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SUMMARY

Investigating normal human gene expression in tissues with high-throughput
transcriptomic and proteomic data. — By Mitra Parissa Barzine.

With the improvement of high-throughput technologies during the last decade, several studies exploring
the normal gene expression in human tissues have been published. Many studies examine the
transcriptome with RNA sequencing (RNA-Seq), and others probe the proteome with unlabelled
bottom-up Mass Spectrometry. As the sampling of undiseased tissues is difficult, the community often
refers to expression atlases, which are collating these studies, to support or validate new findings.
Despite many overlapping tissues between the studies, few atlases attempt to integrate all the data.

In this thesis, I investigate the consistency of gene expression across tissues and studies in human with the
help of transcriptomics captured with high-throughput sequencing (RNA-Seq) and proteomics generated
with label-free bottom-up Mass Spectrometry (MS).

After describing the transcriptomic and proteomic data and their state-of-art processing (Chapter 2), I
review several identified sources of biases and my approaches to limit their effects (Chapter 3).

The integration of the various transcriptomic datasets (Chapter 4) shows that the biological signal
dominates the technical noise for RNA-Seq data. Tissue samples display higher levels of correlation for
identical tissues in other studies than for other tissues in the same datasets. In other words, interstudy
correlations for identical tissues are higher than correlations between different tissues within the same
study. Globally, genes show similar expression profiles across studies for a given set of tissues. All genes
categories are involved, including the tissue-specific genes and the ubiquitously expressed ones.

After briefly discussing comparisons of proteomic data, I introduce a new proteomic quantification
method, PPKM (Chapter 5). The PPKM method allows me to quantify about twice as many proteins
compared to usual methods.

Limited numbers of previous studies have shown various correlation levels between the expression of
protein and mRNA in studies combining high-throughput transcriptomics and proteomics. I show that,
for most tissues, we can observe quite good correlation levels (i.e. significantly better than expected by
chance), even when the samples have different biological and technical backgrounds as they have been
independently sourced. Many genes share similar patterns of expression between the two biological
layers, e.g. genes that have a protein detected in a single tissue are more likely to have their mRNA
showing specificity for the same tissue. Additionally, three groups of genes present functional
enrichments of biological processes. Genes having highly correlated protein and mRNA expressions
across tissues are enriched in catabolic processes. Genes having the most anticorrelated expressions are
enriched for ribosomes and ncRNAs regulation. Genes with a protein detected in a single tissue are
enriched in signalling processes.

Overall, this thesis describes a global picture of the current consolidated knowledge we can extract from
the joint study of public transcriptomic and proteomic data. Beyond confirming or improving observations
reported in the literature, this work provides new insights into the ubiquitous and tissue-specific genes.
To the best of my knowledge, this work has also established the most extensive list of genes with robust
transcriptomic and proteomic expression across tissues and studies. Furthermore, it shows that joint
study approaches can help the development of newmethods, like the new proteomic PPKM quantification
method. Finally, the highlighting of distinct functional enrichment profiles for groups of genes across
tissues and studies lays a framework for further research.
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I am not accustomed to saying anything with certainty after
only one or two observations.

Andreas Vesalius [O’Malley, 1964]

IN TRODUCT ION

Today, we have comprehensive knowledge about the structure and functioning of the
human body at the macroscopic level¹. At the microscopic level, however, the
identification and mapping of macromolecules (e.g. RNAs, proteins), their function and
whereabouts still need to be refined.

Beyond the invaluable addition to our knowledge, other more practical reasons are also
sustaining the effort for human expression atlases. Genes with specific behaviour in
particular conditions are a convenient starting point for designing new diagnostic tests
and discovering new effective drug targets. Besides, a robust atlas for non-diseased tissue
baseline expression will allow a better understanding of unperturbed physiology. It can
also serve as a reference in studies where controls are unavailable or hard to sample, which
is generally the case in cancer research.

The completed and annotated human genome and technological advances in
high-throughput expression studies have opened the way towards this future new
milestone. Evidence of the community shared interest is the recent explosion of
high-throughput transcriptomic atlases in the literature. Examples include expression
atlases of mouse [C. Wu, Orozco, et al., 2009; Ringwald et al., 2012], pig [Freeman et al.,
2012], sheep [Clark et al., 2017], plants as maize [Stelpflug et al., 2016], vigna [S. Yao et al.,
2016], pigeon pea [Pazhamala et al., 2017], parasites, e.g. Schistosoma mansoni. Many
focus on mapping the human gene expression either as a whole, see e.g. [Krupp et al.,
2012; Jiménez-Lozano et al., 2012; Uhlén, Fagerberg, et al., 2015; GTEx Consortium, 2013]
or for specific aspects, e.g. the organogenesis in human embryos [Gerrard et al., 2016].

There are large incentives to develop these atlases with transcriptome shotgun sequencing
(i.e. RNA-Seq). The technology involved in similar older projects² has demonstrated to
generate highly variable data [Rung et al., 2013] that is challenging to integrate (even
when produced by the same laboratory on the same platform) [Walsh et al., 2015]. When
I started my doctorate, little was known about the interstudy robustness of RNA-Seq.
However, it had already shown less background noise and amore extensive dynamic range
of detection than the array-based technology (microarray) used in previous expression
studies [Z. Wang et al., 2009]. RNA-Seq also has the added advantage to discover new
transcripts as it does not rely on previous knowledge [Z. Wang et al., 2009].

1 Even though human anatomy can still be refined, and new findings can happen [Kumar et al., 2019].
2 E.g. Gene Expression Atlas for Human Embryogenesis [Yi, Xue, et al., 2010], Atlas of human primary

cells [Mabbott et al., 2013], Gene atlas of mouse and human protein-encoding transcriptomes (now hosted
by BioGPS) [Su et al., 2004], Allen Brain Atlas [Hawrylycz et al., 2012].
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introduction

Considering the growing number of studies referring to these atlases³ or the numerous
efforts to compile them into new resources for the community — e.g. TISSUES⁴ [Santos
et al., 2015], Harmonizome⁵ [Rouillard et al., 2016] and, after reprocessing the raw data,
Expression Atlas⁶ [Petryszak, Keays, et al., 2015] — assessing the consistency of the results
from one study to another has become paramount. The recently reported reproducibility
crisis in science [Begley et al., 2012; Fatovich et al., 2017; Lindner et al., 2018; Lyu et al.,
2018] has only further underlined this need.

Given the previous context, the first aim of my doctorate was to examine the consistency
of the (non-diseased) human tissues landscape of expression in independent large-scale
transcriptomics. Then, with the publication of the first drafts of the human proteome [M.-S.
Kim et al., 2014; Wilhelm et al., 2014], my aims have expanded to the integration of human
tissue expression data across different datasets and biological layers.

outlook of this thesis

First, I review the biological, chemical, experimental and computational background of my
doctorate works in Chapter 1.

Then, in Chapter 2, I present the five transcriptomic (RNA-Seq) and the three proteomic
(MS) datasets that I have preselected for my analysis. Then I describe the bioinformatic
pipelines that have automated the processing of these large-scale datasets.

After considering several possible sources of bias and strategies to limit them inChapter 3, I
compare and integrate the independent transcriptomic datasets in Chapter 4. Following an
assessment of the findings’ consistency in proteomics in Chapter 5, I then employ different
approaches for integrating transcriptomics and proteomics in Chapter 6.

Finally, I close this thesis with a few remarks in Chapter 7.

3 More than 2,800 papers for the five human primary studies (presented in Section 2.2) on 15 September 2019.
4 TISSUES — https://tissues.jensenlab.org/Search
5 Harmonizome — https://amp.pharm.mssm.edu/Harmonizome
6 Expression Atlas — https://www.ebi.ac.uk/gxa/home
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It would probably be oversimplifying the matter, but I am strongly tempted to say,
‘All life is nucleic acid; the rest is commentary’.

Asimov (1989)

1 B IOLOG ICAL AND TECHNOLOG ICAL
CONTEXT OF TH I S THES I S

The following pages (pp. 3–54) present a summary of facts and techniques that form the
biological and technological context of the work presented in this thesis. The different
sections may be read on their own or skipped by informed readers without
understandability issues.

1.1 universality and diversity of life

Every known form of life depends on a common set of molecule types, within which the
DNAs, RNAs and proteins are arguably the most specific ones and have the widest variety.
The other molecules are either inorganic (water and salts), small, or simple organic ones
(sugars, organic or amino acids, nitrogenous bases, lipids or their precursors). [Callen,
2005]

The entirety of the DNA (protein-coding and non-coding) of a living organism constitutes
its genetic material (or genome). The coding sections of the DNA, i.e. the protein-coding
genes, contain the instructions for making (via mRNAs) the proteins, which are the main
effectors supporting life functions. When a gene is switched on, it triggers a process,
illustrated in Figure 1.1, in which the first step is called transcription and the second one
translation. [Callen, 2005; Pierce, 2005]

The transcription initiation happens when an RNA polymerase attaches to the start of
the gene and uses the DNA strand as a template to create a corresponding RNA from
free RNA nucleotides [Alberts et al., 2002]. The transcription is a directional process and
always happens from the gene 5’ end towards its 3’ end [Callen, 2005]. (For 5’ and 3’, see
Figure 1.2 and related section.) Messenger RNAs (mRNAs) are RNAs that are produced
from a gene and used as a template for translation to synthesise proteins. There are other
kinds of RNAs, e.g. ribosomal RNAs (rRNAs) (which are the most numerous RNAs in
the cell), transfer RNAs (tRNAs) and many others [Callen, 2005]. The entire repertoire
of transcripts (i.e. RNA molecules) expressed in a cell or group of cells (such as in a tissue)
is called transcriptome [Velculescu et al., 1997; Piétu et al., 1999; Z. Wang et al., 2009].
Unlike the genome which is roughly identical regardless of which cell of a particular
individual is considered, the transcriptome may vary, sometimes dramatically, according
to the biological context (different organs or tissues, or different conditions, e.g. healthy
or in a reaction to a disease) and through time and life stages. [Alberts et al., 2002]
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Figure 1.1. Transcription and Translation: an overview. This work, ‘Transcription
and Translation: an overview’, is a derivative work of ‘Simplified diagram of mRNA
synthesis and processing. Enzymes not shown.’ and ‘Protein synthesis’ both by
Kelvinsong, used under [CC BY] (see Appendix A.2). ‘Transcription and Translation:
an overview’ is licensed under [CC BY] by Mitra P. Barzine.4

https://commons.wikimedia.org/wiki/File:MRNA.svg
https://commons.wikimedia.org/wiki/File:MRNA.svg
https://commons.wikimedia.org/wiki/File:Protein_synthesis.svg
https://commons.wikimedia.org/wiki/User:Kelvinsong
https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/4.0/


1.1 universality and diversity of life

Before the mRNA is in turn used as a template to make the protein, a few modifications
may occur. Among the typical post-transcriptional regulations, there are the capping and
the addition of a polyadenylated (polyA) tail (both increasing the half-life of the mRNA),
splicing (where internal parts of the mRNA — either non coding (i.e. introns) or coding
(i.e. exons) — are removed), or RNA editing [Darnell, 2013]. For eukaryotic species (e.g.
Human), the mRNAs have to be exported from the nucleus to the cytoplasm for the next
step to happen [Callen, 2005].

The mRNAs initiate the translation, i.e. creation of new proteins, by binding to protein
factories called ribosomes (complexes formed from rRNAs and ribosomal proteins). The
ribosomes read the mRNA codons (i.e. groups of three consecutive bases) and produce
the corresponding protein by synthesising a polypeptide chain from the free amino acids
(aas) carried by tRNAs with the corresponding anticodons (i.e. complementary sequence
to the mRNA codons). The aas are linked by peptide bonds formed through the reaction
of functional groups on their primary chain: the carboxyl group (–COOH) of the first
amino acid (aa) with the amine group (NH2–) of the next one. This succession of primary
chains and peptide bonds constitutes the protein backbone. This sequence is by convention
described from the free amino group of the first aa (i.e. N-terminal) to the free carboxyl
group of the last aa (i.e. C-terminal).

While the polypeptide chain is completed, it also folds into a three-dimensional structure,
which is essential for fulfilling its role [Morris et al., 2016]. Many proteins need to
undergo post-translational modifications (PTMs) before being functional. PTMs allow
the regulation of the proteins’ activity (activation and deactivation). They can involve
proteolytic cleavages or the creation of new covalent bonds, as many proteins comprise
more than one polypeptide chain to be functional. Other frequent PTMs include the
phosphorylation, acetylation, or glycosylation of the aas (also called residues) [Alberts
et al., 2002; Morris et al., 2016]. Besides the variety of possible PTMs and their
combination, proteins can comprise twenty different aas (Appendix A.1), which have a
vast range of physicochemical properties. Hence, in turn, the proteins have a wide
physicochemical range too. [Morris et al., 2016; Callen, 2005].

Although the diversity of the proteome (i.e. entire repertoire of expressed proteins) is
the primary contributor to the final phenotype¹ and functions of cells and tissues, its
exhaustive study remains particularly challenging. Most proteins are quite stable, but their
physicochemical diversity prevents the use of uniform and straightforward protocols that
would encompass all the proteins in a given cell or tissue type. [Bruce et al., 2013]

On the other hand, all DNA and RNAs have very similar chemical properties, as their
structures are very close as shown in Figure 1.2. They are polymeric molecules that are
made by a chain of nucleotides. Nucleotides have three distinct chemical subunits: a
phosphate group, a pentose (either ribose for RNA or deoxyribose for DNA) and a
nitrogenous base, which can be a purine (adenine (A) or guanine (G)) or a pyrimidine

1 Phenotype: set of observable characteristics or traits of an individual. The traits can be inherited (genotype),
due to the environment, or from the interaction of the environment with the genotype.
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Figure 1.2. DNA andRNA structures© 2014 Nature Education —Adapted from Pierce
(2005).

(cytosine (C) and either thymine (T) for DNA or uracil (U) for RNA). The alternation of
phosphate groups and the pentoses create the biomolecules backbone, while the
information is encoded into the nitrogenous bases sequence. DNA and RNAs all share
the same directional reading frame, i.e. 5’ end to 3’ end, or in other words, from the
phosphate group that is linked to the pentose carbon annotated 5’ to the phosphate
group that is linked to the pentose carbon annotated 3’². [Morris et al., 2016; Alberts et al.,
2002; Callen, 2005]

The difference in physical properties between DNA and RNA molecules is primarily due
to the predominant particular arrangement of DNA (double-stranded) and RNA
(single-stranded). The double-stranded configuration of the DNA dramatically improves
the stability of the DNA by involving many mechanisms, which includes many hydrogen
bonds (three for each couple of G/C and two for each A/T). Besides, in eukaryotic cells,
while the genome (DNA) is protected in organelles such as the nucleus, most of the
mRNAs life is spent in the cytoplasm, which contains many enzymes (e.g. endonucleases
and exonucleases) that cleave the nucleotide sequences and can ultimately degrade the
mRNAs. Thus, even though mRNA half-lives are quite variable, mRNAs have generally
the lowest stability when compared to the DNAs and proteins. [Alberts et al., 2002;
Pierce, 2005]

2 Pentoses are monosaccharides containing a chain of five carbons. When the pentose is part of a nucleotide,
these carbons are annotated from 1’ to 5’ to avoid confusion with the carbons of nitrogenous cycles.
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replication

translationtranscription
DNA RNA Protein

Proven Special UnestablishedTransfer type:

Figure 1.3. The central dogma of molecular biology proposed by F. Crick. The
proven modes of information transfers are for the general ones in solid lines
and in dashed lines for the special transfers (RNA to RNA or DNA) and the
transfers that have yet to be established (DNA to protein).

