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I) Supplemental Methods 

 

Next-Generation Sequencing 

Next-Generation Sequencing (NGS) analysis included a set of genes with recurrent mutations 

in myeloid neoplasms and was performed on an Illumina MiSeq platform (Illumina Inc, San 

Diego, CA, USA). Details about the sequencing process and the genes included have been 

described previously [1]. A variant allele frequency of 5% or higher was considered as positive 

for analysis.  

 

Cell culture and lentiviral transduction 

The cell lines employed in this work were obtained from the German National Resource Center 

for Biological Material (DSMZ, Braunschweig, Germany). Cells were maintained at 37°C/5% 

CO2 in DMEM for 293T HEK packaging cells and RPMI-1640 for HL-60 and THP-1 cells. 

The medium was enriched with 10% heat-inactivated fetal bovine serum (FBS) and 1X 

Antibiotic-Antimycotic (Thermo Fischer Scientific, Waltham, MA, USA, including 100U/mL 

penicillin, 100 mg/mL streptomycin and 0.25 mg/mL amphotericin B). DMEM medium was 

further supplemented with 1X GlutaMAX (Thermo Fischer Scientific). Of note, cells were 

serum starved before testing the effects of EZH2inact on MAPK/ERK signaling and its biological 

effects (for details see description of the respective experiments). This previously reported 

approach[2, 3] was chosen to provide a clean experimental setting, where the effects of 

EZH2inact on RASmut-driven MAPK/ERK activation are not biased by the unphysiologic 

abundance of growth factors in situations of full serum supplementation. Stocks of cells were 

regularly re-authenticated in the laboratory by variable number of tandem repeat DNA profiling 

(VNTR) as previously described [4]. Low passage stocks were frozen and cells were always 

passaged for less than 6 months after resuscitation. 



293T packaging cells were transfected using CalPhos Mammalian Transfection Kit (Clontech, 

Mountain View, CA, USA) following the manufacturer’s instructions. For EZH2 knockdown 

(EZH2-KD), HL-60 and THP-1 cells were lentivirally transduced with either EZH2 short 

hairpin RNA (shRNA) or empty control (both psi-LVRU6GP; Genecopoeia, Rockville, MD, 

USA), respectively. Selection of stable clones for HL-60 and THP-1 cells was performed by 

adding to the media 0.5 μg/ml and 1 μg/ml puromycin, respectively (Invitrogen, Carlsbad, CA, 

USA). 

 

Treatment with EZH2 inhibitors  

EZH2 inhibition was performed in HL-60 and THP-1 cells using GSK-126 (BioVision, 

Milpitas, CA, USA) and 3-Deazaneplanocin A (DZNep; Cayman Chemicals, Ann Arbor, MI, 

USA). GSK-126 was added to the cells at a concentration of 3µM for 7 days in RPMI-1640 

media supplemented with 5% FBS. HL-60 and THP-1 cells were treated with 2µM and 1µM 

of DZNep, respectively, for 24 hours using RPMI-1640 media supplemented with 5% FBS. 

The same concentration of DMSO was added to the control cells. After the treatment with the 

inhibitors, cells were collected and used for Immunoblot analysis. 

 

MEK inhibitor treatment; apoptosis and proliferation assays  

HL-60 and THP-1 cells were treated with the MEK-inhibitor U0126 (Promega, Madison, WI, 

USA) at a concentration of 5µM or 10µM for 24 hours, using RPMI-1640 supplemented with 

0.05% FBS. Control cells were treated with an equal amount of DMSO. For apoptosis assays, 

cells were then collected and resuspended in AnnexinV binding buffer (BD biosciences, 

Franklin Lakes, NJ, USA), stained with AnnexinV and 7-AAD and apoptosis was measured 

using the CytoFLEX LX flow cytometer (Beckman Coulter, Brea, CA, USA). Proliferation was 

assessed by Bromodeoxyuridine (BrdU)/ 7AAD flowcytometric assays as previously described 

[4]. 



