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Abstract
Purpose of Review Resistant hypertension (RH) is a major contributor to cardiovascular diseases and is associated with increased
all-cause and cardiovascular mortality. Cardiac changes such as impaired left ventricular (LV) function, left ventricular hyper-
trophy (LVH), myocardial fibrosis, and enlarged left atrium (LA) are consequences of chronic exposure to an elevated blood
pressure. The purpose of this review article is to demonstrate the potential benefits of using STE as a non-invasive imaging
technique in the assessment of cardiac remodeling in patients with hypertension and specifically in uncontrolled and RH
population.
Recent Findings It is well-recognized that conventional transthoracic echocardiography is a useful analytic imaging modality to
evaluate hypertension-mediated organ damage (HMOD) and in a resistant hypertensive population. More recently two-
dimensional speckle tracking echocardiography (STE) has been utilized to provide further risk assessment to this population.
Summary Recent data has shown that STE is a new promising echocardiographic marker to evaluate early stage LV dysfunction
and myocardial fibrosis over conventional 2D parameters in patients with cardiovascular diseases.
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High blood pressure

Introduction

Hypertension (HTN) remains the leader of cardiovascular
mortality among several risk factors [1]. It has been report-
ed to be responsible for increased incidence of heart failure
(HF), cardiovascular comorbidities, and stroke [2–5].
Despite advances in diagnosis and management strategies
of HTN, uncontrolled HTN remains a challenging problem
and is considered as a primary cause of death for 7.5

million people each year globally [6]. Resistant hyperten-
sion (RH) is defined as office systolic and diastolic blood
pressure exceeding 140 mmHg and 90 mmHg, respective-
ly, in spite of the concurrent use of three or more antihy-
pertensive agents, one of which being a diuretic [7].
Patients with confirmed RH are estimated to experience
50% more cardiovascular events compared to controlled
HTN [8].

Impaired left ventricular (LV) function, left ventricular hy-
pertrophy (LVH), and myocardial fibrosis are recognized
markers of target organ damage, compromised in patients with
long standing HTN [9–11]. However, the relationship be-
tween HTN and cardiac remodeling is not completely identi-
fied [12]. Conventional two-dimensional (2D) echocardiogra-
phy provides useful structural and hemodynamic findings that
are potent predictors of poor prognosis associated with HTN.
Speckle tracking echocardiography (STE) has emerged as a
non-invasive and sensitive method for detection of early re-
gional and global myocardial dysfunction that are undetected
by conventional parameters in both symptomatic and asymp-
tomatic patients with cardiovascular disease [13•]. This re-
view aims to comprehensively assess the literature on poten-
tial benefits of STE use in the evaluation of cardiac remodel-
ing in patients with uncontrolled HTN and RH.
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Principle of LV Function Quantification
by Speckle Tracking Echocardiography

Myocardial strain refers to the percentage deformation of the
myocardium during the cardiac cycle. It represents the extent of
regional myocardial deformation in a specified period of time in
three orthogonal directions (longitudinal, radial, and circumfer-
ential). All were determined by length, thickness, and shortening,
using the formula ε = (L-Lο) / Lo, where ε indicates strain (has a
unit of %), L indicates length after deformation, and Lo indicates
baseline length. Strain rate (SR) refers to the speed at which the
myocardium deforms (velocity changes/distance) [13•].

Initially, two techniques were introduced to assess myocar-
dial strain: (i) cardiac magnetic resonance (CMR) in the late
1980s [14•] and (ii) tissue Doppler imaging (TDI) in the 1990s
[15]. While TDI is considered a feasible and reliable tech-
nique, it has several limitations that still remain unresolved.
TDI is highly angle dependent, is constrained to longitudinal
cardiac deformation, and suffers from poor signal to noise
ratio [16]. STE is a promising technique which was introduced
in the early 2000s [17] and has been validated against
sonomicrometry (which involves the implantation of piezo-
electric crystals and measures of the changes in distance be-
tween embedded crystals, due to the myocardium movement)
and tagged CMR [18, 19•]. It is used to assess myocardial
function, and it overcomes the limitations of TDI [20].

The main advantage of STE is its ability to reflect active
contraction within each segment, avoiding tethering effect,
which makes it less influenced by artefacts. It can measure
three directions of cardiac motion and can track the speckle
in any 2D direction, making it less angle dependent (Fig. 1).

