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We design two-stage confirmatory clinical trials that use adaptation to find
the subgroup of patients who will benefit from a new treatment, testing for a
treatment effect in each of two disjoint subgroups. Our proposal allows aspects
of the trial, such as recruitment probabilities of each group, to be altered at
an interim analysis. We use the conditional error rate approach to implement
these adaptations with protection of overall error rates. Applying a Bayesian
decision-theoretic framework, we optimize design parameters by maximizing
a utility function that takes the population prevalence of the subgroups into
account. We show results for traditional trials with familywise error rate control
(using a closed testing procedure) as well as for umbrella trials in which only
the per-comparison type 1 error rate is controlled. We present numerical exam-
ples to illustrate the optimization process and the effectiveness of the proposed
designs.
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1 INTRODUCTION

It is increasingly common to integrate subgroup identification and confirmation into a clinical development program.
Biomarker-guided clinical trial designs have been proposed to close the gap between the exploration and confirmation of
subgroup treatment effects. Numerous statistical considerations (eg, multiplicity issues, consistency of treatment effects,
trial design) need to be taken into account to ensure a proper interpretation of study findings, as outlined in recent
reviews.1-4

Several study designs are available for the investigation of subgroups in clinical trials. These include all-comers designs
where biomarker status or subgroup are not considered for enrolment but only in the trial analysis, and stratified designs
where the trial prevalences for each subgroup, that is the proportion of patients recruited from each subgroup, are cho-
sen initially and maintained throughout the trial.5,6 Adaptive enrichment designs have been proposed to increase the
efficiency of these trials.7-11 These designs allow subgroups to be dropped for futility at interim analyses with the rest of
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the trial being conducted with subjects from the remaining groups only. The U.S. Food and Drug Administration guid-
ance on adaptive designs highlights the use of adaptive enrichment designs as a means to increase the chance to detect a
true drug effect over that of a fixed sample design.12

Master protocols provide an infrastructure for efficient study of newly developed compounds or biomarker-defined
subgroups.13,14 Such studies simultaneously evaluate more than one investigational drug or more than one disease type
within the same overall trial structure.15-17 An umbrella trial is a particular type of master protocol in which enrolment is
restricted to a single disease but the patients are screened and assigned to molecularly defined subtrials. Each subtrial may
have different objectives, endpoints or design characteristics. An example of an umbrella trial is the ALCHEMIST trial,
in which patients with nonsmall cell lung cancer are screened for EGFR mutation or ALK rearrangement and assigned
accordingly to subtrials with different treatments.18

In this paper, we study confirmatory trials that allow the investigation of the treatment effect in prespecified nonover-
lapping subgroups. In particular, we focus on adaptive clinical trials that allow the modification of design elements
without compromising the integrity of the trial.19 We propose a class of adaptive enrichment designs that use a Bayesian
decision framework to optimize the design parameters, such as the trial prevalences of the subgroups, the weights for
multiple hypotheses testing, and adaptation rules. A similar framework has been used in References 20-27 for adaptive
enrichment trials.

We consider two types of problem. In the first case, we study designs that preserve the familywise error rate (FWER)
of the trial using a closed testing procedure to test the null hypotheses of no treatment effect in the two subgroups. This
is what is typically required in adaptive enrichment trials where a single treatment is evaluated against a control. In the
second case, we show results for umbrella trial designs without multiplicity adjustment. Here, we consider studies made
up of separate simultaneous trials, for which it has been argued that no control of multiplicity is needed.28 Our work,
therefore, provides an overarching framework for both adaptive enrichment designs and umbrella trials.

The manuscript is organized as follows: In Section 2, we introduce the designs and distinguish between single-stage
designs (Section 2.2) and two-stage designs (Section 2.3), and in Section 2.4 we discuss how to adapt our proposed designs
to umbrella trials. In Sections 3 and 4 we present numerical examples. We describe how our methods may be extended to
designs with more than two stages in Section 5 and we end with conclusions and a discussion in Section 6.

2 BAYES OPTIMAL DESIGNS

2.1 The class of trial designs

Consider a confirmatory parallel-group clinical trial comparing a new treatment and a control with respect to a
pre-defined primary endpoint. We assume the patient population may be divided into disjoint, biomarker-defined sub-
groups. Given a maximum achievable sample size, n, we aim to optimize the trial design by maximising a specific utility
function.

Suppose two biomarker-defined subgroups have been identified before commencing the trial. Let 0 < 𝜆 < 1 be the
prevalence of the first subgroup in the underlying patient population and 1 − 𝜆 the prevalence of the second subgroup.
Let 𝜃1 and 𝜃2 be the treatment effects, denoting the difference in the mean outcome between treatment and control, in the
first and second subgroups, respectively. We consider trials to investigate the null hypotheses H01: 𝜃1 ≤ 0 and H02: 𝜃2 ≤ 0
with corresponding alternative hypotheses H11: 𝜃1 > 0 and H12: 𝜃2 > 0. In Sections 2.2 and 2.3 we consider confirmatory
trials in which strong control of the FWER is imposed.29 In our discussion of umbrella trials in Section 2.4, we assume
multiplicity control is not required.

We consider optimization within a class of designs  that have a single interim analysis at which adaptation can
take place. The total sample size is fixed at n with s(1)n patients in the first stage and s(2)n patients in the second stage,
where s(1) > 0, s(2) ≥ 0 and s(1) + s(2) = 1. In the first stage, r(1)1 s(1)n patients are recruited from subgroup 1 and r(1)2 s(1)n from
subgroup 2, where r(1)1 ≥ 0, r(1)2 ≥ 0 and r(1)1 + r(1)2 = 1. In the second stage, r(2)1 s(2)n patients are recruited from subgroup 1
and r(2)2 s(2)n from subgroup 2, where r(2)1 ≥ 0, r(2)2 ≥ 0 and r(2)1 + r(2)2 = 1, and the values of r(2)1 and r(2)2 may depend on the
first stage data. Within each stage and subgroup, we assume equal allocation to the two treatment arms (this assumption
is not strictly necessary and could be relaxed). Figure 1 gives a schematic representation of the trial design.