 

Immunoblot analysis 

Ice-cold RIPA-Buffer (Sigma), supplemented with protease and phosphatase inhibitor cocktails 

(Thermo Fisher Scientific), was added to the HL-60 and THP-1 cell pellets in order to obtain 

cell lysis. HL-60 EZH2-KD and THP-1 EZH2-KD cells, as well as the respective control cells, 

were starved for 24 hours using RPMI-1640 supplemented with 0.05% FBS before lysis. 

Protein concentration was measured using the DC Protein Assay kit (Bio-Rad, Hercules, CA, 

USA) following the manufacturer’s protocol. Immunoblots were then performed as previously 

described [3] using Mini-PROTEAN TGX gels for electrophoresis (Bio-Rad) and the Bio-Rad 

Trans Blot TurboBlotting System for transfer. Polyvinylidene difluoride membranes (Bio-Rad) 

were incubated with anti-EZH2 (#3147S; Cell Signaling Technologies, Danvers, MA, USA), 

anti-ERK (#M5670; Sigma-Aldrich, St. Louis, MO, USA), anti-pERK (#4370; Cell Signaling), 

anti-H3K27me3 (#9733; Cell Signaling) and anti-Vinculin (#ab129002; Abcam, Cambridge, 

UK). The intensity of the bands was compared using ImageJ [5]. 

 

RNA-sequencing 

The amount of total RNA was quantified using the Qubit 2.0 Fluorometric Quantitation system 

(Thermo Fisher Scientific) and the RNA integrity number (RIN) was determined using the 

Experion Automated Electrophoresis System (Bio-Rad). RNA-sequencing (RNA-seq) libraries 

were prepared with the TruSeq Stranded mRNA LT sample preparation kit (Illumina) using 

Sciclone and Zephyr liquid handling workstations (PerkinElmer, Waltham, MA, USA) for pre- 

and post-PCR steps, respectively. Library concentrations were quantified with the Qubit 2.0 

Fluorometric Quantitation system (Life Technologies, Carlsbad, CA, USA) and the size 

distribution was assessed using the Experion Automated Electrophoresis System (Bio-Rad). 

For sequencing, samples were diluted and pooled into NGS libraries in equimolar amounts. 



Expression profiling libraries were sequenced on HiSeq 3000/4000 instruments (Illumina) in 

50-base-pair, single-end mode. Base calls, provided by the real-time analysis (RTA) software 

(Illumina), were subsequently converted into multiplexed, unaligned BAM format before 

demultiplexing into sample-specific, unaligned BAM files. For raw data processing off the 

instruments, custom programs, based on Picard tools (https://broadinstitute.github.io/picard/), 

were used. 

NGS reads were mapped to the Genome Reference Consortium GRCh38 assembly via “Spliced 

Transcripts Alignment to a Reference” (STAR) [6] utilising the “basic” Ensembl transcript 

annotation from version e96 (April 2019) as reference transcriptome. Since the hg38 assembly 

flavour of the UCSC Genome Browser was preferred for alignment and downstream data 

processing with Bioconductor packages for technical reasons, Ensembl transcript annotation 

had to be adjusted to UCSC Genome Browser sequence region names before the alignment. 

STAR was run with options suggested by the ENCODE project. Reads overlapping transcript 

features were counted with the summarizeOverlaps function of the Bioconductor 

GenomicAlignments package 

(https://bioconductor.org/packages/release/bioc/html/GenomicAlignments.html), taking into 

account that the Illumina TruSeq stranded mRNA protocol leads to sequencing of the second 

strand so that all reads needed inverting before counting. The Bioconductor DESeq2 [7] 

package was then used to test for differential expression based on a model using the negative 

binomial distribution. 