Heterogeneous ultrasound-myocardial tissue interactions
produce an interference pattern, which is identified as a unique
stable set of speckles [21]. STE modality identifies speckles
based on echocardiographic images and tracks them between
consecutive frames. It includes evaluation of myocardial
strain, strain rate, and rotational deformation, which all are
obtained by using specific software [22].

Myocardial strain derived from STE can be measured in 3
planes. Circumferential and longitudinal strains represent a
shortening of the LV cavity, and both have negative values
(Fig. 2). Radial strain represents myocardial thickening of the
LV in systole (secondary to the conservation of mass from
longitudinal and circumferential shortening) and is denoted as
a positive value. All strain parameters can be evaluated globally
or regionally. Global longitudinal strain (GLS), global circum-
ferential strain (GCS), and global radial strain (GRS) are calcu-
lated as an average of segmental regional strain. The average
normal GLS is − 19.7% [23•], with a borderline level of − 18%
[23•, 24]. Normal GCS is considered to be between − 20.9 and
− 27.8%, and average GRS is between 35.1 and 59.0% [23•].
STE also provides the capacity to measure twist and torsion
which are the parameters to determine deformation of LV [17].

The Role of Strain in Predicting Early Damage
in Hypertension

Conventional echocardiography is a reliable method widely
used to detect impaired LV systolic and diastolic function in
HTN. It is also used to calculate LV mass and determine the
presence and the degree of LVH, a predictor of morbidity and
mortality in HTN [25, 26].

However, it has been shown that HTN is associated with
reduction in LV systolic strain in asymptomatic patients with
normal ejection fraction (EF) with and without LVH, suggest-
ing that LV mechanical abnormalities precede the develop-
ment of LVH [27–29].

Decreased Longitudinal Function in Hypertension

Normal myocardium consists of cardiac myocytes (30–40%)
and non-myocyte components (60–70%) [30]. Myocardial fi-
bers in the subendocardial layer are oriented in a longitudinal
direction which then gradually change to a transverse direc-
tion in the middle layer and revert to longitudinal in the
subepicardial layer [30].

Recent studies [28, 31–33] have closely linked the pres-
ence of fibrosis to attenuated myocardial strain. Cardiac
remodeling in HTN involves an imbalance in the produc-
tion of collagen types I and III (these subtypes are the
major stress-bearing element within the ECM). This leads
to an excessive deposition of collagen fibers in fibroblasts
which transdifferentiate into myofibroblasts leading to

Fig. 1 Speckle tracking echocardiography advantages. LV, left
ventricular; FR, frame rate

   24 Page 2 of 8 Curr Hypertens Rep           (2021) 23:24 



heterogeneous acceleration of myocardial fibrosis [34, 35].
Moreover, it has been reported that increased matrix
metalloproteinase-1 (MMP-1) turnover lead to reduced
collagen I and III degradation and development of suben-
docardial myocardial fibrosis. This implies that irregular
collagen production and myocardial fibrosis are associated
with reduced GLS in HTN and hypertrophic cardiomyop-
athy [28, 31] and eventually lead to early impairment of
systolic function [28, 32, 33]. Another pathway leading to
activation of subendocardial production of collagen in
HTN is pressure overload and high-end-systolic wall
stress. The process involves collagen network thickening
[36] and fibrosis build up primarily in the subendocardial
layer.

Furthermore, fibrosis may have a possible direct effect on
the rearrangement of myocardial sheets in subendocardial
layers [30, 37] where maximum shearing deformation occurs,
compared to the other layers [38, 39]. There is limited infor-
mation available linking cardiac shear motion and systolic
function.

The Additive Value of Global Longitudinal Strain

Longitudinal, circumferential, and radial dysfunction do not
occur in tandem with longitudinal subendocardial fibers being
prone to being compromised first in several pathologies [40,
41]. GLS is the most widely used clinical application of STE.
It has been recommended by the American Society of
Echocardiography (ASE) for evaluation of global LV systolic
function [13•] and has been widely validated [42, 43]. It is
considered a strong indicator of an early phase of myocardial
impairment in HTN as shown in Table 1 [29, 44–51]. It has
been shown in some studies that the prevalence percentage of
impaired GLS in hypertensive population vary between 15 and
42% [44, 52–54], suggesting for the influence of other related
factors such as age, gender [55, 56], ethnicity, duration of the
HTN, uncontrolled HTN [52–54], diabetes, and obesity [44].

