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ABSTRACT
Many recent results ondistributed control ofmulti-agent networks rely on anumber of simplifying assump-
tions that facilitate the solution of regulation problems associated with large-scale networked systems.
Identical subsystemmodels are a typical assumptionmade in networked control systemswhich often fail in
practice. In this paper, we propose a systematicmethod for removing this assumption, leading to a general
approach to distributed-control design for stabilising networks of multiple non-identical dynamic agents.
Local subsystems represented as autonomous dynamic agents are assumed to share a set of structural
properties, (controllability) indices. Our approach relies on the solution of certain model-matching type
problems using local state-feedback and state/input-matrix transformations that map local dynamics to
a target system, selected to minimise joint control effort. By adapting well-established distributed LQR
control design methodologies to our framework, the stabilisation problem of networks of non-identical
dynamic agents is solved. The applicability of our approach is illustrated via a synchronisation example
of eleven harmonic oscillators with non-identical dynamics communicating over a connected graph.
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1. Introduction

Multi-agent networked systems composed of several interacting
subsystems and multiple control units have attracted consid-
erable interest in recent years due to their association with a
broad spectrum of applications (García et al., 2020; Manfredi
& Tucci, 2017; Vlahakis et al., 2019). For reasons related to com-
plexity, robustness, reliability and effectiveness of communica-
tions, distributed control has emerged as the dominant design
methodology in this domain (Esfahani & Khorasani, 2016;
Franzè et al., 2018; Scattolini, 2009; Vlahakis et al., 2018).

Distributed control is a challenging research field, dealing
with the problem of how a global decision making task can be
shared across several local controllers. The concept of decen-
tralisation was initially introduced in socio-economic literature
to address the problem of efficient capital allocation (Cama-
cho, 1970; McFadden, 1969). Thereafter, the term distributed
control has been widely adopted by the control community in
problems where centralised schemes result in prohibitive data
handling and computational requirements.

Decentralised and distributed control structures, whether
physically imposed or consciously conceived, often give rise to
elaborate control design problems which are further amplified
by the presence of communication links in the overall sys-
tem. In traditional applications, ideal communication channels
are often assumed. In practice, however, information exchange
carried out over communication channels is limited by com-
munication delays, limited bandwidth and cross-talk. Over-
all, distributed control lies in the intersection of control and
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communication theories (Hespanha et al., 2007) and repre-
sents a substantial challenge for the efficient control design of
networked systems in real applications.

Multi-vehicle formation problems, gossip algorithms, dis-
tributed estimation in networks, synchronisation of multiple
power units in smart power grids are typical examples arising
in multi-agent control. Various problems in networked systems
often appear as state-agreement, synchronisation and consen-
sus tasks (Chen & Dimarogonas, 2019; de Galland & Hen-
drickx, 2019). From a practical point of view, network stabili-
sation is one of the most challenging problems in multi-agent
network control (Olfati-Saber, 2006; Olfati-Saber et al., 2007).
Many significant results in this direction have made use of sys-
tems and control theory along with algebraic tools from graph
theory (Mesbahi & Egerstedt, 2010). Frequently, the network
stabilisation task is formulated as a structured optimal control
problem (Keviczky et al., 2006). Despite the fact that optimal
control theory is standard for centralised configurations, dis-
tributed optimal control design of large-scale structured sys-
tems is a considerable challenge.

Significant results in stability analysis of distributed control
schemes have led to a deeper understanding of the relationship
between algebraic properties of the interconnection graph and
network stability. An insightful contribution in this direction
has been the work of Fax and Murray (2004), which estab-
lishes stability analysis tools for networks of identical linear
dynamical systems over generic graphs. In thiswork, the authors
focus on distributed formation control and develop information
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exchange protocols that guarantee formation stability and per-
formance and are robust to changes in the communication
topology of the network.

Several contributions in the field of distributed control
are the result of simplifying assumptions, including homoge-
neous subsystem dynamics, bidirectional communication links,
dynamically decoupled subsystems, etc. Based on the spec-
tral properties of the incidence matrix of the communication
graph, stability analysis in state-agreement and formation con-
trol problems of multi-agent networks with single-integrator
dynamics has been investigated in Dimarogonas and Johans-
son (2010). A thorough procedure for designing distributed
controllers for a class of coupled systems based on a decom-
position approach has been presented in Massioni and Verhae-
gen (2009). The method relies on certain structural properties
satisfied by the system matrices and the repetitive structure
of the overall scheme. Authors optimising a multi-objective
function subject to linear matrix inequality constraints derive
explicit expressions for computing distributed feedback con-
trollers with H∞ and H2 guaranteed performance, respectively.
In Hengster-Movric et al. (2015), a distributed static output
feedback control protocol for state synchronisation is proposed.
In the paper, global optimality conditions are derived with
respect to a quadratic performance index under the assumption
of identical linear dynamics.

A powerful method for distributed LQR design for stabil-
ising networks of homogeneous dynamically decoupled linear
systems is presented in Borrelli and Keviczky (2008). Therein,
a distributed regulation task is formulated as a large-scale opti-
mal control problem where the performance index couples the
behaviour of the systems. Authors propose a top-down approach
in which a centralised optimal LQR controller is designed and,
then, approximated by a distributed control scheme whose sta-
bility is guaranteed by the stability margins of LQR control. A
complementary method for designing distributed LQR control
is presented in Deshpande et al. (2012). This work proposes a
bottom-up approach inwhich optimal interactions between self-
stabilising agents are defined tominimise an upper bound on an
aggregate LQR criterion. Further, an analysis of the proposed
control law in the presence of communications delays is carried
out and a bound on the maximum delay accommodated by the
proposed controller is established.

In the present paper, we focus onmulti-agent networks com-
posed of non-identical, dynamically decoupled systems. Our
method extends the results of Borrelli and Keviczky (2008)
and Deshpande et al. (2012) on distributed LQR control to
the heterogeneous-dynamics case. Specifically, we assume that
systems constituting a network have common controllability
indices (Antsaklis & Michel, 2006) but, otherwise, different
dynamics.

We follow a model-matching approach to solve the network
stabilisation problem.Ourmodel-matching definition gives con-
siderable flexibility, as the output matrices of the mapped sys-
tems are required to be square and invertible but are other-
wise arbitrary. Here, all agents match the input-to-state part of
a target system via state-feedback control, input matrix scal-
ing transformations and a change of coordinates. The target
model can be selected so that a measure of the joint model-
matching control effort is minimised. This allows closed-loop

network performance to be effectively determined by the tun-
ing of an LQR global optimality criterion which is defined and
optimised in the second stage of our approach. This extends the
state-feedback distributed control schemes presented in Bor-
relli and Keviczky (2008) and Deshpande et al. (2012), leading
to a solution of the stabilisation problem for networks with
non-identical agent dynamics. Preliminary results of this effort
have been presented in Vlahakis and Halikias (2018a) and Vla-
hakis andHalikias (2018b). In Section 4.7, we highlight how our
results can be extended in the context of distributed nonlinear
control.

The main contributions of this paper and significant chal-
lenges visited here are summarised as follows.

(1) We propose a new control algorithm for solving large-
scale stabilisation problems over networks of non-identical
dynamic agents. The control scheme proposed is obtained
via a two-step approach, in the second stage of which an
upper bound of a joint LQR criterion is optimised. The
performance of the overall control system can be tuned by
means of weighting matrices similar to the standard LQR
control problem.

(2) We identify a class of agents characterised by identical
controllability indices and propose a state-feedbackmodel-
matching technique whereby agents are locally mapped to
a target system. This effectively permits the application
of distributed control, the design of which is consider-
ably simplified due to dynamical match of the underlying
agents. By minimising a well-defined cost described as a
joint model-matching control effort, we select an optimal
target system from the permissible class. This effectively
enables the overall control system to be tuned by an aggre-
gate LQR criterion.

(3) Our technique extends two well-established results on dis-
tributed LQR control beyond their original scope, specif-
ically, to the case of networks of heterogeneous dynamic
agents. Due to the feedback formulation of our model-
matching approach, various distributed state-feedback
control methods originally established for homogeneous
multi-agent systems can be adapted to our design setup.

(4) Our method is sufficiently versatile and can be extended
to more intricate settings, such as networks with heteroge-
neous nonlinear agents.

(5) We establish stability conditions which is a major challenge
due to the presence of non-identical agents. We tackle this
by means of a simple but powerful model-matching tech-
nique which facilitates the design of a distributed control
scheme consisting of a combination of local and neighbor-
ing state-feedback control.

The remaining of the paper is organised in seven sections.
In Section 2, notation and preliminaries on graph theory are
given. Section 3 presents the problem examined in this study,
along with its motivation in the context of existing literature.
Our main results, namely, the model-matching feedback con-
trol scheme and the distributed LQR-based control design are
presented in Sections 4 and 5, respectively. These are followed
by a numerical example in Section 6. Finally, Section 7 discusses
our main results and future research directions.
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2. Notation and preliminaries

The field of real and complex numbers is denoted by R and C,
respectively.Rn denotes then-dimensional vector space over the
field R and R

n×m denotes the set of n × m real matrices. Let
x1, . . . , xn be vectors not necessarily of the same dimensions.
Then, x̂ = Col(x1, . . . , xn) = [x′

1 · · · x′
n]′. Let a1, . . . , an ∈ R,

thenA = diag(a1, . . . , an) is a diagonal matrix, a1, . . . , an being
its diagonal entries. Note that if a1, . . . , an are square matrices
(not necessarily of the same dimensions), A = diag(a1, . . . , an)
is a block-diagonal matrix. We denote by det(A) the determi-
nant of a square matrix A. The column space of a matrix is the
set of all linear combinations of its columns. Let a1, . . . , am ∈
R
n and A = [a1 · · · am] ∈ R

n×m, then Im(A) denotes the col-
umn space of A and Im(A) = span(a1, . . . , am). Let X ⊆ R

n.
The dimension of X is denoted by dim(X ). The transpose of
ξ is denoted by ξ ′. The identity matrix of dimension m × m
is denoted by Im ∈ R

m×m. The n × m zero matrix is denoted
by 0n×m unless the dimensions are obvious in which case
(part of) the subscript will be omitted. Matrix � ∈ R

n×n is
called symmetric if �′ = �. Re(s) denotes the real part of s ∈
C. The set of complex numbers with non-positive real part
is denoted by C_ = {s ∈ C : Re(s) ≤ 0}. Similarly, C__ = {s ∈
C : Re(s) < 0}. A ⊗ B denotes the Kronecker product of matri-
ces A and B. If� is symmetric, λi(�) denotes the ith eigenvalue
of� ordered in non-decreasing order of magnitude and S(�) is
the spectrum of�. Matrix� ∈ R

n×n is called stable or Hurwitz
if all its eigenvalues have negative real part, i.e., λi(�) ∈ C__ ,
i = 1, . . . , n. We will make use of the following:

Proposition 2.1 (Borrelli & Keviczky, 2008): Consider matri-
ces A1,A2 ∈ R

m×m and � ∈ R
n×n, and let Ā1 = In ⊗ A1 and

Ā2 = � ⊗ A2 with Ā1, Ā2 ∈ R
nm×nm. Then, S(Ā1 + Ā2) =⋃n

i=1 S(A1 + λi(�)A2), where λi(�) ∈ C represents the ith
eigenvalue of �.