This overall process, which allows the creation of the proteins and based on a flow of
information initiated from the DNA, had been predicted by Francis Crick [Crick, 1958;
Crick, 1970]. He stated what is now known as the core of the central dogma of molecular
biology (shown in Figure 1.3): ‘Once information has got into a protein it can’t get out
again’. In other words, the genome contains all the information needed to produce
functional proteins, and, in theory, if we reach a total understanding of the information
encoded into the DNA, we will be able to predict the phenotype due to the proteome. As
DNA is static while the coding portion (about 2%) of the human genome [Venter et al.,
2001] varies in expression (both in concentration and composition) depending on the
tissue or cell type, genome studies are more established than transcriptomic or proteomic
ones, but the latter ones are more phenotypically insightful.

1.2 transcriptome exploration with rna sequencing

With the recent era of short-sequencing technology and the completion of the Human
genome [Venter et al., 2001; Lander et al., 2001; International Human Genome
Sequencing Consortium, 2004], understanding the genome expression is increasingly a
more reachable aim. From the early 1980s, technologies involved in transcriptome
studies have substantially improved through many successive innovations [Lowe et al.,
2017; Parkinson et al., 2009] that include Sanger sequencing [Sanger et al., 1975] or PCR
(reviewed by VanGuilder et al. (2008)). Among the various transcriptomic study
approaches, there are three key methods [Lowe et al., 2017]: EST sequencing (for gene
discovery — see Appendix A.3), microarrays (for gene quantification — see Appendix A.4)
and the one with which all the transcriptomic data used in this thesis have been
generated: RNA-Seq (which is both used for gene discovery and gene quantification).

In the following section, I introduce the typical steps of the required workflow to study
the transcriptome through sequencing on an Illumina platform. While not by conscious
design, all the transcriptomes analysed in this thesis are the product of Illumina sequencing
(see Sections 2.2.1 to 2.2.5). This is unsurprising as Illumina is by far the most popular
platform for the last decade [McPherson, 2014] and has been used to generate most of the
data in ENA and ArrayExpress. Indeed, Illumina sequencing offers a very good balance
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between accuracy and achieving the highest throughput for the lowest per-base cost [van
Dijk et al., 2014]. I will emphasise the approaches and the tools I used to estimate the gene
expression levels from raw nucleotide sequences. Figure 1.4 presents an overview of the
typical steps of an RNA-Seq workflow from the libraries preparation to the sequencing.

Experimental protocols for other platforms may need various and specific modifications
that are outside of the realm of this thesis and thus will not be covered here³.

Although the collection and the conservation⁴ of the samples before the RNA extraction
most definitely affects the final estimations, I will set aside these steps from my review.

1.2.1 Library preparation

While there are sequencing technologies that can directly sequence RNAs (see Garalde
et al., 2016), most of the technologies handle only DNA. Hence, the first step of a typical
RNA-Seq workflow is the preparation of complementary DNA (cDNA) libraries from the
starting material. This step and the sequencing itself are the most platform dependent
parts of the overall protocol. Indeed, contingent upon which sequencing principle they
rely, the sequencers need the libraries to be fixed and loaded differently.

1.2.1.1 RNA extraction

There are many methods to extract RNAs from the primary samples, and they are
commonly standardised. Indeed, depending on the type of biological samples, the RNAs
of interest, the aim of the study and the sequencing platform used, there is one (or more)
available commercial kits. These are designed in a way to not interfere with any of the
later steps of the library preparation or with the sequencing itself.

Unsurprisingly, the choice of one kit (and hence its method of extraction) over another
can impact the final RNA-Seq data. The main difference between the most widespread
methods being the quantity of non-mature RNAs (i.e. with longer intronic regions)
detected according to which kit has been used. However, the relative gene expression
levels are similar from one extraction protocol to another. [Sultan et al., 2014]

1.2.1.2 RNA enrichment

After extracting the RNA from the cells or tissues, the next step is to enrich the content
of the samples with the RNAs of interest (i.e. the concentration of the RNAs of interest
is increased either by specifically selecting it or by removing other RNAs). Indeed, the

3 More details on the other main sequencing platforms and their relevant protocols may be found in Goodwin
et al. (2016) review paper or at the online resource ‘RNA-seqlopedia’ (http://rnaseq.uoregon.edu/) [Cresko Lab,
2017].

4 E.g. between fresh-frozen samples and FFPE samples see Esteve-Codina et al. (2017).
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Figure 1.4. Overview of a typical RNA-Seq workflow: library preparation and
sequencing
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rRNAs are the most abundant type of RNA in any cell. Even though they account for a
very small part of the genome⁵, they represent by their number 70% or more of the total
population of RNA [Davidson et al., 1999]. Although there are interests to study rRNAs
(e.g. Pootakham et al., 2017), mRNAs studies are more popular, and they only constitute
about 3 to 5% of the whole RNA population [Alberts et al., 2002]. Other studies research
even scarcer kinds of RNA.⁶

There are typically three strategies to achieve RNA enrichment: either by polyA-selection,
by ribodepletion or (more complex) by targeted amplification. While these approaches are
insufficiently specific to select one particular kind of RNA or remove all rRNAs, it eases
and improves the downstream analyses.

PolyA-selection

This strategy essentially targets the mRNAs. It exploits the polyadenylated tail at the 3’
end of the mRNAs⁷ that is added post-transcriptionally. Magnetic beads, supporting short
strings of thymine (oligo-dT), capture thesemRNAs efficiently while the others arewashed
away [Mortazavi et al., 2008].

This protocol is probably the most widespread one as it is the easiest and cheapest to set
up. A dataset produced following this protocol is known as a polyA-selected dataset.

Ribodepletion

This strategy is preferred for the study of any non-coding RNA (ncRNA) or when
researching the interaction of mRNAs with other RNAs [Morlan et al., 2012]. This
strategy is in a way the reverse of the previous one as its also uses magnetic beads, but
this time to efficiently⁸ target the unwanted rRNAs as to remove them from the sample.

The ribodepletion can also be achieved through ribonucleases. These enzymes specifically
digest rRNAs, and then RNAs of interest can be retrieved through size selection.

Datasets produced following a ribodepletion protocol are usually calledwhole RNA or total
RNA in contrast to the polyA-selected ones.

Castle et al. (2010) created a total RNA dataset, but they use another approach where they
amplify every other RNA with the help of specially designed probes (see Section 2.2.1).
Hence, the protocol they have used is closer to the following one.

5 For example, Homo sapiens, there are 568 genes (<1%) that are described as rRNA out of the 63,898 annotated
genes of the Ensembl database (GRCh38.p10, Ensembl 89).

6 Out of the 10,081 experiments tagged as ‘rna assay’ and ‘sequencing assay’ within ArrayExpress, 7,981 were
also tagged as ‘RNA-seq of coding RNA’, 1,829 as ‘RNA-seq of non coding RNA’ and 366 have both tags. 4 of them
are only described as ‘microRNA profiling by high-throughput sequencing’ — Query date: 22 June 2017.

7 And a few other kinds of RNA, e.g. long non-coding RNAs (lncRNAs) [Cheng et al., 2005]
8 ThermoFisher claims that its RiboMinus protocol can remove up to 99.99% of the rRNAs.
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Targeted amplification

Targeted amplifications rely on primers that would be designed to target (or avoid as
for Castle et al. (2010)) specific sequence motifs of the genome. Most studies based on this
kind of approach are referred with a name based on the studied RNA type (e.g.miRNA-Seq)
or emphasising the variation of the method (e.g. Capture-Seq [Bussotti et al., 2016]). Often,
additional steps are required to prepare the libraries in comparison with a polyA-selected
or ribodepleted dataset.

1.2.1.3 RNA fragmentation

Most sequencing platforms⁹ require relatively short (i.e. 200 to 500 nt) length to sequence.
Concomitantly, it also ensures a more uniform sampling along the RNA. This
fragmentation can be carried out via divalent cations hydrolysis or nebulisation.

This step is performed on occasions after the cDNA synthesis (see next section). In those
cases, the cDNAs are fragmented mostly by digestion with DNase I or by sonication.

1.2.1.4 Double-stranded cDNA synthesis

The RNA molecules are used as a template for a retro-transcription involving oligo-dTs
or random hexamer primers, respectively only for polyA-selected datasets or any dataset
(polyA-selected included). The set of random hexamer has been designed to cover the
whole transcriptome. Unfortunately, these random hexamer primers have been proven to
lack full randomness [Hansen, Brenner, et al., 2010].

At the end of the most common protocol, the order of synthesis of each cDNA strands is
lost, i.e. it is impossible to distinguish which of the cDNA strands has the same sequence
as the original RNA. Several techniques, called strand-specific, have been developed to
compensate for this [Levin et al., 2010; Parkhomchuk et al., 2009].

1.2.1.5 Adapter ligation, PCR amplification and size selection

After generating blunt edges by restriction digest of the cDNAs, adapters (small known
sequences of oligonucleotides) are ligated to both their ends. These adapters are
constituted from several parts. A subset of them are later ensuring the hybridisation of
the cDNAs with the flow cells¹⁰ (based on sequence complementary), and another set of
them are sequence binding sites that are used as primers for the following cluster
amplification step occurring in situ. These adapters are also used to introduce additional
motifs such as indexes.

9 As for the Illumina platforms that have produced the transcriptomic datasets studied in this thesis.
10 Flow cell: see Section 1.2.2.
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The next two steps can be interchanged depending on the amount of starting material at
disposition. PCR amplifies all the molecules before (or after) a size-selection is performed
(per gel electrophoresis) to extract length-complying fragments (about 200 to 500 bp) to
the sequencer machine requirements¹¹.

Unfortunately, the size-selection means that any transcript with an original length below
the threshold used for the selection will be missed¹². For example, microRNAs (miRNAs)
are shorter than the general requirement of Illumina sequencers. Alternative protocols are
addressing this issue [Zhuang et al., 2012].

1.2.1.6 An example of alternative preparation strategy

Along with the targeted, the strand-specific and small RNAs protocols, there are a few
other variations to this typical protocol to handle other concerns. For example, it is
occasionally necessary to sequence simultaneously (in a single run) multiple samples.
This can either be motivated by practical reasons (to lower the experimental costs or
hasten the overall processing time) [Hou et al., 2015] or be critical to the experimental
design as a way to experimentally handle the batch effects¹³ [Auer et al., 2010]. However,
it is crucial to later extricate the several pooled samples from each other as a requirement
to many downstream analyses.

Multiplexed protocols easily achieve the distinction between the multiple samples as they
incorporate barcodes before ligating the adapters. These barcodes are also small sequences
of nucleotides, and each sample has its unique associated barcode. In practice, each sample
is prepared separately with the added extra step (before the adapters ligation) where the
barcode is incorporated; then all the samples are pooled together before the next step,
which consists of hybridising the cDNAs to the flow cell.

Other extra steps occur just after the sequencing and before any other data analysis: all
the reads¹⁴ are separated in files based on their barcodes and the barcode, along with the
adapters, is trimmed from all the reads.

The main inconvenient of the multiplexing protocol is that the original sequenced length
of the cDNAs are then shorter as the barcodes are also (and have to be) sequenced as well.

11 Indeed, the previous fragmentation step creates a great length range of fragments.
12 There is no problem for the greater length as they will statistically present fragments in the correct range.
13 Batch effect: see Section 1.5.1
14 Reads: see Section 1.2.3
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1.2.2 Clustering: Hybridisation and Bridge amplification [Illumina, 2016]

Once the libraries are ready, they are loaded onto a flow cell¹⁵.

The clustering step comprises two phases: hybridisation and bridge amplification of the
cDNA fragments.

1.2.2.1 Hybridisation

The double-strand cDNAs are denatured, and then each fragment randomly hybridises
across the flow cell surface with one of its small oligonucleotides. These are used as
primers for polymerases which create a first complementary strand to the hybridised DNA
fragments. The new double-strand molecule is denatured, and the original first template
is washed away.

1.2.2.2 Bridge amplification

The strands then fold over and their (second) adapter hybridises with a complementary
oligonucleotide sequence of the flow cell and thus creating a bridge. The flow cell
complementary fragment is then used as the primer for a new strand. The new
double-stranded DNA is then denatured (which dismantles the bridge). Each of the two
tethered molecules creates a new bridge by hybridisation which are the templates for a
new strand each. This process happens many times and simultaneously for millions of
fragments. It creates clusters of clonal amplification of the original fragments of the
library. After the bridge amplification, the reverse strands are cleaved and washed away.
The 3’ end primers are also blocked to avoid any unwanted priming.

1.2.3 Sequencing-by-synthesis

Illumina sequencers propose two approaches: single-end and paired-end. In single-end
sequencing¹⁶, the sequencing begins at one (and only one) of the fragment ends and
progresses towards the second. In paired-end sequencing, once the first end has been
sequenced, a bridge replication occurs, then the other end of the original fragment is also
sequenced. Thus, in paired-end sequencing, the sequencing occurs at both ends of each
original fragment.

15 Flow cells are the support of Illumina sequencing. They parallelise through supported Chemistry the
sequencing of millions of DNA fragments together which are kept spatially separated in clusters. Each
flow cell is a glass slide with lanes. Each lane is coated with two short nucleotide sequences. One of these
oligonucleotides is complementary to a region contained in the ligated adapters.

16 Chronologically the oldest method
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Thoughmore expensive andmore programmatically challenging, the paired-end approach
facilitate the detection of genomic rearrangements¹⁷ and repetitive sequence elements. It
also helps to distinguish between a gene isoforms and provides greater support to identify
novel transcripts (new isoform or gene) and fusion genes¹⁸.

In both cases, Illumina’s sequencing process, sequencing-by-synthesis [Bentley et al., 2008],
is the same. It uses the DNA replication mechanism with modified deoxynucleoside
triphosphates (dNTPs). Reversible fluorescent tagged dNTPs, which are protected at
their 3’end to block any further elongation, allow a step-by-step incorporation. The
product of this synthesis is called a read, and it supports the base calling¹⁹.

The sequencing co-occurs on every identical fragment of every cluster of the flow cell. It
begins with the hybridisation of a complementary 5’ primer onto the 3’ binding site of
the tethered DNA template. This primer is then extended by replication through several
sequencing cycles to create a new read.

A sequencing cycle starts with the addition of one complementary fluorescent dNTP to
the new growing read, which stops the replication process as the dNTPs 3’ end is blocked.
A wash discards all the unlinked dNTPs away. Then, the clusters are excited by a light
source, and the signal intensity and (characteristic) wavelength of each dNTPs are recorded
since they allow the identification of the new nucleotide incorporated by each cluster and
measure the accuracy of the base calling. Finally, the fluorescent tags and the 3’ caps are
cleaved and washed away before a new cycle begins. The number of cycles determines
the final read length.

Unfortunately, as the sequencing proceeds, the error rate of the sequencers increases. This
is due to the incomplete removal of the fluorescent signal which increases the background
noise and thus reduces the signal-to-noise ratio.

Once the programmed read length is achieved (typically between 25 to 200 nt), the reads
are washed away (after denaturation).