Studies have shown that GLS might be beneficial as an
independent predictor of cardiovascular outcomes in general
population [57–59] and in a population with a wide range of
EF [60]. It is a strong predictor of major adverse cardiac events

Fig. 2 Example of GLS (upper) and GCS (lower) of LV. GCS global circumferential strain; GLS global longitudinal strain; LV left ventricular
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(MACE) including HF, stroke, myocardial infraction (MI),
and all-cause mortality [45, 61, 62]. In the Copenhagen City
Heart Study [62], which includes 1296 of participants from
general population, who underwent STE assessment between
2001 and 2003 and were followed until 2013, GLS was an
independent predictor of cardiovascular death and morbidity,
including HF and MI with a hazard ratio of 1.12 [1.08–1.17]
(p < 0.001 per 1% decrease). This association persisted after
multivariable adjustment for the following parameters: (age,
gender, heart rate, HTN, systolic blood pressure, LVEF, LV
mass index, LV dimension, deceleration time, LA dimension
and E/e). [62] Similarly, Saito et al. [45] retrospectively col-
lected data on MACE (all-cause death and admission because
of HF, MI, and strokes, with a median follow-up 4 years) in
asymptomatic non-ischemic subjects with high blood pres-
sure. It has been shown that MACE occurrence was indepen-
dently associated with greater incidence of concentric hyper-
trophy and reduced GLS (both p < 0.01).

Cheng et al. [48] examined whether systolic dysfunction
assessed by STE improved by intensive antihypertensive

treatment in 182 patients with uncontrolled HTN. The study
assessed GLS before and after 24 weeks of antihypertensive
treatment and showed an improvement in GLS in response to
the treatment that was independent of changes in blood pressure
and associated with increased dose. This is more likely to occur
when afterload reducing treatment is used, which improves LV
function independent of blood pressure readings [63].
Moreover, GLS improved by -1.4% more in uncontrolled hy-
pertensive not meeting RH criteria females compared to uncon-
trolled hypertensive males (p = 0.003). This difference in the
responses between the two genders could be due to the differ-
ences in GLS baseline values, where females had higher GLS
compared to males. In addition, the association between female
gender and improvement in GLS is unclear and has yet to be
examined in the general population to confirm sex differences
associated with LV function. Another observation found an
improvement in GLS by -0.46% for every 5 kg/m2 reduction
in body mass index (BMI) (p = 0.015).

Similar findings have been reported by other studies [64, 65]
which links attenuated GLS with metabolic disorders and

Table 1 Summary of studies using a two-dimensional speckle tracking analysis in hypertensive populations

Author/year Methods Patient population Sample
size

STE software/
echo machine

STE parameters Follow-
up
period

Results

Bendiab et al.,
2017 [44]

2D STE HTN/overweight
HTN/diabetes
HTN/dyslipidemia
Uncontrolled HTN

200 EchoPAC, GE GLS 1 year ↓GLS in uncontrolled HTN
↓GLS in long lasting HTN

(> 10 years)

Saito et al.,
2016 [45]

2D STE HTN without ischemic heart
disease

388 TomTec, GE GLS 4 years ↓GLS predicts MACE

Lee et al., 2016
[46]

2D STE HTN 95 EchoPAC, GE Subendocardial LS
Subepicardial LS

7.3 ± 2.0
years

↓ subepicardial LS
Preserved subendocardial

LS

Chen et al.,
2016 [47]

2D STE Controlled HTN (group 1)
Uncontrolled HTN (group2)
Healthy control (group 3)

361 QLAB, Philips cEss
MWFs
LS
CS
RS

3 months ↓ myocardial function in
group 2 vs. groups 1 and
3

Cheng et al.,
2014 [48]

2D STE Intensive treatment with SBP
target < 130 mmHg (group 1)

Standard treatment with SBP
target < 140 mmHg (group 2)

182 TomTec GLS 24 weeks After therapy:
↑ GLS in group 1
↑ GLS in lower BMI
↑ GLS in women

Dobrowolski
et al., 2014
[49]

2D STE RH
OSA–/MS– (group 1)
OSA+/MS– (group 2)
OSA–/ MS+ (group 3)
OSA+/MS+ (group 4)

155 EchoPAC, GE GLS - ↓GLS in group 4 vs. groups
1, 2, and 3

Imbalzano
et al., 2011
[10]

2D STE HTN/LVH (group 1)
HTN/no LVH (group 2)
Healthy control (group 3)