2.1 Graph theory preliminaries - undirected graphs

An undirected graph G is defined as the ordered pair
G = (V , E), where V is the set of nodes (or vertices) V =
{1, . . . ,N} and E ⊆ V × V is the set of edges (i, j) with i ∈ V ,
j ∈ V , i �= j. The orientation of all edges is bidirectional, i.e. if
(i, j) ∈ E , then (j, i) ∈ E . The degree dj of a graph vertex j
is the number of edges that start from j. Let dmax(G) denote
the maximum vertex degree of G. We denote by A(G) the
(0, 1) adjacency matrix of G. In particular, Aij = 1 if (i, j) ∈ E
with i, j = 1, . . . ,N and i �= j, otherwise Aij = 0. Let j ∈ Ni if
(i, j) ∈ E and i �= j. We call Ni the neighbourhood of node i.
The adjacency matrixA(G) of undirected graphs is symmetric.
We define the Laplacianmatrix asL(G) = D(G) − A(G), where
D(G) is the diagonal matrix of vertex degrees di (also called the
valence matrix). The Laplacian matrix of an undirected graph
is a symmetric positive semidefinite matrix. Let S(L(G)) =
{λ1(L(G)), . . . , λN(L(G))} be the spectrum of the Laplacian
matrix L associated with an undirected graph G arranged in
non-decreasing semi-order, with λi(L(G)) ≥ 0, i = 1, . . . ,N.
For a survey on spectral graph theory, see Mohar (1991). The
following Proposition is derived from Proposition 2.1 in a
straightforward manner.

Proposition 2.2: Let A, B be matrices of appropriate dimensions
and L be the Laplacian matrix of a graph G over N vertices. Let
also S(L) = {λ1(L), . . . , λN(L)}. Then, S(IN ⊗ A + L ⊗ B) =⋃N

i=1 S(A + λi(L)B).

Definition 2.1: Let G = (V , E) denote a connected graph over
N vertices. Let also matrix � ∈ R

mN×nN be partitioned into
N2 blocks of equal dimensions (m × n), the (i, j)-block being
defined as �ij = �[(i − 1)m + 1 : im, (j − 1)n + 1 : jn], i, j =
1, . . . ,N, such that �ij = 0n×m if (i, j) /∈ E . Then,

KN
m,n(G) = {� ∈ R

mN×nN | �ij = 0m×n if (i, j) /∈ E ,
with i, j = 1, . . . ,N and i �= j} (1)

denotes a class of structured matrices.

3. Network setup and problem statement

Consider a network of N dynamically decoupled agents with
dynamics described by the following state-space equations:

ẋi = Aixi + Biui, xi(0) = x0,i, i = 1, . . . ,N, (2)

where Ai ∈ R
n×n, Bi ∈ R

n×m, while xi ∈ R
n, ui ∈ R

m repre-
sent state and input vectors, respectively. To accommodate net-
work’s description as a dynamic system, we adopt a graph
representation whereby agent-i is associated with the ith node
of a bidirectional connected graph G = (V , E , L). Collect-
ing now the states of all neighbours of agent-i, we define
x̂i = Col(xi, xi1 , . . . , xik), where i1, . . . , ik ∈ Ni. Similarly, col-
lecting state and input variables of all nodes, we define aggre-
gate state and input vectors as x̂ = Col(x1, . . . , xN) and û =
Col(u1, . . . , uN), respectively. In the sequel, we refer to (xi) x̂i
as the (individual) local state of agent-i, while x̂, û are referred
to as global state and input vectors, respectively. Throughout the
paper, we assume the following:

Assumption 3.1:

(A1) Individual states xi, i = 1, . . . ,N, are perfectly measured.
(A2) Systems (Ai, Bi), i = 1, . . . ,N, are controllable.
(A3) For LQR weighting matrices Q1 = Q′

1 ≥ 0, Q2 = Q′
2 ≥

0 (specified later), let C1 ∈ R
n×n, C2 ∈ R

n×n such
that C′

1C1 = Q1, C′
2C2 = Q2. Then, systems (Ai, C1),

(Ai, C2), i = 1, . . . ,N, are observable.
(A4) Systems (Ai, Bi), i = 1, . . . ,N, have identical sets of con-

trollability indices.
(A5) The presence of edge (i, j) ∈ E indicates that agent-i

transmits its state information to agent-j and vice versa.

Remark 3.1: Assumption 3.1-(A1) is essential for the subse-
quent analysis and control design presented in this work, since
the proposed control scheme relies on state-feedback strate-
gies. Lifting this assumption would require the development of
output-feedback techniques (perhaps by means of Kalman Fil-
tering), which are more demanding and challenging especially
in a distributed framework. Our ultimate aim here is to guar-
antee stability of networks consisting of heterogeneous agents
based on a distributed LQR control scheme. In Section 5, it will
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become clear that the large stability margins of LQR control are
vital for approximating a centralised controller by a distributed
schememaintaining stability. Besides, it is well known that these
stability properties of LQR control vanish, e.g. in the presence of
state-estimators, and thus extensions of our method to the case
of output feedback control are not straightforward.

Remark 3.2: Assumption 3.1-(A5) emphasises that the graph
of the network is undirected. The results of the paper can
be extended to the case of directed graphs. This requires a
more complex analysis which can be found in Vlahakis (2020,
Chapter 4).

Under Assumption 3.1, we wish to design a distributed
(LQR-based) state-feedback controller that 1) stabilises

˙̂x = Âx̂ + B̂û, x̂(0) = x̂0, (3)

where

Â = diag(A1, . . . ,AN), B̂ = diag(B1, . . . ,BN), (4)

and (2) couples the dynamic behaviour of the agents minimis-
ing a cost functionwhich has a weighted norm of

∑N
i=1
∑

j|j∈Ni
(xi − xj) as one of its terms. Meeting these objectives can be
formulated as the solution of the following infinite-horizon
distributed optimal control problem:

P : minimise
û

J(û, x̂0) =
∫ ∞

0

(
x̂′Q̂x̂ + û′R̂û

)
dt (5a)

subject to ˙̂x = Âx̂ + B̂û, x̂(0) = x̂0 (5b)

û = Mx̂ (5c)

M ∈ KN
m,n(G) (5d)

Q̂ = IN ⊗ Q1 + L ⊗ Q2 (5e)

R̂ = IN ⊗ R. (5f)

Matrices Q1 = Q′
1 ≥ 0 and R = R′ > 0 above penalise individ-

ual states and inputs, respectively, while matrix Q2 = Q′
2 ≥ 0

weighs the relative state-difference between neighbours. Note
that the objective function (5a) can be expressed in the following
form:

J(û, x̂0) =
∫ ∞

0

N∑
i=1

⎛
⎝x′

iQ1xi + u′
iRui

+ 0.5
∑
j|j∈Ni

(xi − xj)′Q2(xi − xj)

⎞
⎠ dt. (6)

Note also that due to penalty terms pertinent to weighting
matrix Q2, problem (5) couples the dynamics of the (open-
loop decoupled) agents. In the absence of constraint (5d) (and
under Assumption 3.1), problem (5) is a standard LQR prob-
lem which admits a unique stabilising solution û = K∗x̂ with
K∗ = −R̂−1B̂′P∗ where P∗ is the (unique) symmetric positive
definite solution to the Algebraic Riccati Equation (ARE):

Â′P∗ + P∗Â − P∗B̂R̂−1B̂′P∗ + Q̂ = 0. (7)

In this instance, matrices P∗, K∗, as defined above, are generi-
cally full (with no particular structure) and thus, controller K∗

can only be used in a centralised setting. Although, this solution
has no value for distributed control, it can be used as a bench-
mark for testing the performance of suboptimal solutions. For
example, if K̂ ∈ KN

m,n(G) achieves a performance indexV(x̂0) =
x̂′
0P̂x̂0, then a norm of �P = P̂ − P∗ can be used to quantify its
level of suboptimality.

Here, rather than seeking the optimal solution to (5), which is
an NP-hard problem, we convert problem (5) into two tractable
tasks and design a suboptimal distributed state-feedback con-
troller via a two-stage procedure. Using Assumption 3.1-(A4),
a model-matching problem for systems (Ai, Bi), i = 1, . . . ,N is
solved first. The solution involves the selection of a coordinate
transformation xi → Pixi, the design of a state-feedback matrix
Fi, and an input scaling matrix Gi, such that:

Pi(Ai + BiFi)P−1
i = A, (8a)

PiBi = B, (8b)

for each i = 1, . . . ,N. We refer to the pair (A, B) in (8) above
as the target system. See Theorem 4.1 for the derivation of (8).
Under the matching transformation (8), the input-to-state part
of systems (Ai, Bi), i = 1, . . . ,N, is mapped to target model
(A, B). The matching problem is fully analysed in Section 4.
Specifically, it is shown that the target model (A, B) can be
selected arbitrarily from the set ofmodelswith the same control-
lability indices of the family of agents {(Ai, Bi)}Ni=1.Wemay also
introduce an optimality criterion in the selection of the target
system by minimising the joint model-matching control effort
in a sense made precise in Section 4.6. In this way, the closed-
loop properties of the network can be tuned via a network-wide
distributed LQR control scheme, carried out in the second stage
of the design and involving the minimisation of (5a) subject to:

˙̂x = (IN ⊗ A)x̂ + (IN ⊗ B)û, x̂(0) = x̂0, (9a)

û = Mx̂, (9b)

M ∈ KN
m,n(G). (9c)

Note that after the first stage of the design the dynamics of all
agents (with local control) are mapped to (A, B) and, hence,
any algorithm assuming identical agent dynamics is applicable.
Two complementary methods for approximating the optimal
solution to problem (5a) subject to (9) are proposed in Borrelli
and Keviczky (2008) and Deshpande et al. (2012), respectively.
In summary, our method results in a two-level distributed con-
trol scheme, with the inner loop being responsible formatching
agent dynamics and the outer loop for controlling the over-
all performance of the network. A schematic example of the
proposed control architecture is shown in Figure 1. All param-
eters appearing in Figure 1 will be clearly defined in subsequent
sections of the paper.