An initial exploratory analysis included principal component analysis (PCA), multi-

dimensional scaling (MDS), as well as sample distance and expression heatmap plots, all 

annotated with variables used in the expression modelling (ggplot2 

[https://ggplot2.tidyverse.org [8]], Bioconductor ComplexHeatmap - 

https://bioconductor.org/packages/release/bioc/html/ComplexHeatmap.html - and 

EnhancedVolcano). Result lists were annotated, filtered for significantly differentially up- and 

https://broadinstitute.github.io/picard/
https://bioconductor.org/packages/release/bioc/html/GenomicAlignments.html
https://ggplot2.tidyverse.org/
https://bioconductor.org/packages/release/bioc/html/ComplexHeatmap.html


down-regulated genes and independently subjected to gene set enrichment analysis (Enrichr; 

https://amp.pharm.mssm.edu/Enrichr/ and https://www.gsea-msigdb.org/gsea/index.jsp) [9, 

10]. RNA-seq data have been deposited in the National Center for Biotechnology Information 

(NCBI)’s Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) and are 

accessible through GEO accession number GSE150029. 

 

Database retrieval and statistical analyses 

EZH2 mRNA expression data were downloaded from The Cancer Genome Atlas AML cohort 

(TCGA; V2-RNA-seq by Expectation-Maximization [V2 RSEM]) [11], and the Cancer Cell 

Line Encyclopedia (CCLE; RNA-seq Reads Per Kilobase Million [RPKM]) [12]. Mutations in 

NRAS, KRAS, CBL, NF1 and/or PTPN11, as well as mutations and/or copy number losses in 

EZH2 were downloaded from these cohorts as well. All data were extracted via a database 

retrieval employing the cBioPortal (https://www.cbioportal.org/) [13, 14]. All data for the 

TCGA cohort were downloaded 07-APR-2020, data from the CCLE were downloaded 04-FEB-

2020.  

For ChIP-seq, data from a publicly available dataset[15] were downloaded via the NCBI GEO 

(https://www.ncbi.nlm.nih.gov/geo/; GSE61785) on 01-OCT-2020. ChIP-seq tracks (wig-files) 

were imported into the Integrative Genome Viewer suit 

(https://software.broadinstitute.org/software/igv/). H3K27me3 tracks were displayed together 

with IgG ChIP tracks and uniformly scaled for each locus. 

One-sample t test against a reference value of 1 was employed for the statistical analysis of the 

Immunoblot results, while paired t test was used for the analysis of the apoptosis assays. Group 

differences in EZH2 expression values of primary patients were compared by Mann-Whitney 

U test, whereas Fisher’s exact test was employed for comparison of all dichotomous variables 

in patient specimens. Kaplan-Meier curves were used to analyze overall patient survival; 

differences between groups were assessed by log rank test. SPSS (SPSS Inc., Version 25) and 

https://amp.pharm.mssm.edu/Enrichr/
https://www.gsea-msigdb.org/gsea/index.jsp
https://www.ncbi.nlm.nih.gov/geo/
https://www.cbioportal.org/
https://www.ncbi.nlm.nih.gov/geo/
https://software.broadinstitute.org/software/igv/


R version 3.6.1 were employed for the analyses and a p value <0.05 was considered statistically 

significant.  

 

Study approval 

The study was approved by the institutional review board of the Medical University of Graz 

(EK 30-464 ex 17/18) and conducted in agreement with the declaration of Helsinki. 

  



II) Supplemental Figures and Tables 

 

 

 

 

Supplemental Figure 1. mRNA expression of EZH2 is decreased in RASmut AML patients 

(TCGA cohort). NGS data for the RASmut status and EZH2 mRNA expression data were 

downloaded from The Cancer Genome Atlas AML cohort (TCGA; complete information 

available in 162 cases) [11]. EZH2 expression is displayed as V2-RNA-seq by Expectation-

Maximization (V2 RSEM). Differences between patients with (n=28) and without (n=134) 

RASmut were assessed by Mann-Whitney U test. 