The definition of a particular design in  is completed by specifying the multiple testing procedure to be used and the
method for combining data across stages when adaptation occurs. We use a closed testing procedure to control FWER,
applying a weighted Bonferroni procedure to test the intersection hypothesis. In this procedure, weights are initially set
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F I G U R E 1 Schematic
representation of the three types
of trial design. In the single-stage
trial, the sampling prevalences of
the subgroups are fixed
throughout the trial. In standard
adaptive enrichment trials,
patients are recruited with
predefined subgroup prevalences
until the interim analysis, at
which point a decision is taken to
continue with the same
prevalences or to sample from a
single subgroup. In the Bayes
optimal adaptive trial designs
that we consider, the sampling
prevalences may be changed at
the interim analysis [Colour
figure can be viewed at
wileyonlinelibrary.com]

as 𝜔(1)
1 and 𝜔(1)

2 but these may be modified in the second stage if adaptation occurs. The error rate for each hypothesis test
is controlled by preserving the conditional type I error rate when an adaptation is made. Thus, while we use a Bayesian
approach to optimize the design, the trial is analyzed using frequentist procedures that control error rates at the desired
level, adhering to conventional regulatory standards.

We follow a Bayesian decision theoretic approach to optimize over trial designs in the class. In assessing each design,
we assume a prior distribution for the treatment effects in each subgroup and a utility function30 that quantifies the value
of the trial’s outcome. We shall optimize designs with respect to the timing of the interim analysis, the proportion of
patients recruited from the two subgroups at each stage of the trial, the weights in the weighted Bonferroni test, and the
rule for updating these weights given the interim data.

We summarize the data observed during the trial by the symbol �̂�, noting that this summary should contain informa-
tion about the numbers of observations from each subgroup and weights to be used in the weighted Bonferroni test at
each stage, as well as estimates of 𝜃1 and 𝜃2 obtained from observations before and after the interim analysis. We define
our utility function to be

 (�̂�) = 𝜆 1(Reject H01) + (1 − 𝜆) 1(Reject H02), (1)

where 1(.) is the indicator function. By definition, the data summary �̂� contains the information needed to determine if
each of the hypotheses H01 and H02 is rejected.

The utility (1) involves the size of the underlying subgroups as well as the rejection of the corresponding hypotheses.
Thus, rejection of the null hypothesis for a larger subgroup is given greater weight. If the population prevalence of the
two subgroups is not known, a prior on 𝜆 may be added. We note that terms in the function (1) are positive when a null
hypothesis is rejected but the associated treatment effect is very small or even negative: this issue could be addressed by
multiplying each term by an indicator variable which takes the value 1 if the relevant parameter, 𝜃1 or 𝜃2, is larger than
zero or above a clinically relevant threshold (eg, Stallard et al31 where a similar approach is used for treatment selection).

Since the trial design is optimized with respect to the stated utility, it is important to choose a utility function that
reflects accurately the relative importance of possible trial outcomes. Furthermore, the definition of utility can be adapted
to reflect the interest of different stakeholders, for example, Ondra et al21 and Graf, Posch and König24 propose utility
functions that represent the view of a sponsor or take a public health perspective.

Let 𝜋(𝜽) denote the prior distribution for 𝜽 = (𝜃1, 𝜃2). Then, the Bayes expected utility for a trial design a ∈  is

W𝜋(𝜽)(a) = E𝜋(𝜽)
[
E𝜽

{ (�̂�)
}]
,

http://wileyonlinelibrary.com
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where we have taken the expectation over the sampling distribution of the trial data given the true treatment effects 𝜽,
with an outer integral over the prior distribution 𝜋(𝜽).

When choosing the prior 𝜋(𝜽), it is important to remember that W𝜋(𝜽)(a) represents the expected utility, averaged
over 𝜽 ∼ 𝜋(𝜽). If an “uninformative” prior is chosen, this will place weight on extreme scenarios, such as large negative
treatment effects, which have little credibility. Thus, when considering the Bayes optimal design, it is important to use
subjective, informative priors. In some cases, pilot studies or historic observational data may be available to construct the
prior distribution.

In this paper, we assume the prior distribution 𝜋(𝜽) to be bivariate normal,(
𝜃1

𝜃2

)
∼ N

((
𝜇1

𝜇2

)
,

(
𝜓2

1 𝜌𝜓1𝜓2

𝜌𝜓1𝜓2 𝜓2
2

))
. (2)

Here, the correlation coefficient 𝜌 reflects the belief about the existence of common factors that contribute to the
treatment effects in the two subgroups.

2.2 Bayes optimal single-stage design

2.2.1 Patient recruitment and estimation

Suppose we wish to conduct a single-stage trial, which is the special case where s(2) = 0, usually referred to as a stratified
design. For simplicity of notation in this section, we write rjand 𝜔j rather than r(1)j and 𝜔(1)

j for j= 1 and 2. We assume
patients can be recruited at these rates regardless of the true proportions 𝜆 and 1 − 𝜆 in the underlying patient population.
In addition, we assume that patients are randomised between the new treatment and the control with a 1 : 1 allocation
ratio in each subgroup.

During the trial we observe a normally distributed endpoint for each patient and we assume a constant variance for all
observations. For patient i from subgroup j on the new treatment we have Xji ∼ N(𝜇Tj, 𝜎

2), i= 1, … , rjn/2, and for patient
i from subgroup j on the control treatment we have Yji ∼ N(𝜇Cj, 𝜎

2), i= 1, … , rjn/2. The estimate of the treatment effect
𝜃j = 𝜇Tj − 𝜇Cj in subgroup j, is

�̂�j = Xj − Y j =
1

rjn∕2

rjn∕2∑
i=1

Xji −
1

rjn∕2

rjn∕2∑
i=1

Yji, j = 1, 2. (3)

2.2.2 Hypothesis testing in the single-stage design

Consider the case s(2) = 0 and 0< r1 < 1. Then

�̂�j|𝜃j ∼ N
(
𝜃j,

4𝜎2

rjn

)
, j = 1, 2,

and the corresponding Z-values

Zj =
�̂�j
√

rjn
2𝜎

, j = 1, 2,

follow standard normal distributions under the null hypotheses H01 and H02.
We use a closed testing procedure to ensure strong control of the FWER at 𝛼 level.32 To construct this, we require level

𝛼 tests of H01: 𝜃1 ≤ 0, H02: 𝜃2 ≤ 0 and H01 ∩H02: {𝜃1 ≤ 0} ∩ {𝜃2 ≤ 0}. We reject H01 globally if the level 𝛼 tests reject H01
and H01 ∩H02. Similarly, we reject H02 globally if the level 𝛼 tests reject H02 and H01 ∩H02.

