil jump independently according to one step of simple random walk
on G (that is, each of the two chooses independently a neighbor of x uniformly at random
and jumps there). On the other hand, if at the time the Poisson clock of x rings, x has no
particles or hosts only particles of one type (either oil or water), then x does not fire; in
this case we say that x is stable. Note that x may host arbitrarily many particles, but as
long as they are all of the same type, x is stable and none of its particles are allowed to
jump. Note also that if we reach a configuration where every vertex of G is stable, which
we refer to as a stable configuration, then no vertex fires from that time onwards. Thus
stable configurations are absorbing states for the dynamics.

Oil and water has the so-called Abelian property [BL16], which states that the final
configuration of the system does not depend on the order at which vertices fire. This gives
that the times at which the Poisson clocks ring are irrelevant.

There are two possible outcomes of the system: either it is active, in which each vertex
fires infinitely many times, or it fixates, that is each vertex fires finitely many times. It is
easy to check that if one vertex fires infinitely many times, then all vertices do as well. We
show two fundamental properties in Section 2. The first one is monotonicity (Lemma 2.2),
which gives that if oil and water at density µ fixates, then it also fixates for all densities
µ′ ∈ [0, µ]. The second property is a 0-1 law (Lemma 2.3), which states that given µ the
probability that the system fixates is either 0 or 1.

With the above two properties, and inspired by results for other models having the
Abelian property and also satisfying those properties, such as stochastic sandpiles and
activated random walks [RS12, ST17], one may conjecture that the oil and water model
undergoes a phase transition between activity and fixation at some critical density µc. (A
more thorough discussion of the relation between oil and water and other models with the
Abelian property is given in Section 1.1 below.)

The main result of our paper is to show that the above conjecture is not true, for
any graph G, with the only requirement that G is vertex transitive. Let Pν denote the
probability law of the oil and water dynamics starting from a configuration of density
µ = µ(ν) as above.

Theorem 1.1. Let G be an infinite, vertex-transitive and finite-degree graph. Then, for
any ν with µ = µ(ν) <∞,

Pν
[
oil and water fixates

]
= 1.

A natural question is whether vertex transitivity is a necessary property. We expect
this not to be the case and that Theorem 1.1 holds even in greater generality. In fact, it
would be interesting to know whether it is possible to engineer a finite-degree graph for
which oil and water is active for some µ <∞.

Oil and water was introduced in [BL16] as an example of an Abelian network that is
not unary (that is, which has more than one type of particles); see Section 1.1 below. The
oil and water model was analyzed in [CGHL17] in a different setting. They consider the
one-dimensional lattice Z, and let the initial configuration be given by N oil-water pairs at
the origin, with all other vertices initially unoccupied. Then the oil and water dynamics is
run until a stable configuration is obtained; this occurs in finite time, almost surely, since
the number of particles is finite. In this setting, [CGHL17] investigated several statistics
of the model, including how long it takes for the process to stop and how far from the
origin particles spread as a function of N .
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1.1 Related models

Oil and water was introduced in [BL16] within the more general framework of Abelian
networks, which was introduced by Bond and Levine [BL16] building on the work of Dhar
on sandpile models [Dha99]. This framework was created with the goal of defining a general
concept that includes several widely studied processes, such as Abelian and stochastic
sandpiles, bootstrap percolation, rotor-router networks, internal DLA and activated random
walks. Informally speaking, a particle system (or, more generally, a cellular automaton)
is considered an Abelian Network if it satisfies the so-called Abelian property, which gives
that the final configuration of the system does not depend on the order of the interactions.
In other words, the final configuration is invariant to changes in the order at which vertices
fire.

Abelian networks have been widely studied in several disciplines. For example, in
computer science, they are a fundamental model in distributed systems, as they do not
require any central synchronization or shared memory, see [BL16] for more details. In
mathematics and physics, several types of Abelian networks have been investigated, an
archetypal example being sandpile models [Jár18]. The study of sandpile models was initi-
ated in [BTW87, BTW88] motivated by the observation that they present characteristics
of self-organized criticality. This means that as the process evolves, the system drives itself
to a “critical state” without having to tune any parameter. Here, “critical state” means
that after a long time the configuration shows characteristics that are common to systems
at criticality. Refer to [Jár18] for more information about self-organized criticality and
sandpile models.

There have been several works in the physics literature to understand self-organized
criticality. One approach has been to relate this phenomenon to the more classical one of
phase transitions, called aborbing-state phase transition [MDPS+01]. This corresponds to
a phase transition between a regime of fixation (where for a small density of particles the
system moves towards an absorbing state) and a regime of activity (where for a large den-
sity of particles the activity is sustained indefinitely). Physicists believe that the presence
of an absorbing-state phase transition is intrinsically connected to the phenomenon of self-
organized criticality [MDPS+01], and even defines a new universality class [RPSV00]. In
particular, physicists studied several systems with a conserved number of particles which
are connected to systems from self-organized criticality, and showed non-rigorously that
such systems undergo an absorbing-state phase transition. Examples of such systems in-
clude stochastic sandpiles, fixed energy sandpiles, conserved threshold transfer processes,
and activated random walks [MDPS+01, RPSV00, PSV00].

In the mathematics literature, results in this area are much more scarce. Ingenious
proofs have been developed to show that stochastic sandpiles and activated random walks
undergo an absorbing-state phase transition in some graphs [RS12, ST17, ST18, BGH18,
Tag19], and it is expected that such a result should be true for any vertex-transitive graph.
In this paper, we show that the same is not true for the oil and water model, for any vertex-
transitive graph. In some sense, the strong interactions between the particles in the oil and
water dynamics cause the particles to organize themselves in order to achieve fixation. To
the best of our knowledge, this is the first time that a natural model of an Abelian network
(with a conserved number of particles) is shown not to undergo an absorbing-state phase
transition. Another additional feature of our result is that our proof is not engineered for
a specific graph, but works in any vertex transitive graph and any initial configuration of
particles that is obtained from a product measure.
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1.2 Proof overview

Two fundamental properties that will be heavily employed in the proof are the Abelian
property and the 0-1 law. A popular strategy to analyze Abelian networks [RS12, ST17,
BGH18, CGHL17] is to devise a so-called stabilization algorithm. For example, if one wants
to show fixation (resp., activity), this strategy consists of choosing a smart order to fire the
vertices, exploiting the Abelian property, in order to obtain that a given vertex does not
fire at all (resp., fires infinitely many times) with positive probability, which by the 0-1 law
implies almost surely fixation (resp., activity). Usually, the stabilization algorithm exploits
the structure of the graph (which, in all the aforementioned papers, was always a grid such
as Zd, d ≥ 1), making such proofs very much graph dependent. Moreover, in some models,
such as stochastic sandpiles and activated random walks, where an absorbing-state phase
transition takes place, one also uses monotonicity ; that is, it suffices to show fixation for
some small enough µ, and to show activity for some large enough µ.