  



 

Supplemental Figure 2: EZH2 mRNA expression is not decreased in HL-60 and THP-1 

cells. To exclude EZH2 inactivation by decreased EZH2 expression in HL-60 and THP-1 cells, 

EZH2 mRNA expression was analyzed within the Cancer Cell Line Encyclopedia [12] via a 

database retrieval employing the cBioPortal (https://www.cbioportal.org/) [13, 14]. RNA-seq 

Reads Per Kilobase Million (RPKM) data of 921 cell lines were analyzed and displayed in a 

histogram. The expression values of HL-60 and THP-1 are close to and above of the median 

(orange line), which excludes the aberrant expression of EZH2 within these cell lines.  

https://www.cbioportal.org/


 

 

Supplemental Figure 3: Pharmacological EZH2 inactivation in myeloid cells with 

mutations modifying RAS (RASmut) amplifies MAPK/ERK signaling. The activation of the 

MAPK/ERK pathway was assessed by the phosphorylation of ERK (pERK) by Immunoblot in 

THP-1 cells (NRAS G12D-mutated) after treatment with the EZH2 inhibitors GSK-126 (A) 

and DZNep (B). GSK-126 was added at a concentration of 3µM for 7 days, DZNep at a 

concentration of 1µM for 24 hours. The graphs denote the relative increase of pERK expression 

in the EZH2-inhibitor conditions compared to controls and represent the mean +/- standard 

deviation (SD) of at least three independent experiments. Comparisons against the control 

condition were performed using a one-sample t test against a reference value of 1.  

  



 

Supplemental Figure 4: EZH2 inactivation by EZH2 knockdown in RASmut myeloid cells 

amplifies MAPK/ERK signaling. The activation of the MAPK/ERK pathway was assessed 

by the phosphorylation of ERK (pERK) by Immunoblot in THP-1 cells (NRAS G12D-mutated) 

after lentiviral shRNA-mediated EZH2 knockdown (EZH2-KD). The graph denotes the relative 

increase of pERK expression in the EZH2-KD condition compared to the respective control and 

represents the mean +/- SD of at least three independent experiments. Comparisons against the 

control condition were performed using a one-sample t test against a reference value of 1. 

 

  



 

Supplemental Figure 5. EZH2 inactivation in RASmut myeloid cells drives MEK-inhibitor 

sensitivity – effects on apoptosis. THP-1 cells with and without EZH2-KD were treated with 

the MEK-inhibitor U0126 (5µM for 24 hours). Subsequently, pERK was assessed by 

Immunoblot and apoptosis was measures by Annexin-V/7AAD assay. The graphs denote the 

x-fold increase in apoptosis in U0126-treated cells compared to the respective vehicle-treated 

control situation and represent the mean +/- SD. Differences between cells with and without 

EZH2-KD were assessed by paired t test. 

 



 

Supplemental Figure 6: EZH2 inactivation in RASmut myeloid cells drives MEK-inhibitor 

sensitivity – effects on proliferation. HL-60 cells with and without EZH2-KD were treated 

with the MEK-inhibitor U0126 (10µM for 24 hours). Subsequently, cell cycle/proliferation was 

measured by BrdU/7-AAD assays. The graphs denote the x-fold decrease in proliferating cells 

in S-Phase in U0126-treated cells compared to the respective vehicle-treated control situation 

and represent the mean +/- SD. Differences between cells with and without EZH2-KD were 

assessed by paired t test. 

 

 

 

 

 

 

 

 



 

 

 

 

 



 

 

 

Supplemental Figure 7: The upregulation of RAS-signaling activators in cells with EZH2 

inactivation is associated with decreased H3K27 triple-methylation within their 

promoter/adjacent genomic regions. H3K27me3 signals in selected promoter and/or adjacent 

genomic regions was re-analyzed in a publicly available ChIP-seq dataset derived from AML 

cells with EZH2 loss (NCBI Gene Expression Omnibus dataset GSE61785).[15]  Presented 

genes were selected based on the fact that they were previously described as activators of RAS-

signaling,[16-21] and that they were significantly upregulated in AML cells with EZH2-

knockdown within our RNA-seq experiments (Supplemental Table 4). These analyses revealed 

decreased H3K27me3 signals in their promoter and/or adjacent genomic regions in cells with 

EZH2 loss (third lane, light blue, MV411_R_H3K27me3) as compared to the wildtype situation 

(first lane, dark blue, MV411_H3K27me3). The respective isotype controls are displayed in 

pink. The position and the reading direction of the analyzed genes are indicated by a red arrow. 