3.1 Review of distributed LQR control for identical linear
systems

Two well-established results in the context of distributed LQR
control are reviewed. Both methods rely on the simplifying
assumption of identical systems’ dynamics. We refer to the con-
trol design established in Borrelli and Keviczky (2008) as the
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Figure 1. Distributed node-level closed-loop architecture of interconnected het-
erogeneous linear agents.

top-downmethod and to the control design established inDesh-
pande et al. (2012) as the bottom-up method, respectively. The
methods propose a suboptimal solution to problem (5) where
systems matrices in (5b) are considered identical, i.e. Â = IN ⊗
A, B̂ = IN ⊗ B. Themain points of themethods are highlighted
in Appendices 1 and 2.

4. Model-matchingmethods

The top-down and bottom-upmethods (cf. Appendices 1 and 2,
respectively) are powerful for stabilising homogeneous multi-
agent networks via distributed state-feedback control, yet they
both rely on the assumption of identical agents which may be
unrealistic. In this workwe bypass this limitation and extend the
methods to a significantly larger class of systems, characterised
by the same set of controllability indices. This constitutes a nat-
ural assumption, consistent with parametric families of agents
sharing the same structural properties.

Themodel-matching problem is defined as the task ofmatch-
ing the dynamics of a set of heterogeneous linear agents by
means of state-feedback control, input matrix transformations
and a change of coordinates. This is possible if and only if the
agents share a set of controllability indices. Solving the model-
matching problem is the first stage of the stabilisation of the
network. It is shown that if themodel-matching problem is solv-
able, then the intricate problem of stabilising a network of het-
erogeneous agents reduces to the special case of homogeneous-
agents which is simpler to analyse. It is shown in the sequel
that our method can further be extended to the solution of the
non-linear version of the problem.

4.1 Problem definition

Problem 4.1 (Model-matching): Consider N + 1 controllable
multi-input linear systems described by the state-space
equations:

ẋi = Aixi + Biui, xi(0) = xi,0, i = 1, . . . ,N, (10)

with Ai ∈ R
n×n, Bi ∈ R

n×m, and rank(Bi) = m. Let the pair
(AN+1, BN+1) pertain to the target dynamics. Then, we wish
to find matrices Pi, Fi, and Gi of appropriate dimensions with
det(Pi) �= 0 and det(Gi) �= 0 such that:

Pi(Ai + BiFi)P−1
i = AN+1 and PiBiGi = BN+1 (11)

for i = 1, . . . ,N.

Problem 4.1 involves the control design ui = Fixi + Givi, vi ∈
R
m, i = 1, . . . ,N, whereby N systems match their dynamics

with a target model denoted as (AN+1, BN+1). It also involves
finding matrices Pi, i = 1, . . . ,N, which represent similarity
transformations accommodating a change of local coordinates.
In the following, the class of systems with common control-
lability indices is defined. It will be shown that a solution to
Problem 4.1 is always guaranteed for this family of systems.
Some basic concepts which are useful in our definitions and
proofs are introduced next.

4.2 Controllability indices ofmulti-input systems

Recall the notion of controllability indices of a controllable sys-
tem (A, B): Let ẋ = Ax + Bu, x(0) = x0, be the state-space form
of a controllable system (A, B), where A ∈ R

n×n, B ∈ R
n×m,

with rank(B) = m. Let also

C = [B,AB, . . . ,An−1B],

= [b1, . . . , bm,Ab1, . . . ,Abm, . . . ,An−1b1, . . . ,An−1bm],
(12)

be the controllabilitymatrix of the pair (A, B), where b1, . . . , bm
represent the columns of B, and C ∈ R

n×nm. Since (A, B) is
controllable, rank(C) = n. Now, collect the first n linearly inde-
pendent columns of C starting from the left and moving to the
right; rearrange these columns to obtain

C̄ = [b1,Ab1, . . . ,Aμ1−1b1, . . . , bm,Abm, . . . ,Aμm−1bm],
(13)

where C̄ ∈ R
n×n. The integerμj denotes the number of columns

involving bj in the set of the first n linearly independent columns
of C while moving from left to right. The set of μj’s is defined
next.

Definition 4.1: The set of m integers {μ1, . . . ,μm}, as defined
in (13), with

∑m
j=1 μj = n, represents the controllability indices

of the controllable pair (A, B) with A ∈ R
n×n, B ∈ R

n×m, and
rank(B) = m.

Here, we are interested in distributed stabilising state-
feedback solutions to the regulation problem (5) for networks
of non-identical agents with identical sets of controllability
indices. The following lemma is standard and is included with-
out proof (Antsaklis & Michel, 2006).

Lemma 4.1: Given (A, B) is controllable, then (P(A + BF)P−1,
PBG) has the same controllability indices (c.i.), up to reorder-
ing, for any P, F, and G (det(P) �= 0, det(G) �= 0) of appropriate
dimensions.
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Lemma 4.1 states that the c.i. of a controllable pair (A, B) is
an invariant set under a state-space transformation P, a state-
feedback control F, and an input scaling G. Pertaining to a
set of systems (Ai, Bi), i = 1, . . . ,N, characterised by iden-
tical sets of c.i., Lemma 4.1 also implies that pairs (Pi(Ai +
BiFi)P−1

i , PiBiGi), i = 1, . . . ,N, coincide, for a certain choice
of Pi, Fi, and Gi, i = 1, . . . ,N. This is clarified in the following
section.

4.3 Model-matching: existence conditions

We consider N systems with dynamics described by the
equations:

ẋi = Aixi + Biui, xi(0) = xi,0, i = 1, . . . ,N, (14)

where xi ∈ R
n, ui ∈ R

m are the states and inputs of the ith sys-
tem, respectively. Let μ1, . . . ,μm be the controllability indices
of the pairs (Ai, Bi), i = 1, . . . ,N. Let also Pi be the similarity
transformation that brings (Ai, Bi) into controllable canonical
form. We refer readers to Antsaklis and Michel (2006) (Chap-
ter 3, Section 3.4), for how to construct matrix Pi. Changing
coordinates to xc,i = Pixi, we get

ẋc,i = Ac,ixc,i + Bc,iui, xc,i(0) = Pixi,0, (15)

where xi = P−1
i xc,i is the state vector xi in the original coordi-

nates. Matrices Ac,i, Bc,i can be decomposed as follows:

Ac,i = Āc + B̄cAm,i, Bc,i = B̄cBm,i, (16)

with Āc ∈ R
n×n, B̄c ∈ R

n×m, Am,i ∈ R
m×n and Bm,i ∈ R

m×m.
The pair (Āc, B̄c) is called the Brunovsky canonical form
(Antsaklis & Michel, 2006) and is unique for all systems with
identical sets of controllability indices. Matrices (Am,i, Bm,i)
are free; later, we show that the selection of a target model
depends on the choice of these two matrices. The Brunovsky
form (Āc, B̄c) has block-diagonal structure:

Āc = diag(Ā11, . . . , Āmm), B̄c = diag(B̄11, . . . , B̄mm) (17)

where

Ājj =

⎡
⎢⎢⎢⎣
0
... Iμj−1
0
0 0 · · · 0

⎤
⎥⎥⎥⎦ ∈ R

μj×μj , B̄jj =

⎡
⎢⎢⎢⎣
0
...
0
1

⎤
⎥⎥⎥⎦ ∈ R

μj , (18)

for j = 1, . . . ,m. We note here that the diagonal blocks Ājj are
completely defined by the controllability indices μ1, . . . ,μm.
Consider now a target system (AN+1, BN+1), and assume it
has common c.i. with the remaining systems in the set. This
implies identical Brunovsky forms for all N + 1 systems. With-
out loss of generality, let (AN+1, BN+1) be in canonical form.
The state-space form of the target system is written as

ẋN+1 = AN+1xN+1 + BN+1uN+1 (19)

where

AN+1 = Āc + B̄cAm,N+1, BN+1 = B̄cBm,N+1. (20)

The pair (Āc, B̄c) represents the Brunovsky form with c.i.
μ1, . . . ,μm, while matrices Am,N+1, Bm,N+1 are as defined ear-
lier. From (16) and (20) it follows that matching (Ac,i, Bc,i),

i = 1, . . . ,N, with (AN+1, BN+1) depends exclusively onmatri-
ces Am,i, Bm,i, i = 1, . . . ,N + 1. It is also clear that Problem 4.1
has a solution if and only if theN + 1 systems have identical sets
of controllability indices. This is summarised in the following
theorem.

Theorem 4.1: Consider N controllable systems (Ai, Bi), with
Ai ∈ R

n×n, Bi ∈ R
n×m, rank(Bi) = m, i = 1, . . . ,N, and state-

space form given in (14). Let a target system be described by the
state-space form:

ẋN+1 = AN+1xN+1 + BN+1uN+1, (21)

and assume that all pairs (Ai, Bi), i = 1, . . . ,N + 1 have identi-
cal c.i.’s,μ1, . . . ,μm. Then, there are matrices Fi, and Gi, defined
as

Fi = B−1
m,i(Am,N+1 − Am,i)Pi, Gi = B−1

m,iBm,N+1, (22)

respectively, such that

�−1
i (Ai + BiFi)�i = AN+1, �−1

i BiGi = BN+1, (23)

where (Am,i, Bm,i), i = 1, . . . ,N, are defined in (16), pair
(Am,N+1,Bm,N+1) is defined in (20), and �i = P−1

i PN+1, i =
1, . . . ,N, with det(�i) �= 0. Matrices Pi, i = 1, . . . ,N + 1, rep-
resent similarity transformations that bring the systems in con-
trollable canonical form.

Proof: See Appendix 3 �

For a family ofN systems with identical sets of controllability
indices, Theorem 4.1 guarantees the existence of state-feedback
gains Fi and input-matrix scaling transformations Gi such that:

ẋi = (Ai + BiFi)xi + BiGivi, ξ = �−1
i xi, (24)

for all i = 1, . . . ,N, where �i = P−1
i PN+1, with Pi, PN+1 as

defined in the theorem. Since�i in (24) is non-singular, themap
between xi and ξ is one to one. Note also that for identical initial
conditions xi,0, and controls vi, i = 1, . . . ,N, the output trajec-
tories of (24) coincide for all i = 1, . . . ,N, and are denoted as
ξ(t). Variable ξ can be identified as the state of the target model:

ẋN+1 = AN+1xN+1 + BN+1uN+1, ξ = xN+1. (25)

Note that the transformations defined in (22) represent the
model-matching design of N systems with a target model spec-
ified a priori. Next, we introduce further existence conditions
that are useful for model-matching control synthesis.