The oil and water model gives rise to different challenges, since we need to show that
the process fixates for all µ, no matter how large it may be, and for all transitive graphs.
In order to do this, we had to develop a new proof strategy. Before describing it, we fix
some terminology. For any vertex x, if x has ko oils and kw waters, we say that x has
ko∧kw oil-water pairs, where we view each such pair as a matching between an oil particle
and a water particle from x. So, each vertex x may only have unpaired particles of at
most one type (either oil or water).

Now suppose that vertex x ∈ V (G) is unstable, thus x has at least one oil-water pair.
If all neighbors of x have nonzero unpaired oils, when we fire x, the water particle that
gets to jump from x will be paired to one of the unpaired oils located at the neighbors
of x (or to the oil particle that jumped from x, if both oil and water jump to the same
neighbor). As a consequence, the number of oil-water pairs in the system does not change.
In fact, even if the water jumping from x gets paired to a different oil particle, we observe
that the firing of x effectively causes an oil-water pair to do a step of a simple random
walk from x. The same occurs if all neighbors of x have nonzero unpaired waters.

On the other hand, suppose that dw ≥ 1 neighbors of x have unpaired waters, do ≥ 1
neighbors of x have unpaired oils, and that dw + do = d with d denoting the degree of
each vertex of G (that is, each neighbor of x has at least one unpaired particle). In this
case, the number of oil-water pairs changes by either -1, 0 or 1. For example, it changes
by −1 (resp., +1) if the water jumps from x to a neighbor with unpaired waters (resp.,
oils), and the oil jumps from x to a neighbor with unpaired oils (resp., waters); in other
cases the number of oil-water pairs does not change. We can readily see that

the number of oil-water pairs changes


by 0 with probability = 1− 2

dwdo
d2

,

by 1 with probability =
dwdo
d2

,

by −1 with probability =
dwdo
d2

.

The above gives that, in this case, the configuration of oil-water pairs behaves as a critical
branching random walk on G. Suppose now that x has at least one neighbor with no
unpaired particles (such neighbors are called holes), then we have that the configuration
of oil-water pairs behaves as a subcritical branching random walk.

Putting all these cases together, when a vertex x fires, the configuration of oil-water
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pairs behaves either as a simple random walk, as a critical branching random walk, or as
a subcritical branching random walk, depending on the environment of unpaired particles
at the neighbors of x. Moreover, it behaves as a subcritical branching random walk only
when x is the neighbor of a hole.

Intuitively, since oil-water pairs cause a vertex to fire, in order to show fixation we
need to show that the number of oil-water pairs decreases quickly. Thus, we want to show
that for a large enough number of steps we fire a vertex that neighbors a hole.

The proof works by contradiction. We assume that the system is active, which implies
that each vertex fires a very large number of times. Now consider a vertex x that fires k
times, and let y be a neighbor of x which, for instance, has unpaired oils. Then, we can
show that y will be a hole for a number of times that increases with k. This is because each
time x fires, conditioning on x sending exactly one particle to y, with equal probability this
particle is an oil or a water. So the number of unpaired particles at y behaves as a simple
random walk on N, reflected at the origin, which is recurrent. Developing this argument we
will obtain that a very large number of holes will be created during this process. At those
times, the number of oil-water pairs behaves as a supermartingale. Hence, it decreases
quickly.

In order to implement this strategy, we need to control the evolution of the locations
of the oil-water pairs. The challenge is that they behave as a mix of simple random
walk, critical branching random walk and subcritical branching random walk, depending
on (and affecting) the environment of the unpaired particles. We are able to control this
by defining a suitable martingale, which depends on the configuration of the particles.
This martingale allows us to relate the expected number of oil-water pairs to the Green’s
function of simple random walk on G. This step, which is at the core of our proof, is given
in Lemma 3.4; see also Remark 3.5.

2 Graphical representation and properties

In this section we introduce a graphical representation for the model. Via this representa-
tion we can prove a 0-1 law for the probability of fixation, and the Abelian property, where
the latter informally states that the number of firings at a given vertex does not depend
on the temporal order of firings of the system and was proved in [BL16]. The structure of
this section is inspired by [RS12], where the authors prove a 0-1 law for two models which
are strictly related to the present one, namely stochastic sandpiles and activated random
walks.

Notation. The graph G is infinite, vertex-transitive with finite degree, and it is fixed
along the whole proof. We fix an arbitrary reference vertex and call it origin o ∈ V (G).
When considering two vertices x, y ∈ V (G), we denote by d(x, y) the graph distance
between x and y, namely the length of the shortest path from x to y. As a shorthand we
also write x ∼ y when d(x, y) = 1.

2.1 Definitions

The space of possible configurations will be denoted by Ω := NV (G) × NV (G). We shall
denote an element of Ω by

η =
(
ηo(x), ηw(x)

)
x∈V (G)

,
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where ηo(x) (resp., ηw(x)) corresponds to the number of oils (resp., waters) at x. Also, re-
call that µ > 0 is the expected number of particles at each site in the starting configuration,
that is

µ = E
(
ηo(o) + ηw(o)

)
,

where o ∈ V (G) denotes a reference vertex that we call the origin. When investigating
the long-time behavior of this model we might expect two possible outcomes, which can
depend on µ and on the properties of the graph G, namely fixation or activity, which we
describe below. For all x ∈ V (G) and all t ≥ 0, let ut(x) denote the number of firings
occurred at x by time t; we say that the process fixates when for any finite set of vertices
A ⊂ V (G) there is a (random) time tA <∞ for which

∀x ∈ A, for all t > tA ut(x) = utA(x).