For the individual tests we reject H01 if Z1 ≥ Φ−1(1 − 𝛼) and H02 if Z2 ≥ Φ−1(1 − 𝛼). To test the intersection hypothesis,
we use a weighted Bonferroni test: given predefined weights 𝜔1 and 𝜔2, where 𝜔1 + 𝜔2 = 1, we reject H01 ∩H02 if Z1 ≥
Φ−1(1 − 𝜔1𝛼) or Z2 ≥ Φ−1(1 − 𝜔2𝛼). The resulting closed testing procedure is equivalent to the weighted Bonferroni-Holm
test and will be generalised to adaptive tests in Section 2.3.
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We note that the choice of a closed testing procedure is not restrictive in this setting since any procedure that gives
strong control of the FWER may be written as a closed testing procedure.22,23 Furthermore in the special cases r1 = 1
and r2 = 1, where the trial recruits from only one of the subgroups, just one subgroup is tested and only the test of the
individual hypothesis is required. These cases are accommodated in our general class of designs by setting 𝜔1 = 1 when
r1 = 1 and 𝜔2 = 1 when r2 = 1.

2.2.3 Bayesian optimization

In the single-stage trial we wish to optimize the trial prevalences of each subgroup, r1 and r2, and the weights in the
Bonferroni-Holm procedure,𝜔1 and𝜔2. Given the constraints r1 + r2 = 1 and𝜔1 + 𝜔2 = 1, we denote the set of parameters
to optimize by a = (r1, 𝜔1).

Let f (�̂�|𝜽, a) denote the conditional distribution of (�̂�1, �̂�2) given 𝜽 for design parameters a. The Bayes expected utility
is given by

E𝜋(𝜽)
[
E𝜽

[ (�̂�)
]]

= ∫𝜽∫�̂� (�̂�)f (�̂�|𝜽, a)𝜋(𝜽) d�̂� d𝜽.

The Bayes optimal design is given by the pair a = (r1, 𝜔1) that maximises the Bayes expected utility of the trial, that is

argmax
a ∫𝜽∫�̂� (�̂�)f (�̂�|𝜽, a)𝜋(𝜽) d�̂� d𝜽.

Given our simple choices for the prior distribution and the utility function this integral may be computed directly (see
Section S1.2 of Appendix S1). We find the Bayes optimal single-stage trial by a numerical search over possible values of a.

2.3 Bayes optimal two-stage adaptive design

2.3.1 Adding a second stage

Consider now a two-stage design in which data from the first stage inform adaptations in the second stage. The estimate
of 𝜃j for subgroup j based on data collected in stage k is

�̂�
(k)
j = X

(k)
j − Y

(k)
j , j = 1, 2, k = 1, 2, (4)

where X
(k)
j and Y

(k)
j are the mean responses in subgroup j in stage k for the treatment arm and control arm, respectively.

Given the value of 𝜽 = (𝜃1, 𝜃2), the first stage estimates are independent with distributions

�̂�
(1)
j |𝜃j ∼ N

⎛⎜⎜⎝𝜃j,
4𝜎2

r(1)j s(1)n

⎞⎟⎟⎠ , j = 1, 2.

The trial prevalences, r(2)1 and r(2)2 , of the two subgroups in the second stage are dependent on �̂�(1)1 and �̂�(1)2 but, conditional
on r(2)1 and r(2)2 , the second-stage estimates are independent and conditionally independent of �̂�(1)1 and �̂�(1)2 with

�̂�
(2)
j |r(2)j , 𝜃j ∼ N

⎛⎜⎜⎝𝜃j,
4𝜎2

r(2)j s(2)n

⎞⎟⎟⎠ , j = 1, 2.

2.3.2 Hypothesis testing in the two-stage adaptive design

There is a variety of approaches to test multiple hypotheses in a two-stage adaptive design.33-36 We shall use a closed
testing procedure to ensure strong control of the FWER at level 𝛼, as we did for the single-stage design in Section 2.2.2. In



2944 BALLARINI et al.

constructing level 𝛼 tests of the null hypotheses H01, H02 and H01 ∩H02 we employ the conditional error rate approach.37,38

Based on a reference design and its predefined tests, we calculate the conditional error rate for each hypothesis and define
adaptive tests which preserve this conditional error rate, thereby controlling the overall type I error rate.

Consider a reference design in which the trial prevalences of subgroups 1 and 2 and the weights in the weighted Bon-
ferroni test of H01 ∩H02 remain the same across stages, so r(2)j = r(1)j and𝜔(2)

j = 𝜔
(1)
j for j= 1 and 2. In the reference design,

tests are performed by pooling the stage-wise data within each subgroup and treatment arm, and using the conventional
test statistics, as for the single-stage test. For j= 1 and 2, the pooled estimate of 𝜃j across the two stages of the trial is

�̂�
(p)
j = s(1) �̂�(1)j + s(2) �̂�(2)j ,

with corresponding Z-value

Z(p)
j =

�̂�
(p)
j√

4𝜎2∕(r(1)j n)
,

and the null hypothesis H0j is rejected at level 𝛼 if Z(p)
j > Φ−1(1 − 𝛼). Let

Z(1)
j =

�̂�
(1)
j√

4𝜎2∕(r(1)j s(1)n)
, j = 1, 2,

then the conditional distribution of Z(p)
j given the interim data is

Z(p)
j |Z(1)

j , 𝜃j ∼ N
⎛⎜⎜⎜⎝
√

s(1)Z(1)
j + s(2)𝜃j

√
r(1)j n

2𝜎
, s(2)

⎞⎟⎟⎟⎠ ,
and the conditional error rates for the tests of H0j are

Aj = P

(
Z(p)

j > Φ−1(1 − 𝛼) | Z(1)
j , 𝜃j = 0

)
, j = 1, 2. (5)

Similarly, the conditional error rate for the test of H01 ∩H02 is

A12 = P

{
Z(p)

1 > Φ−1(1 − 𝜔(1)
1 𝛼) or Z(p)

2 > Φ−1(1 − 𝜔(1)
2 𝛼) | Z(1)

1 ,Z(1)
2 , 𝜃1 = 𝜃2 = 0

}
. (6)

See Section S1.1 of Appendix S1 for further details on the derivations of the conditional distributions.
In the adaptive design, if no adaptations are made at the interim analysis we apply the tests as defined for the reference

design. Suppose now that adaptations are made and the trial prevalences in stage 2 are set to be r(2)1 and r(2)2 with weights
𝜔
(2)
1 and 𝜔(2)

2 for the weighted Bonferroni test. In this case, we calculate the conditional error rates A1, A2 and A12 prior
to adaptation from Equations (5) and (6). We then define tests of H01, H02 and H01 ∩H02 based on stage 2 data alone that
have these conditional error rates as their type 1 error probabilities. Given the updated r(2)1 and r(2)2 ,

Z(2)
j | r(2)j , 𝜃j ∼ N

⎛⎜⎜⎜⎝𝜃j

√
r(2)j s(2)n

2𝜎
, 1

⎞⎟⎟⎟⎠ , j = 1, 2.