4.4 Model-matching control synthesis

Consider a set of N controllable systems (Ai, Bi) with

Ai = Ao + BiZi, Bi = BoG−1
i , (26)

for i = 1, . . . ,N. Here Ao ∈ R
n×n is assumed to be a fixed

matrix,Zi ∈ R
m×n an arbitrarymatrix, andGi ∈ R

m×m an arbi-
trary and nonsingularmatrix for all i = 1, . . . ,N. Note that if all
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pairs (Ai, Bi), i = 1, . . . ,N, have identical sets of controllability
indices, their controllable canonical forms

(Ac,i, Bc,i) = (PiAiP−1
i , PiBi), i = 1, . . . ,N, (27)

satisfy condition (26). In this case, (Ao, Bo) = (Āc, B̄c) rep-
resents the Brunovsky form of all pairs (Ai, Bi), i = 1, . . . ,N
with common controllability indices. Clearly, a possible target
pair (AN+1, BN+1) has to satisfy condition (26). The following
lemma guarantees the existence of a input matrix transforma-
tion that maps Bi, i = 1, . . . ,N, matrices to a target (input)
matrix denoted as BN+1. In the following, Im(·) denotes the
column-span of a matrix.

Lemma 4.2: Let matrices Bi ∈ R
n×m, i = 1, . . . ,N, have full-

column rank. Then, there exists a matrix Bo ∈ R
n×m, and square

and nonsingular matrices Gi ∈ R
m×m, i = 1, . . . ,N, such that

BiGi = Bo ∀i, if and only if Im(B1) = Im(B2) = · · · = Im(BN).

Proof: (i) Necessity: Let Im(Bi) = X ⊆ R
n with dim(X ) =

m. Then, Bi has a singular value decomposition: Bi =
U�iV ′

i , i = 1, . . . ,N, with Im(Bi) = Im(U) = X and U ′U =
Im, det(�i) �= 0,V ′

iVi = ViV ′
i = Im. Define:Gi = Vi�

−1
i ,Bo =

U. Then, BiGi = U�iV ′
iVi�

−1
i = U = Bo. (ii) Sufficiency is

immediate. �

A solution to the matching problem 4.1 for N systems
(Ai, Bi), i = 1, . . . ,N, with structure as in (26), is given in the
following Theorem. First, we define a special class of systems:

Definition 4.2: Let (Ao,Bo) ∈ R
n×n × R

n×m, with rank(Bo) =
m. Define the set:

S(Ao, Bo) = {(Ao + BoZ, BoG−1) : Z ∈ R
m×n,

G ∈ R
m×m with det(G) �= 0}. (28)

Theorem 4.2:

(i) Let (Ai, Bi)∈ S(Ao, Bo), i= 1, . . . ,N. Then, Im(Bi) =
Im(Bo), ∀i = 1, . . . ,N and there exist X ∈ R

n×n, X = X′ >

0, Yi ∈ R
m×n such that

AiX + BiYi − AjX − BjYj = 0, (29)

for every pair (i, j) ∈ {1, 2, . . . ,N}2.
(ii) Conversely, let {(Ai, Bi)}Ni=1 be given with Im(Bi) = X ⊆

R
n,∀i = 1, . . . ,N, anddim(X ) = m. Suppose also that (29)

is true for every pair (i, j) ∈ {1, 2, . . . ,N}2 for some X ∈
R
n×n, X = X′ > 0, and {Yi}Ni=1, Yi ∈ R

m×n, i = 1, . . . ,N.
Then, there exist matrices Ao ∈ R

n×n, and Bo ∈ R
n×m, with

Im(Bo) = X , such that

(Ai, Bi) = S(Ao, Bo), (30)

for all i ∈ {1, . . . ,N}.

Note: If (29) holds for X = X′ > 0 and {Yi}Ni=1, then, for
all (29), ∃ {Fi}Ni=1, Fi ∈ R

m×n, such that

Ai + BiFi = Aj + BjFj, (31)

for every pair (i, j) ∈ {1, 2, . . . ,N}2.

Proof: See Appendix 4. �

For numerical reasons, wemaywish to relax the exactmodel-
matching (29) or to impose additional conditions. Themodified
problems are formulated in LMI form (Boyd et al., 1994) in the
following paragraphs.

4.5 Approximatemodel-matching and stability
constraints

As shown in Theorem 4.2, the model-matching problem Ai +
BiFi = Aj + BjFj can be written as AiX + BiYi = AjX + BjYj
where Fi = YiX−1, Fj = YjX−1, for i, j = 1, . . . ,N, and X =
X′ > 0. For a sufficiently small tolerance γ > 0 this can be
approximated as

‖AiX + BiYi − (AjX + BjYj)‖ < γ , (32)

for i, j = 1, . . . ,N and i �= j.Wewill alsomake use of the follow-
ing well-known equivalence:

Lemma 4.3: Let � ∈ R
n×n be an arbitrary matrix. The follow-

ing are equivalent.

‖�‖ < γ ⇔ �′� < γ 2In ⇔
[
In �

�′ γ 2In

]
> 0. (33)

Using Lemma 4.3, conditions (32) can be formulated as a set
of linear matrix inequalities (LMI’s):

X = X′ > 0,
[
I AiX + BiYi − AjX − BjYj
∗ γ 2I

]
≥ 0, (34)

for i, j ∈ {1, 2, . . . ,N}, i �= j. The system can be solved as a
standard LMI feasibility problem for a pre-specified positive tol-
erance γ . The state feedback matrices can then be set as Fi =
YiX−1. The inertia of (Ai + BiFi) can be controlled by imposing
additional LMI constraints as shown next.

It may be desirable to solve the model-matching problem
so that a stable target model is achieved. In a network setup, this
guarantees stability of individual systems even in the presence of
communication failure between agents. In this regard, we may
wish to assign the poles of the target system inside a specific
region of the complex plane. If this region is convex, the con-
straints can be expressed as LMI’s. The region may be selected
to ensure a minimum decay rate of the response, a maximum
undamped natural frequency, and a minimum damping ratio.
These performance parameters are denoted next by λ, ρ, and θ ,
respectively. A comprehensive analysis of pole assignment via
LMI constraints can be found in Chilali and Gahinet (1996).

We consider a set of N controllable pairs (Ai, Bi), i =
1, . . . ,N, with structure as in (26), and Ai ∈ R

n×n, Bi ∈ R
n×m.

We wish to construct state-feedback matrices Fi, i = 1, . . . ,N,
so that the eigenvalues of the ithmatrixAi + BiFi lie in a convex
region of the complex plane defined by performance parameters
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λ, ρ, and θ . Let

X = X′ > 0, (35a)[
I AiX + BiYi − AjX − BjYj
∗ γ 2I

]
≥ 0 for i, j = 1, . . . ,N and i �= j, (35b)

λX + �i + �′
i < 0, i ∈ {1, . . . ,N}, (35c)[−ρX �′

i
∗ −ρX

]
< 0, i ∈ {1, . . . ,N}, (35d)[

sin θ[�i + �′
i] cos θ[−�i + �′

i]
∗ sin θ[�i + �′

i]

]
< 0, i ∈ {1, . . . ,N},

(35e)

where �i = AiX + BiYi, i = 1, . . . ,N, and γ > 0 is a small tol-
erance. Solving convex feasibility problem (35) yields a target
system with the desirable dynamics.

4.6 Optimal selection of target system

So far, we have shown that the model-matching problem of
a family of systems characterised by identical sets of control-
lability indices can be solved via state-feedback control and
state/input-matrix transformations. The target system can be
selected arbitrarily provided that it matches the set of con-
trollability indices, see (22). Model-matching controllers sat-
isfying additional objectives (stability, pole location) can also
be designed via linear matrix inequalities. In this section, we
consider the ‘optimal’ choice of the target model, obtained by
minimising the joint model-matching control effort of the local
feedback schemes. We impose this objective because we wish
to apply the minimum amount of feedback in the first stage
of the control design of problem (5), so that overall system
properties are effectively determined by the quadratic perfor-
mance index defined at network level (5a). For this purpose, we
introduce a cost-function corresponding to a specific measure
of the joint model-matching energy loss whose minimisation
results in a specific optimal target model. A worst-case con-
trol effort index is first examined, defined as a discrete minimax
problem which is solved via a non-smooth steepest-descent
algorithm (Boyd&Vandenberghe, 2004; Dem’yanov&Maloze-
mov, 2014). A quadratic cost-function is also used which gives
rise to a closed-form expression for the optimal local control.

4.6.1 State-feedback design for optimal target system
We consider a set ofN systems represented by controllable pairs
(Ai, Bi), Ai ∈ R

n×n, Bi ∈ R
n×m with rank(Bi) = m and state-

space forms given as in (14). Let (AN+1, BN+1) be a targetmodel
with AN+1 ∈ R

n×n, BN+1 ∈ R
n×m. We assume that systems

(Ai, Bi), i = 1, . . . ,N + 1 have identical sets of controllability
indices denoted asμ1, . . . ,μm, with

∑m
j=1 μj = n. Without loss

of generality, let (AN+1, BN+1) be written in canonical form
given in (16), as

AN+1 = Āc + B̄cAm,N+1, BN+1 = B̄cBm,N+1, (36)

where Am,N+1 ∈ R
m×n, Bm,N+1 ∈ R

m×m are defined in (16).
The pair (Āc, B̄c) represents the Brunovsky form of all linear

systems with controllability indices μ1, . . . ,μm. To simplify
the subsequent analysis, we consider Bm,N+1 = Im. Model-
matching state-feedback gains and input-matrix transforma-
tions defined in (22) are written as

Fi = B−1
m,i(Am,N+1 − Am,i)Pi, Gi = B−1

m,i, (37)

where matrices Am,i, Am,N+1, Bm,i, Pi are as defined in
Theorem 4.1. Letting now ui = Fixi + Givi, i = 1, . . . ,N, with
vi ∈ R

m, the closed-loop state-space form of the ith system

ẋi = (Ai + BiFi)xi + BiGivi, (38)

matches the target dynamics:

ξ̇ = AN+1ξ + BN+1uN+1, (39)

through the bijective mapping ξ = �−1
i xi, where �i = P−1

i .
In (37), Am,N+1 is the only term that associates a specific target
selection with local model-matching control action. Hence, we
wish to identifyAm,N+1 which minimises a measure of the joint
model-matching control-effort defined as a function of state-
feedback matrices Fi, i = 1, . . . ,N. Two cost functions are con-
sidered, referred to as model-matching indexes. We first state
the following well-known fact which accommodates an isomet-
ric embedding of the Frobenius norm of a matrix in R

m×n into
the Euclidean norm of a vector in R

mn.

Proposition 4.1: Consider

J(�) = ‖A�B − C‖2F , (40)

where A ∈ R
p×p, B ∈ R

q×q, C, � ∈ R
p×q. Let vec(·) denote the

vectorisation operator (stacking columns of argument matrix).
Then

vec(A�B − C) = (B′ ⊗ A)vec(�) − vec(C). (41)

Let also B′ ⊗ A = H, vec(C) = c, and vec(�) = ξ . Since
‖M‖F = ‖vec(M)‖, then

J(�) = ‖Hξ − c‖2, (42)

where ‖ · ‖ is the Euclidean norm.