In other words, no vertex of A fires after time tA. On the other hand, we say that the
process is active if it does not fixate.

Given a configuration η ∈ Ω, a vertex x ∈ V (G) is called stable if ηo(x) ∧ ηw(x) = 0
and it is called unstable otherwise.

For any x ∈ V (G) and any pair of vertices yo, yw ∼ x, we define a pair of instructions
(τ ox,yo , τ

w
x,yw) as an operator acting on configurations η = (ηo, ηw) ∈ Ω which are unstable

at x. Given such a configuration η as input, the operator returns a configuration η1 =
(ηo1, η

w
1 ) ∈ Ω such that, for q ∈ {o, w},

ηq1(z) :=


ηq(z)− 1 if z = x,
ηq(z) + 1 if z = yq,
ηq(z) otherwise.

In words, the operator (τ ox,yo , τ
w
x,yw) makes one oil jump from x to yo and one water jump

from x to yw.
Now we fix an array τ = {τx,j : x ∈ V (G), j ∈ N}, where each element τx,j is a pair of

instructions of the form τx,j = (τx,j,o, τx,j,w); in particular, each such a pair is an element
of the set {(τ ox,yo , τ

w
x,yw) : yo ∼ x, yw ∼ x}.

We also need to define a function h = (h(x) : x ∈ V (G)) that counts the number of
pairs of instructions used at each vertex. Given the counter h, we say that x fires (or that
we topple x, borrowing the notation from the abelian sandpiles setting) when we act on
the pair (η,h) through an operator Φx which is defined as,

Φx(η,h) = (τx,h(x)+1 η, h + δx), (2.1)

where δx(y) = 1 if y = x and δx(y) = 0 otherwise. In words, the operator Φx makes one
oil and one water jump from x simultaneously and then it updates the counter h. The
operation Φx is said to be legal for (η,h) if x is unstable in η, otherwise it is illegal.

2.2 Properties

We now describe the properties of this representation. For a sequence of vertices α =
(x1, x2, . . . , xk), we write Φα = ΦxkΦxk−1

. . .Φx1 and we say that Φα is legal for η if Φx` is
legal for Φ(x`−1,...,x1)(η,0) for all ` ∈ {2, . . . , k}, where 0 is the counter which equals zero
at every vertex. Given a particle configuration η ∈ Ω, a legal sequence α and a fixed array
of instructions τ , we write Φαη ∈ Ω for the particle configuration of the pair Φα(η,0). In
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other words, Φαη is the particle configuration which is obtained from η when we topple
the vertices according to the sequence α. Let mα = {mα(x) : x ∈ V (G)} be given by

mα(x) =
∑
`

1{x` = x}, (2.2)

that is the number of times the vertex x appears in the firing sequence α.
We write mα ≥ mβ if mα(x) ≥ mβ(x) for all x ∈ V (G). We write η1 ≥ η2 if

ηq1(x) ≥ ηq2(x) for q ∈ {o, w} and x ∈ V (G). We also write (η′,h′) ≥ (η,h) if η′ ≥ η and
h′ ≥ h.

Let η, η′ be two configurations, let x ∈ V (G), let τ be an array of instructions, and let
K be a finite subset of V (G). A configuration η is said to be stable in K if all the vertices
x ∈ K are stable. We say that a sequence α is contained in K if all its elements are in
K, and we say that α stabilizes η in K if Φαη is stable in K. The following property was
proved by Bond and Levine.

Lemma 2.1 (Abelian Property, [BL16]). Let K ⊂ V (G) be a finite set. If α and β are
both legal sequences for η that are contained in K and stabilize η in K, then mα = mβ

and Φαη = Φβη.

For any finite subset K ⊂ V (G), any x ∈ V (G), any particle configuration η, and
any array of instructions τ , we denote by mK,η,τ (x) the number of times that x fires
in the stabilization of K starting from η and using the instructions in τ . Note that by
Lemma 2.1, we have that mK,η,τ is well defined. The following fact is a direct consequence
of the Abelian property.

Lemma 2.2 (Monotonicity). For finite subsets K ⊂ K ′ ⊂ V (G) and particle configura-
tions η ≤ η′, we have that,

mK,η,τ ≤ mK′,η′,τ .

Proof. Fix an array τ , and let β := (x1, x2, . . . , xk) be a legal sequence that stabilizes η
in K; then, by Lemma 2.1 we have that any other legal sequence stabilizing K will use
the same number of firings as β. By definition, this sequence has not yet stabilized any
vertex in the set K ′ \K. Since the set K ′ cannot be stable until the set K is stable, the
claim follows from (2.2).

By monotonicity, given any growing sequence of subsets V1 ⊆ V2 ⊆ · · · ⊆ V (G) such
that limt→∞ Vt = V (G), the limit

mη,τ := lim
t→∞

mVt,η,τ (2.3)

exists and does not depend on the particular sequence {Vt}t.
So far we have fixed a deterministic array τ and a particle configuration η. We now

introduce a probability measure on the space of instructions and particle configurations.
We denote by P the probability measure according to which the pairs of instructions
τx,j := (τx,j,o, τx,j,w) are independent across different values of x, j and {o, w}, and by
dx the degree of vertex x ∈ V (G). Moreover, the two elements τx,j,o and τx,j,w are
independent and have distribution

P
(
τx,j,q = τ qx,yq

)
:=

1

dx
,
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for any yq ∼ x, q ∈ {o, w}. Roughly speaking, under the measure P the instructions
induce any particle that uses them to perform a step of independent simple random walk.

Finally, we denote by Pν = P ⊗ ν the joint law of η and τ . We shall often omit the
dependence on ν by writing P instead of Pν . The following lemma relates the dynamics of
the oil-water model to the stability property of the representation. Recall that Pν denotes
the law of the oil-water dynamics under the assumption that the initial configuration was
distributed according to a product of measures ν.

Lemma 2.3 (0-1 law). Let mη,τ be as in (2.3). Then

Pν(oil and water fixates) = Pν(mη,τ (o) <∞) ∈ {0, 1}. (2.4)

Lemma 2.3 was proved in [RS12] for two models which are related to oil and water,
activated random walk and the stochastic sandpile model. Here we present the main steps
of the proof and we refer to [RS12] for the complete argument.