102 EchoPAC, GE GLS
GCS
GRS

- ↓ GLS in groups 1 and 2 vs.
group 3

2D STE Two-dimensional speckle tracking echocardiography, AFI automatic function imaging, BMI body mass index, cESS, circumferential end-
systolic wall stress,CS circumferential strain,EF ejection fraction,GCS global circumferential strain,GE general electric,GLS global longitudinal strain,
IVSDd interventricular septal diastolic diameter, LS longitudinal strain, LVH left ventricle hypertrophy,MACEmajor adverse cardiac events,MWFSmid-
wall fraction shortening, MS– without metabolic syndrome, MS+ with metabolic syndrome, OSA– without obstructive sleep apnea, OSA+ with
obstructive sleep apnea, PWDd posterior wall diastolic diameter, RDN renal denervation, RH resistant hypertension, RS radial strain, RWT relative wall
thickness, ↓ significant reduction, ↑ significant increase
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obesity. RESOLVE trail [64] examined participants with met-
abolic syndrome and showed reduced GLS compared to a con-
trol group, while Wong et al. [65] have shown that insulin and
BMI are significantly and independently associated with strain
function in obese population. However, in Crendal et al.’s study
[64], 78% of participants had HTN which may consider as a
confounding factor and could mask the actual association. In
addition, 17% of participants were treated with beta-blockers,
which have an established effect on LV remodeling.

Circumferential and Radial Function

Notably, the mid-myocardial layer may remain unchanged or
even increased compared to the longitudinal function, which
probably explain the well-preserved function reflected by EF
[29, 50, 51, 66] [67, 68]. Preserved radial and circumferential
function at early stages of HTN linked to the cross-fiber short-
ening phenomenon from hypertension-related ventricular re-
modeling, where mid-wall myocardial fibers are not compro-
mised and consequently circumferential and radial function
are preserved [54]. Although this explanation has received
reasonable attention, other theories suggest that reduced lon-
gitudinal and circumferential strain exists with preserved EF
secondary to increased LV wall thickness [68].

However, longitudinal function is not always the earliest pre-
dictor in all circumstances. Previous studies have reported that all
three planes of function (longitudinal, radial, and circumferential)
may decline in HF, signifying a decompensation mechanism of
the LV and impaired myocardial layers as a response to increase
myocardial wall stress and disease progress [66, 69, 70]. This
happens because the impairment of longitudinal function occurs
in the earlier phases of the remodeling, followed by decrease in
radial and circumferential function, which is associated with fur-
ther LV dilatation leading to HF [71–73].

Twist and Torsion Deformation

Rotation, twist, and torsion are several terms to describe ad-
ditional deformation of the LV caused by the helical arrange-
ment of myocardial fibers. LV rotation is defined as an apical
counterclockwise movement and basal clockwise movement
in systole. During systole, the LV stores potential energy,
which is subsequently released in early diastole. Twist and
untwist play an important role by storing and releasing this
energy which leads to LV diastolic relaxation and early dia-
stolic filling. Twist/untwist (°) and rate (°/s) are calculated as
the net difference between basal clockwise and apical anti-
clockwise rotation and rotation rate [17]. Torsion is calculated
by dividing the twist angle by apical-basal distance and mea-
sured in °/cm [17]. In a non-diseased population, LV twist is
approximately 15° with apical rotation being between 5° and
10° (counterclockwise) and basal rotation between -4° and -7°
(clockwise) as observed in studies by CMR tagging [74]. A

study by Dong et al. [75] showed that as with other indices of
cardiac function, rotation is affected by loading condition
(preload and afterload) of LV. Rotation increases with in-
creased preload (end-diastolic volumes) and decreased
afterload (end-systolic volumes) [75]. Reduced LV
untwisting, elevated torsion, and twist have been observed in
hypertensive patients [10, 76–78] and in various cardiovascu-
lar diseases [79, 80]. Alterations of myocardial twist are also
linked to aging. Previous studies have demonstrated decreased
diastolic untwisting, increased LV rotation, and twist with age
in a normal population [81].

Conclusion

Myocardial fiber orientation is a fundamental feature of the
myocardium, and it has a substantial role in systolic function.
STE imaging is a new non-invasive cardiovascular imaging
modality that can be used in clinical practice to understand the
mechanism of cardiac deformation, particularly in patients
with early compensation of myocardial function and in pa-
tients with RH. Using STE also offers comprehensive evalu-
ation to detect the underlying impaired systolic function in
several pathologies, including HTN, to deliver optimal man-
agement plan. Furthermore, this powerful and valuable tech-
nique provides accurate and objective measures on global/
regional contractile function.
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