4.6.2 Minimumworst-case control
We denote the joint worst-case model-matching control action
as

φ(Am,N+1) = max
i=[1:N]

Mi, whereMi = ‖Fi‖2F

= ‖B−1
m,i(Am,N+1 − Am,i)Pi‖2F . (43)

We wish to find matrix Am,N+1 ∈ R
m×n for which φ(Am,N+1)

attains its minimum. This is a discrete minimax problem for-
mulated as

min
Am,N+1∈Rm×n

φ(Am,N+1)

= min
Am,N+1∈Rm×n

max
i∈[1:N]

‖B−1
m,i(Am,N+1 − Am,i)Pi‖2F . (44)

To perform the optimisation over R
mn, we utilise the vec-

torisation technique in Proposition 4.1. Let Mi = ‖Hiξ −
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ci‖2 where � = Am,N+1, Hi = P′
i ⊗ B−1

m,i, Ci = B−1
m,iAm,iPi, ξ =

vec(�), ci = vec(Ci), i = 1, . . . ,N. The minimax problem (44)
becomes

min
ξ∈Rm·n φ(ξ) = min

ξ∈Rm·n max
i=[1:N]

Mi

= min
ξ∈Rm·n max

i=[1:N]
ξ ′(H′

iHi)ξ − 2ξ ′(H′
i ci) + c′ici.

(45)

φ(ξ) is continuous and convex by the continuity and con-
vexity of Mi, i = 1, . . . ,N, and its sub-level sets are bounded.
Thus, a minimising solution ξ∗ exists and is unique. The ε-
steepest decent algorithm can be employed to find ξ∗. The
optimal solution is derived as A∗

m,N+1 = vec−1(ξ∗). Optimal
state-feedback gains Fi, i = 1, . . . ,N, are constructed by substi-
tuting Ā∗

m into (37), while an optimal target system is defined as
(Āc + B̄cA∗

m,N+1, B̄c).

4.6.3 Least-squares control
Another measure that penalises the joint model-matching con-
trol effort is defined as

J(Am,N+1) =
N∑
i=1

‖Fi‖2F =
N∑
i=1

‖B−1
m,i(Am,N+1 − Am,i)Pi‖2F .

(46)
Here, we are interested in finding a matrix Am,N+1 for which
J in (46) becomes minimum. Setting � = Am,N+1, Hi = P′

i ⊗
B−1
m,i, Ci = B−1

m,iAm,iPi, ξ = vec(�), ci = vec(Ci), i = 1, . . . ,N,
and embedding eachmatrix B−1

m,i(Am,N+1 − Am,i)Pi intoR
mn as

suggested in Proposition 4.1, we can optimise J over ξ ∈ R
mn.

This is written as

J(ξ) =
N∑
i=1

‖Hiξ − ci‖2 =
N∑
i=1

(ξ ′H′
i − c′i)(Hiξ − ci)

= ξ ′
( N∑

i=1
H′
iHi

)
ξ − 2ξ ′

( N∑
i=1

H′
i ci

)
+

N∑
i=1

c′ici, (47)

which is a convex function of ξ ∈ R
mn. Setting derivative Jξ = 0

gives

A∗
m,N+1 = vec−1

( N∑
i=1

(H′
iHi)

−1
N∑
i=1

H′
i ci

)
. (48)

after some algebra. Optimal state-feedback gains Fi, i =
1, . . . ,N, are obtained by substituting A∗

m,N+1 into (37).

4.6.4 Remarks on optimal targetmodel derivation
As shown above the minimum of (46) can be found exactly by
the least-squares solution (Boyd & Vandenberghe, 2004), while
the approximate solution to (45) can be obtained via standard
minimax algorithms (Dem’yanov & Malozemov, 2014). Inter-
ested readers are also referred to Vlahakis (2020, Chapter 5) for
an efficient ε-steepest descent algorithm, with analytic deriva-
tion of step-size, consistent with discrete minimax problems
with quadratic costs.

Under the assumption that the topology of the network is
time-invariant and the models of the agents are known and

fixed, the solution to either version of the optimal model-
matching problem can be obtained offline via a centralised
algorithm. This formulation is consistent with the design of a
distributed LQR network controller which is our ultimate goal.
The derivation of the optimal target system via a distributed
algorithm would be relevant for a time-varying network topol-
ogy, e.g. in case agents are repeatedly connected and discon-
nected from the network. In this case, the optimal target system
would also vary with time and could be calculated via a dis-
tributed consensus-type algorithm by sharing agents’ model
information through the network. A detailed analysis of this
case is beyond the scope of the present work. Preliminary results
in this direction can be found in Vlahakis (2020, Chapter 9).

4.7 Nonlinear systems

Motivated by the feedback linearisation technique (Vidyasagar,
2002), in this section we show that the model-matching control
protocol can be readily extended to a class of systems with non-
linear dynamics. Thus, in a network setup of self-linearisable
agents, mapped to a linear target model via nonlinear model-
matching techniques, the regulation problem can be solved via
linear LQR-based control. Here we highlight the method and its
advantages. A more detailed exposition will be presented in a
future publication.

4.7.1 Nonlinearmodel-matching
We consider a set of N nonlinear systems of the form

ẋi = fi(xi) +
m∑
j=1

ui,jgi,j(xi), xi(0) = xi,0, i = 1, . . . ,N, (49)

where fi, gi,1, . . . , gi,m are smooth vector fields on some neigh-
bourhood Xi ⊆ R

n near the origin containing xi,0, with fi(0) =
0. We assume that vector fields gi,1, . . . , gi,m, i = 1, . . . ,N, are
linearly independent for all xi ∈ Xi. In the following, we denote
the input vectors as

ui = [
ui,1 · · · ui,m

]′ , i = 1, . . . ,N. (50)

Let

ξ̇ = Aξ + Bv, (51)

be a (linear) target system, where (A, B) is a controllable pair
withA ∈ R

n×n, B ∈ R
n×m.Without loss of generality, let (A, B)

be in controllable canonical form, i.e.

A = Āc + B̄cAm, B = B̄cBm, (52)

where pair (Āc, B̄c) denotes the Brunonvsky canonical form
associated with the set of controllability indices: μ1, . . . ,μm,
with

∑m
j=1 μj = n (cf. (17)) andAm ∈ R

m×n, Bm = R
m×m with

det(Bm) �= 0.We now summarise themodel-matching task ofN
(feedback linearisable) nonlinear systems as follows.

Problem 4.2 (Nonlinear model-matching): Consider N multi-
input nonlinear systems as in (49), and a target system defined
by a controllable pair (A, B) as in (52). Letting Ui ⊆ Xi denote
a neighbourhood nearby the origin with xi,0 ∈ Ui, i = 1, . . . ,N,
we wish to compute:
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(a) a smooth function qi : Ui → R
m for each i = 1, . . . ,N,

(b) a smooth function Si : Ui → R
m×m such that det(Si(xi))

�= 0 ∀xi ∈ Ui, for each i = 1, . . . ,N,
(c) a local smooth diffeomorphism Ti : Ui → R

n, with Ti(0)
= 0, for each i = 1, . . . ,N,

(d) a state-feedback gain matrix Fi ∈ R
m×n, for each i =

1, . . . ,N,

satisfying the following conditions: if we define feedback control

ui = −S−1
i (xi)qi(xi) + S−1

i (xi)FiTi(xi) + S−1
i (xi)Bmv̂i, (53)

with v̂i ∈ R
m and perform a change of coordinates zi = Ti(xi),

i = 1, . . . ,N, then żi = Azi + Bv̂i, i = 1, . . . ,N, where (A, B)

denotes a target model.

Remark 4.1: The nonlinear transformations and feedback
functions considered in Problem 4.2 are defined locally, i.e.
in a neighbourhood of initial states defined as the set of
permissible states. Thus, a nonlinear model-matching control
scheme is not generically valid for all possible initial conditions.
This represents a fundamental difference to the linear model-
matching where the results are global irrespective of system
states.

Suppose that functions Si(xi), qi(xi),Ti(xi), exist ∀i =
1, . . . ,N. Then, necessary and sufficient conditions for Prob-
lem 4.2 to have a solution are given in the following theorem.

Theorem 4.3: Given N (feedback linearisable) systems of the
form (49), each associated with a set of integers κ i

1, . . . , κ
i
m con-

structed as in Procedure A.1 (cf. Appendix 5), and a linear target
system (A, B) as defined in (51) pertinent to Brunovsky form
(Āc, B̄c) associated with controllability indicesμ1, . . . ,μm, Prob-
lem 4.2 has a solution if and only if the following condition is
satisfied:

(i) the sets {κ i
1, . . . , κ

i
m} and {μ1, . . . ,μm} coincide for all i =

1, . . . ,N.

Proof: Detailed proof can be found in Vlahakis (2020,
Chapter 6). �

5. Distributed LQR-based control design

The section describes the second stage of the proposed dis-
tributed control design procedure. We recall that our objective
is to construct a stabilising distributed solution to problem (5)
following a two-step design method. In particular, we propose
a state-feedback distributed control scheme which, node-wise,
takes the following form:

ui = (Fi + GiK1�
−1
i )xi + aGi

∑
j∈Ni

K2(�
−1
i xi − �−1

j xj),

i = 1, . . . ,N, (54)

where a> 0. At network level, the control law ûmay be written
as

û = (
diag(F1, . . . , FN) + diag(G1, . . . ,GN)(IN ⊗ K1

+ M ⊗ K2)diag(�−1
1 , . . . ,�−1

N )
)
x̂, (55)

which is a distributed state-feedback controller. Matrix M ∈
KN
1,1(G) in (55) is associated with the structure of the intercon-

nection scheme. For control scheme (55) to be consistent with
the node-level controller in (54), matrixM = aL, with a> 0.

In the first stage of the proposed design, we showed that solv-
ing a model-matching problem as suggested in Theorem 4.1,
matrices Fi, Gi and �i, i = 1, . . . ,N can be constructed such
that:

ẋi = (Ai + BiFi)xi + BiGivi, xi(0) = xi,0, ξi = �−1
i xi, (56)

where �i, i = 1, . . . ,N, is a non-singular matrix, while the out-
put variable ξi ∈ R

n can be cast as the state of a systemdescribed
by target dynamics:

ξ̇ = Aξ + Bv. (57)

Given that a target system (A, B) has been specified, the next
step of the method is to define matrices K1, K2, and M in (55),
such that û stabilises (5b), i.e. is a stabilising distributed (subop-
timal) solution to problem (5). This represents the main task of
the second stage of our control design approach and is outlined
next.