Sketch of the proof of Lemma 2.3. The 0-1 law follows from the fact that the event {oil
and water fixates} is automorphism invariant and, since the process is determined by i.i.d.
variables at the vertices (initial configuration, Poisson clocks and jump instructions), it is
ergodic. We now sketch the proof of the identity in (2.4). The proof consists in coupling
the quantities limt→∞ ut(x) and mη,τ (x). More precisely, let ut,M (x) denote the number of
firings that occurred at x before time t when no particle is allowed to jump from vertices
outside BM , the ball of radius M centered at o (the firings at such vertices are “frozen”).
The proof consists in two main steps.

In the first step, one constructs a natural coupling between the variables mBM ,η,τ (x)
and u∞,M (o) := limt→∞ ut,M (o) as follows. Recall that Pν is the joint law of the variables
η ∈ Ω and τ , under which they are independent. On the other hand, Pν is the law of the oil
and water dynamics, given by Pν together with the law of the sequence of random variables
t = {ti,x}i∈N,x∈V (G), where {ti,x}i∈N are i.i.d. exponential random variables with rate 1, and
the sequences {ti,x}i∈N are independent across x. The elements of the sequence {ti,x}i∈N
represent the times between consecutive attempts for firing x. When such an attempt
happens, if x is unstable, one oil and one water perform a simple random walk step from
x using the next couple of instructions at x of the array τ . Thus, by this construction,
the random variable ut,M (x) is a deterministic function of the random variables t, η and
τ . Since ut,M (x) is a monotone function in t for every x and every M fixed, the limit
u∞,M (x) = limt→∞ ut,M (x) exists. Now we observe that on a finite set the system fixates
within an almost surely finite time and by Lemma 2.1, mBM ,η,τ (o) does not depend on the
order according to which the instructions τ are used (provided that only legal instructions
are used). Thus, we deduce from this construction that,

∀r,M ∈ N, Pν
(
u∞,M (o) > r

)
= Pν

(
mBM ,η,τ (o) > r

)
. (2.5)

The second step of the proof consists in showing that the limits over M →∞ and t→∞
commute, i.e,

∀r ∈ N, Pν
(

lim
t→∞

lim
M→∞

ut,M (o) > r
)

= Pν
(

lim
M→∞

lim
t→∞

ut,M (o) > r
)
, (2.6)

and that a blow up does not occur in finite time, i.e,

∀t ∈ R≥0, lim
r→∞

Pν
(
ut(o) > r

)
= 0. (2.7)
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Equations (2.6) and (2.7) and the fact that,

∀t ∈ R≥0, ∀r ∈ N, Pν
(
ut(o) > r

)
= lim

M→∞
Pν
(
ut,M (o) > r

)
(2.8)

imply (2.4). The proof of (2.7) is standard and follows from the fact that, since the jump
rates are bounded, particles starting at an infinite distance from o cannot reach the origin
within finite time. We refer to [RS12] for the proof of (2.6) given (2.5) and of how the
equality in (2.4) follows from these statements.

From now on, when this is not generating any confusion, we will write mK instead of
mK,η,τ , and m(x) instead of mη,τ (x) in order to make the paper more readable.

2.3 Green’s function of simple random walk

In this section we recall some classical facts concerning the simple random walk and we
provide some definitions. We let X(t) denote a simple random walk in G, and Px denote
its law when X(0) = x ∈ V (G). We let Ex denote the corresponding expectation. Given a
set Z ⊂ V (G) we define τZ := inf{t ≥ 0 : X(t) ∈ Z} and τ+

Z := inf{t > 0 : X(t) ∈ Z}.
If Z = {y}, we write τy and τ+

y instead of τZ and τ+
Z . For any x, y ∈ V (G), we define the

Green’s function,

GZ(x, y) := Ex

[
τZc∑
t=0

1{X(t) = y}

]
,

where Zc := V (G) \ Z. In words, GZ(x, y) denotes the expected number of visits to a
vertex y performed by a simple random walk started at x and killed upon exiting the set
Z.

Given a function g : V (G) → R, g = (gx)x∈V (G), we let 4g : V (G) → R denote the
discrete Laplacian, that is, for every x ∈ V (G) we set

(4g)x :=
1

dx

∑
y∼x

(gy − gx),

where we recall that dx denotes the degree of x. We say that g is harmonic in a set
K ⊂ V (G) if for any x ∈ K, (4g)x = 0. The next proposition states some classical facts
and its proof can be found, for example, in [LP16, Chapter 2].

Proposition 2.4. Consider a finite set K ⊂ V (G) and a vertex y ∈ K. Let g : V (G)→ R
be a function which is harmonic in K \ {y} and such that gy = 1, gz = 0 for any z ∈ Kc.
Then the function g is unique and satisfies

gw = Pw(τy < τKc), ∀w ∈ K, (2.9)

−(4g)y = 1− Py(τ+
y < τKc). (2.10)

Moreover, for all x, y ∈ K the Green’s function satisfies,

GK(y, y) =
1

1− Py(τ+
y < τKc)

, (2.11)

GK(x, y) = Px(τy < τKc)GK(y, y) = GK(y, x). (2.12)
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3 Diffusive fluctuations and number of visits

Now we are able to introduce the following terminology.

Definition 3.1. Given a particle configuration η = (ηo, ηw), let ηo(x) ∧ ηw(x) be the
number of pairs at x, and ηo(x) ∨ ηw(x) − ηo(x) ∧ ηw(x) be the number of unpaired
particles at x. We say that η has a hole at x if the number of oils and waters at x is the
same (or, equivalently, if the number of unpaired particles at x is zero). When we refer to
a pair, we always refer to two particles of different type.