1.2.3.1 Sequencing specificities for the paired-end protocol

The paired-end protocol uses an additional primer. The first run is initiated by a single
primer and follows the same steps of the single-end sequencing cycle. Once completed, the
complimentary read is washed off, and the 3’ end primer is deprotected. Then, the DNA
fragment bends over and hybridises to a complementary oligonucleotide at the surface of
the flow cell. Next, the second primer initiates a new sequencing cycle at the end of which
the newly synthesised read is washed away. A single new bridge replication follows. The
new double-stranded DNA fragment is denatured, and the 3’ primers are protected before

17 As indels or inversions
18 A fusion gene is a gene that is the product of the fusion of parts of two (or more) different genes.
19 Base calling: identification of the nucleosides in a sequence by assigning chromatogram peaks or another

kind of signal variations to (nucleo)bases.
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the original strand (that has been already read) is cleaved and washed away. Finally, the
remaining strand is sequenced following the previously described sequencing cycle. Once
the same number of sequencing cycles as the first strand is reached, the read product of
the remaining strand is washed away. By convention, the first primer allows to read the
forward strand and the second primer the reverse strand. Note that these forward and
reverse concepts used in paired-end protocol have no relevance to the biological concepts
of forward and reverse for genes.

1.2.4 From analogous input to digital output

At the end of the sequencing process, a set of images across the flow cell (one per
sequencing cycle) is produced from the detected wavelengths. While it is possible to
work with the images themselves, in most cases, the sequencing facilities will perform the
base calling and other intermediate steps before providing the end-user with text files.

These files are usually distributed in the FASTQ format [Cock et al., 2010] which record
for each cluster (read) a unique identifier, a nucleotide sequence and a Phred quality score
for each base of the sequence. A few optional information can also be provided, e.g. the
position of the read on the flow cell (See Appendix A.5 for a random read example). The
Phred quality score (𝑄) measures the accuracy of the identification of the nucleobase to
which it refers. These scores are set by the base calling program and are defined as 𝑄 =
−10 log10(𝑃 ) with 𝑃 the probability of the base being called wrongly. There are several
possible encoding formats (see Appendix A.6).

In single-end sequencing, there is one file per sample. In paired-end sequencing, the reads
are usually separated based on their associated indexes into two ordered files: all the reads
from the forward strands are grouped in one file, and the ones from the reverse strands in
a second one.

1.2.5 A typical bioinformatic workflow for RNA-Seq study

From the reconstruction of the transcriptome to the normalisation of expression in each
sample, the various steps may be addressed through many different algorithmic
approaches. Often, the choice of a method at one stage implies a more limited number of
alternatives from which to pick at later points in the pipeline. The choice is frequently
driven by the kind of downstream analyses planned for the study. More than the
practical format of the data for these, it is the assumptions and the methods used
upstream that are critical for a rigorous investigation and, later, for an accurate
interpretation of the results.
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Figure 2.1 presents an example of the overall in silico process of raw RNA-Seq data. It
summarises the steps and highlights the tools I used to process the data within this thesis.

Before any downstream analysis, for each read, the genomic region (or locus), from which
it has been expressed initially, needs to be identified. Indeed, RNA-Seq main objective is
to quantify the expression of genomic features²⁰. In other words, the transcriptome needs
to be reconstructed from the short reads and annotated (i.e. identify which features have
been expressed in each library).

Two different main strategies (see further ‘Reconstruction strategies’ segment) manage to
accomplish this identification step. Independently of the approach, this step is the most
challenging and time-consuming of the workflow. Tools, which tackle the reconstruction,
usually provide many tunable heuristic parameters (e.g. maximum number of allowed
mismatches or indels per read before discarding a possible identification²¹) to speed up the
task. Unfortunately, as on Illumina platforms, the base calling accuracy decreases along
the read length, this may lead to an information loss [Minoche et al., 2011]. To prevent
informative reads to be discarded, it is opportune to perform a quality check of the raw
data before the identification step. Thus, reads with a drop of accuracy in their 3’end may
be shortened (i.e. trimmed) and rescued for the next reconstruction step. Similarly, low-
quality reads may be discarded hence lowering the complexity of the reconstruction task
and hasten its accomplishment.

1.2.5.1 Quality check, trimming and filtering

The quality assessment allows removing any read (or part of it) that would increase the
complexity of the reconstruction step or skew the downstream analyses.

It is wise to discard uninformative reads, i.e. reads with a low sequence complexity (e.g.
poly-T or poly-A tails) or with ambiguous sequences (in other words with uncalled bases
— reported as N ). Indeed, these reads will hamper the processing time as they usually
map to several parts of the genome while also decreasing the accuracy of the global gene
expression estimations. For similar reasons, it is judicious to remove reads with a low
overall quality score²².

It is also prudent to check and remove any read that may map to possible contamination
sources²³. Indeed, as these reads are ambiguous, it is safer to discard them than skew the
expression estimations.

Finally, as many tools (mappers in particular) require all the input reads to have the same
length, the purity-length balance requires optimisation. Indeed, the trimming has to
compromise between an approach too lenient (where the mappers discard many unfit

20 These genomic features could be genes, isoforms, exons, novel genes, … In short, any genomic region with an
annotated function.

21 Indeed, many reads will have many identifications; these reads are defined as ambiguous reads.
22 It may vary based on the complete set of reads to analyse.
23 For example, for eukaryotes, by aligning (see next segment) every read to the Escherichia coli genome.
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reads at a later step), and a too stringent one (where either the reads are shorter, which
increases the overall complexity and therefore hinder the mapping both on time and
accuracy [Williams et al., 2016], or too few are left for pertinent analyses). When the
tools allow it, avoiding quality-based trimmings is probably a better practice.

Generally, after the sequencer calls the reads, a first trimming removes all the adaptors
and barcodes needed by the sequencing protocols. Thus, in principle, they are not to be
found in the ‘raw data’. However, to avert any latter contingency, a search against a list
of the most common adaptors and an over-representation assessment of small sequences
(k-mers²⁴) at each end of the reads is good practice.

1.2.5.2 Reconstruction strategies

Two main approaches can be used for the very computationally expensive step of
identification. I will present them in decreasing order of complexity: the de novo
assembly of the reads and then the reads alignment approach (to a genome reference or a
transcriptome one).

Regardless of the approaches, the reconstructed transcriptome is usually reported as a SAM
file [H. Li et al., 2009] (or one of its derivative formats: either BGZF-compressed binary file
that can be converted into SAM (BAM) or more recently CRAM).

de novo Assembly

This approach is favoured when the reference genome of the species of interest is
unavailable or of poor quality (e.g. many non-model organisms) or inadequate (e.g.
cancer samples) for the samples of interest. However, if a reference already exists this
strategy is avoided to the utmost.

It allows the unbiased discovery of novel exon-exon junctions [Robertson et al., 2010]. As
none of the datasets I use in this thesis has been reconstructed through this approach, I
briefly summarise the main points below as more in-depth reviews cover this strategy
(see J. A. Martin et al., 2011).

In de novo assembly, the reconstruction of the transcriptome happens with the
construction of the longest possible contigs (i.e. contiguously expressed regions) based on
sets of overlapping reads (see also Figure 1.5). Shorter reads add to the overall complexity
of this approach. While paired-end reads may help to solve many genomic regions, lowly
expressed or repetitive regions remain challenging to determine. There are several
algorithmic approaches for de novo transcriptome assembly [Wajid et al., 2012], though
the most prevalent one is the de Bruijn representation [Robertson et al., 2010].

24 k-mer : In the present context, all possible subsequences of length k of a read.
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Figure 1.5. de novo Assembly. From overlapping regions of raw reads, contigs are
created by integrating the reads sequences together.

Read alignment

This approach exploits prior knowledge. The reads are aligned to a reference to hasten
the reconstruction process. The reference may be a genome or a transcriptome (provided
that a good annotation is available).

(a) Alignment to the genome

(b) Alignment to the transcriptome

Figure 1.6. Overview of main reconstruction strategies for an RNA-Seq
transcriptome by alignment to a reference

• Genome reference

Aligning to the genome allows discovering new genes or isoforms. However, it requires
splice-aware algorithms, i.e. they need to align the reads across the splice-junctions (which
is possible but non-trivial). As illustrated in Section 1.2.5.2, the reads might span many
discontinued regions of the reference. While on the one hand, aligning to the genome
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avoids multiple mapping issues²⁵ for the same exon, this also implies that the genome
needs to provide the coordinates for the different isoforms which will then require further
analyses for accurate quantifications at that isomeric level. Indeed, irrespectively of the
number of isoforms including a specific exon, the sequence of this exon is transcribed only
once in the reference.

• Transcriptome reference

Using a transcriptome for reference instead of a genome reduces the complexity of the
aligning step due to the lack of intronic sequences. However, it also limits the potential
downstream analyses, e.g. any new (or unannotated) gene or isoform will be missed. This
approach is the easiest, but a pre-existing accurate and well-annotated gene model is
required. Section 1.2.5.2 shows in fact that this approach is simpler to the previous one
as a direct read alignment is done against the transcriptome of reference. This enables
the accurate gene isoforms expression quantification, provided that the gene model is
correct and the reads may be attributed unambiguously to a single isoform for each gene.
However, in practice, this approach produces many multimapped reads, particularly for
shorter reads as many isoforms are very similar in sequence and vary only in the exons
they retain. If the difference in the exon compositions is towards the end of the gene, reads
from two isoforms may be indistinguishable. Paired-end sequencing helps to resolve part
of the ambiguity encountered with single-end protocols.

To mitigate very computational greedy approaches and more constraining ones, several
tools complement the previous strategies.

Hybrid approach between de novo and alignment

There are tools like TopHat2²⁶ (2.0.12) [D. Kim, Pertea, et al., 2013], that use a hybrid
approach between a reference alignment and a de novo assembly.

Reads and fragments

In the case of paired-end data, each read of the pair is first processed separately. Then,
in the final evaluation phase and with the help of additional information sources, they
are used as a pair to infer among the many possibilities which are the most credible ones.
Both parts of a paired-end data once aligned to a concordant region of the genome is then
called a fragment instead of a read. Today, there is conflation between the ‘read’ and the
‘fragment’ terms. Even though the term fragment is more accurate and may be used in
any situation (as it equals to one read for single-end data and a pair of related reads for
paired-end data), it is frequent to see the term read instead (even for paired-end data).

25 Due to sequence similarity, a same read or subpart of a read may be attributed to many different loci in the
genome. As it is impossible to attribute the read to its original locus of expression directly, distribution models
have to be pondered to avoid unnecessary skewness during the quantification step.

26 TopHat2 — https://ccb.jhu.edu/software/tophat/index.shtml
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TopHat2 — along with STAR²⁷ [Dobin et al., 2013] — is the most popular splice-aware
mapper for genomes with a near-complete annotation (e.g. for Homo sapiens) [Engström
et al., 2013] despite being slower than the latter [D. Kim, Langmead, et al., 2015].

As many concepts or terms in Science, ‘read mapping’ can have different (however very
closely related) meanings. Hence, while for many people, read mapping will encompass
any transcriptome reconstruction strategy (including de novo assembly) since the main
point is to map the features to functional annotations, for others the term will only refer to
‘read alignment’ strategies specifically [Pachter, 2015]. Tools such as TopHat2 contributes
to this confusion.

1.2.5.3 Quantification of features

When working with RNA-Seq data, the typical next step after mapping the reads or
fragments to the reference is to quantify the expression of the feature²⁸ of interest.²⁹ In
the context of this thesis, I only consider gene expression (either as RNA or as protein).
Hence, many subtleties required for isoforms or exons studies are here irrelevant and are
left out of my overall review.

Several tools and algorithmic approaches are available. Indeed, for larger genomes, many
regions may present high sequence similarity which results in many ambiguous (and
challenging) reads as they mapped to many potential genomic sites. These reads are also
called multireads. One early strategy to solve multireads is to discard them from later
analyses; another one is to attribute them to the most credible locus based on the overall
distribution of the reads for a given sample. [Mortazavi et al., 2008] Paired-end data help
in many cases to discriminate between possible genomic original sites, thus decreasing
the overall number of multimapped fragments.

Two popular tools were used in this thesis, Cufflinks2³⁰ (2.2.1) [Trapnell et al., 2010] and
HTSeq-count³¹ (0.6.1p1) [Anders et al., 2015], which are both compatible with TopHat2 but
rely on different concepts. I briefly present them below in their chronological release.

Cufflinks

Cufflinks2 is part of a collection of tools called Tuxedo suite³² which also includes TopHat2
and Bowtie. Cufflinks2 can assemble de novo novel transcripts and isoforms following the
same principles than TopHat2. Likewise, using good references is faster and more useful.

27 STAR — https://github.com/alexdobin/STAR
28 E.g. genes, isoforms, exons, splicing events.
29 In fact, while genotyping, heredity studies and other genetically focused studies are possible in principle, the

common main focus is centred on expression estimation. For example, instead of reporting a specific SNP, in
an RNA-Seq study, the core interest is currently more about the specific allelic expression. Moreover, most of
the RNA-Seq studies fail to provide the necessary sequencing depth and coverage for other kinds of study.

30 Cufflinks2 — http://cole-trapnell-lab.github.io/cufflinks/manual/
31 HTSeq-count — http://www-huber.embl.de/HTSeq/doc/index.html#
32 Tuxedo suite user group: https://groups.google.com/forum/#!forum/tuxedo-tools-users
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Figure 1.7. Abundance estimation of isoforms by Cufflinks2 following an EM
algorithmic approach. [Adapted from Turner (2015)]

In both cases, Cufflinks2 infers the most parsimonious³³ and credible set of transcripts (and
their isoforms) that can explain the complete set of observed fragments.

This task is challenging as many isoforms are sharing a common set of exons. While most
genes present a dominant isoform for a specific condition, there are often a few other
isoforms expressed along, even though their amount may be very limited [Gonzàlez-Porta
et al., 2013].

Furthermore, Cufflinks2 tries assigning the multimapped reads to one isoform only. First,
sets of fragments are separated into sets of isoforms (all fragments that are likely
produced from the same set of isoforms are regrouped together). Then to estimate the
abundance of each isoform of one set, Cufflinks2 integrates many information sources
together. For example, the overall distribution of fragments (or reads), if these are
spanning over known (or novel) splice-junctions. Particular attention is drawn to the
fragments that map unambiguously to one unique isoform. When available, paired-end
fragments are critical: as they cover longer regions, the probability that they span
multiple adjacent exons is increased which helps to resolve the possible structure of the
original isoforms. [Roberts et al., 2011]
The abundance is finally estimated through an EM algorithm [Do et al., 2008; Dempster
et al., 1977], with the following main steps (see also Figure 1.7):

1. Initialisation: For each fragment, a rough estimation of the probability to be
expressed from each isoform is computed based on the different piece of
information cited previously.

2. Iteration till convergence with the observed distribution of fragments:

a) Isoforms abundance are recomputed based on the updated
fragment-to-isoform assignment

b) Fragment-to-isoform assignment re-updated based on the isoforms abundance.

33 As a requirement to Occam’s razor, which may be a debatable strategy [Westerhoff et al., 2009]
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Finally, to compute the gene expression levels, Cufflinks2 aggregates per gene all the
isoforms expression abundances together.

Cufflinks2 provides by default FPKM³⁴ normalised data.