Thus, in our level 𝛼 tests, we reject H01 if Z(2)
1 > Φ−1(1 − A1), we reject H02 if Z(2)

2 > Φ−1(1 − A2) and, applying a weighted
Bonferroni test with weights 𝜔(2)

1 and 𝜔
(2)
2 , we reject H01 ∩H02 if Z(2)

1 > Φ−1(1 − 𝜔(2)
1 A12) or Z(2)

2 > Φ−1(1 − 𝜔(2)
2 A12).

Finally, following the closed testing procedure, we reject H01 globally if the level 𝛼 tests reject H01 and H01 ∩H02 and we
reject H02 globally if the level 𝛼 tests reject H02 and H01 ∩H02.
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2.3.3 Two-stage optimization

We denote the set of initial design parameters by a1 = (s(1), r(1)1 , 𝜔
(1)
1 ) and the second-stage parameters by a2 = (r(2)1 , 𝜔

(2)
1 ).

Let �̂�(1) = (�̂�(1)1 , �̂�
(1)
2 ) and �̂�(2) = (�̂�(2)1 , �̂�

(2)
2 ) be the vectors of estimated treatment effects in each subgroup, based on the first

and second-stage data, respectively, as defined in Equation (4). Denote the conditional distributions of the estimated
effects in each stage of the trial by f1(�̂�

(1)|𝜽, a1) and f2(�̂�
(2)|𝜽, a2) and the posterior distribution of 𝜽 given the stage 1

observations by 𝜋(𝜽|�̂�(1), a1). Then, the Bayes expected utility can be written as

E𝜋(𝜽)
[
E𝜽

[ (�̂�)
]]

= ∫𝜽∫�̂�(1)∫�̂�(2) (�̂�)f2(�̂�
(2)|𝜽, a2)f1(�̂�

(1)|𝜽, a1)𝜋(𝜽) d�̂�(2)d�̂�(1)d𝜽. (7)

We find the optimal combination of design parameters a1 before stage 1 and a2 before stage 2 using the backward
induction principle. First we construct the Bayes optimal a2 for all possible �̂�(1) and a1. Then we construct the Bayes
optimal a1 given that the optimal a2 will be used in the second stage of the trial.

Optimizing the decision at the interim analysis
Denoting the marginal distribution of �̂�(1) by f1(�̂�

(1)
, a1), we have

𝜋(𝜽) f1(�̂�
(1)|𝜽, a1) = f1(�̂�

(1)
, a1) 𝜋(𝜽|�̂�(1), a1),

and the right-hand side of Equation (7) can be written as

∫�̂�(1) f1(�̂�
(1)
, a1)∫𝜽∫�̂�(2) (�̂�)f2(�̂�

(2)|𝜽, a2)𝜋(𝜽|�̂�(1), a1) d�̂�(2) d𝜽 d�̂�(1).

Thus, given a1 and �̂�(1), the Bayes optimal decision for the second stage is the choice of a2 that maximises

W2(a2, a1, �̂�
(1)) = ∫𝜽∫�̂�(2) (�̂�)f2(�̂�

(2)|𝜽, a1)𝜋(𝜽|�̂�(1), a1) d�̂�(2) d𝜽.

For known values of �̂�(1) and a1, we can find the conditional error rates A1, A2, and A12 used in hypothesis testing in stage
2, hence we may evaluate  (�̂�) for given a1, �̂�(1), a2, and �̂�(2). Our choices for the prior distribution and utility function
mean that it is quite straightforward to compute W2(a2, a1, �̂�

(1)) for given a1, a2 and �̂�(1). Thus, we are able to perform a
numerical search seeking

argmax
a2

W2(a2, a1, �̂�
(1)),

to find the Bayes optimal a2.

Overall trial optimization
Having found the Bayes optimal parameters a2 for the second stage of the trial as a function of (a1, �̂�

(1)), we determine a1,
the Bayes optimal choice for the initial parameters, as

argmax
a1

∫𝜽∫�̂�(1)W2(a2, a1, �̂�
(1))f (�̂�(1)|𝜽, a1)𝜋(𝜽) d�̂�(1)d𝜽.

We conduct a search over possible values of a1 to maximize the above integral and find the optimal choice of a1. Computing
the integral for a given value of a1 by numerical integration is not straightforward. Instead, we have used Monte Carlo
simulation to carry out this calculation for each value of a1.

2.4 Bayes optimal umbrella trials

We now consider the case of umbrella trials, where it has been argued that no multiplicity adjustment is required as the
hypotheses to be tested concern different experimental treatments targeted to different molecular markers or subgroups.28
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T A B L E 1 The scenarios considered in the numerical examples. The term “opt” indicates that parameters were optimized, while
“N/A” means the parameters are not applicable. The parameters 𝜃1 and 𝜃2 are either specified by a prior distribution in which
𝜓1 = 𝜓2 = 𝜓 or specific values of 𝜃1 and 𝜃2 are given

𝝀 𝝁1 𝝁2 𝝍 𝝆 s(1) r(1)1 𝝎
(1)
1 𝜽1 𝜽2

Figure 2 Single-stage 0.3 0 to 0.3 0, 0.2 0.02 to 0.44 0.5 N/A opt opt prior

Figure S2 Single-stage 0.3 0 to 0.3 0, 0.2 0.2 −1 to 1 N/A opt opt prior

Figure 3 Interim decision 0.3 0.1 0 0.2 −0.8, 0.5 0.25, 0.5 0.3 0.3 prior

Figure 4 Two-stage 0.3 0, 0.3 0, 0.2 0.2 0.5 0.1 to0.9 opt opt prior

Figure 5 Two-stage 0.3 0 to 0.3 0, 0.2 0.02 to 0.4 0.5 opt opt opt prior

Figure S10 Two-stage 0.3 0 to 0.3 0, 0.2 0.2 −0.8 to 0.8 opt opt opt prior

Figures 6 and S11 Power 0.3 0.1, 0.2 0 0.2 0.5 opt opt opt 0 to 0.3 0, 0.2

Since each treatment is assessed separately, an umbrella trial can be viewed a set of independent trials even though they
are run under a single protocol.