This section is divided into two subsections. In Section 3.1 we show that, if we assume
that the system is active and we stabilize some arbitrarily chosen finite set K, then at any
vertex x ∈ K which is far enough from the boundary of K, we will observe a hole at x many
times during the stabilization. As we pointed out in the proof overview in Section 1.2, the
occurrence of holes is helpful to make the number of oil-water pairs decrease over time.
In Section 3.2 we introduce a Markov chain which describes an inductive procedure to
stabilize K starting from an arbitrary particle configuration. Such a procedure is defined
in an enlarged probability space where some virtual particles, called ghosts, are added to
the system whenever a water jumps into a hole. We will refer to this procedure as the
ghost-pair stabilization. The ghosts will play a fundamental role at the end of the proof,
in Section 4.

3.1 Number of waters falling into holes

We start by stabilizing an arbitrary finite set K ⊂ V (G) following some legal ordering,
which we shall determine through a strategy. A strategy for stabilizing K is a function
FK : Ω→ V (G) ∪ ∅ that acts as follows. Given a particle configuration η, FK outputs an
arbitrary vertex of K that is currently unstable. If η is stable in K then FK(η) = ∅.

Let K ⊂ V (G) be a finite set and FK a strategy. We say that we stabilize η in K
following strategy FK when we perform a sequence of firings as follows. Start by setting
η0 := η ∈ Ω and apply FK to η0. If FK(η0) = ∅, then we are done as this means that
η0 is stable. If FK(η0) 6= ∅, then we topple the vertex FK(η0), and denote by η1 ∈ Ω
the resulting configuration. If η1 is stable then we are done, if not, then we proceed by
applying FK again. Thus, if η1 is unstable, then we proceed to topple FK(η1), obtaining
a new particle configuration which we call η2 ∈ Ω. We continue inductively until we reach
a random time TFK

at which we have stabilized K. More formally, we set

TFK
:= inf

{
i ∈ N≥0 : F (ηi) = ∅

}
.

For any x ∈ V (G), we define the number of times a water falls into a hole at x while
following the strategy FK starting from the particle configuration η0,

HK,FK
(x) :=

∣∣∣{0 ≤ i ≤ TFK
− 1 : ηwi (x) = ηoi (x) and ηwi+1(x) = ηoi+1(x) + 1}

∣∣∣. (3.1)

We emphasize that this variable also depends on η0 and on the chosen array τ , however
we will omit this dependency to simplify the notation.

This procedure defines the sequence of particle configurations (ηi)i∈[0,TFK
], where the

last step, i = TFK
, is the step at which the set K is stable. In the proof of the next

proposition, we will need to introduce some variables which depend also on the instructions
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τ which are not “used” for the stabilization of the initial particle configuration in K. For
this reason, we will now define also the steps i > TFK

of the stabilization procedure. This
will allow to define such variables. Since the set K is stable at step i = TFK

, in order to
perform some firings we will need to add new pairs to the stable configuration, making it
unstable. More precisely, for any step i > TFK

, we proceed as follows.

• If FK(ηi) = ∅ (i.e, ηi is stable in K), then we add one pair at the origin, obtaining
the new particle configuration ηi+1, which is unstable in K, and we move to the next
step i+ 1. In this case no vertex fires at step i.

• If FK(ηi) 6= ∅ (i.e, ηi is unstable in K), then the vertex FK(ηi) ∈ K fires, and we
obtain a new particle configuration ηi+1, which might be stable or unstable in K.
We move to the step i+ 1.

Thus, at any step i > TFK
either one unstable vertex fires or a pair is added at the origin.

In this way the infinite sequence of random variables (ηi)i∈N is well defined.

Lemma 3.2. Assume that the system starting from a particle configuration which is dis-
tributed as a product of measure ν is almost surely active. Then, for any ε > 0 and M ∈ N,
there exists D = D(ν, ε,M) <∞ large enough such that,

inf
K⊂V (G):
d(o,Kc)>D

inf
FK :Ω→V (G)∪∅:
FK is a strategy

Pν
(
HK,FK

(o) > M
)
≥ 1− ε.

Before proceeding to the formal proof we present the main idea behind it, which
consists in showing that the value of HK,FK

(o) (defined in (3.1)) can be associated to the
number of visits to zero of a lazy simple random walk on Z. Once we have established
this, classical results give that the number of returns to the origin of a simple random walk
on the integers is, with high probability, comparable to the square root of the number of
steps performed. The last step of the proof consists in showing that we can in fact let the
walk run for as many steps as we need, in order to deduce the claim.

Proof of Lemma 3.2. To begin, we fix a finite set K ⊂ V (G) such that BD ⊂ K, where
BD is the ball of radius D centered at o. Then we stabilize the set K following an arbitrary
strategy FK , as defined before the statement of Lemma 3.2. For any j ∈ N>0, we let tj be
the j-th time a neighbor of the origin fires. More precisely, let

No := {x ∈ V (G) : x ∼ o}

denote the set of neighbors of o, and set t0 := 0. Thus we define for any j ∈ N>0,

tj := inf{i > tj−1 : FK(ηi−1) ∈ No}.

In words, tj denotes the first time after tj−1 at which a firing occurs at No. We let

NK :=
∑
x∈No

mK(x) (3.2)

be the number of times that, during the stabilization of K, there is a firing from a nearest
neighbor of the origin. We now define a sequence of random variables {Rj}j≥0, which keeps
track of the difference between the number of oils and waters at the origin whenever a
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firing occurs inside No. Subsequently, we show that these random variables are distributed
like the steps of a lazy simple random walk on Z. More precisely, first we set

R0 := ηwt0(o)− ηot0(o),

that is, R0 is the difference between the number of waters and the number of oils at vertex
o in the initial configuration. Secondly, for all integers j ∈ N>0, we define

Rj := ηwtj (o)− η
o
tj (o). (3.3)

Let d denote the degree of any vertex of G, which is vertex-transitive. Since the difference
between the number of oils and waters at o can only change when a neighbor of o fires, it
immediately follows that the transition probabilities of the walk are given by the following
formulas. The probability to increase of 1 unit is given by

Pν [Rj+1 = Rj + 1 | Rj ] = Pν [ηwtj+1
(o) = ηwtj (o) + 1, ηotj+1

(o) = ηotj (o)] =
d− 1

d2
.

Symmetrically, we have

Pν [Rj+1 = Rj − 1 | Rj ] = Pν [ηwtj+1
(o) = ηwtj (o), η

o
tj+1

(o) = ηotj (o) + 1] =
d− 1

d2
,

and finally

Pν [Rj+1 = Rj | Rj ] = 1− 2
(d− 1)

d2
.