HTSeq-count

The Python library HTSeq provides a stand-alone script (HTSeq-count) performing the
feature quantification with a more conservative strategy. It discards all ambiguous reads
from a SAM/BAM file and then only counts the unambiguous reads that overlap with the
features of interest for a given gene model³⁵.

Reference
Gene 1 Gene 2 Gene 3

3 4 8 Countsraw

Figure 1.8. Abundance estimation of genes by HTSeq-count. The unambiguous
reads (or fragments for paired-end data) overlapping locus annotated as gene
are directly counted. [Adapted from Gonzàlez-Porta (2014)]

HTSeq-count deems as ambiguous any multiread or read that overlaps more than one
annotation for the considered feature.³⁶ HTSeq-count provides three modes for
fine-tuning the overlap definition. For this thesis, I used the ‘intersection non-empty’ mode
(see Figure A.4). This mode avoids discarding too many reads due to a too tolerant
annotation (i.e. the annotation itself presents many overlapping definitions for a given
pair of feature and chromosome region).

Initially, HTSeq-count [Anders et al., 2015] was designed for differential gene expression
analysis (DGEA). This type of analysis compares expression profiles to highlight the
genes (or transcripts) for which the expression is significantly different depending on the
considered condition. As multireads are irrelevant for those studies, including or
excluding them from the downstream analysis is insignificant.

Many papers (e.g. Fonseca, J. Marioni, et al. (2014), Robert et al. (2015), and Everaert et al.
(2017)) have since shown that the gene expression estimation by HTSeq-count, while
underestimated, is overall well-correlated with other RNA quantification methods (e.g.
microarrays or RT-qPCR). Moreover, quantifications with HTSeq-count are highly
correlated with Cufflinks2 quantifications for most of the genes after proper

34 See Section 1.2.5.4.
35 Gene models are distributed as annotation file (usually either as GTF or GFF format) and refer to a specific

reference (genome or transcriptome).
36 In fact, reads might be discarded for one feature but kept for another one. For example, to quantify the

expression of a given gene, HTSeq-count considers every read that unambiguously overlaps with any of
its annotated exons — indeed, HTSeq-count defines a gene as the union of all its exons. However, while
quantifying exon expression, many of these same reads may be discarded as they overlap several exon
annotations with overlaying definitions.
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normalisation [Everaert et al., 2017] as HTSeq-count provides raw counts (i.e.
unnormalised counts).

1.2.5.4 Normalisation

Regardless of the quantification method, a normalisation is usually necessary to avoid a
few statistical biases (mainly due to the sampling). The normalisation method, though, is
generally determined based on the quantification (method or tool³⁷) and they have to be
suitable for the planned downstream analyses. As RNA-Seq fails to assess the absolute
concentration of each expressed gene (or transcript) in a sample, each normalisation
method is based on a specific set of assumptions that may be incompatible to the ones
required by many investigative approaches.

Many papers review or compare normalisation methods (See Dillies et al. (2013), Zwiener
et al. (2014), Zyprych-Walczak et al. (2015), and Peixoto et al. (2015)).

RPKM and FPKM

The first evident source of sampling bias is the total number ofmapped reads (or fragments)
between two RNA-Seq libraries (shortened as ‘libraries’ from now on). Indeed, there
may be considerable discrepancies in their respective amount of starting material loaded
on a flow cell³⁸ and, more importantly, the number of mapped reads (or fragments) to a
reference³⁹.

The second source of bias arises when two genes have their expression level compared.
Indeed, as a longer gene produces more reads (or fragments), it has a greater statistical
chance to be sampled. Figure 1.8 illustrates this sample bias: Gene 3 is twice as long
as Gene 2, and their raw counts also include this scaling factor. However, with proper
normalisation, Gene 2 and Gene 3 are expressed in equal proportions.

To correct for these two biases, Mortazavi et al. (2008) introduced a new unit ‘RPKM’which
they first defined as reads per kilobase of exon model per million mapped reads. Since then,
this unit has been redefined and replaced to avoid ambiguities in the case of paired-end
data by another unit, ‘FPKM’, which stands for fragments per kilobase of transcript per
million mapped reads⁴⁰.

The canonical formula for FPKM (or RPKM) is:

37 Many quantification tools (e.g. Cufflinks2) perform the normalisation step automatically as well. They may
also (or not) provide raw counts.

38 In fact, this would involve the monitoring of many parameters or assessments of the samples before the library
preparation. Moreover, while it may be possible to weight each sample before extracting the RNA, the many
steps (involving the fragmentation of the RNAs, PCR syntheses or size-selection) and their associated biases
overburden the tracking of the final amounts used for the sequencing.

39 The quantification disregards the unmapped reads (or fragments) and so does the normalisation.
40 As mentioned before, despite the inaccuracy, read and fragment are often used interchangeably; this is also

the case for RPKM and FPKM.
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̂𝜇𝑖𝑗 = 𝑓𝑖
𝐹𝑗 ⋅ 10−6 ⋅ ℓ𝑖 ⋅ 10−3 = 𝑓𝑖

𝐹𝑗 ⋅ ℓ𝑖
⋅ 109 (Canonical F/RPKM formula)

where:
̂𝜇𝑖𝑗 is the normalised expression for the feature (e.g. gene or transcript) 𝑖 in sample 𝑗,

𝑓𝑖 is the count number of the fragments (or reads) mapped to feature 𝑖 in sample 𝑗,
𝐹𝑗 is the total count number of all the fragments (or reads) mapped in sample 𝑗,
ℓ𝑖 is the length of feature 𝑖.

The scaling factor was introduced such as in most cases 1 FPKM is crudely equivalent
to a single RNA molecule in the cell [Mortazavi et al., 2008]. This has been observed in
other papers (see for example Hebenstreit et al., 2011) and also explains why 1 FPKM is a
commonly used threshold.

This normalisation is quite intuitive and still largely used today. In fact, I use this
normalisation through the thesis. Meanwhile, it is also unsuitable for a popular type of
analysis, differential expression analysis (DEA), which seeks to highlight genes which
expression varies between different biological conditions. However, if for any biological
or technical reason, any set of genes detected in a specific condition and undetected in
another, will affect the FPKM estimation of every RNA in both conditions (see Table A.3)
and will entangle the interpretation.

Other normalisation approaches

Differential expression analyses (DEA) have led to the development of distinct models
and methods. They generally involve a model where for most of the genes, the
expression is assumed to be stable between conditions⁴¹ (e.g. edgeR⁴² [Robinson et al.,
2010] or DESeq2⁴² [Love et al., 2014]).

Also, many normalisation methods applied first to microarrays are used, e.g. the most
common ones include a quantile normalisation method or a simple scaling normalisation.

Other normalisation methods try to correct a priori or a posteriori biases⁴³. A few of them
may correct batch effect (see Section 1.5) or other confounding factors. RUVSeq⁴² [Risso
et al., 2014] is one example.

Although FPKMnormalisation is generally avoided in favour of another (more appropriate)
method, this thesis aims to explore the baseline expression of the genes between andwithin
tissues, and in this context, despite its biases, FPKM normalisation is better suited than any
normalisationmethod designed for DEA. For this reason, thework based on transcriptomic
data presented in this thesis is based on FPKMs (see Chapter 2).

41 The comparison is usually between diseased (or treated) samples to control (healthy).
42 Bioconductor package
43 The Bioconductor package CQN [Hansen, Irizarry, et al., 2012] for example corrects the expression levels

according to their length and their GC content before applying a quantile normalisation (as cDNAs enriched
in GC bases are more stable and tend to a more optimal amplification).
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1.3 proteome exploration with mass spectrometry

Through the last decade, the proteomics field has shifted from technical research on
instruments and methods to the extensive and routine use of mass spectrometry (MS) as
an analytical tool [Aebersold and Mann, 2016]. Many possible workflows for MS-based
proteomic studies exist as MS is very versatile and supports many proteomic
investigation approaches, such as protein characterisation, modification sites, structures,
mechanism-oriented (interaction) studies [Aebersold and Mann, 2016]. In this regard,
high-throughput protein identification and quantification have thoroughly developed
when MS became the primary choice method since it allies a good dynamic range with
high sensitivity and specificity [Aebersold and Mann, 2003; Brosh, 2009; Cox and Mann,
2011].

Depending on the study purpose, available time and money, the number of samples, the
available instruments and the needed sensitivity and specificity, the choice will be based
on one strategy rather than another. Although, top-down and, more recently, middle-down
approaches exist, bottom-up approaches are the most favoured in the field by far.

Top-down approaches [Catherman et al., 2014] study the intact proteins, (i.e. as a whole
without digesting them in smaller peptides). They are appealing, but still very
challenging both experimentally and computationally [Aebersold and Mann, 2016]. They
are more suitable for highly purified samples as the MS and fragmentation (tandem MS
(MS/MS)) spectra are highly complex. On the other hand, digesting the proteins in
smaller molecules allows them to ionise better and facilitates the spectra interpretation.
Middle-down approaches [C. Wu, J. C. Tran, et al., 2012] produce large fragments (up to
20kDa). Bottom-up approaches generally use enzymatic digestion with trypsin to produce
small peptides (about twelve aas on average). The cheapness, ease and reproducibility of
the trypsin digestion⁴⁴ are the reason for the bottom-up approach popularity⁴⁵.

Bottom-up methods fall into two main types of strategies: targeted and untargeted.
Another layer of complexity is added by the selected MS acquisition mode:
data-dependent acquisition (DDA) or data-independent acquisition (DIA) (see
Section 1.3.3.5). Since all the proteomic data presented in this thesis have been generated
as part of global discovery studies through DDA bottom-up label free approaches (see
Chapter 2), in the following section, I mainly focus on the obtention and processing of
these types of proteomic data.

Figure 1.9 shows a summary of possible bottom-up approaches based on DDA methods.
DDA targeted approaches [Domon et al., 2006; Shi et al., 2016] allow the absolute or
relative quantification of a small preselected set of proteins. This strategy is favoured for
example to validate possible biomarker candidates. Selected reaction monitoring
(SRM) [Picotti et al., 2012] (also known as multiple reaction monitoring (MRM) [A. Hu

44 See section 1.3.2.3
45 The experimental spectra are compared to databases that collect theoretical spectra or experimental ones from

prior studies to reconstruct the proteins from the peptidic fragments (hence bottom-up).
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Figure 1.9. Bottom-up quantification approaches. The work presented in this thesis
relies on proteomic data that has been acquired through a DDA bottom-up
label-free MS/MS approach (dashed frame).

et al., 2016; Shi et al., 2016]) and its variant parallel reaction monitoring (PRM) [Gallien
et al., 2012] are more sensitive and specific, and give more accurate quantification than
untargeted methods: as the set of proteins and peptides to fragment is known,
interpreting the spectra is much easier. However, SRM is the most sensitive, while PRM
is the most specific and accurate [Benhaïm, 2017].

Among DDA methods, untargeted strategies are the most suitable for global approaches
or discovery projects. Unless samples comprise a subset of proteins (or spike-ins) with
known concentrations, these methods provide only relative protein quantification.

Tagged strategies [Zhou et al., 2014] label the proteins (before or after extraction) with
stable isotopes (see Table A.4). For each condition, a specific isotope is used. Thus, the
proteins and peptides have exactly identical physicochemical properties, have the same
behaviour through the protocols, and only their mass can differentiate them. The labelling
can be either enzymatic (e.g. 18O-labelling [X. Ye et al., 2009]), chemical (e.g. isotope-
coded affinity tag (ICAT) [Gygi, Rist, et al., 1999], isobaric tag for relative and absolute
quantification (iTRAQ) [Ross et al., 2004], tandem mass tags (TMT™) [Thompson et al.,
2003], dimethyl labelling [Hsu et al., 2003], or 2D-differential in-gel electrophoresis (2D-
DIGE) [Unlü et al., 1997]), or metabolic (e.g. stable isotope labeling by amino acids in
cell culture (SILAC) [X. Chen et al., 2015]). Some tagged approaches have multiplexing
protocols. Note that other mass tags (e.g. metal coded affinity tag) attached to peptides or
proteins are an alternative to isotopic labelling.

Label-free strategies [Hsu et al., 2003; Neilson et al., 2011; Sandin et al., 2014] analyse
the proteins after their digestion with the trypsin. Since there is no marking in these
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methods, multiplexing is impossible. Two different methods can quantify the relative
abundance of the proteins. Spectral counting (also called MS2 quantification) quantifies
proteins based on the assumption that the more abundant a protein is, the more this
protein is selected to be fragmented; thus the total number of MS/MS spectra that can
be mapped back to the protein can be used to estimate it. Unfortunately, this technique is
lacking accuracy and is highly criticised compared to the secondmethod which is intensity
based.

The secondmethod, extracted-ion current (XIC) [Higgs et al., 2013], quantifies each peptide
by first extracting its ion currents, its molecular mass and retention time (MS1) (or the
ones of its fragments (MS2)), and then by integrating the area under the curve (AUC) of
the peptide monoisotopic molecular mass (p), and the following isotopic molecular mass
peaks (p+1) and (p+2). The XIC assumption is as follows: the more concentrated a peptide
is, the greater is the AUC.

Note that since there are many possible MS approaches and protocols [Bantscheff et al.,
2012], in the following section, I focus on the one that initially generated the proteomic
datasets I am reusing for this thesis (see Section 2.3). Thus, I describe one widespread
bottom-up approach, i.e. the label-free Liquid Chromatography (LC) followed by tandem
Mass Spectrometry (LC-MS/MS) protocol (also known as shotgun proteomics) [Cox and
Mann, 2011; Y. Zhang, Fonslow, et al., 2013]. The following segments may be suitable for
other methods as well.

1.3.1 Sample preparation

DDA label free protocols to prepare samples for discovery proteomic analyses are generally
much simpler to implement than the ones for RNA-Seq. However, as proteins are alsomore
complex and heterogeneous than DNA and RNA [Bruce et al., 2013], there is a broader
choice of them in order to adapt to any requirement [Feist et al., 2015].

1.3.1.1 Sample collection and conservation

Collection

Feist et al. (2015) report that traditional dissection, biopsies, blood draws and other
methods can deliver adequate samples for proteome analysis.

Conservation

Recent developments have significantly improved proteome analysis from formalin-fixed
paraffin-embedded (FFPE) samples [Steiner et al., 2014]. As they are still evolving, they
may compare soon to fresh-frozen (FF) samples. However, for now, fresh or FF samples
are remaining the best primary sources.
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1.3.1.2 Protein extraction and contaminant removal

Protein extraction

Contrariwise to the collection step, Feist et al. (2015) explain that the crucial consideration
is the cell lysis and the extraction approaches used on the protein as they may interact
and disrupt the later characterisation step and thus require appropriate picking. Besides,
the physicochemical properties of the proteins are far more heterogeneous than for DNA
or RNA molecules [Bruce et al., 2013] and may be incompatible with many extraction
protocols.

Contaminant removal

Gutstein et al. (2008), Bodzon-Kulakowska et al. (2007), Visser et al. (2005), and Hilbrig
et al. (2003) review various examples of mechanical and chemical extraction and
contaminant removal methods. Indeed, contaminants and detergents need to be
eliminated from the samples before analysis as, in the typical bottom-up approach, they
interfere with the digestion, the separation and fragmentations steps; precipitation and
filtering (based on molecular weight cut-off) strategies are the best in the context of
bottom-up MS analysis [Feist et al., 2015]. Indeed, many extraction solvents are
inappropriate for MS. Precipitations may denature the proteins, but this is usually
irrelevant in this situation. Feist et al. (2015) review different precipitation protocols and
emphasise that caution is needed for the next re-suspension step to avoid missing a
substantial part of the sample proteome. They list several techniques and approaches in
this regard.