Relevant genomic regions are highlighted by red rectangles.  ChIP tracks have been uniformly 

scaled for each locus. 



NRAS 
A59D (1); G12A (1); G12D (16); G12R (3); G12V (5); G13D (4); G13V (5); 

Q61K (2); Y64D (3); Y64N (1) 

KRAS 

A146T (2); A18D (3); D33E (1); G12C (1); G12D (3); G12R (3); G12S (2); 

G12V (1); G13C (1); G13D (1); G60V (1); G60_Q61insRL (1); L19F (1); 

Q22K (1); Q61R (1); T58I (2) 

PTPN11 
A72T (1); D286Y (1); D61G (1); G503R (1); G93E (1); I96F (1); M504V (2); 

P144L (1); Q510H (1); V203M (1) 

NF1 

A2389V (1); D176E (3); E977* (1); F1536S (1); G751V (1); I1641T (1); 

I2015N (1); I558T (1); L1015P (1); M577I (1); R1477T (1); R2258* (1); 

R2452C (1); T1184fs (1); V1707D (1); V533F (1); Y2264* (1); Y794C (1); 

Y1930fs (1) 

CBL 

C381R (1); C381S (1); C381W (1); C381Y (1); C384Y (1); C404R (1); 

C404Y (3); C416S (3); C416W (1); C416Y (1); C419S (1); C419Y (1); 

D390H (1); D390V (1); F418S (2); G413D (1); H398N (1); H398Y (1); 

K382E (1); L380P (3); P417R (1); P417S (2); R420G (1); R420L (2); R420Q 

(1); S376P (1); Y371C (1); Y371H (3); E366fs (1); D460del (1) 

EZH2 

D185H (28); D677G (1); Q553del (1); S371R (1); D730*fs*1 (1); V675M (1); 

C536F (1); C571Y (1); C695W (1); D659G (1); G660E (1); H501Q (1); 

K740Sfs (1); M121K (1); N130D (1); N668Y (1); P587fs (1); R288Q (1); 

R298H (1); R690H (2); S651L (1); T683I  (1) 

  

Supplemental Table 1: Mutations identified in the ABCMML dataset. Patients with 

variations in red were categorized as RASmut and EZH2inact, respectively. In more detail, they 

fulfilled one of the following criteria: i) the variant has been described in the literature as 

relevant for the clinical management of myeloid neoplasms (diagnostic, prognostic and/or 

treatment significance); ii) the variant has been described as pathogenic in functional in-

vitro/in-vivo assays; iii) the variant is categorized as “pathogenic” or “likely pathogenic” in the 

established mutation databases VarSome (https://varsome.com/) and/or COSMIC (Catalogue 

of Somatic Mutations in Cancer,  https://cancer.sanger.ac.uk/cosmic). NF1 M577I and CBL 

D460del failed to fulfill these criteria. However, the affected patients additionally carried a 

NRAS G12D (in the case of CBL D460del) and CBL H398Y (in the case of NF1 M577I). 

Therefore, the patients were still categorized as RASmut.  

Of note, the EZH2 D185H variation has been described as somatic mutation and single 

nucleotide polymporphism previously. Importantly, however, functional studies demonstrated 

impaired EZH2 methyltransferase activity for this substitution, and it was reported as risk factor 

https://varsome.com/
https://cancer.sanger.ac.uk/cosmic


for developing malignancies [22-24]. Additionally, D185H was included as relevant 

substitution in clinical studies of myeloid neoplasms, where EZH2 mutations were associated 

with decreased EZH2 protein expression and shortened survival [25]. Therefore, EZH2 D185H 

was not excluded from analysis. 