We consider umbrella trials with two subgroups, as in the previous sections. However, without multiplicity adjust-
ment, the hypothesis testing procedure reduces to testing the elementary hypotheses H01 and H02 each at level 𝛼. In
applying the conditional error rate approach, only the computation of conditional error rates A1 and A2 from Equation (5)
is required. Then, with Z(2)

1 and Z(2)
2 denoting the test statistics based on second-stage data only, H01 is rejected if

Z(2)
1 > Φ−1(1 − A1) and H02 is rejected if Z(2)

2 > Φ−1(1 − A2). No test of the intersection hypothesis is performed.
Design parameters are optimized with respect to the utility function in Equation (1). To frame the optimization

problem in the same way as in the previous sections, the interim decision in a two-stage umbrella trial will optimize
only the second-stage subgroup trial prevalences, so a2 = (r(2)1 ), while in the first stage we optimize the subgroup trial
prevalences and the timing of the interim analysis, so a1 = (s(1), r(1)1 ). In the case of a single-stage umbrella trial, only the
subgroup prevalences are optimized, so a= (r1). We have used a normal prior distribution, as defined in Equation (2), in
optimizing the design parameters of single-stage and two-stage trials. In the case of two-stage designs, the interim anal-
ysis uses the test statistics from the first stage and the prior distribution to perform adaptations and the final tests are
performed using the conditional error rate approach.

3 NUMERICAL EXAMPLES AND COMPARISONS

In this section, we give numerical examples of optimized single-stage and two-stage designs in a range of scenarios. We
show results for cases with and without multiplicity correction, referring to these as enrichment and umbrella trials,
respectively. Additionally, we illustrate the optimization of the decision rule at the interim analysis. In Table 1, we provide
an overview of the scenarios considered and the parameters that are optimized.

3.1 Optimal single-stage designs

In studying the impact of the prior distribution on optimized trial design parameters a = (r1, 𝜔1) for single-stage designs,
we consider studies where the response variance is 𝜎2 = 1 and the total sample size is fixed at n= 700. We assume a
multivariate normal prior distribution for 𝜽 as defined in Equation (2) with parameters 𝜇1, 𝜇2, 𝜓1 = 𝜓2 = 𝜓 and 𝜌, and
we compute optimal designs for a variety of such priors. The FWER in enrichment designs and the per-comparison error
rate in umbrella designs is fixed at 𝛼 = 0.05.

In Figure 2 we display the effect of the prior SD on the optimal design parameters when the population prevalence
of subgroup 1 is 𝜆 = 0.3. We considered prior SDs 𝜓 of 0.02, 0.0632, 0.1, 0.1414, 0.2, 0.3162, and 0.44, corresponding to
information from studies with 10 000, 1000, 400, 200, 100, 40 and 20 subjects in each subgroup.

The mean and variance of the prior distribution have a large impact on the optimal design parameters r1 and 𝜔1. The
optimal values of r1 and 𝜔1 and the expected utility of the resulting designs are very similar for enrichment and umbrella
designs. If 𝜇1 > 0 and 𝜇2 = 0, optimal values of r1 and 𝜔1 are larger than 0.3, the population prevalence of subgroup 1, so



BALLARINI et al. 2947

μ1 =0 μ1 =0.1 μ1 =0.2 μ1 =0.3

μ
2

=
0

μ
2

=
0.2

0.
02

00
0.
06

32
0.
10

00
0.
14

14
0.
20

00

0.
28

28
0.
31

62

0.
44

72

0.
02

00
0.
06

32
0.
10

00
0.
14

14
0.
20

00

0.
28

28
0.
31

62

0.
44

72

0.
02

00
0.
06

32
0.
10

00
0.
14

14
0.
20

00

0.
28

28
0.
31

62

0.
44

72

0.
02

00
0.
06

32
0.
10

00
0.
14

14
0.
20

00

0.
28

28
0.
31

62

0.
44

72

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

ψ

va
lu
e

E(utility)

ω1

r1

enrichment

umbrella

F I G U R E 2 Optimized design parameters for single-stage designs and the expected utility, averaged over the prior. Parameters are
a = (r1, 𝜔1) for enrichment trials and a= (r1) for umbrella trials. Results are classified by 𝜇1 and 𝜇2, the prior means of 𝜃1 and 𝜃2, and the
prior SD 𝜓 = 𝜓1 = 𝜓2. The prior correlation between 𝜃1 and 𝜃2 is fixed at 𝜌 = 0.5 and the population prevalence of subgroup 1 is assumed to
be 𝜆 = 0.3 [Colour figure can be viewed at wileyonlinelibrary.com]

the design over-samples this subgroup. If 𝜇1 = 0 and 𝜇2 > 0, the optimal design under-samples subgroup 1. When both
𝜇1 and 𝜇2 are greater than zero, the optimal design has r1 < 0.5 and 𝜔1 < 0.5, reflecting the fact that it is advantageous to
sample more subjects from subgroup 2 and allocate more type 1 error probability to the test of H02 since 𝜆 = 0.3 implies
that P(Reject H02) has a greater weight than P(Reject H01) in the utility function.

In extreme cases where 𝜇1 = 0, 𝜇2 ≥ 0 and the prior variance is small, the optimal design has r1 = 0, so only subgroup
2 is sampled. When 𝜇1 > 0, 𝜇2 = 0 and the prior variance is small, the optimal design has r1 = 1 and only subgroup 1 is
sampled.

In Figure S2, we show the effect of the prior correlation 𝜌 on the design parameters when the prior SD is 𝜓 = 0.2. We
observe that the correlation has an impact on the optimal weight 𝜔1 for testing the intersection hypothesis, in particular,
when the treatment effects 𝜃1 and 𝜃2 have a high positive correlation, it is better to place most weight on one hypothesis
rather than split the weight between the two hypotheses.

In Figures S3 and S4 we present further results for different values of 𝜆, varying 𝜌 in Figure S3 and𝜓 in Figure S4. Since
the utility to be maximized depends on the population prevalences, the optimal design parameters vary considerably with
𝜆. We see from Figure S3 that 𝜌 has only a small impact on the optimal value of r1 when adjusting for multiplicity and
no impact at all in umbrella designs where no multiplicity adjustment is made. Figure S4 shows that the dependence of
optimal design parameters on𝜓 is similar to that seen in Figure 2: when the prior variance is large the optimal choices for
r1 and 𝜔1 are close to 𝜆, while for smaller variances the optimal designs depend on the prior means 𝜇1 and 𝜇2 as well as 𝜆.