1.3.2 Reducing samples’ complexity

High-throughput bottom-up workflows (including LC-MS/MS) generally aim to decrease
the sample complexity to analyse while increasing the depth of proteomic
coverage [Z. Zhang et al., 2014; Bruce et al., 2013; Cox and Mann, 2011]. Indeed, many
aspects may impede the characterisation of the proteins. For example, the broad
physicochemical scope of the proteins will require various protocols to be handled
efficiently. Their concentrations in a sample may saturate the MS characterisation
capacity as the very abundant proteins are easily detected and quantified while rarer
proteins may be missed entirely without specific precautions [K. Liu et al., 2009;
Cappadona et al., 2012] or without unbearably increasing the analysis time per
sample [Nilsson et al., 2010]. On the other hand, strategies to decrease saturation effects
can also be used instead [Z. Zhang et al., 2014].

Hence, the usual workflow will usually involve the denaturation, the reducing, the
alkylation and the digestion of the proteins. The peptide mixture products are then
separated in smaller fractions before subjection to MS so as to increase the coverage
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Figure 1.10. Overview of proteomic data generation.

depth while keeping a reasonable analysis time-frame [Aebersold and Mann, 2003; Cox
and Mann, 2011; Y. Zhang, Fonslow, et al., 2013]. Figure 1.10 presents a general overview
of one possible workflow. Indeed, the various complexity reducing steps may happen in
a different order than I report hereinafter; they may also happen concomitantly.
Additionally, protocols may skip or, conversely, perform the same type of complexity
reducing step several times. For example, protocols may present protein fractionation as
the first step and then peptide fractionation as a later one. Moreover, almost all protocols
will only involve liquid chromatography for their fractioning steps.

1.3.2.1 Denaturation, Reduction and alkylation

These steps help the separation of the protein complexes, the relative linearisation of the
proteins and, to some extent, the homogenisation of the crude mixtures [Feist et al., 2015;
Bruce et al., 2013]. They may happen simultaneously with other steps. For example, they
may occur during the extraction, the depletion or the digestion (where they facilitate the
trypsin cleavage).

1.3.2.2 Depletion of highly abundant proteins

Regrettably, the proteomic field lacks amplification methods, and there are very few
strategies to remove the highly abundant proteins which removal is required to capture
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scarcer proteins in untargeted DDA bottom-up protocols. Fortunately, these are very
limited in number and can be precisely targeted. Z. Zhang et al. (2014) report two useful
strategies. The first one aims to remove them entirely from the sample, either by
selective precipitation or (more expensive) by affinity. The second approach aims to the
equalisation of the proteome. It may be based either on combinatorial ligand libraries
involving bead-supported ligands (on a similar model to RNA-Seq protocols) or on
specific protease mixtures.

In general, the equalisation of the proteome improves the characterisation of the scarcer
proteins [Z. Zhang et al., 2014] while they may introduce skewness to the analyses (due to
the relative protein proportions).

1.3.2.3 Proteolytic digestion

It may seem contradictory to digest the proteins into peptide mixtures as a means of
reducing the complexity. Nevertheless, while the main drawback is the inability to
distinguish between proteoforms [Bruce et al., 2013], it improves the proteins
characterisation on several points.

• It helps to homogenise the sample: peptides present closer physicochemical
properties to each other than proteins [Z. Zhang et al., 2014]. Also, peptide
separation (by gel or liquid chromatography (LC)) is easier than for proteins (see
Section 1.3.2.4).

• MS is also more sensitive to peptides than to proteins due to being more sensitive
towards lower molecular-weight molecules [Vitek, 2009; Cox and Mann, 2011].
Proteins may also be too large to be fragmented (e.g. with CID) [Bruce et al., 2013].

• It is also easier to accurately characterise (identification and quantification) smaller
molecules. Large proteins with similar compositions present very similar molecular
mass and may be impossible to discriminate. On the other hand, the sequence-
specific enzymatic digestion gives hints on the protein sequence.

• Finally, it increases the coverage of the less abundant proteins [Z. Zhang et al.,
2014]. Indeed, each protein is represented by multiple peptides hence increasing
the sampling probability. Often, one or a small number of LC-MS/MS-characterised
peptides is enough to identify the parent protein [Bruce et al., 2013].

The digestion may happen in-gel or in-solution. Although less commonly used as before
in bottom-up approaches based on LC-MS/MS, in-gel digestion provides directly the
fractioning and deals better with the more complex samples. Often, the gel will contain,
in addition to the protease, a few chemical reagents that handle other steps (e.g.
chaotropic reagents to denature the proteins at the same time). However, it requires
greater time and amount of starting material than for the in-solution digestion.
In-solution digestion, on the other hand, is the simplest and the most popular digestion
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approach among all the proteome studies in general. It usually precedes filtering and
fractioning steps. An hybrid method combining both methods, filter-aided sample
preparation (FASP) [Manza et al., 2005; Wiśniewski, Zougman, et al., 2009] exists.

Although there are other enzymes for restrictive digestion [Giansanti et al., 2016; Tsiatsiani
et al., 2015], trypsin is the gold standard protease [Z. Zhang et al., 2014]. Trypsin is a serine
protease that has a high proteolytic and highly specific activity: it cleaves the proteins at
the carboxyl side of an arginine (R) or lysine (K) aas, when they are not followed by a
proline (P). Trypsin’s cheapness and ease of use can also explain its popularity. Besides,
trypsin creates peptides that are in the ideal range for MS studies as it produces a large
number of short (600 to 1, 000 Dalton (Da)) peptides that can be efficiently fragmented
and identified, although inferring the parent proteins remains challenging [Laskay et al.,
2013]. Circularity may also contribute to this trend: as more studies are using it, more data
are available for comparison; hence more studies employ it.

Peptides produced by trypsin digestion are referred to as tryptic peptides.

1.3.2.4 Separation methods (fractioning)

Fractioning (or fractionation) is the principal method to simplify sample complexity. It
also allows focusing selectively on subcellular fractions when needed. Indeed, one may
want to study particular organelles, cell compartments or other kinds of the proteome
(e.g. phosphorylated or glycosylated proteins) [Cox and Mann, 2011]. Besides, fractioning
is also a good strategy to reduce the impact of undersampling and increase repeatability
between analyses. With MS being prone to undersampling, repeated analyses may fail to
yield the same protein identifications, as different sets of peptides may get sampled.

Several methods may fraction peptide mixture. Protocols may involve many of their
various combinations. For example, M.-S. Kim et al. (2014) and Wilhelm et al. (2014) have
used a gel and LC sequentially before MS analyses.

Precipitation

It is very easy to perform, and they usually involve solvent gradients. While their use is
frequent for desalting crude mixtures, it is also quite limited for protein mixtures as other
separation methods (based either on gel or capillarity such as LC) are more performant.

Gel electrophoresis based separation

Protocols may involve a first gel-based separation method before the liquid-based
separation and fragmentation of LC-MS/MS [Feist et al., 2015].

The gel separation may comprise one step or two, which are respectively named one-
dimension (1D) and two-dimensions (2D) gels.
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1-D gel approach comprehends a denaturing alkylating gel (usually Sodium Dodecyl
Sulphate-PAGE (SDS-PAGE) but others are possible, e.g. Lithium Dodecyl Sulphate-PAGE
(LDS-PAGE)) [Shevchenko et al., 2006]. Thus, proteins lose all their quaternary, tertiary
and secondary structures. The separation relies then on the length of the proteins.
Indeed, SDS molecules carry negative charges, and they bind to the proteins
proportionally to their length, and as an electric field is applied to the gel, the proteins
migrate towards the positive side of the gel at different speeds due to their difference in
their mass-charge ratio. The 1D protocol is faster than the 2D one, while the latter is
more selective as it relies on very similar principles but in two separate steps⁴⁶.

Liquid chromatography (LC)

Chromatography is a technique of choice for the separation of mixtures into their
components or — at least — in simpler mixtures. LC, as any chromatography, involves a
mobile and a stationary phase. The mobile phase comprises an eluent (i.e. a solvent) and
the mixture to be separated. A column plays the stationary phase part. High pressure is
applied (e.g. HPLC (high-performance liquid chromatography) or UPLC (ultra
performance liquid chromatography)) to improve and accelerate the process.

The separation relies on the difference of affinity of the mixture components between
the mobile and stationary phases. Many combinations are possible. However, any poor
choice may precipitate the mixture on the (extremely) expensive column which means
that both the column and the mixture will be lost. Hence, in discovery mode and for
complex mixtures (as for proteins extracts), instead of using a normal phase, i.e. crude
silica-gel, column (which interacts tightly with polar molecules such as peptides and may
prevent them to interact with the mobile phase afterwards), a reversed phase column is
more common. In these columns, the silica-gel is modified and has been attached to
long hydrocarbon chain. Thus, the column is unable to fix anything permanently. Along
with a Reversed-phase LC (RPLC) column, polar eluants are used. These interact strongly
with charged proteins and peptides. Hence, the separation occurs on the polarity of the
molecules and the more hydrophobic a molecule, the longer it will remain in the column
as it will present fewer interactions with the eluent.

The ease of coupling this powerful method to the (also powerful) MS explains why Liquid
Chromatography (LC) followed by Mass Spectrometry (LC-MS) is so widespread today.
Their combined use also allows high repeatability and optimised running time.

46 Usually, the proteins are first separated based on their isoelectric point (or pI) in a native gel (as opposed to a
denaturing one). An ampholyte reagent is added to the gel which ensures a stable gradient of pH through the
gel. The proteins migrate until they reached a pH region where their overall charge is neutral. In a second
time, the proteins are separated perpendicularly this time on their mass after the addition of SDS or an alike
reagent.
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1.3.3 Characterisation through fragmentation profiles

The first reported use of the principle underlying MS happened in 1913 when Sir Joseph
John Thomson channelled a stream of neon ions through an electromagnetic field and
captured its deflection on a photographic plate [Thomson, 1913]. Arthur Dempster and
FrancisW. Aston created the first mass spectrometers in 1918 and 1919 respectively [Aston,
1919]. In this context, the use of MS is quite recent in biology for proteomics as it has been
developing from the 1980s onwards particularly with the development of soft ionisation
methods [Papachristodoulou et al., 2014].

1.3.3.1 General principle

MS relays on the following principle: molecules of interest are ionised into charged
particles, then the mass analyser separates them in the gas phase based on their total
mass (𝑚) to charge (𝑧) ratio, i.e. 𝑚/𝑧. A detector collects all these ions and translates
their signal (intensity versus 𝑚/𝑧) to an electric one which is the output serving as raw
data for the later analyses. In the simplest case, the molecules are singly charged (𝑧 = 1),
and only their molecular mass is recorded. However, it is quite common for the
molecules to carry more than one electric charge and that if the energy used for the
ionisation is substantial, they may also forego fragmentation and internal reactions that
will result to the production of many spectra. The collection of spectra obtained from a
single peptide ultimately increases the accuracy of the mass measurement and the
identification of the peptide [Papachristodoulou et al., 2014]. Recent developments have
shown that the use of two mass spectrometers in tandem (MS/MS) reduces the number of
missed proteins significantly while keeping reasonable running times and it is more
potent than excessive fractioning as is the improvement of HPLC [Cox and Mann, 2011].

1.3.3.2 Ionisation

While there are other methods (more adapted to small organic molecules) two soft
ionisation methods are routinely used for proteomic samples: matrix-assisted laser
desorption ionisation (MALDI) and electron spray ionisation (ESI).

MALDI is very useful for large molecules. It allows creating ions with a minimum of
fragmentation (if any at all). The molecules are fixed onto a matrix and then a pulsed laser
irradiates the sample which provokes the ablation and then the desorption from the matrix
and ionisation of the molecules. However, it requires mass spectrometers compatible with
this ionisation technique [Z. Zhang et al., 2014; Walther et al., 2010].

ESI is currently the most popular technique of ionisation, mainly because it may be used
with a large panel of different analysers and it interfaces efficiently with HPLC or UPLC.
An electrostatic method performs the ionisation. The application of a high electric
potential on a needle through which a liquid (containing the dissolved analyte peptides)

33



biological and technological context of this thesis

is passing provokes its dispersion into small and highly charged droplets. These droplets
start to evaporate to the point where the charge on their surface is so high that the
desorption of the analytes occurs. The analytes are then in an ionised form (often
carrying many charges, contrary to MALDI). They are then released into the mass
spectrometer. [Walther et al., 2010]

1.3.3.3 Mass analyser

Many different mass analyser designs are available. They all share two properties: they
accelerate the ions (in a vacuum), so all the ions share the same kinetic energy, and then
they deflect (and thus resolve) the ions based on their various 𝑚/𝑧. Many are also capable
of trapping and storing specific ranges of ions for more in-depth analyses until they release
them based on their 𝑚/𝑧. The most common commercial analysers include quadrupole
(Q), linear ion trap (LIT), time-of-flight (TOF), ion traps and most recent Fourier transform
(FT) analysers such as ion cyclotron (ICR) and Orbitrap™, which has become the most
popular. The choice of one analyser over others or any combination of them depends on
many factors (including availability). [Haag, 2016]

In Appendix A.7, I review the analysers involved in the production of the raw proteomic
data used in this thesis. Indeed, all the datasets have been produced by a combination of
linear trap quadrupole (LTQ) and Orbitrap™.

1.3.3.4 Fragmentation techniques [Z. Zhang et al., 2014]

The overall quality and success of peptide (and then protein) identification depends largely
on the quality of ion fragmentation. Tandem-MS (MS/MS) improves the identification of
the peptides by cleverly increasing the number of fragmentations. Indeed, the first MS
is used to select specific ions (hence known 𝑚/𝑧) to pass to a second MS. Thus for each
MS1 spectrum, a collection of fragmentation mass spectra can be gathered. The peptide
sequences are then more likely to be accurate, and the risk of false positive is significantly
decreased.

While the experimenter may want to limit fragmentation, they may also often use
dedicated techniques to increase it. There are schematically three different classes of
fragmentation techniques: collisional, electron-based or photon-based. The collisional
category, CID (see Appendix A.7), is widespread. The chosen ion is introduced in the
collision cell, and its collision with an inert gas particle produces kinetic energy, which
transforms into internal energy. The fragmentation happens when this internal energy is
sufficient to activate the dissociation of the ion. Another related and slightly more
effective method for higher charge state ions is the higher-energy collisional dissociation
(HCD). This latest method (developed by ThermoFisher for Orbitrap™ analysers), has
gained popularity with the development of quantitative proteomics (e.g. iTRAQ) as it
provides in parallel peptide identification and quantitation. In the electron-based
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category, the most common is probably the electron transfer dissociation (ETD)
technique: an anion donates an electron to a cationic peptide, and this transfer initiates
the fragmentation of the peptide backbone [Syka et al., 2004]. For the other categories,
see the review from Z. Zhang et al. (2014) and the included literature.

1.3.3.5 Acquisition modes

There are two possible acquisition modes: data-dependent acquisition (DDA) and data-
independent acquisition (DIA).