The closed-loop state-space forms (56) match the dynam-
ics of the target model (A, B) through a bijective mapping
represented by matrices �−1

i , i = 1, . . . ,N. Therefore, matri-
ces K1, K2 can be defined as functions of (A, B, Q1, Q2, R),
where pair (A, B) denotes themodel-matching dynamics, while
matrices (Q1, Q2, R) are tuning parameters of (5a). The design
matrices K1 and K2 can now be derived from the methods
presented in Appendices 1 and 2. This simplifies consider-
ably the design procedure and highlights the main advan-
tage of the model-matching technique proposed in the paper.
The proposed control design is summarised in the following
theorem.

Theorem 5.1: Let N controllable pairs (Ai, Bi), i = 1, . . . ,N,
with Ai ∈ R

n×n, Bi ∈ R
n×m, have identical sets of controllabil-

ity indices. Let also matrices A, B, Fi, Gi, and �i be defined as in
Theorem 4.1, such that

(A, B) = (�−1
i (Ai + BiFi)�i, �−1

i BiGi), i = 1, . . . ,N, (58)

where (A, B) is a controllable pair. Consider LQR problem (A2)
with tuning parameters (Q1, Q2, R) for NL = dmax + 1 iden-
tical systems with dynamics described by the pair (A, B), dmax
denoting the maximum vertex degree of the associated graph.
Define matrices P, P̃2 as in (A5), (A6), respectively, and let K1 =
−R−1B′P, K2 = R−1B′P̃2. Let also M ∈ R

N×N be a symmetric
matrix with the following property:

λi(M) >
NL

2
, ∀ λi(M) ∈ S(M)\{0}, (59)

and construct a state-feedback controller as

K̂ = diag(F1, . . . , FN) + diag(G1, . . . ,GN)(IN ⊗ K1

+ M ⊗ K2)diag(�−1
1 , . . . ,�−1

N ). (60)

Then, the closed-loop matrix

Acl = diag(A1, . . . ,AN) + diag(B1, . . . ,BN)K̂, (61)

is Hurwitz.
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Proof: We define matrix �̄ as: �̄ = diag(�1, . . . ,�N). From
Theorem 4.1, matrices �i, i = 1, . . . ,N, are nonsingular, hence
�̄ is also nonsingular. Equation (58) implies

�̄(IN ⊗ A)�̄−1 = diag(A1 + B1F1, . . . ,AN + BNFN), (62)

�̄(IN ⊗ B) = diag(B1G1, . . . ,BNGN). (63)

Then, expanding Acl as

Acl = diag(A1 + B1F1, . . . ,AN + BNFN)︸ ︷︷ ︸
a1

+ diag(B1G1, . . . ,BNGN)︸ ︷︷ ︸
b1

(IN ⊗ K1 + M ⊗ K2)�̄
−1,

(64)

and substituting a1 and b1 using (62) and (63), respectively, (64)
becomes

Acl = �̄ (IN ⊗ A + (IN ⊗ B)(IN ⊗ K1 + M ⊗ K2)) �̄−1.
(65)

From (65), matrices Acl, IN ⊗ A + (IN ⊗ B)(IN ⊗ K1 + M ⊗
K2) are similar. Also, from Theorem A.1, IN ⊗ A + (IN ⊗
B)(IN ⊗ K1 + M ⊗ K2) is a Hurwitz matrix which implies that
the closed-loop matrix Acl is also Hurwitz. This proves the
theorem. �

The main consequences of Theorem 5.1 are summarised as
follows:

(1) The state-feedback controller K̂ in (60) has a distributed
sparsity pattern sinceM ∈ KN

1,1(G).
(2) We can use any method for designing matrices K1, K2, and

M that guarantees stability of the closed-loop system IN ⊗
A + (IN ⊗ B)(IN ⊗ K1 + M ⊗ K2).

(3) In the setting of Theorem 5.1, closed-loop stability of
the distributed scheme holds irrespective of the tuning
of the LQR performance index. Thus, by minimising the
joint model-matching energy loss, network’s performance
is effectively controlled by tuning parametersQ1,Q2 and R.

6. Numerical example: stabilisation of network of
non-identical oscillators

We consider a network of eleven harmonic oscillators, each
one modelled by a two-mass-two-spring system as depicted in
Figure 2. The ith oscillator is composed of two masses,mi,1 and
mi,2, which are connected through a spring with spring con-
stant ki,2, with mass mi,1 attached to a rigid object through a
spring with spring constant ki,1. Input forces ui,1 and ui,2 are
applied to mi,1 and mi,2, respectively. The displacement of the
two masses from their equilibrium position is denoted as xi,1
and xi,2, respectively, i = 1, . . . , 11. The models of the eleven
oscillators are:

Figure 2. Two-mass-two-spring harmonic oscillator.

⎡
⎢⎢⎣
ẋi,1
ẍi,1
ẋi,2
ẍi,2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 0
−ki,1 − ki,2

mi,1
0

ki,2
mi,1

0

0 0 0 1
ki,2
mi,2

0
−ki,2
mi,2

0

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Ai

⎡
⎢⎢⎣
xi,1
xi,2
ẋi,1
ẋi,2

⎤
⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎣

0 0
1

mi,1
0

0 0

0
1

mi,2

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Bi

[
ui,1
ui,2

]
, i = 1, . . . , 11. (66)

Parameters of all oscillators are summarised in Table 1. State-
space forms (66) are clearly in controllable canonical form. Thus
matrices (Ai, Bi) may be written as

Ai =

⎡
⎢⎢⎣
0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦

︸ ︷︷ ︸
Āc

+

⎡
⎢⎢⎣
0 0
1 0
0 0
0 1

⎤
⎥⎥⎦

︸ ︷︷ ︸
B̄c

⎡
⎢⎢⎣

−ki,1 − ki,2
mi,1

0
ki,2
mi,1

0

ki,2
mi,2

0
−ki,2
mi,2

0

⎤
⎥⎥⎦

︸ ︷︷ ︸
Am,i

,

i = 1, . . . , 11, (67a)

Bi =

⎡
⎢⎢⎣
0 0
1 0
0 0
0 1

⎤
⎥⎥⎦

︸ ︷︷ ︸
B̄c

⎡
⎢⎣

1
mi,1

0

0
1

mi,2

⎤
⎥⎦

︸ ︷︷ ︸
Bm,i

, i = 1, . . . , 11, (67b)

respectively. The pair (Āc, B̄c) denotes the Brunovsky form
which is identical to all systems (Ai, Bi), i = 1, . . . , 11. Systems
(Ai, Bi), i = 1, . . . , 11, have identical controllability indices
which are identified here as μ1 = 2 and μ2 = 2.

We use a graph representation of the interaction between
neighbouring oscillators. The interconnection scheme consid-
ered in simulations is shown in Figure 3. The associated graph
indicates that if an edge (i, j), i, j = 1, . . . , 11, i �= j is present,
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Figure 3. Graph G11: Interconnection scheme of eleven oscillators.

Table 1. Masses and spring constants.

System ki,1 ki,2 mi,1 mi,2

oscillator 1 1.50 N/m 1.00 N/m 1.10 kg 0.90 kg
oscillator 2 3.10 N/m 2.00 N/m 2.10 kg 1.50 kg
oscillator 3 0.50 N/m 1.10 N/m 1.50 kg 3.20 kg
oscillator 4 2.00 N/m 1.30 N/m 3.10 kg 2.10 kg
oscillator 5 1.70 N/m 3.10 N/m 4.10 kg 2.50 kg
oscillator 6 2.20 N/m 4.20 N/m 5.10 kg 4.20 kg
oscillator 7 4.10 N/m 2.50 N/m 1.20 kg 5.10 kg
oscillator 8 2.50 N/m 1.80 N/m 5.10 kg 2.30 kg
oscillator 9 10.5 N/m 30.3 N/m 1.30 kg 1.20 kg
oscillator 10 2.70 N/m 0.80 N/m 1.40 kg 5.20 kg
oscillator 11 5.20 N/m 2.20 N/m 3.50 kg 2.40 kg

then the i th oscillator is aware of the state of the jth oscillator
and vice versa. We denote the Laplacian matrix of graph G11 by
LG,11.

In the study, we wish to regulate the mass displacement
of eleven oscillators given arbitrary initial conditions and the
interconnection topology shown in Figure 3. This task can be
resolved by solving the following regulator problem:

min
û

J(û, x̂0) subject to: (68a)

J(û, x̂0) =
∫ ∞

0

(
x̂′Q̂x̂ + û′R̂û

)
dt (68b)

˙̂x = Âx̂ + B̂û, x̂(0) = x̂0 (68c)

û = (diag(F1, . . . , FN)

+ diag(G1, . . . ,GN)(IN ⊗ K1

+ M ⊗ K2)diag(�−1
1 , . . . ,�−1

N ))x̂, (68d)

where

Â = diag(A1, . . . ,AN), B̂ = diag(B1, . . . ,BN), (69)

and

Q̂ = IN ⊗ Q1 + LG,11 ⊗ Q2, R̂ = IN ⊗ R. (70)

We follow a two-stage control design as suggested earlier in the
paper. First, we construct the model-matching design param-
eters Fi, Gi, �i, i = 1, . . . , 11. Since systems (Ai, Bi), i =
1, . . . , 11, are in controllable canonical form, matrices �i, i =
1, . . . , 11, can automatically be selected as the identity matrix.
Setting Gi = B−1

m,i, i = 1, . . . , 11, we design model-matching
state-feedback matrices Fi, i = 1, . . . , 11, in the following fash-
ion. We consider two model-matching performance indexes

represented by

Javer(Am) =
N∑
i=1

‖Fi‖2F =
N∑
i=1

‖B−1
m,i(Am − Am,i)‖2F , (71)

and

Jmax(Am) = max
i∈[1:11]

‖Fi‖2F = max
i∈[1:11]

‖B−1
m,i(Am − Am,i)‖2F , (72)

respectively. Obviously, minimising these two cost functions
over matrices in R

2×4 results in two different target models
which are used later in the simulations.We denote byA∗

m,aver the
minimiser of Javer(·) and by A∗

m,max the approximate minimiser
of Jmax(·). The least-squares solution and the minimax solution
(obtained fromMatLab function fminimaxwith convergence
error tolerance set to 10−5) were obtained as

A∗
m,aver =

[−1.8534 0 1.0178 0
0.9168 0 −0.9168 0

]
,

A∗
m,max =

[−7.7488 0 5.6556 0
6.7050 0 −6.7050 0

]
(73)

respectively. Note the relatively large distance between matrices
A∗
m,aver and A∗

m,max. This stems from the extreme choice of high
springs’ stiffness of oscillator 9 as seen in Table 1. In essence,
the least-squares solution A∗

m,aver attempts to achieve the aver-
age of ‖Fi‖2F , i = 1, . . . , 11, while the approximate minimiser
A∗
m,max is clearly attracted from the outlier matrix Am,9. The

optimal model of the target system arising from the minimi-
sation of the two performance indexes above is obtained from
(Āc + B̄cA∗

m, B̄c),A∗
m denoting each particular optimal solution

shown in (73) respectively.
An alternative target model selection is outlined next. As

mentioned in Section 4, it is possible to achieve a target model
with certain performance specifications. As a third target choice,
we require the eigenvalues of the target system lie in the cone
represented by two line segments starting from the origin, each
line segment forming an angle ofπ/3with the negative real axis.
Requiring λ = 0, ρ = 0, θ = π/3 and minimising parameter γ

subject to (35) gives

A∗
m,LMI =

[−0.9259 0 −2.2734 0
0 −0.9257 0 −2.2733

]
. (74)

Having obtained three different target models, the correspond-
ing model-matching state-feedback gains for each choice are
obtained from:

Fi = B−1
m,i(A

∗
m − Am,i), i = 1, . . . , 11, (75)

by substituting A∗
m,aver, A∗

m,max, A∗
m,LMI into A

∗
m, respectively.