3.2 Optimal two-stage designs

Figure 3 illustrates optimal adaptation rules for two-stage designs. In these examples n= 700, 𝜎2 = 1, the population
prevalence of subgroup 1 is 𝜆 = 0.3, and the prior distribution for 𝜽 has parameters 𝜇1 = 0.1, 𝜇2 = 0, 𝜓1 = 𝜓2 = 0.2 and
𝜌 = 0.5 or −0.8. The first-stage design parameters have not been optimized and are set as r(1)1 = 𝜔

(1)
1 = 0.3 with s(1) equal to

0.25 or 0.5. The FWER in enrichment designs and the per-comparison error rate in umbrella designs is fixed at 𝛼 = 0.05.
The adaptation rules specify the second-stage design parameters a2 = (r(2)1 , 𝜔

(2)
1 ) that optimize the expected utility, as

defined in Equation (1), given the first stage statistics Z1
(1) and Z2

(1). The optimal r(2)1 and 𝜔(2)
1 are calculated using the

http://wileyonlinelibrary.com
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F I G U R E 3 Examples of optimal adaptation rules when 𝜆 = 0.3, the prior distribution for 𝜽 has parameters 𝜇1 = 0.1, 𝜇2 = 0,
𝜓1 = 𝜓2 = 0.2 and 𝜌 = 0.5 or −0.8, and first stage design parameters are set as r(1)1 = 𝜔

(1)
1 = 0.3 and s(1) = 0.25 or 0.5. Optimized values of r(2)1

and 𝜔(2)
1 are shown for each combination of first stage Z-values Z(1)

1 and Z(1)
2 . Also shown are the conditional expected utility when the trial

proceeds using the optimized values of r(2)1 and 𝜔(2)
1 and the increase in conditional expected utility compared to continuing with no

adaptation. In each plot, the red circle indicates the 95% highest density region for the distribution of (Z(1)
1 ,Z(1)

2 ) when the true treatment
effects are 𝜃1 = 0.3 and 𝜃2 = 0 and the green ellipse indicates the 95% highest density region for the prior predictive distribution of (Z(1)

1 ,Z(1)
2 ).

The white regions contain values of (Z(1)
1 ,Z(1)

2 ) for which the maximum conditional expected utility is below 0.01. In these cases the numerical
optimization becomes unstable and optimal values for r(2)1 and 𝜔(2)

1 are not displayed [Colour figure can be viewed at wileyonlinelibrary.com]

Hooke-Jeeves derivative-free minimization algorithm through the hjkb function in the dfoptim package39 in R.40 We
also calculated the conditional expected utility if the trial continued with no adaptation, so r(2)1 = r(1)1 and 𝜔(2)

1 = 𝜔
(1)
1 , and

the plots in the bottom row of Figure 3 show the gain in the conditional expected utility due to the optimized adaptation.
In Section S3 of Appendix S1, we present optimal interim rules for further values of 𝜆.

In Figure 4, we illustrate the procedure for optimizing first-stage design parameters, a = (s(1), r(1)1 , 𝜔
(1)
1 ) for an enrich-

ment design or a = (s(1), r(1)1 ) for an umbrella design. For each combination of prior parameters and first-stage design
parameters a, we generated 1000 samples of first-stage data under treatment effects drawn from the prior distribution. For
each first-stage dataset, we found the optimal second-stage design parameters and noted the conditional expected utility
using these optimal parameters. We took the average of the 1000 values of the optimized conditional expected utility as
our simulation-based estimate of the expected utility for this choice of a. The optimal first-stage design parameters for a
given prior distribution are those values of s(1), r(1)1 , and in the case of an enrichment design 𝜔(1)

1 , that yield the highest
expected utility.

http://wileyonlinelibrary.com
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F I G U R E 4 Optimization of first-stage design parameters. The population prevalence of subgroup 1 is 𝜆 = 0.3 and the prior distribution
for 𝜽 has parameters 𝜇1 = 0 or 0.3, 𝜇2 = 0 or 0.2, 𝜓1 = 𝜓2 = 0.2 and 𝜌 = 0.5. Each column shows results for a different value of s(1)1 . The plots
show the expected utility as a function of r(1)1 , with coloured solid lines for different values of 𝜔(1)

1 in an enrichment trial and black dashed
lines for an umbrella trial with no multiplicity adjustment. In each panel, the colored dot indicates the combination of r(1)1 and 𝜔(1)

1 that yields
the maximum expected utility for an enrichment design and the black dot shows the optimum value of r(1)1 for an umbrella design [Colour
figure can be viewed at wileyonlinelibrary.com]

Our results show the impact of the prior distribution on the optimized trial design parameters. The flat lines when
s(1) = 0.1 indicate that the expected utility is hardly affected by the choice of r(1)1 and 𝜔(1)

1 when the interim analysis is
performed early in the trial. When the interim analysis is performed later, the choice of first-stage design parameters is
more important. It should be noted that for each pair of prior means (𝜇1, 𝜇2), expected utility close to the overall optimum
can be achieved using a wide range of first-stage design parameters as long as the second-stage design is optimized, given
the first-stage data.

In Figures 5 and S10 we present optimized values of the first-stage design parameters, s(1), r(1)1 , and 𝜔(1)
1 , given that

optimal values of the second-stage design parameters will be used following the interim analysis. The results are similar
to those observed for optimal single-stage designs. The prior variance has a large impact on the first-stage optimal design:
for smaller variances, interim analyses closer to the beginning of the trial yield a larger expected utility, while with larger
variances, interim analyses after around 40% to 60% of the patients have been recruited are preferable. When the prior
means are both 0 the optimal design parameters r(1)1 and 𝜔(1)

1 are close to the subgroup 1 prevalence 𝜆. However, if the
prior suggests a benefit is more likely in subgroup 1, the optimal design over-samples this subgroup, increasing its trial
prevalence and testing weight. Figure S10 shows that, for enrichment designs, the prior correlation 𝜌 has a large impact
on the choice of 𝜔(1)

1 but little effect on the optimal trial prevalences.
As for single-stage designs, the optimal values of r(1)1 are similar for enrichment and umbrella designs. A notable

difference is that while the prior correlation 𝜌 has no effect at all on the optimal values of r1 in a single-stage umbrella

http://wileyonlinelibrary.com
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F I G U R E 5 Optimized design parameters for two-stage designs and the expected utility, averaged over the prior. Parameters are
a = (s(1), r(1)1 , 𝜔

(1)
1 ) for enrichment trials and a = (s(1), r(1)1 ) for umbrella trials. Results are classified by 𝜇1 and 𝜇2, the prior means for 𝜃1 and 𝜃2,

and by the prior SD 𝜓 = 𝜓1 = 𝜓2. The prior correlation between 𝜃1 and 𝜃2 is fixed at 𝜌 = 0.5 and the population prevalence of subgroup 1 is
assumed to be 𝜆 = 0.3 [Colour figure can be viewed at wileyonlinelibrary.com]

design, the optimal value of r(1)1 in a two-stage umbrella design does show a small dependence on 𝜌. In the case of a
single-stage umbrella design, the marginal distributions of �̂�1 and �̂�2 do not depend on 𝜌 and thus, with no multiplicity
adjustment in testing H01 and H02, the expected value of the utility defined in Equation (1) does not depend on 𝜌. However,
in a two-stage umbrella trial, the optimal choice of r(2)1 and the resulting conditional expected utility depends on both �̂�(1)1

and �̂�(1)2 and it is the joint distribution of (�̂�(1)1 , �̂�
(2)
1 ), which depends on 𝜌, that determines the optimal value of r(1)1 .