At this point, it is clear that {Rj}j∈N is distributed as the steps of a symmetric lazy
random walk on the integers with a given starting value R0. For any j ∈ N, let J (j) be
the number of times the random walk jumps from 0 to +1 in the first j steps, i.e,

J (j) :=
∣∣{k ∈ [0, j) : Rk = 0 and Rk+1 = +1

}∣∣.
By definition, for NK as in (3.2) we have that,

HK,FK
(o) = J (NK). (3.4)

We deduce that, for any M ∈ N and ϕ ∈ N,

Pν
(
HK,FK

(o) > M
)
≥ Pν

(
HK,FK

(o) > M, NK > ϕ
)

= Pν
(
J (NK) > M,NK > ϕ

)
≥ Pν

(
J (ϕ) > M,NK > ϕ

)
≥ Pν

(
J (ϕ) > M

)
− Pν

(
NK ≤ ϕ

)
≥ Pν

(
J (ϕ) > M

)
− Pν

(
NBD

≤ ϕ
)
,

where in the last step we used the fact that BD ⊂ K and applied Lemma 2.2. Recall that
the starting value R0 = ηw0 (o)− ηo0(o) is finite almost surely since ν has finite expectation.
Since the lazy random walk on Z is recurrent, we deduce that for any ε ∈ (0, 1) and any
M ∈ N and any ν with finite expectation, we can choose a value ϕ = ϕ(ν, ε,M) large
enough such that

Pν(J (ϕ) > M) ≥ 1− ε

2
.
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Since the system is active by assumption, we deduce that there exists D large enough
depending on ε and ϕ such that

Pν(NBD
(o) ≤ ϕ) ≤ ε

2
,

where, by Lemma 2.1 (Abelian property), the previous estimate holds uniformly in the
strategy FK . Combining the previous estimates, we obtain that for any ε and M we can
set D = D(ν, ε,M) large enough such that, uniformly in K ⊃ BD and in the strategy FK ,

Pν
(
HK,FK

(o) > M
)
≥ 1− ε.

This concludes the proof.

3.2 Ghost-pair stabilization

In this section we define a stabilization procedure where we introduce some auxiliary
(virtual) particles, which we will call ghosts. These auxiliary particles do not interact with
oils nor waters and perform independent simple random walks. Each step of the procedure
corresponds either to an oil-water pair performing a simple random walk step from an
unstable vertex, or a ghost performing a simple random walk step and, at any given step
of the procedure, at most one ghost is created. We will refer to this stabilization procedure
as ghost-pair stabilization. The procedure is defined in an augmented set of configurations,
which we denote by

Ω̃ := NV (G) × NV (G) × NV (G),

where (η̃o, η̃w, η̃g) ∈ Ω̃ is a triplet such that η̃q(x) denotes the number oils, waters or ghosts
which are located at x ∈ V (G) when q = o, q = w, q = g respectively. As before, Ω will
continue to denote the set of configurations of (only) oil and water particles.

Definition 3.3 (Ghost-pair stabilization). Let K ⊂ V be a finite set, let σ ∈ Ω denote
an unstable particle configuration (consisting only of oils and waters, but no ghosts). At
time zero, we start from a configuration η̃0 ∈ Ω̃ such that oils and waters are placed
according to σ, that is σ = (η̃o0, η̃

w
0 ) ∈ Ω and, moreover, no ghost is present, i.e., η̃g0(z) = 0

for all z ∈ V (G). We let δx ∈ NV (G) be the vector which equals one at x ∈ V (G) and
zero everywhere else. Inductively, for every integer t ≥ 0, we first follow (i) and then (ii)
described below.

(i) Either a ghost or an oil-water pair in η̃t which are located on a vertex of K perform
a simple random walk step, where the latter means that an oil and a water which are
located at the same vertex take one independent step according to simple random
walk. This leads to a new particle configuration which we call θt ∈ Ω̃.

(ii) If during (i) a water falls into a vertex x ∈ K which is hosting a hole (i.e., η̃ot (x) =
η̃wt (x) and θwt (x) = θot (x) + 1), then a ghost is added at that vertex, that is,

η̃gt+1 := θgt + δx, and η̃qt+1 := θqt+1, q ∈ {o, w},

otherwise nothing happens, (i.e, η̃t+1 := θt). This defines η̃t+1.
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Since K is finite, after an almost surely finite number of steps no pair and no ghost is
present in K and the procedure stops. We define

T = T (K) := inf{s ≥ 0 : K is stable with respect to (η̃os , η̃
w
s ) and η̃gs (y) = 0 ∀y ∈ K},

and for every t ≥ T we set η̃t := η̃T . In the following we set, for any y ∈ K,

m̃(y) := #{times that either a ghost or an oil-water pair jumps from y},

and we denote by P̃K,σ the law of the ghost-pair stabilization.

The lemma below is the main step in the proof of our main result. It shows that,
during the stabilization procedure started from an arbitrary (unstable) configuration σ,
the expected value of m̃(y), for any fixed y ∈ K, can be estimated in terms of the Green’s
function of simple random walk and of the number of pairs in the initial configuration.

Lemma 3.4. For any finite set K ⊂ V , any vertex y ∈ K, and any unstable particle
configuration σ := (η̃o0, η̃

w
0 ) ∈ Ω,

ẼK,σ
(
m̃(y)

)
=
∑
x∈K

(
η̃o0(x) ∧ η̃w0 (x)

)
GK(x, y), (3.5)

where ẼK,σ denotes the expectation with respect to P̃K,σ.