In the second stage of the control design, we define matri-
ces K1, K2, M such that the control law in (68d) is stabilising.
The top-down approach is adopted next. Viewing Figure 3, the
maximum vertex degree of G11 is dmax = 4. For each target sys-
tem, represented as (A, B), we solve LQR problem (A2) for
NL = 4 + 1 systems with tuning parameters (Q1, Q2, R). For
a particular choice of (Q1, Q2, R), we define K1 = −R−1B′P
and K2 = R−1B′P̃2, where P, P̃2 are obtained from solving ARE
(A5), (A6), respectively.



INTERNATIONAL JOURNAL OF CONTROL 13

Overall stability of the distributed scheme is guaranteed by
an appropriate selection of matrixM. Calculating the eigenval-
ues of LG,11 and choosingM = βLG,11, from Theorem A.1, the
closed-loop matrix

Acl,11 = I11 ⊗ A + (I11 ⊗ B)(I11 ⊗ K1 + M ⊗ K2), (76)

is guaranteed to be Hurwitz for all β > 2.5.
Simulation results are presented for two different tuning

parameters (Q1, Q2, R). The first choice penalises more heavily
individual displacements xi,1, xi,2 relative to the second by set-
ting Q1 = diag(1, 1, 0, 0), Q2 = Q1, R = I2. Velocity variables
are not weighted in this study. In the second choice, relative
state information (xi − xj) is emphasised in the cost function by
selecting Q1 = diag(0.01, 0.01, 0, 0), Q2 = 104Q1 and R = I2.
Identical initial conditions are considered for all simulations.
Note that the objective here is not to obtain an optimal overall
design, but rather to illustrate the effects of choosing different
tuning parameters.

Mass (m1) displacements of each oscillator are illustrated in
Figures 4, 6, and 8with LQRperformance index tuned to equally

Figure 4. Displacement of m1 for tuning parameters Q1 = Q2 and least-squares
target selection.

Figure 5. Displacement of m1 for tuning parameters Q2 = 104Q1 and least-
squares target selection.

Figure 6. Displacement ofm1 for tuning parametersQ1 = Q2 andminimax target
selection.

Figure 7. Displacement of m1 for tuning parameters Q2 = 104Q1 and minimax
target selection.

Figure 8. Displacement of m1 for tuning parameters Q1 = Q2 and target system
with performance specifications.
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Figure 9. Displacement ofm1 for tuning parameters Q2 = 104Q2 and target sys-
tem with performance specifications.

weigh individual and relative state displacements by selecting
Q1 = Q2. As indicated in the figures, the stable operation is irre-
spective both of the target selection and of the choice of weight-
ing matrices. However, the behaviour of the network is funda-
mentally altered, as expected, when a target model is selected to
satisfy the performance specifications defined earlier. This dif-
ference in network’s behaviour is illustrated in Figure 8 where
systems depict an overdamped response consistent with the
specifications, in contrast to the oscillatory behaviour demon-
strated when an optimal target model is chosen. This drastic
change in network’s operation with respect to target selection is
amplified when LQR cost function penalises heavily the relative
state difference between neighbouring oscillators by selecting a
large weighting matrix Q2. This is evident in Figures 5, 7 and 9.
We note that the highly oscillatory behaviour illustrated in these
figures stems from the extremely low choice of matrix Q1 =
0.0001Q2 in the local LQR problem (A, B, Q1, R) resulting in
a closed-loopmatrixA − BR−1B′P with some eigenvalues lying
near the imaginary axis. This may be rectified, if required, by
adjusting appropriately the tuning parameter Q1. We consider
such extreme choices of LQR tuning parameters (Q1, Q2, R) to
highlight that the performance of the overall distributed control
system is effectively controlled by tuning appropriately the LQR
cost function. For example, in all three target selection scenar-
ios, we wish to show that when matrix Q2 is much larger than
Q1, agents tend first to reach consensus and then converge to the
origin. In addition, when a damping specification is imposed
on target dynamics both state agreement and target dynam-
ics constraint are satisfied. Thus the simulation results validate
our objectives and prove that the model-matching technique is
consistent and compatible with a distributed LQR formulation.

7. Conclusion

We have removed the restrictive assumption of identical system
dynamics considered in two well-established distributed con-
trol methods. Via a two-stage control strategy, we have shown
that this technical limitation can be relaxed with more natural

requirements. In particular, we assume that agents constitut-
ing the network belong to a family of linear systems com-
pletely characterised by identical sets of controllability indices,
an assumption typically satisfied in many cooperative con-
trol applications. The first stage of the method solves model-
matching problems and synthesises local state-feedback con-
trollers such that the closed-loop agents are mapped to a target
model. In the second stage of the method, the distributed con-
trol scheme is designed on the locally regulated systems via
either a top-down or a bottom-up method. Any stabilising dis-
tributed state-feedback scheme designed on the target dynamics
can be adopted in the proposed setting. This feature is indica-
tive of the high flexibility of our approach. The target model can
be selected so that perturbations in system dynamics resulting
from local state feedback control are minimal. The definition
of the target model can then be attained by minimising a cer-
tain measure of the joint model-matching control effort. In this
respect, closed-loop network performance effectively depends
on the selected LQR optimality criterion andminimally on local
feedback control. Although this study focuses on multi-agent
networks with linear dynamics, it turns out that the proposed
model-matching control protocol can readily be extended to
the nonlinear case via feedback linearisation control. The latter
represents an interesting direction for future research.
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Appendices

Appendix 1. Top-downmethod
Let the aggregate state-space form of NL identical linear systems (A, B) be
given by

˙̃x = Ãx̃ + B̃ũ, x̃(0) = x̃0, (A1)

where Ã = INL ⊗ A, B̃ = INL ⊗ B, and consider a centralized LQRproblem
formulated as

minimize
ũ

J(ũ, x̃0)

=
∫ ∞

0

(
x̃′(INL ⊗ Q1 + Lc ⊗ Q2)x̃ + ũ′(INL ⊗ R)ũ

)
dt

(A2a)

subject to ˙̃x = Ãx̃ + B̃ũ, x̃(0) = x̃0, (A2b)

with Q1 = Q′
1 ≥ 0, Q2 = Q′

2 ≥ 0, R = R′ > 0, and Lc denoting the
Laplacian matrix of a complete graph (i.e.a graph with all possible
edges). Aggregate state and input vectors are defined as earlier, i.e.x̃ =
Col(x1, . . . , xNL ), ũ = Col(u1, . . . , uNL ).

Letting now C′
1C1 = Q1, C′

2C2 = Q2, and assuming that system (A,B)

is controllable and systems (A,C1), (A,C2) are observable, problem (A2)
has a unique stabilising solution ũ = K̃x̃ = −R̃−1B̃′P̃x̃ associated with
minimum achievable performance index J(ũ, x̃0) = x̃′

0P̃x0, where P̃ is the
(unique) stabilising solution to ARE:

Ã′P̃ + P̃Ã − P̃B̃R̃−1B̃′P̃ + Q̃ = 0. (A3)

Due to the special structure of LQR problem (A2), matrix P̃ takes the
following form:

P̃ =

⎡
⎢⎢⎢⎢⎢⎣
P − (NL − 1)P̃2 P̃2 · · · P̃2

P̃2 P − (NL − 1)P̃2
...

...
. . .

. . . P̃2
P̃2 · · · P̃2 P − (NL − 1)P̃2

⎤
⎥⎥⎥⎥⎥⎦ ,

(A4)
where matrix P = P′ > 0 is the stabilising solution to ARE:

A′P + PA − PBR−1B′P + Q1 = 0, (A5)

associated with a single-node LQR problemwith parameters (A, B, Q1, R).
Thus the closed-loop matrix Ac = A − BR−1B′P is Hurwitz. Matrix P̃2, as
appearing in (A4), is a symmetric negative definite matrix associated with

A′
c(−NLP̃2) + (−NLP̃2)Ac − (−NLP̃2)BR−1B′(−NLP̃2) + NLQ2 = 0,

(A6)
which can be interpreted as ARE related to an LQR problem with param-
eters (A − BR−1B′P, B, NLQ2, R). Based on (A5) and (A6), we have the
following property.

Remark A.1: A = A − BR−1B′P + γNLBR−1B′P̃2 is aHurwitzmatrix for
γ = 0 and γ > 1/2:A is clearly Hurwitz for γ = 0 and γ = 1 since P and
−NLP̃2 are stabilising solutions to (A5) and (A6), respectively. The sta-
bility condition for γ > 1/2 stems from the gain-margin property of an
LQR problem with parameters (A − BR−1B′P,B,NLQ2,R) associated with
ARE (A6).

Based on Remark A.1, the following theorem summarises a design
procedure of distributed suboptimal LQR-based network control.

TheoremA.1 (Borrelli &Keviczky, 2008): LetN identical linear agents with
aggregate dynamics as shown in (9a) form a network with topology described
by an undirected graph G with maximum vertex degree dmax. Considering
LQR problem (A2) with NL = dmax + 1 systems, define matrices P and P̃2
via (A5) and (A6), respectively. Let also M ∈ RN×N be a symmetric matrix
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such that:

λi(M) >
NL

2
, ∀λi(M) ∈ S(M)\{0}, (A7)

and construct a distributed state-feedback gain matrix as

K̂ = −IN ⊗ R−1B′P + M ⊗ R−1B′P̃2. (A8)

Then, the closed loop system Acl = IN ⊗ A + (IN ⊗ B)K̂ is asymptotically
stable.