 

 

 

 

Supplemental Table 2: Mutations identified in the TCGA-AML dataset. Patients with 

variations in red were categorized as RASmut and EZH2inact, respectively. In more detail, they 

fulfilled one of the following criteria: i) the variant has been described in the literature as 

relevant for the clinical management of myeloid neoplasms (diagnostic, prognostic and/or 

treatment significance); ii) the variant has been described as pathogenic in functional in-

vitro/in-vivo assays; iii) the variant is categorized as “pathogenic” or “likely pathogenic” in the 

established mutation databases VarSome (https://varsome.com/) and/or COSMIC (Catalogue 

of Somatic Mutations in Cancer,  https://cancer.sanger.ac.uk/cosmic). NF1[+]LRRC37B[+] 

fusion [In-frame] could not be classified as clearly disease-relevant according to these stringent 

criteria. However, the affected patient carried an additional NRAS G12D mutation and was 

therefore still classified as RASmut. 

 

 

NRAS G12C(1); G12D(3); G13D(5); Q61H(2); Q61K(2); Q61P(1); Q61R(1)  

KRAS G12D(2); G12V(1); G13D(1); I36M(1); A59E(1); Q61H(1); A146T(1) 

PTPN11 G60V(1); F71L(1); A72V(1); P491L(1); S502P(1); Q510H(1); 

Q510L(1); I545L(1) 

NF1 NF1(+)LRRC37B(+) fusion (In-frame)(1); R1276Q(1); R1306*(1) 

CBL Q367R(1); X366_splice(1) 

EZH2 E740Afs*24 I739Mfs*25(1); R685H(1); X727_splice(1) 

https://varsome.com/
https://cancer.sanger.ac.uk/cosmic


 

 

 

 

Supplemental Table 3: Absence of mutations and/or copy number aberrations of EZH2 

in HL-60 and THP-1. Mutations and copy number aberrations were analyzed in the RAS-

modifying genes NRAS, KRAS, CBL, NF1, and PTPN11, as well as in EZH2 within the Cancer 

Cell Line Encyclopedia [12]. These analyses demonstrate the absence of EZH2 mutations and 

copy number alterations in both cell lines. Both cell lines harbor an activating hotspot mutation 

in NRAS. 

 

 

  



 

Supplemental Table 4: Genes upregulated in HL-60 cells with EZH2 knockdown. The 

genes associated with RAS-MAPK/ERK signalling, which are upregulated in HL-60 cells 

harboring EZH2 knockdown, are listed in this table. The genes were obtained using Gene set 

enrichment analysis (WikiPathways_2019_Human; Enrichr; 

https://amp.pharm.mssm.edu/Enrichr/). 

 

 

 

Category Upregulated Genes

PI3K-Akt Signaling Pathway (WP4172)

CDKN1A;TGFA;PIK3CB;THBS3;RPTOR;FGF5;PPP2CB;CCND2;PPP2R3C;MYC; 

AKT2;MYB;AKT1;THEM4;HSP90AA1;MAP2K2;ANGPT1;HGF;RPS6;OSM;RBL2; 

G6PC3;CCNE1;RHEB;CDC37;PPP2R2D;BCL2;SGK1;TLR4

Ras Signaling (WP4223)
RALA;MAP2K2;RAB5C;RASA4B;RALB;PLA2G2C;PIK3CB;RASGRP2;PLD1;ETS2; 

RASA3;RASA4;AKT2;AKT1;ABL2;RAC3;CALM3;CALM1;PRKACB;RALGDS;PAK4

EGF/EGFR Signaling Pathway (WP437)

VAV3;STAT5B;RALA;MAP2K2;RALB;SH3KBP1;STAT3;PEBP1;FOS;PLD1;PIK3C2B;