It should be noted that the procedures we have described impose a high computational burden. While it is relatively
straightforward to optimize the decision at the interim analysis, the overall optimization of the trial is performed using
simulations over a grid of values for the first-stage design parameters. More rapid computation of the optimal values may
be achieved by using approximations to the utility when extreme first-stage values are observed, for example, if both Z(1)

1
and Z(1)

2 are large and negative, the expected utility is practically zero for all choices of r(2)1 and 𝜔(2)
1 . In practice, one may

wish to add the option of stopping the trial for futility if extreme negative results are observed at the interim analysis.
The methods we have presented can be extended to find efficient designs that incorporate this option by working with a
utility of the form

𝜆 1(Reject H01) + (1 − 𝜆) 1(Reject H02) + k s(2) n 1(Stop at the interim analysis),

assigning a positive value k to each observation saved by early stopping.

3.3 Performance of the Bayes optimal design under specific alternative hypotheses

In this section we consider adaptive designs optimized for a particular prior distribution for 𝜽 = (𝜃1, 𝜃2) but we evaluate
their performance under specific values of 𝜽. We consider trials with a total sample size n= 700, response variance 𝜎2 = 1,
and population prevalence of subgroup 1 equal to 𝜆 = 0.3. As a benchmark for comparison, we consider a nonoptimized,
single-stage design with r1 = 𝜆 and 𝜔1 = 0.5. We derive and assess the performance of single-stage designs for which
design parameters r1 and 𝜔1 are optimized as described in Section 2.2, and we derive and assess two-stage designs for
which first-stage design parameters and the adaptation rule are optimized as described in Section 2.3. In optimizing

http://wileyonlinelibrary.com
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F I G U R E 6 Operating characteristics of enrichment trials. The prior distribution for subgroup treatment effects (𝜃1, 𝜃2) is normal with
means 𝜇1 = 0.1 or 0.2 and 𝜇2 = 0, SDs 𝜓1 = 𝜓2 = 0.2 and correlation 𝜌 = 0.5. The total sample size is 700 and the population prevalence of
subgroup 1 is 𝜆 = 0.3. Results are given for 𝜃1 ranging from 0 to 0.3 and 𝜃2 = 0 or 0.2. The black dashed lines in the two top rows are placed at
0.05 as reference to the significance level, while the dashed lines in the third row indicates the expected utility of the trial given the initial
design parameters [Colour figure can be viewed at wileyonlinelibrary.com]

designs, we assume the normal prior distribution for 𝜽 presented in Equation (2) with 𝜇1 = 0.1 or 0.2, 𝜇2 = 0, 𝜓1 = 𝜓2 =
0.2 and 𝜌 = 0.5. These priors reflects the belief that a treatment benefit is more likely in subgroup 1. The prior SD of 0.2
corresponds to information from a trial with 100 subjects in each subgroup.

We evaluate the operating characteristics of the designs for values of 𝜃1 ranging from 0 to 0.3 and 𝜃2 = 0 or 0.2. This
creates scenarios with a treatment effect in only one subgroup when 𝜃2 = 0 or with a treatment effect in both subgroups
when 𝜃2 = 0.2 and 𝜃1 > 0. Figure 6 presents simulation results for enrichment trials and Figure S11 presents results for
umbrella trials. The plots show the probabilities of rejecting H01 and H02 and the average utility at the end of the trial for a
variety of combinations of 𝜇1, 𝜇2, 𝜃1, and 𝜃2. For the scenarios considered, we see that optimizing the trial for the assumed
priors leads to a substantial increase in the power to reject H01 as compared to the nonoptimized, single-stage design.
However, the optimized designs have lower power to reject H02 when 𝜃2 = 0.2. The optimized designs have a higher
average utility than the nonoptimized design when 𝜃2 = 0. If 𝜃2 = 0.2, the two-stage design optimized for the prior with
𝜇1 = 0.1 has similar average utility to the the nonoptimized design but average utility of the optimized one-stage design
is a little lower; both one-stage and two-stage designs optimized for the prior with 𝜇1 = 0.2 have lower average utility

http://wileyonlinelibrary.com
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F I G U R E 7 Interim optimization. The color
indicates the expected utility given interim data for
each combination of second-stage prevalence r(2)1 for
subgroup 1 and testing weight 𝜔(2)

1 given the interim
data [Colour figure can be viewed at
wileyonlinelibrary.com]

than the the nonoptimized design. These results are in line with previous studies41,42 which showed adaptive enrichment
designs provide the greatest advantage when a treatment effect is present in only one subgroup.

4 WORKED EXAMPLE: IMPLEMENTING AN OPTIMIZED ADAPTIVE
ENRICHMENT TRIAL

Suppose we wish to compare an experimental treatment to a control in a phase III clinical trial. We intend to use adaptive
sample allocation as there is reason to believe the new treatment may only benefit a subgroup of patients. This trial will
have a normally distributed endpoint with variance 𝜎2 = 1 and, using information from a pilot study with 40 subjects
from each subgroup, we construct a prior distribution 𝜋(𝜽) for the treatment effects(

𝜃1

𝜃2

)
∼ N

((
0.1
0

)
,

(
0.1 0.05

0.05 0.1

))
.

The total sample size for the trial is planned to be n= 700 subjects. The population prevalence of subgroup 1 is 𝜆 = 0.3
and a FWER 𝛼 = 0.05 is to be used for the study.

Under the above assumptions, the results in Figure 5 for 𝜓 =
√

0.1 = 0.3162 show the optimal first-stage parameters
to be s(1) = 0.5, r(1)1 = 0.4 and 𝜔(1)

1 = 0.4. Thus, we recruit 350 patients in the first stage of the trial with 40% of these from
subgroup 1.

Now suppose we observe interim estimates �̂�(1)1 = 0.442 and �̂�(1)2 = 0.033. These give Z-values Z(1)
1 = 2.616 and Z(1)

2 =
0.238 and the conditional error rates, as defined in Equations (5) and (6), are A1 = 0.6140, A2 = 0.0184, and A12 = 0.3912.
At this point, we optimize the second-stage design parameters r(2)1 and 𝜔(2)

1 . Figure 7 plots the conditional expected util-
ity as a function of r(2)1 and 𝜔(2)

1 on a color-coded scale. The maximum conditional expected utility, obtained using the
Hooke-Jeeves algorithm, is at r(2)1 = 0.314 and 𝜔(2)

1 = 0.953. We therefore conduct the second stage of the trial using these
parameter values.