A proof of Theorem A.1 along with several choices of matrix M can
be found in Borrelli and Keviczky (2008). Typically, matrix M is chosen
to reflect the topology of G and can be constructed via the adjacency or
the Laplacian matrix of G. The result provides a suboptimal solution to
problem (5) under the assumption that (Ai, Bi), i = 1, . . . ,N are identical.
A complementary approach to distributed LQR-based control is presented
next.

Appendix 2. Bottom-upmethod
Let the state-space forms of N identical linear systems be given by

ẋi = Axi + Bui, xi(0) = x0,i, i = 1, . . . ,N, (A9)

where (A, B) is a controllable pair, with A ∈ Rn×n, B = [0′
(n−m)×m B′

2]
′ ∈

Rn×m and det(B2) �= 0. Note that the assumed structure of B involves no
loss of generality (provided B has full column rank) as can be verified by a
change of coordinates.

Assigning each system to a node of graph G, the method proposes a
state-feedback control law which, at node level, takes the following form:

ui = Kxi + �K
∑
j|j∈Ni

(xi − xj), i = 1, . . . ,N, (A10)

where K ∈ Rm×n and � ∈ Rm×m are to be designed. At network level, the
aggregate state-space equations are

˙̂x = Âx̂ + B̂û, û = K̂x̂, (A11)

where K̂ = IN ⊗ K + L ⊗ �K is a distributed state-feedback controller.
The problem of finding K and � is tackled in two steps, whereby no inter-
action between agents is initially considered. This allows scaling matrix �

in (A10) to be temporarily taken identically zero and controller K to be
designed as the optimal state-feedback gain derived from an LQR problem
with parameters (A, B, Q1, R), i.e. K = −R−1B′P. Note that P = P′ > 0 is
the solution to ARE:

A′P + PA − PBR−1B′P + Q1 = 0. (A12)

Subsequently, letting L = V�V ′ be the spectral decomposition of the
Laplacian matrix L, where V ∈ RN×N , V ′V = VV ′ = IN , and � =
diag(λ1, . . . , λN), with λi ∈ S(L), i = 1, . . . ,N, the following state-space
transformation is defined: ξ̂ = (V ⊗ In)x̂. It can easily be verified that the
performance index (5a) can be written as

J(·) =
∫ ∞

0

(
ξ̂ ′(IN ⊗ Q1 + � ⊗ Q2)ξ̂ + û′R̂û

)
dt. (A13)

Since � is diagonal, letting [ξ ′
1, . . . , ξ

′
N ]

′ � ξ̂ , (A13) reduces to

J(·) =
N∑
i=1

∫ ∞

0

(
ξ ′
i (Q1 + λiQ2)ξi + u′Rui

)
dt. (A14)

According to Deshpande et al. (2012), an upper bound of (A14) can be
designed as follows. Consider quadratic Lyapunov functions Vi = ξ ′

i Piξi,
i = 1, . . . ,N, where

Pi =
[
Pi,11 0
0 �2

]
> 0, i = 1, . . . ,N. (A15)

Here, Pi,11 ∈ R(n−m)×(n−m), �2 ∈ Rm×m are assumed to be symmetric
positive definite matrices. Note that �2 is taken identical for all i =

1, . . . ,N. Finally, the second step of the design procedure considers the
following optimization problem:

min
N∑
i=1

trace(Pi) subject to: (A16a)

Pi(A + BK + λiB�K) + (A + BK + λiB�K)′Pi + (Q1 + λiQ2)

+ (K + λi�K)′R(K + λi�K) < 0, i = 1, . . . ,N, (A16b)

Pi > 0, i = 1, . . . ,N, (A16c)

the solution of which yields design matrix �. Note that for random initial
state vectors uniformly distributed over the surface of the n-dimensional
unit sphere, the expected value of the optimum performance index J∗(·)
in (A13) satisfies (Boyd et al., 1994; Deshpande et al., 2012)

E[J∗] ≤
N∑
i
trace(Pi), (A17)

with Pi as given in (A15). Thus, the optimisation problem (A16) represents
the minimisation of an upper bound of the global LQR criterion. Detailed
description for how to solve optimisation problem (A16) and construct
matrix � can be found in Deshpande et al. (2012).

Appendix 3. Proof of Theorem 4.1
We denote by

ẋi = Aixi + Biui, (A18)
the state-space form of the ith system, with i = 1, . . . ,N + 1, index N + 1
referring to the target model. We also consider a change of coordinates
xc,i = Pixi, i = 1, . . . ,N + 1. Applying

ui = Fc,ixc,i + Givi, (A19)

for i = 1, . . . ,N, the closed-loop state-space form of the i-th system in the
new coordinates is written as

ẋc,i = (Ac,i + Bc,iFc,i)xc,i + Bc,iGivi, xi = P−1
i xc,i. (A20)

We require that

Ac,i + Bc,iFc,i = Ac,N+1 and Bc,iGi = Bc,N+1, (A21)

for i = 1, . . . ,N. Since the pairs (Ac,i, Bc,i), i = 1, . . . ,N + 1, have identical
c.i., thereby having identical Brunovsky form denoted as (Āc, B̄c), (A21)
leads to

Fc,i = B−1
m,i(Am,N+1 − Am,i), Gi = B−1

m,iBm,N+1, (A22)
where det(Bm,i) �= 0 since, by assumption, rank(Bi) = m, i = 1, . . . ,N.
From (A21) we also write that

Pi(Ai + BiFi)P−1
i = PN+1AN+1P−1

N+1, PiBiGi = PN+1BN+1, (A23)

or

Ai + BiFi = P−1
i PN+1AN+1P−1

N+1Pi, BiGi = P−1
i PN+1BN+1, (A24)

where

Fi = B−1
m,i(Am,N+1 − Am,i)Pi, (A25)

for i= 1, . . . ,N. Denoting�i = P−1
i PN+1 in (A24) proves (23) while (A22)

along with (A25) proves (22).

Appendix 4. Proof of Theorem 4.2
(i) If (Ai, Bi) ∈ S(Ao, Bo), i ∈ {1, . . . ,N}, then

Ai = Ao + BoZi and Bi = BoG−1
i , (A26)

for Zi ∈ Rm×n, Gi ∈ Rm×m, det(Gi) �= 0. Then, BiGi = Bo, ∀i ∈ {1, . . . ,N},
and hence, Im(Bi) = Im(Bo), ∀i ∈ {1, . . . ,N}. Let X = In, Yi = −GiZi.
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Then, ∀(i, j) ∈ {1, . . . ,N}2,
AiX + BiYi − AjX − BjYj = (Ao + BoZi)In + BoG−1

i (−GiZi) (A3)

− (Ao + BoZj)In − BoG−1
j (−GjZj) = 0, (A28)

as required. (ii) Conversely, let {(Ai, Bi)}Ni=1 be given with Im(Bi) = X ⊆
Rn, dim(X ) = m. Then, let Bi have a singular value decomposition

Bi = [
U1 U2

] [�i
0

]
V ′
i , (A29)

for i = 1, . . . ,N, with U1 ∈ Rn×m, Im(U1) = Im(Bi) = X , Im(U2) =
X⊥, det(�i) �= 0 and V ′

iVi = ViV ′
i = Im. Define Bo = U1, Gi = Vi�

−1
i ,

for i = 1, . . . ,N. Then,

BiGi = U1�iV ′
iVi�

−1
i = U1 = Bo, (A30)

which implies thatBi = BoG−1
i , i = 1, . . . ,N. Further,∀(i, j) ∈ {1, . . . ,N}2:

AiX + BiYi − AjX − BjYj = 0, (A31)

=⇒ (Ai − Aj)X + BoG−1
i Yi − BoG−1

j Yj = 0, (A32)

=⇒ Ai − Aj = Bo(G−1
j Yj − G−1

i Yi)X−1, (A33)

=⇒ U ′
2(Ai − Aj) = U ′

2U1(G−1
j Yj − G−1

i Yi)X−1 = 0, (A34)

=⇒ Ai − Aj = BoZij, (A35)

for some Zij ∈ Rm×n. Hence,

A1 − A2 = BoZ12, (A36)

A2 − A3 = BoZ23, (A37)

... (A38)

AN−2 − AN−1 = BoZN−2,N−1, (A39)

AN−1 − AN = BoZN−1,N . (A40)

Set now Ao = AN , which implies AN = Ao + Bo0. Then,

AN−1 = AN + BoZN−1,N = Ao + BoZN−1,N , (A41)

AN−2 = AN−1 + BoZN−2,N−1 = Ao + Bo(ZN−2,N−1 + ZN−1,N), (A42)

... (A43)

A1 = A2 + BoZ12 = Ao + Bo(Z12 + Z23 + · · · + ZN−1,N), (A44)

and consequently,

(Ai, Bi) = S(Ao, Bo), ∀i = 1, . . . ,N. (A45)

Appendix 5.Construction of controllability indices of
nonlinear systems
Let

ẋ = f(x) +
m∑
i=1

uigi(x), x(0) = x0, (A46)

be a nonlinear system, where f , g1, . . . , gm are smooth vector fields on some
neighbourhood X ⊆ Rn near the origin containing x0, with f(0) = 0. We

define the following; the Lie bracket of f and gj is denoted by [f , gj] and is
the vector field defined by

[f , gj] = ∂gj
∂x

f − ∂f
∂x

gj. (A47)

Using this notation, we denote repeated Lie brackets of vector fields f ,
g1, . . . , gm as follows:

adi+1
f gj = [f , adif gj]. (A48)

For instance,

ad1f gj = [f , gi], (A49)

ad2f gj = [f , [f , gj]], (A50)

ad3f gj = [f , [f , [f , gj]]]. (A51)

A set of integers pertaining to vector fields f , g1, . . . , gm associated
with (A46) is constructed via the following procedure.

Procedure A.1: Given system (A46), define the following distributions:

Ci = {adkf gj, 1 ≤ j ≤ m, 0 ≤ k ≤ i}, (A52)

�i = span Ci, (A53)

for i = 0, 1, . . . , n − 1. Assuming that x0 is a regular point of the ith
distribution �i, i = 0, . . . , n − 1, compute

�0 = span{g1, . . . , gm}, (A54)

�1 = span{g1, . . . , gm, [f , g1], . . . , [f , g1]}, (A55)

...

�n−1 = span{g1, . . . , gm, [f , g1], . . . , [f , gm], . . . , adn−1
f g1, . . . ,

adn−1
f gm}. (A56)

Define also

r0 = dim(�0) = m, (A57a)

ri = dim(�i) − dim(�i−1), for i ≥ 1. (A57b)

Then, the ith integer κi, with i = 1, . . . ,m is defined as the number of the
integers ri in (A57) that are greater than or equal to i.
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