The common DDA bottom-up label free protocol has many advantages [Aebersold and
Mann, 2016]. It is untargeted and free from any hypothesis, and hence a great tool for
global discovery study. It surveys the proteome all at once, and prior knowledge is
unrequired. Its popularity increased concomitantly to the increased availability of
high-quality genome and gene sequence databases and more recent technical advances in
MS (development of new protein/peptide ionisation and fragmentation
methods) [Aebersold and Mann, 2003; Cox and Mann, 2011; Z. Zhang et al., 2014]. The
main DDA limitation [Guillaumot, 2017] is its inability to select all the existing peptidic
ions for fragmentation by MS/MS. The stochastic selection is biased both by each peptide
ionisation efficiency and the possible peptides coelution during the LC before being
introduced in the MS. In practice, the instrument first quickly scans the current eluting
peptides (MS1) before a few (the “top N”) precursors are selected one after the other for
fragmentation (MS2). One MS1 spectrum with N MS2 spectra constitute one duty cycle,
which usually lasts about 1s. Peptides elute over 30 to 40s, and software tools that drive
the instruments can predict peptidic peaks and thus will increase the chance of
high-quality MS2 spectra by selecting the peptides at their maximum abundance. A
dynamic exclusion window avoids the same peptides being repeatedly selected and new
targets to be fragmented. MS1 spectra allow selecting potential peptides to fragment, and
their intensity. MS2 spectra are used to identify the peptides later.

DIA approaches are more complicated as no precursor is selected and all the coeluted
peptides are fragmented at the same time. The sustained interest in DIA methods is
because they provide a less biased overview of the proteomes, although generally more
restricted. They can generate comprehensive fragment-ion maps for specific
proteoforms [Chapman et al., 2014]. Often DIA is performed after a short DDA survey
that establishes a small reference spectrum library to help with the analysis of the MS2
spectra. In the past decade, the number of DIA studies has expanded, particularly with
methods such as SWATH-MS [Gillet et al., 2012] (for proteome quantification). DIA
methods are likely to gain even more popularity as many efforts are put into their
development [A. Hu et al., 2016].
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1.3.4 Bioinformatic strategies for proteomics studies

MS-based proteomics is quite challenging, and, in most cases, the major bottleneck of
proteomics pipelines remains the data analysis [Y. Chen et al., 2016; Tyanova, Temu,
Sinitcyn, et al., 2016]. Since mass spectrometers’ raw data output for proteomics is
directly uninterpretable, it needs processing before being meaningful. Because the sheer
amount of produced data can reach the terabyte (TB) range, it prohibits any manual
handling and requires automation [Codrea et al., 2016], particularly for the peptide and
protein identification steps [Nilsson et al., 2010].

The protein identification process leads to three computational challenges: peptide
identification, protein inference and result validation [T. Huang et al., 2012]. Besides,
shotgun proteomics produce highly redundant data: peptide subsets that ionise better
than the rest are repeatedly and preferentially selected for fragmentation and thus will
produce more MS/MS spectra [Eriksson et al., 2007; Koziol et al., 2013]. On the other
hand, certain subsets of peptides can be undetectable with the currently available
technology; they hardly ionise, or have a weak signal that is masked by other more
abundant or more ionisable peptides. Thus, shotgun experiments are plagued by missing
data [Stead et al., 2008; Lazar, Gatto, et al., 2016].

As for RNA-Seq, for each proteomics analysis step, there are many tools. Many integrate
a few (if not all) of the steps described in the following pages, e.g. MaxQuant⁴⁷ [Tyanova,
Temu, and Cox, 2016], OpenMS⁴⁸ [Pfeuffer, Sachsenberg, Alka, et al., 2017], Skyline⁴⁹ [Pino
et al., 2020] or Crux⁵⁰ [Park et al., 2008; McIlwain et al., 2014]. From the raw data
acquisition to downstream analyses (or any of the intermediate steps), pipelines integrate
many different combinations of tools [Vitek, 2009].

Pipelines vary depending on experimental design, data type (i.e. expression, modification
state or interactions map) and the data creation practicalities (e.g. method of separation,
mass analyser kind, acquisition mode). Many factors are interconnected in MS and while
individual effects have been extensively studied, designing a sound pipeline may be
overlooked easily [Sun et al., 2012; Maes et al., 2016]. However, this risk is reduced as
many tools imply working upstream or downstream with specific tools, e.g. the output of
MaxQuant (raw data to protein quantification) is ready for use by Perseus⁵¹ [Tyanova,
Temu, Sinitcyn, et al., 2016] (for analyses such as pattern recognition, time-series
analysis, cross-omics comparisons and multiple hypothesis testing). Besides, as files from
mass spectrometers are usually encoded in proprietary (commercial) formats, there may
be a limited choice of available tools or software for a specific combination of analysis
and data. A few open file formats (and their appropriate converters) exist (e.g. mzML

47 MaxQuant — http://www.maxquant.org
48 OpenMS — http://www.openms.de/
49 Skyline — https://skyline.ms/
50 Crux — https://crux.ms/
51 Perseus — http://www.perseus-framework.org
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format [Martens et al., 2011] and ProteoWizard⁵² [Chambers et al., 2012]), however, they
may fail to record a few critical points of the raw data, and, so, they may also be unfit for
particular analyses.

Spectronaut⁵³ [Bernhardt et al., 2014] is one example of specialised pipelines. Spectronaut
handles the targeted analysis of DIA⁵⁴ data.

As bottom-up approaches are the most common, their associated tools also tend to
dominate the MS-based proteomic bioinformatics [L. H. Lee, 2015]. In the following
pages, I review the steps involved in the MS/MS pipeline, presented in Chapter 2, that
has processed all the proteomic data presented in this thesis.

1.3.4.1 Signal processing and peak-picking

The signal processing step comprises the (noise) filtering (or denoising), the baseline
correction (which eliminates systematic trends), the signal normalisation (or centroiding),
and the peak picking (i.e. mass peaks detection) [Codrea et al., 2016; Nahnsen et al., 2013].
These steps are highly automatised and happen almost simultaneously to the signal
acquisition.

Peak picking requires automation for proteomic experiments, notably as the number of
spectra for one sample is in the order of 100,000. Even though instrument resolution has
significantly improved over the last decade, peaks can be smooth (i.e. with a large signal-
to-noise ratio (SNR)) and easy to pick, or they can still be noisy (i.e. barely distinct from
the background) and trickier to identify. Peak width is related to the peptidic ion mass-to-
charge (𝑚/𝑧), the mass analyser resolution and acquisition parameters. Algorithms may
use this relation to detect peaks by scanning the mass spectra for local maxima of expected
widths. [Bauer et al., 2011]. They can also rely on the associated isotopic peak clusters of
the molecular mass peak (see Appendix A.8). These molecular peaks clusters (and their
relative intensity) also provide information that can resolve the atomic composition of the
peptides [Renard et al., 2008].

Optionally, a final molecular mass correction step can be applied to remove modifications
due to the ionisation process.

1.3.4.2 Peptide identification and validation

An essential step of proteomic data processing is to identify and then validate a peptide
sequence for each molecular mass that has been detected. Typically in LC-MS/MS,
spectra from a first mass spectrometer (MS1) allow the selection of the ionised peptides
(i.e. precursor ions) to be fragmented, while the spectra from the second one (MS2) allow

52 ProteoWizard: http://proteowizard.sourceforge.net/
53 Spectronaut — https://biognosys.com/spectronaut
54 See Section 1.3.3.5.
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their identification [X. Wang et al., 2019a; Codrea et al., 2016]. Identification robustness
increases with the number of spectra associated with each peptide (or protein).

Matching spectra to peptide sequences

In MS/MS experiments, various fragments (product ions) may be produced through the
cleavage of covalent bonds or internal rearrangements (e.g. loss of carbonyl group, a water
or ammoniummolecule) [Macias et al., 2020; Wysocki et al., 2005; Yagüe et al., 2003; Bythell
et al., 2010].

While different protocols and parameters can produce similar fragments, the peptide
MS/MS profiles (spectra) recorded by a given instrument with different fragmentation
modes are distinct. Only fragments carrying at least one charge can be detected and
measured. The product ions’ nature and relative abundances depend on the initial
peptide sequence, and the chosen fragmentation method⁵⁵ and energy of the
fragmentation event [Révész et al., 2021]. Different fragmentation methods may produce
different sets of diagnostic fragments, and hence it can be beneficial to use different
methods in combination [Révész et al., 2021; Dupree et al., 2020; Tu, J. Li, Shen, et al.,
2016; Diedrich et al., 2013].

The two most popular fragmentation approaches are collision-induced dissociations (CID
or HCD) and produce many fragments that result from the peptide backbone
fragmentation, of which peptide bonds (see Section 1.1) represent the predominant
breakage pathway as they have the lowest energy [Dupree et al., 2020; Medzihradszky
et al., 2015].

The Roepstorff–Fohlman–Biemann nomenclature [Roepstorff et al., 1984; Biemann, 1988],
presented in Figure 1.11, has been widely accepted to designate the product ions generated
by the backbone fragmentation [Medzihradszky et al., 2015].

When a peptide bond (in purple in Figure 1.11) break occurs, the precursor ion generates
two complementary fragments. The products are named as:

• b-ions, for the fragments comprising the amino (or N-terminus) end of the
precursor’s sequence,

• y-ions, for the ones comprising the carboxyl (or C-terminus) end.

Before possible internal rearrangements⁵⁶, the sum of the mass of complementary ions
equals the molecular mass of their precursor ion.

Other fragment types also exist, and they assist with a better peptide
characterisation⁵⁷ [Noor et al., 2020; Steen et al., 2004; Wysocki et al., 2005]. For instance,
one may use EThcD to generate more informative fragments to study peptides’
phosphorylation or ADP-ribosylation [Penkert, Yates, et al., 2017; Penkert, Hauser, et al.,
2019; Bilan et al., 2017]. Furthermore, other protocols fragment the side chain (R group —

55 See Section 1.3.3.4.
56 e.g., water loss for fragments with Ser, Thr, Glu, or Asp [Medzihradszky et al., 2015]
57 i.e. peptide identification
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see Appendix A.1) and produce satellite ions (d-, v- and w-ions) that can help to
differentiate between isomers (e.g. Leu and Ile) [Han et al., 2007; R. S. Johnson et al., 1987].
However, the PTMs’ characterisation remains challenging [Dupree et al., 2020].
The predictability of peptide fragmentation⁵⁸ [Dupree et al., 2020; Medzihradszky et al.,
2015] and the aas mass differences (see Table A.1) enable (at least partially) the peptide’s
sequence resolution. Overlaps of partial sequences obtained from different ion types allow
stitching them together in the peptide sequence.

Figure 1.11. The Roepstorff–Fohlman–Biemann nomenclature [Roepstorff et al.,
1984; Biemann, 1988] unambiguously designates the different ions
generated from the peptide backbone fragmentation. Here is an illustration
for a peptide formed by eight aas (one green box represents one aa or
its residue — see Table A.1). The most common breakage occurring by
collision is the cleavage of the peptide bond (amide bond, in purple), which
can produce a y-ion (when the C-terminus part of the precursor ion has a
charge) or a b-ion (the N-terminus part is charged). The peptide backbone
fragmentation can generate other series of ion types, e.g. ETD and ECD can
produce c- and z-ions (cleavage of the N-C𝛼 bonds) [Han et al., 2007]. Like
b-ions, a- and c-ions are produced when the N-terminal part of the peptide
holds a charge, while, like the y-ions, x- and z-ions are created when the
C-terminal part remains charged. An index notation distinguishes the ions
from the same series: the index is the number of residues comprised (even
partially) by the ions. When considering a couple of complementary ions,
e.g., b2-ion and y6-ion, the indices sum equals to the residues number of
the precursor ion; in other terms, if 𝑛 is the number of aas in the peptide,
b𝑚-ion and y(𝑛−𝑚)-ion are complementary.

Figure 1.12 shows an MS/MS spectrum, also called fragmentation spectrum or MS2
spectrum. When considering a series of either b- or y-ions, the mass difference between
two (single charged) consecutive ions corresponds to the mass of the residue at the end⁵⁹
of the lengthiest (hence the heaviest) ion of the pair.

Although based on a real example, Figure 1.12 shows a simplified MS/MS spectrum to
ease its interpretation. In practice, assigning peaks is more challenging, including
assigning to one series over another one. The lower the mass accuracy, the more difficult
it is to discriminate between possible isobaric combinations and different ion
types [Medzihradszky et al., 2015].

58 Both in the ions’ nature and their relative intensities [Frank, 2009].
59 either at the N-terminal end for a-,b- or c-ions or at the C-terminal end for the x-, y- and z-ions
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(a) Simplified representation of an MS/MS spectrum (or MS2 spectrum)
for the peptide IYEVEGMR — adapted from Sadygov et al. (2004)

(b) Peptide sequence solved from the MS/MS spectrum.

Figure 1.12. MS/MS spectrum and peptide identification. In (a), two consecutive
ions of the same series have a mass difference that corresponds to the mass
of one aa contained in one ion but missing in the other. The supplementary
aa is found at the C-terminus of the heaviest ion. The respective EVEGM and
YEVEG partial sequences can directly be solved from the b- and y-ion series.
By combining the MS/MS spectrum presented in (a) and the precursor
molecular mass given by the MS1 spectrum (997.16 Da — highlighted in
red in (b)), one can deduce the remaining peptide sequence. Mass ions
directly extracted from (a) are in orange for the b-ions and in blue for y-
ions. Amino acids with supporting evidence in (a) are highlighted in (b)
in orange when backed by b-ions and in blue by y-ions. The sum of the
masses of complementary b- and y-ions equals the precursor’s molecular
mass. The complementary ion of y7 has a mass of 114.16 Da, which
corresponds to Leu’s or Ile’s acylium ion. Leu and Ile share the same mass
and are undistinguishable from their b- or y-ions only. It may happen
in the literature that a place holder is used to symbolise either of them,
e.g. J, which refers to none of the standard aas. At the C-terminal end of
the sequence, the complementary ion to b7 has a mass of 175.20 Da that
corresponds to Arg or the couple Val/Gly, an isobaric combination to Arg.
However, the precursor peptide has been produced by trypsin digestion that
specifically cleaves at the carboxyl side of Arg and Lys (when not followed
by a Pro). Thus, it is more likely that the remaining sequence comprises
Arg only. Theoretically, peptide sequences can be solved by collecting
and identifying all the ions from the same series and correlating the mass
differences between them with the residue masses of the amino acids —
including any possible PTM or other modification. However, even when
excluding Leu’s and Ile’s ambiguity, a direct resolution is hard to achieve
in practice as series overlap and ions may not be detected or recognised
(e.g. Ser and Glu can lose a water molecule through internal rearrangement
[Medzihradszky et al., 2015]).
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A complete ion series of a fragmented peptide is ideally required, but not all peptide
bonds may break or be intense enough to be detected. In addition, water and ammonium
losses and other modifications can shift the mass of the residues. However, there are also
many rules of thumb (see Steen et al. (2004)) providing quick guidance about reasonable
sequences. Furthermore, possible immonium ions (+H2N = CHR) may help determine
the aas composition of the precursor peptide, and past studies have highlighted many
fragmentation rules that contribute to removing ambiguities. See Medzihradszky et al.
(2015) for a more detailed discussion on fragmentation rules and MS/MS spectra
interpretation refinements.