DOK2;RPS6KA5;HGS;RPS6KA2;GRB10;AKT1;FOSB;SPRY2;ARHGEF1;RALGDS; 

CRK

MAPK Signaling Pathway (WP382)

ARRB1;ECSIT;RASGRP2;FGF5;RPS6KA5;PPP3CC;DUSP10;MYC;AKT2;CASP3; 

MKNK2;AKT1;RAC3;FLNB;PRKACB;MAP3K7;MAP2K3;MAP2K4;DAXX;DUSP2; 

MAP2K2;GADD45A;CACNA2D1;CACNA2D4;FOS;MAPK8IP2;MAPK12;CDC25B; 

MAPK13;NR4A1;PPP5C;CACNB3;FAS;TAB1;MAP3K14;CRK

ErbB Signaling Pathway (WP673)
MAP2K4;STAT5B;CDKN1A;MAP2K2;TGFA;PIK3CB;MYC;AKT2;AKT1;ABL2;CRK; 

HBEGF;PAK4

PDGF Pathway (WP2526) NFKBIA;MAP2K4;STAT3;ARFIP2;WASL;FOS

p38 MAPK Signaling Pathway (WP400) MAP2K4;DAXX;RPS6KA5;TRADD;MYC;MAP3K7

VEGFA-VEGFR2 Signaling Pathway (WP3888)

YWHAE;CXCL8;MAPKAP1;TXN;SHB;NDRG1;ICAM1;CAMKK2;HDAC7;RPS6KA5; 

ADAMTS1;RACK1;GRB10;AKT1;FLNB;WASF1;MAP2K3;EGR1;MAP2K4;HSP90AA1;

JAG1;MAP2K2;STAT3;RPS6;LIMK1;PLAUR;NFATC2;F3;MAPK12;NFKBIA;NR4A1; 

HGS;AKT1S1;BCL2;CTNNB1;FAS;PRKD2;CRK;HBEGF

TGF-beta Signaling Pathway (WP366)

CDKN1A;CUL1;TERT;MYC;AKT1;E2F5;MAP3K7;JUNB;MAP2K3;TGIF1;MAP2K4; 

TRAP1;MAP2K2;SMURF2;WWP1;FOS;PJA1;RBL2;DAB2;ZEB2;ZFYVE16;TFDP1; 

HGS;STRAP;FOSB;SIK1;TAB1

IL-2 Signaling Pathway (WP49) STAT5B;CCND2;MAP2K2;CISH;MYC;STAT3;RPS6;BCL2;AKT1;FOS

AMP-activated Protein Kinase (AMPK) Signaling (WP1403)
CDKN1A;CPT1A;PFKFB3;PRKAG1;PRKAG2;PIK3CB;EEF2;ADIPOR2;CAMKK1; 

CAMKK2;RPTOR;AKT2;FASN;LEPR;AKT1;PRKACB

Wnt Signaling Pathway (WP363)
GSK3A;CTBP1;LEF1;LRP5;NFATC2;CSNK1D;CSNK1E;MYC;DVL1;AKT1;CTNNB1; 

PIP5K1B;TCF3;MAP3K7

Hedgehog Signaling Pathway (WP4249)
SMURF2;PTCH1;PTCH2;ARRB1;CSNK1D;CSNK1E;GRK3;CCND2;SUFU;GPR161; 

BCL2;PRKACB;CSNK1G2

TNF alpha Signaling Pathway (WP231)

TRADD;CUL1;PYGL;TXN;CASP3;PSMD2;AKT1;RFFL;BID;MAP3K7;GLUL;MAP2K3;

MAP2K4;TRAP1;HSP90AA1;CSNK2A1;CYBA;TRAF1;NFKBIA;CDC37;BAX;TAB1; 

MAP3K14;NSMAF;NFKBIB

https://amp.pharm.mssm.edu/Enrichr/
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