Suppose, after recruiting the remaining subjects, the second-stage estimates are �̂�(2)1 = 0.272 and �̂�(2)2 = −0.002. The
corresponding Z-values are Z(2)

1 = 1.428 and Z(2)
2 = −0.015, with P-values P(2)

1 = .077 and P(2)
2 = .506. Since P(2)

1 < A1 and

P(2)
1 < .3728 = 0.953 × 0.3912 = 𝜔

(2)
1 × A12,

we can globally reject H01. However, since P(2)
2 > A2 we cannot reject H02.

http://wileyonlinelibrary.com
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5 EXTENDING THE DESIGNS

The methods we have described can be extended to trial designs with more than two stages or more than two subgroups.
Suppose K disjoint subgroups S1, … , SK are specified and we wish to test the null hypotheses H0k: 𝜃k ≤ 0 against the
alternatives H1k: 𝜃k > 0, where 𝜃k denotes the treatment effect in subgroup k. In a trial with J stages and a total sample
size n, we recruit s(j)n patients in each stage, where s(1) + · · · + s(J ) = 1, and at stage j we recruit r(j)k s(j)n patients from
subgroups k= 1, … , K, where r(j)1 + · · · + r(j)K = 1. The data provide estimates �̂�(j)1 , … , �̂�

(j)
K , at each stage j, from which we

obtain Z-values Z(j)
1 , … ,Z(j)

K . In an enrichment design where control of the FWER is required, a suitable closed testing
procedure is defined in terms of the Z(j)

k . Then, H0k is rejected globally at level 𝛼 if all intersection hypotheses involving
H0k are rejected in local, level 𝛼 tests.

An adaptive design can be created by repeated application of the conditional error approach. An initial reference
design is stated and when adaptation occurs, the modified testing procedure is defined so as to preserve the conditional
error rate of each individual and intersection hypothesis test under the updated design for the remainder of the trial.
This updated design becomes the new reference design under which conditional error rates will be calculated at any
subsequent adaptation point.

We can consider optimizing the choice of the design parameters s(j) and r(j)k or weights in the tests of intersec-
tion hypotheses. The generalization of our earlier approach requires a prior distribution for the treatment effects 𝜽 =
(𝜃1, … , 𝜃K) and a utility function whose expectation is to be maximised. If 𝜆k is the population prevalence of subgroup
k, k= 1, … , K, a natural extension of Equation (1) is

 (�̂�) =
K∑

k=1
𝜆k 1(Reject H0k).

In Section 2.3.3 we applied backwards induction to find the optimal design for a trial with two subgroups and two stages.
Since the dimension of the state space grows with the number of subgroups and stages, such a direct application of
backwards induction may not be feasible more generally. Other methods of optimization can be employed to find efficient,
if not globally optimal, designs. For example, in a multistage design one may construct the adaptation rule at each interim
analysis assuming the trial will continue without any further adaptation. We note that the optimization process is liable
to be computationally intensive and it is important to commit resources to assess trial designs in a timely manner.

6 DISCUSSION

We have presented a Bayesian decision theoretic framework in which a clinical trial design can be optimized when
two disjoint subgroups are under investigation. Our approach has both Bayesian and frequentist elements: the rules for
hypothesis testing control the type I error rate and Bayesian decision tools are used to choose the design parameters
within this scheme. This allows optimization of the sampling prevalence of each subgroup and weights in a weighted
Bonferroni test of the intersection hypothesis, as well as optimal adaptation of these design parameters at the interim
analysis. The optimal design maximizes the expected value of the specified utility function, averaged over the prior dis-
tribution assumed for the treatment effects in the two subgroups. After focusing on two-stage trials with two subgroups
in Sections 2 and 4, we outlined how our optimization framework may be extended to allow more subgroups or stages in
the trial in Section 5.

Our results provide insights into how the mean and variance of the prior distribution affects the optimal timing of
the interim analysis and the trial prevalences for each subgroup of patients. In practice, it is advisable to consider the
sensitivity of the design’s efficiency to modeling assumptions in order to create a trial design with robust efficiency.

In contrast to adaptive enrichment designs where recruitment is either from the full patient population or restricted
to a single subgroup, we propose sampling from each subgroup at a specific rate which may differ from its population
prevalence. We acknowledge that achieving the optimized prevalences in a trial may be challenging: additional screening
will be required and over-sampling a particular subgroup may delay a trial compared to an all-comers design.43,44 If
logistical considerations imply that each subgroup is either dropped or sampled according to its population prevalence,
our framework can still be used to optimize the other design parameters.
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In Section 3.2 we discussed designs with the option of early stopping for futility and how the utility function might be
modified to facilitate optimizing such designs. A similar approach could be followed to relax the requirement of a fixed
total sample size and allow re-assessment of future sample size at an interim analysis.

We have defined methods for normally distributed observations and a normal prior for treatment effects. While this
has allowed us to demonstrate how to construct such designs, it is not a necessary restriction. With normally distributed
responses, one could allow a separate response variance for each patient subgroup, placing prior distributions on these
variances. In trials with other types of response distribution, including survival or categorical endpoints, standardized
test statistics will still be approximately normally distributed if sample sizes are large enough, although nonnormal prior
distributions may be appropriate.45

We assumed the null hypotheses of interest are that there is no treatment effect in each subgroup. Our decision the-
oretic framework can accommodate other formulations, such as testing for treatment effects in the full population and
in one particular subgroup,8,20,22-24,46-48 in which case the stage-wise test statistics for different subgroups are correlated.
Care is required to ensure that enrichment designs control FWER when test statistics are correlated but this is not an
issue in umbrella trials with separate level 𝛼 tests for each null hypothesis.31

Although we have focused on hypothesis testing instead, estimating treatment effects after an adaptive trial is also
important.49 Simultaneous or marginal confidence regions for parameters, with or without multiplicity adjustment, can
be constructed following a two-stage design.50,51 Point estimates may be obtained by a weighted average of the treatment
effects observed in the first and second stages11,52 but, due to the sample size adaptations and subgroup selection these
estimators may be biased with the bias depending on the specific adaptation rules and the true parameter values. A
thorough investigation of estimation for adaptive enrichment designs will be a topic of future research.

Software in the form of an R package is available at https://github.com/nicoballarini/OptimalTrial.
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