As modern LC-MS/MS experiments can produce tens of thousands of MS/MS
spectra [O’Bryon et al., 2020], manual approaches are neglected in favour of algorithms
to automate the peptide spectra matching.

There are three main possibilities for protein/peptide spectra matching: the sequence-
based searching approach, the spectral library searching one and the de novo sequencing:

• The sequence-based approach matches the experimental spectra to theoretical
ones. These theoretical spectra are created by adequate in silico digestion and
fragmentation of proteins found in protein sequence databases such as
UniProtKB/Swiss-Prot from UniProt⁶⁰ [The UniProt Consortium, 2017], which is
manually annotated and reviewed, UniProtKB/TrEMBL (automatically annotated,
unreviewed), or from genomic sequence databases (e.g. NCBI ⁶¹) after in silico
translation of the sequences. This type of matching requires database-dependent
search engines, e.g. Mascot⁶² [Perkins et al., 1999], Sequest [Eng, McCormack, et al.,
1994; Tabb, 2015], Andromeda [Cox, Neuhauser, et al., 2011] from MaxQuant,
X!Tandem [MacLean et al., 2006], MS-GF+ [S. Kim et al., 2014], MS Amanda [Dorfer
et al., 2014], Open-pFind [Chi et al., 2018], MSFragger [Kong et al., 2017],
Morpheus [Wenger et al., 2013] or Pulsar included in Spectronaut®.

• The spectral library based approach matches the experimental spectra to other
previously recorded experimental spectra. This approach relies on spectral
matching engines, e.g. HMMatch [X. Wu et al., 2007], SpectraST [Lam et al., 2008] or
BiblioSpec [Frewen et al., 2007] from Skyline, M-Split [J. Wang et al., 2010],
Pepitome [Dasari et al., 2012], QuickMod [Ahrné, Nikitin, et al., 2011], pMatch [D. Ye
et al., 2010], COSS [Shiferaw et al., 2020] or ANN-SoLo [Bittremieux et al., 2018].

• The de novo sequencing approach consists of comparing the observed mass data to
the theoretical mass of every possible peptide sequence. This method is the closest
to the manual approach described above. For example, see PepNovo⁶³ [Frank, 2009],
PEAKS⁶⁴ [B. Ma et al., 2003], pNovo 3⁶⁵ [H. Yang et al., 2019], DeepNovo [N. H. Tran et

60 UniProt — https://www.uniprot.org/
61 NCBI — https://www.ncbi.nlm.nih.gov/protein/
62 Mascot — http://www.matrixscience.com/
63 PepNovo — http://proteomics.ucsd.edu/Software/PepNovo/
64 PEAKS — https://www.bioinfor.com/peaks-studio/
65 pNovo 3 — http://pfind.ict.ac.cn/software/pNovo/
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al., 2017],MetaSPS⁶⁶ [Guthals et al., 2013],Novor⁶⁷ [B.Ma, 2015], Lutefisk [Taylor et al.,
1997], NovoHMM [Fischer et al., 2005], ANTILOPE from OpenMS, Twister [Vyatkina
et al., 2015] for topdown data, UniNovo⁶⁸ [Jeong et al., 2013], UVNovo⁶⁹ [Robotham
et al., 2016].

The first two methods are favoured over de novo peptide sequencing, as the latter is very
cumbersome and time-consuming [Codrea et al., 2016] and requires high quality data for
best performance [Muth et al., 2018]. Note that there are also hybrid approaches based on
de novo sequencing and database matching, such as GutenTag [Tabb, Saraf, et al., 2003],
InsPecT [Tanner et al., 2005], DirecTag [Tabb, Z.-Q. Ma, et al., 2008], ByOnic [Bern et al.,
2012], or PEAKS DB [J. Zhang et al., 2012].

Many search engines exist for matching MS/MS spectra, see Noor et al. (2020), C. Chen
et al. (2020), Griss (2016), Shteynberg, A. I. Nesvizhskii, et al. (2013), and Eng, Searle, et al.
(2011) for reviews. Furthermore, combining the results of several search algorithms when
possible improves the final outcomes [Noor et al., 2020; C. Chen et al., 2020; Sadygov et al.,
2004; Eng, Searle, et al., 2011; Shteynberg, A. I. Nesvizhskii, et al., 2013; Griss, 2016].

Sequence based algorithms are by far the most popular and many (e.g. SEQUEST and
Mascot) rely on the same information and parameters choices to match (and score) the
spectra to peptide sequences.

• Fragmentation mode
• Digestion enzyme and the number of possible omitted cleavages
• Mass tolerance for 𝑚/𝑧 ratio of peptidic and fragmented ions.
• Possible charges for the peptidic and fragmented ions.
• Knowledge database (the more complete, accurate and adequate a database is the

better and more robust is the peptide and protein identification).

Scoring functions

While algorithms assign MS/MS spectra to peptide sequences, they simultaneously
compute a corresponding score for each peptide-spectrum match (PSM). This score
summarises the quality of the assignment and allows the selection of the best
candidate-peptide for each spectrum. Only the matches with the best PSM scores (if not
the very best one only) are reported and used in the next steps of the quantification.

Sadygov et al. (2004) classify the scoring functions in four classes: descriptive (e.g.
SEQUEST ⁷⁰ [Eng, McCormack, et al., 1994]) interpretative, stochastic and
probability-based modelling (e.g. Mascot). While many of these functions return
statistical scores (e.g. Mascot and SEQUEST ), many other return non-statistical ones. For

66 MetaSPS — http://proteomics.ucsd.edu/software-tools/metasps/
67 Novor — rapidnovor.com
68 UniNovo — http://proteomics.ucsd.edu/Software/UniNovo
69 UVNovo — https://github.com/marcottelab/UVnovo
70 SEQUEST — http://fields.scripps.edu/yates/wp/
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these latter ones, tools such as Percolator⁷¹ [Käll, Canterbury, et al., 2007; Spivak, Weston,
Bottou, et al., 2009] or PeptideProphet⁷² [Keller et al., 2002; K. Ma et al., 2012] allow
transforming their scores into probabilities, and ease the application of threshold to
remove unreliable matches [J. S. Cottrell, 2011]. Regardless of whether the score is either
statistical (including probability-based) or not, searching the database to match spectra to
peptide sequence is a statistical process. Most MS/MS spectra only partially cover a
peptide sequence, which leads to many ambiguities. With the development of
high-throughput MS-based proteomics, researchers dropped manual interpretation and
validation and moved towards empirical score thresholds [Brosh, 2009]. Thresholds are a
compromise between sensitivity and accuracy (or error rate), i.e. true positive (or correct)
identifications proportion versus false positive (or incorrect) identifications proportion. A
high threshold for the scores reduces the error rate, but decreases sensitivity. A low
threshold accepts more PSMs, but also more incorrect matches.

Peptide validation

Today, among the many methods that validate the peptide assignment and estimate its
error rate, the gold standard is the target-decoy search approach (TDA) [Perkins et al.,
1999; Elias et al., 2007; Savitski et al., 2015].

Many search engines compute a p-value (see Appendix A.9.2) for each of the PSMs, but it
is insufficient to determine if multiple PSMs are true matches. A low p-value PSM has a
low probability of being incorrect. Because of the large number of PSMs per experiment,
statistically, a portion of these are incorrect. Thus, other statistical measures adjusting
for multi-testing (see Appendix A.9.3) are required. Corrections (such as Bonferroni
[Shaffer, 1995]) can be applied though they are stringent and discard many correct PSMs.
False discovery rate (FDR) [Benjamini and Hochberg (1995)] estimates the proportion of
incorrect PSMs among all accepted PSMs [A. I. Nesvizhskii, 2010; Aggarwal et al., 2015],
see Equation (FDR). Different approaches exist to estimate it. The most favoured is TDA
as it is non-parametric, easy to apply, and it also has the advantage of working with
search engines that have non-statistical scores.

Instead of figuring out which the correct and incorrect PSMs are, the target decoy search
approach (TDA) aims to estimate the overall FDR associated with a specific collection of
PSMs. In turn, this enables assessing the likelihood of each of the PSMs in the
collection [Elias et al., 2007] (see following segments on q-values and PEP). The critical
elements of this method are the creation of a decoy database with sequences that are
incorrect but similar (while non-overlapping) to the target (i.e. true) ones. Consequently,
any PSM found for a decoy sequence is by definition spurious. The known proportion of
decoy versus target sequences in the search space allows the computation of the
FDR [Elias et al., 2007; Elias et al., 2010] as shown in Equation (FDR). In Appendix A.10, I
briefly discuss the decoy database.

71 Percolator — http://percolator.ms/
72 PeptideProphet — http://peptideprophet.sourceforge.net/
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FDR =
Number of accepted PSMsdecoy
Number of all accepted PSMs

=
Number of accepted PSMsdecoy

Number of accepted PSMsdecoy + Number of accepted PSMstarget

(FDR)

Most of the search engines return multiple scores. Hence, defining a proper threshold for
each of them can be challenging or cumbersome. A possible solution is Percolator, which
trains a support vector machine (SVM) [Boser et al., 1992] to distinguish the correct and
incorrect PSMs [Käll, Canterbury, et al., 2007]. This machine learning based algorithm
has several advantages. It can exploit many scores and other specific data features to
automatically determine the best threshold without overfitting to a particular collection
of PSMs. Thus, comparisons of results between studies and laboratories are facilitated.
Moreover, many studies have reported that the use of Percolator improves the results
in terms of both accuracy and sensitivity and increases the overall number of identified
peptides [Granholm et al., 2014; Xu et al., 2013; Tu, Sheng, et al., 2015; The, MacCoss, et al.,
2016; Wright, Collins, et al., 2012]. Percolator can either be used directly on the collection
of target and decoy PSMs or as a post-processing step.

Protein inferring algorithms use two other significance measures for PSM validation: q-
values and PEP, which are described in Appendix A.11.

Anti-conservativeConservative

adjusted
p-value

(eg. Bonferroni correction)
PEP

FDR,
q-value

(Unadjusted)
p-value. . . .

optimal 
for most studies

Figure 1.13. Methods for assigning statistical significance to a collection of PSMs
— Adapted from [Käll, Storey, et al., 2008].

Methods based on PEP instead of q-values are more conservative, as PEPs are always
greater than q-values [Käll, Storey, et al., 2008], see Figure 1.13. For an individual validation,
e.g. checking the presence of a specific peptide in a particular condition, PEPs are more
indicative. On the other hand, q-values are favoured where the whole collection of PSMs
is considered, e.g. for an overview of the proteome landscape. [Käll, Storey, et al., 2008]

1.3.4.3 Protein inference

While identified as the key problem more than fifteen years ago, protein inference (i.e.
identification) remains the main challenging issue in shotgun proteomics [A. I. Nesvizhskii
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and Aebersold, 2005; He et al., 2016]. Note that in the literature, protein inference often also
encompasses the peptide identification as an intermediate step and the results validation
as they influence the protein identification quality.

Protein inference consists in assembling peptides into sets of reliable proteins. Most
assembly algorithms model the relationship between identified peptides and protein
sequences as a bipartite graph [T. Huang et al., 2012], illustrated in Figure 1.14. Proteins
identified by two or more (unique) peptides represent the best case: their identification is
reliable and computationally lighter. However, the existence of ‘degenerate peptides’ and
‘one-hit wonder’ proteins [T. Huang et al., 2012; He et al., 2016] makes this task
challenging and computationally intensive.

Degenerate peptides are ambiguous peptides that are shared by multiple protein sequence
definitions. They create a computational challenge because it is difficult to resolve from
which proteins they are derived and to select which of the two following options is true:
either all the related proteins are expressed in the sample or only some of them. Some
workflows cluster together proteins with homologous sequences to ease the process. More
often, to lessen the computational and interpretation burden, these ambiguous peptides
are discarded, and the inference relies solely on ‘unique peptides’, i.e. peptides that are
attributable to one protein sequence only.

‘One-hit wonders’ are proteins that are identified by a single peptide only. They require
careful handling regardless of their peptide uniqueness status, since if the peptide
identification is a false positive (i.e. an artefact), then the protein is also a false positive.
Shorter proteins are generally harder to identify (and quantify) for this reason.

As shown in Appendix A.12, the peptide assembly can be formulated as a set covering
problem [Cormen et al., 2009; Hochbaum, 1997]. This problem is known to be
NP-complete [van Leeuwen et al., 1990], and for which it is in practice impossible to
calculate an optimal solution.

Inference algorithms seek a compromise between the minimal and exhaustive lists of
possible proteins. Usually, algorithms approximate this solution through a parsimonious
approach (see the below example based on Maxquant).

Regardless of the approach, all algorithms involve a bipartite graph (see Figure 1.14),
even if they may also include other supplementary information to build their models (see
Figure A.5, p. 195).

Figure 1.14 shows how degenerate peptides, one-hit wonder proteins and the validation
quality of the peptide identification complicate the inference.

Note that if an edge connects a peptide 𝑖 and a protein 𝑗, the peptide 𝑖 is said to be covered
by the protein 𝑗 [T. Huang et al., 2012].

Protein 1 and protein 2 share peptide 1 and peptide 2. As both protein 1 and protein 2 are
also covering another peptide (peptide 3 for protein 1 and peptide 4 for protein 2), it seems
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Supplementary information model (one example)PSM

Figure 1.14. Protein inference: the bipartite graph. In order to infer proteins,
algorithms attribute each validated peptide to possible proteins of origins.
Peptides 1 and 2 are both included in the definition of proteins 1 and 2; it is
impossible to determine if both proteins are present in the sample or not
based on these two peptides only. Peptide 3 backs the existence of protein 1
and Peptide 4 backs the existence of protein 2; if either peptide 3 or peptide 4
is missed in detection, it is easy to conclude that only one of proteins 1 and
2 is only present. On the other hand, protein 3 is only identified by peptide
5. If the latter is an artefact, then protein 3 is also an artefact. In order to
achieve the inference, peptide assembly algorithms can rely on the bipartite
graph as sole input (solid blue box), or they can include other data types as
well, e.g. the score associated to each PSM (dashed blue circle) or the raw
spectra itself (solid teal box).

reasonable to assume that both proteins are expressedwithoutmore information. If peptide
4 is actually a false positive, would it mean then that only protein 1 is expressed?

Now, what happens if peptide 4 is hard to detect and is missing from the validate list of
peptides? Peptide 5 is the only one to identify protein 3 while peptide 6 and peptide 7 are
both backing the existence of protein 4. If one of the two latter peptides is an artefact,
protein 4 is still most likely a true positive. However, if peptide 5 is a false positive, so is
protein 3.

Many different approaches, algorithms and their related search engines for protein
inference have been reviewed in the literature [T. Huang et al., 2012; Serang and Noble,
2012]. Despite the partial or lack of overlap between sets of confidently identified
peptides, combining several search engines to infer the proteins has proven to yield
better results than a single search [Searle et al., 2008]. At worst, it improves the
confidence of the identification as more peptides are characterised per protein [T. Huang
et al., 2012; Audain et al., 2017].

One possible approach for protein inference is a parsimonious approach, as implemented
for example by Maxquant [Tyanova, Temu, and Cox, 2016; Cox and Mann, 2008].
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After identifying all proteins covering a given peptide, Maxquant joins the proteins with
the same set or subset of peptides in the same protein group. In other words, if the peptides
set 𝑆𝑎, defining a protein 𝑃𝑎, is equal to or strictly included in the peptides set 𝑆𝑏, defining
the protein 𝑃𝑏, then 𝑃𝑎 and 𝑃𝑏 are joined in the same group 𝐺1. Then, in each group, the
proteins are ordered by the decreasing number of peptides they cover. Hence, the protein
sequence at the top of the group can explain all the group’s peptides.