Proof. Let K ⊂ V be a finite set, fix one vertex y ∈ K. Let g : V (G) 7→ R be the function
which is harmonic in K \ {y} and such that gy = 1, gz = 0 for any z ∈ Kc. Recall that η̃t
denotes the state of the process (cf. Definition 3.3) at time t. For convention, we refer to
as step t the transition from η̃t−1 to η̃t, and let xt denote the vertex from which a pair or
a ghost jumps at step t. For each t ∈ N≥0 define

Mt :=
∑
x∈K

(
η̃ot (x) ∧ η̃wt (x) + η̃gt (x)

)
gx − (4g)y

t∑
i=1

1{xi = y}. (3.6)

Let (Σ̃, F̃ , P̃K,σ) be the probability space where the process {η̃t}t is defined; the proof of
the proposition will follow from the fact that Mt is a martingale, namely

ẼK,σ[Mt

∣∣ Ft−1 ] = Mt−1. (3.7)

We will now prove (3.7) considering different cases.
In the first case, consider that at step t a ghost jumps from xt = b ∈ K. Then, in this

case,

ẼK,σ [Mt

∣∣ Ft−1 ] = Mt−1 − gb +
1

db

( ∑
z∼b

gz

)
− 1{b = y}(4g)y = Mt−1, (3.8)

where the last identity holds since g is harmonic in K \ {y}.
In the second case, consider that at step t an oil and water pair jumps from some

vertex xt = b ∈ K. Let N oe
b,t (resp. Nw

b,t ) be the set of vertices z ∈ V (G) such that z ∼ b
and η̃ot−1(z) − η̃wt−1(z) ≥ 0 (resp. η̃ot−1(z) − η̃wt−1(z) < 0). Note that N oe

b,t and Nw
b,t are
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measurable with respect to Ft−1. Then, denoting by zo (resp. zw) the destination of the
oil (resp. water) in the next sum,

ẼK,σ[Mt

∣∣ Ft−1 ] = Mt−1 − gb +
1

d2
b

( ∑
zw∈N oe

b,t,zo∈N oe
b,t

gzw

)
+

+
1

d2
b

( ∑
zw∈N oe

b,t,zo∈N
w
b,t

(
gzo + gzw

) )
+

1

d2
b

( ∑
zw∈Nw

b,t,zo∈Nw
b,t

gzo

)
− 1{b = y}(4g)y

= Mt−1 − gb +
|Nw

b,t|+ |N oe
b,t |

d2
b

( ∑
z∼b

gz

)
− 1{b = y}(4g)y

= Mt−1 − gb +
1

db

( ∑
z∼b

gz

)
− 1{b = y}(4g)y

= Mt−1,

(3.9)

where the last identity follows from the fact that g is harmonic in K \{y}. This concludes
the proof of (3.7).

Now we prove the lemma using (3.7). Recall that T is the first time at which the
set K is stable and no ghost is present in K. Since K is finite, ET < ∞ almost surely,
furthermore Mt has bounded increments, thus, the conditions of the optional stopping
theorem are fulfilled and we deduce that

ẼK,σ [MT ] = ẼK,σ [M0 ] =
∑
x∈K

(
η̃o0(x) ∧ η̃w0 (x)

)
gx,

recalling that η̃o0 ∧ η̃w0 corresponds to the number of pairs at x in the initial configuration
σ and that we start with no ghost at time zero. This leads to,

− (4g)y ẼK,σ
(
m̃(y)

)
= −(4g)y ẼK,σ

( ∞∑
t=1

1{xt = y}
)

=
∑
x∈K

(
η̃o0(x) ∧ η̃w0 (x)

)
gx. (3.10)

Using Proposition 2.4, we obtain

ẼK,σ
(
m̃(y)

)
=

∑
x∈K

(
η̃o0(x) ∧ η̃w0 (x)

)
gxGK(y, y)

=
∑
x∈K

(
η̃o0(x) ∧ η̃w0 (x)

)
Px(τy < τKc)GK(y, y)

=
∑
x∈K

(
η̃o0(x) ∧ η̃w0 (x)

)
GK(x, y).

This finishes the proof.

Remark 3.5. In the overview in Section 1.2, we noticed that the oil-water pairs move as
a mix of simple random walk, critical branching random walk, and subcritical branching
random walk, depending on the environment. In particular, the total number of pairs
which are present in the oil and water system (with no introduction of ghosts) is a super-
martingale. In fact, if we fire a vertex that does not neighbor a hole, then the number of
oil-water pairs behaves as a martingale; otherwise, the expected number of pairs strictly
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decreases. It is extremely hard to control the evolution of the system consisting exclusively
of oil-water pairs, because this requires controlling the evolution of the configuration of
holes and of pairs at the same time, which are strongly correlated. The introduction of
ghosts compensates the pairs that are lost when we fire a vertex neighboring a hole. In
particular, if we were to define Mt as simply

∑
x∈K(η̃ot (x) ∧ η̃wt (x) + η̃gt (x)), we would be

able to show that Mt is a super-martingale (where it would not be a martingale only due to
particles or ghosts jumping out of K). The introduction in Mt of the function g, which is
harmonic everywhere in K but at y, is to make each firing at y give an extra contribution.
This allowed us to add the negative term at the end of (3.6), which counts the number of
times that a pair or a ghost jumps from y; that is, it allows us to estimate m̃(y). Both
ghosts and pairs contribute to the total number of jumps m̃(y), and to show fixation we
actually need to control only the contribution given by oil-water pairs. In Section 4, we
will isolate the two contributions and compare them.

4 Proof of Theorem 1.1

In this section we present the proof of our main theorem, which works by contradiction
and uses the ghost-pair stabilization (recall Definition 3.3). As explained in Section 3.2,
the expected number of pairs which are present in the system when a firing occurs at a
nearest neighbor of a hole is strictly decreasing. Ghosts are introduced to compensate the
loss of pairs, in such a way that the total number of pairs and ghosts which are present at
any step of the ghost-pair stabilization is a martingale. The proof of the theorem is based
on the following idea. Suppose the system is active. Then, Lemma 3.2 implies that a large
number of ghosts is produced at most vertices; but ghosts are produced to compensate
the decrease in the number of pairs. Thus if many ghosts are produced, that means that
a large number of pairs was lost. The proof consists in showing that it is not possible to
produce so many ghosts if we start with a finite density of pairs, leading to the desired
contradiction. To show this fact we will exploit the Green’s function of a suitably defined
random walk to relate the expectation of three different quantities, namely the number of
particles which start from every vertex, the number of ghosts which are produced at every
vertex and the number of times a ghost or a pair visit the origin.

To begin, we state an auxiliary result. From now on, fix an arbitrary sequence of finite
sets, namely the sequence of balls centered at the origin and of radius L ≥ 1, which we
denote by {BL}L∈N.

Lemma 4.1. For any D ∈ N there exists L0 = L0(D) large enough such that, for any
L > L0, ∑

x∈BL

GBL
(x, o) ≤ 2

∑
x∈BL:

B(x,D)⊂BL

GBL
(x, o),

where Bc
L := V (G) \BL, and B(x,D) is the ball of radius D centered at x.

We will now prove Theorem 1.1 using Lemma 4.1. The proof of Lemma 4.1 will be
presented afterwards.

Proof of Theorem 1.1. To begin, for any L fixed and arbitrarily large, consider the
following procedure. Stabilize the set BL following the ghost-pair stabilization: while
stabilizing the set BL, every time a water falls into a hole, a ghost is created at that
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vertex. Ghosts perform independent simple random walks until they leave BL. For any
x ∈ BL we define,

m̃L(x) := number of pairs or ghosts that jump from x during the stabilization of BL,

mL(x) := number of firings at x during the stabilization of BL,

wL(x) := number of ghosts that jump from x during the stabilization of BL,

HL(x) := number of ghosts started (created) at x during the stabilization of BL.

Recall that µ = µ(ν) ∈ (0,∞) is the expected number of particles which are present at
each vertex in the starting configuration. We claim that, for any L ∈ N,

Ẽν
(
m̃L(x)

)
≤
∑
y∈BL

µGBL
(y, x); (4.1)

Ẽν (wL(x)) =
∑
y∈BL

Ẽν
(
HL(y)

)
GBL

(y, x), (4.2)

where Ẽν denotes the expectation of the measure which is defined in the enlarged probabil-
ity space of oils, waters and ghosts. Equation (4.1) follows from Lemma 3.4 by averaging
over the initial particle configuration and observing that the expected number of pairs
of the initial configuration at every vertex cannot be larger than the expected number of
particles. Equation (4.2) follows from linearity of expectation and from the fact that every
ghost performs an independent simple random walk until it leaves BL. We also claim that,
if we assume that the system starting with initial particle distribution ν is almost surely
active, then there is a large enough D = D(ν) such that for any L > D, and for any
x ∈ BL such that B(x,D) ⊂ BL,

Ẽν
[
HL(x)

]
≥ 3µ. (4.3)

Indeed, equation (4.3) follows from Lemma 3.2 and from the fact that G is vertex-
transitive, since, by definition, a ghost is produced at x every time a water falls into
a hole and the estimate in Lemma 3.2 holds uniformly over all strategies.

For the rest of the proof, we will keep assuming that the system is almost surely active
and we will look for a contradiction. We will also keep the value D fixed as above. By
definition, mL(x) is the number of times that a pair jumps from x, and this number equals
the number of times that a ghost or a pair jump from x minus the number of times a ghost
jumps from x, that is,

mL(x) = m̃L(x)− wL(x).

It follows from the linearity of expectation and from (4.1), (4.2), and (4.3), that

Ẽν
(
mL(x)

)
≤
∑
y∈BL

µGBL
(y, x)−

∑
y∈BL

Ẽν
(
HL(y)

)
GBL

(y, x) (4.4)

≤
∑
y∈BL

µGBL
(y, x)−

∑
y∈BL:

B(y,D)⊂BL

Ẽν
(
HL(y)

)
GBL

(y, x)

(4.3)

≤ µ
( ∑
y∈BL

GBL
(y, x)− 3

∑
y∈BL:

B(y,D)⊂BL

GBL
(y, x)

)
. (4.5)
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From Lemma 4.1, we conclude that Ẽν
(
mL(o)

)
< 0 for large enough L. Since the number

of firings cannot be negative, the above leads to the desired contradiction. We conclude
that the probability that the system is active is strictly smaller than 1. By Lemma 2.3
(the 0-1 law), we deduce that the system fixates almost surely, concluding the proof.

It remains to prove Lemma 4.1.

Proof of Lemma 4.1. Pick L0 very large such that

L0 ≥ D
(
1 + dD

)
. (4.6)

For L ≥ L0, define the annulus

AL,D :=
⋃

x∈∂BL

B(x,D),

and the set A := AL,D ∩ BL. Moreover, for any x ∈ V (G), define Qx =
∑

z∈AGBL
(x, z)

and Q := maxx∈AQx. Now note that,

∀x ∈ A Qx ≤ D + (1− d−D)Q,

which follows from the fact that, for every x ∈ A, the simple random walk starting at
x has probability at least d−D to exit BL within D steps. From this we deduce that
Q ≤ D + (1− d−D)Q, which immediately implies that

Q ≤ D dD.

Next, recall from Section 2.3 that X(t) denotes the simple random walk on G and τZ its
hitting time for a set Z, then define

S :=
∑

z∈BL\A

GBL
(o, z)

and observe that,

Qo =
∑
y∈A

Po
(
{X(τA) = y} ∩ {τA < τBc

L
}
)
Qy ≤ Q,

where we used the Markov property. Thus, by our assumption on L and by the fact that
BL−D ⊂ BL \A, we deduce that,

Qo ≤ Q ≤ D dD ≤ L0 −D ≤ L−D ≤ S.

Finally, using the symmetry of the Green’s function and the previous inequality we obtain
that, ∑

z∈BL

GBL
(z, o) =

∑
z∈BL

GBL
(o, z) ≤ Q0 + S ≤ 2S = 2

∑
z∈BL:

B(z,D)⊂BL

GBL
(z, o),

concluding the proof.
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[Jár18] Antal A. Járai, Sandpile models, Probab. Surveys 15 (2018), 243–306.

[LP16] Russell Lyons and Yuval Peres, Probability on trees and networks, Cambridge
Series in Statistical and Probabilistic Mathematics, vol. 42, Cambridge Uni-
versity Press, New York, 2016. MR 3616205
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(2019), no. 3, 1751–1764.

20


	1 Introduction
	1.1 Related models
	1.2 Proof overview

	2 Graphical representation and properties
	2.1 Definitions
	2.2 Properties
	2.3 Green's function of simple random walk

	3 Diffusive fluctuations and number of visits
	3.1 Number of waters falling into holes
	3.2 Ghost-pair stabilization

	4 Proof of Theorem 1.1