Maxquant refers to a peptide as ‘unique’ when found in only one group of proteins in
contrast to degenerated peptides shared between two distinct protein groups that cannot
be combined because their other peptides are unique to each group. Shared peptides are
called ‘razor’ (referencing Occam’s razor) in the protein group with the highest number of
peptides since it is considered the simplest explanation.

The user can choose which peptides are included in the quantification: unique peptides
only, both unique and razor peptides (default option⁷³) or all the peptides (of each group).
The following steps enable results filtering based on the protein groups PEPs (a protein
group PEP equals the multiplication of its peptide PEPs), the spectra quality, the unique
peptides number and the FDR threshold.

Many tools implement other approaches.

DTASelect [Tabb, McDonald, et al., 2002] sorts peptides by their identified locus (i.e. gene
or protein identifier) and then by sequences. Next, DTASelect filters the results based on
various criteria, including the spectra quality and user’s inputs, to finally keep proteins
supported by enough different peptides or by at least one peptide identified several times.
The algorithm adopts an optimistic approach instead of a parsimonious one and only
groups together proteins that have a strict identical sequence coverage.

ProteinProphet [A. I. Nesvizhskii, Keller, et al., 2003] (part of the Trans-Proteomics Pipeline)
is one of the most widely used methods in the literature [Sikdar et al., 2016]. The tool
computes in each sample the presence probability of a protein by combining the
probabilities of its different identified peptides through an iterative process. An EM
algorithm derives a mixture model of correct and incorrect peptide identifications from
the observed data⁷⁴. The following steps can summarise the inference⁷⁵. ProteinProphet
keeps the best spectrum matching any given assigned peptide. It retrieves all proteins
that cover any identified peptide. The tool groups the peptides by proteins and computes
the protein’s presence probability based on the available peptide evidence. It readjusts
the peptides’ negative and positive distributions based on their sibling counts: proteins
that have more than one assigned peptide are rewarded, while ‘one-hit wonders’ are
penalised. ProteinProphet apportions the degenerate peptides across all their covering
proteins before using a parsimonious approach to readjust their distributions through an
EM algorithm. As a starting point, the sum of all the peptides’ weights of one protein

73 Considered by the authors as the best compromise between most accurate protein quantification and
unequivocal peptide assignment [Cox and Mann, 2008].

74 including the PSM results, their associated score or the properties of the peptide matched to the spectrum
75 Based on A. Nesvizhskii (2006) and Serang and Noble (2012)
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equals one. Through successive iterations, these weights are refined such that proteins
with a higher number of peptides are rewarded. All redundant and indistinguishable
protein entries are finally collapsed together.

Themodel learns directly from the observed data, which increases its robustness [T. Huang
et al., 2012]. However, one identified issue with this award/penalty system is that it creates
cases where proteins covering many low-scoring peptides can outrank proteins covering a
smaller set of higher-scoring peptides [Serang andNoble, 2012]. As the size of the dataset to
study grows, the problem worsens. A complimentary tool in the Trans-Proteomics Pipeline
developed by the authors, iProphet [Shteynberg, Deutsch, et al., 2011], addresses this issue
by considering other information levels and refining the computation of the posterior
probabilities and protein FDR estimates.

Percolator⁷⁶ [Käll, Canterbury, et al., 2007; The, MacCoss, et al., 2016; Halloran et al., 2019]
(part of both The OpenMS proteomics pipeline (TOPP) and theCrux suite⁷⁷) is based on SVMs.
It implements a generalised semi-supervised⁷⁸ learning approach distinguishing between
target and decoy⁷⁹ PSMs for any shotgun dataset. First, a classifier is trained with a subset
of the data, i.e. the algorithm knows the data labels. Second, after ranking targets and
decoys according to a selection of features, the algorithm selects the target PSMs with a
1% FDR and then trains an SVM to discriminate between the kept targets and the full set
of decoy PSMs, and induces a new ranking. These steps iterate until convergence of the
ranking (i.e. the ranking remains the same from one iteration to the next).

Fido⁸⁰ [Serang, MacCoss, et al., 2010] (implemented first as a standalone tool, but now
distributed as a part of Percolator) is based on Bayesian inference (see Appendix A.13).
From a set of simple assumptions, the authors have developed a Bayesian model. This
model estimates three parameters directly from the data: the probability of a present
protein to generate peptides, the error probability of peptides to be detected from noise
and the proteins’ a priori probabilities to be present in a sample. These parameters are
respectively annotated 𝛼, 𝛽 and 𝛾. Fido explicitly allows high ranking spurious PSMs. It
uses their presence likelihood⁸¹ and rewards proteins which include strong independent
supporting evidence besides their degenerate peptides. Fido automatically apportions
information from degenerate peptides while ensuring that each protein presence
likelihood is unrestricted to their degenerate peptides. Compared to the initial approach
of ProteinProphet, this method’s accuracy is resistant to the dataset size. A related
method to Fido is EPIPHANY [Pfeuffer, Sachsenberg, Dijkstra, et al., 2020].

76 Percolator — http://percolator.ms
77 Crux suite — http://crux.ms/
78 semi-supervised since only decoy PSMs are labelled as ‘incorrect’ while target PSMs are an unlabelled mixture

of correct and incorrect PSMs. [Halloran et al., 2019]
79 shuffled or reverse peptide sequences
80 Fido — https://noble.gs.washington.edu/proj/fido/
81 By converting the PSMs prior probability estimates back into discriminant score-based likelihoods when

needed
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1.3 proteome exploration with mass spectrometry

Another inference tool from Percolator’s authors is Barista [Spivak, Weston, Tomazela,
et al., 2012], which is also part of the Crux suite. Barista combines the verification of the
PSMs and the protein inference where Percolator handles only the second task. The
authors advocate for a topdown approach to optimise the protein inference problem
instead of subdividing the workflow into independent modules. Their tool builds a
tripartite graph (spectra-peptide-protein) based on the results of a database search (target
and decoy sequences) and a protein database. A learning algorithm infers the protein
presence likelihood in each sample. This algorithm involves a similar set of features to
Percolator. Barista iteratively refines the peptide identification ranks to better
discriminate between correct and incorrect identification. In contrast to Percolator, the
PSMs are not filtered in Barista and contribute to the results optimisations. The authors
themselves state that assessing which approach is the best in practice can require more
study [McIlwain et al., 2014].

Many other inference algorithms exist, including PIA [Uszkoreit et al., 2015],
MIPGEM [Gerster et al., 2010], PAnalyzer [Prieto et al., 2012], DBParser [X. Yang et al.,
2004] and PANORAMICS [Feng et al., 2007]. The field is steadily improving and adapting
in response to the development of the measurement instruments and acquisition
protocols (e.g. IPF [Rosenberger et al., 2017] for DIA data), preparation protocols (e.g.
multiple proteolytic digestions in parallel, see [Miller et al., 2019]), increase of computing
resources (for example Percolator optimisations [Halloran et al., 2019]), optimisation or
implementation of new mathematical approaches and concepts (e.g. DeepPep [M. Kim
et al., 2017] based on a deep-convolutional neural network framework or
gpGrouper [Saltzman et al., 2018] and MIPGEM [Gerster et al., 2010] that implement a
gene centric approach). Furthermore, the rise of metaproteomic, proteogenomic,
metabolomic and multiomic studies has brought new perspectives and
challenges [Gonnelli et al., 2015; Starr et al., 2018; Rechenberger et al., 2019; Menschaert
et al., 2017; Liebal et al., 2020].

The, Edfors, et al. (2018) have designed an experiment simulating homologous proteins that
can evaluatemost protein inference algorithms. They observe better concordance between
inferred proteins and the ground truth when excluding degenerate peptides rather than
adopting a parsimonious approach. However, they report that results are different when
considering protein groups instead of individually.

1.3.4.4 Protein quantification (label-free)

Label-free quantification methods will probably be more refined in the future. Over the
last decade, along with the instruments’ improvement and the increasing number of label-
free bottom-up proteomics, there have already been many developments in quantification
methods and tools. Blein-Nicolas et al. (2016), Y. Chen et al. (2016), and Lindemann et
al. (2017) review many of the currently available ones. Note that methods created for
label-free relative quantification experiment designs can be adapted to methods that allow
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absolute quantification [Pappireddi et al., 2019; Sinitcyn et al., 2018; Y. Chen et al., 2016].
Many normalisation methods have also been reviewed by Välikangas et al. (2018b).

As mentioned above, label-free quantification methods are either based on the number of
identified peptides or MS2 (i.e. MS/MS) spectra matched to a protein or on the precursors’
ion extracted current peak intensities (i.e. XIC) from the MS1 spectra.

Spectral/peptide counting is a widespread method in the literature. H. Liu, Sadygov, et
al. (2004) present a linear correlation over two orders of magnitude between the relative
protein abundance and the acquired spectra number. Spectral counting is simple but
requires proper normalisation. Many other methods (e.g. APEX [Braisted et al., 2008],
emPAI [Ishihama et al., 2005] or MAI/PLGEM-STN/SC [H. Y. Lee et al., 2019]) are derived
from it. Cozzolino et al. (2020) have realised a comparative study between their method
and two other spectral counting ones.

There are also peak intensity based methods such as intensity based absolute
quantification (IBAQ), which are the most favoured today. Arike et al. (2012) report that
this latter method is better than the previous ones based on spectral counting as the
estimated quantification correlates better to the absolute abundance. Ahrné, Molzahn,
et al. (2013) refine this statement as IBAQ has biases and quantification errors that make
it unfit for direct use for a proportional assessment of the complete protein set; IBAQ
dramatically underestimates low-abundant proteins. Instead, to improve the general
quantification estimation, the authors advocate a Top3 approach [Silva et al., 2006], which
represents the abundance of each protein by the average or sum intensity of its three best
ionised (unique) peptides. Top3 allows better quantification of the proteome landscape in
general, even if it is less accurate for the shortest proteins and saturates for the largest
ones. MS1-based quantifications have been reviewed by X. Wang et al. (2019b).

Many normalisations include the protein sequences length (longer proteins are more
likely to produce a greater number of sampled peptides) and the sum of ion intensity or
the spectra number (for spectral count methods) that acquired for each protein within a
sample [Blein-Nicolas et al., 2016]. Similar approaches to RNA-Seq can be used to allow
protein comparison across different samples.

Most analyses benefit from validating the inferred proteins. Unfortunately, there is a lack
of consensual methodology to determine a protein FDR and strong opinion divergences
on its conceptual validity in the field [Savitski et al., 2015]. A few are even questioning its
validity more generally [J. Cottrell, 2013]. Beyond the differences due to frequentist and
Bayesian definitions and approaches, part of the pointed out discrepancies [The, Tasnim,
et al., 2016] is caused by overlooking that protein inference tools are simultaneously using
two different null hypotheses (ℋ0 — see Appendix A.9.1). Two common ℋ0 statements
testing the validation of a protein identification are:

ℋ′
0 The best scoring peptide is incorrectly matched to the protein. (Often, the protein

FDR is derived from its best scoring peptide.)
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ℋ″
0 The protein is absent from the sample.

Nonetheless, the most widespread method is based on the TDA and the protein FDR
is computed with Equation (FDR) (p. 44). Savitski et al. (2015) demonstrate that the
classic TDA largely overestimates the FDR for large datasets. To overcome this, Savitski
et al. (2015) propose a new ‘picked’ TDA. This approach pairs together target and decoy
sequences of each protein instead of treating them individually. For each pair, the target’s
and the decoy’s protein scores are compared, and the highest is kept and the other one
discarded. The, Tasnim, et al. (2016) encourage the use of the ‘picked’ TDA when one’s
analysis is based on ℋ′

0, but recommend to keep the classical TDA for ℋ″
0 as there is

a lack of a better method to date (and ‘picked’ TDA actually underestimates FDR in that
case).

Several benchmarking studies [Välikangas et al., 2018a; Al Shweiki et al., 2017; Bubis et al.,
2017; Navarro et al., 2016] have been published recently that may help choose between the
many existing quantification methods and the tools implementing them.

1.4 possible downstream analyses for expression data

Over-representation analyses (ORAs) are a standard final stage analysis on expression
data. They can provide biological insights and hint about mechanisms. ORAs highlight
sets of gene (or protein or metabolite) categories that are overrepresented in a selected
subset of the data compared to the expectation of a random category. Many expression
studies aim to produce ‘a list of “interesting” biomolecules’ [Tipney et al., 2010], ORAs
help to determine the most pertinent ones by providing biological context and increasing
statistical power. Besides, such lists are often substantial so extracting common functional
information from subsets of genes/proteins eases the interpretation of the data. Various
tools and algorithms have been developed to overcome the daunting task of individually
checking the genes/proteins. See Shi Jing et al. (2015) for some examples. While, the
field has been reviewed a few times (see Khatri and Drăghici (2005), D. W. Huang et al.
(2009), and Khatri, Sirota, et al. (2012)), it is still unfortunately lacking a gold standard and
systematic comparative studies [Mathur et al., 2018].

Depending on the experimental design and study, the list of biomolecules can be
associated with a rank or another form of a score. As differential expression analyses
(DEAs) are the most widespread type of analyses for expression data, many tools and
algorithms work solely with the corresponding outputs. Hence, those are unfit for other
types of studies (such as the ones in this thesis). Available gene set enrichment analysis
(GSEA) [Subramanian et al., 2005] tools are commonly inadequate for any other purpose
than DEA studies. See Tamayo et al. (2012) and Irizarry, C. Wang, et al. (2009) and the
included references for some examples of GSEA tools.
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On the other hand, while still devised for DEA, other tools handle any rank or score and
thus are more flexible; they can analyse data outside of their original scope. Many gene
ontology (GO) analysis tools fall into this latter category.

1.4.1 GO analysis (GOA)

The GO is a collaborative and curated classification that describes the gene products
following three hierarchically structured and controlled vocabularies (also known as
ontologies): either based on the biological processes (‘BP’) to which they contribute, their
position (when active) in the cell (cellular component (‘CC’)) or their biochemical
activity, i.e. molecular function (‘MF’). [Ashburner et al., 2000]

Generally, GO enrichment analyses (GOAs) compare a selected list (with the
genes/proteins of interest) to a background list (e.g. all observed genes in the experiment
or all existing genes in the annotation). For each GO term, this method computes the
enrichment of the selected set based on the real fraction of the set for the considered GO
term and its likelihood (computed on the background list). For example, if a GO term 𝒜
is associated with 0.1% of all the background (list) genes, but then over 70% of the genes
from the selected list are associated with GO term 𝒜, one can safely accept that the
selected genes list is enriched for this term. Various tools rely on different statistical tests
to determine if the enrichments are significant. Investigating only a few GO terms of
interest is common.

While ranked lists are unnecessary for GOAs, one can apply a cut-off before running this
type of analysis. However, in those cases, GSEA will be generally favoured to a GOA.

1.5 reproducibility and experimental design

Science develops based on reproducible facts, as they help with drawing relevant and
accurate conclusions. To increase reproducibility, it is essential that observations and
measurements be (as much as possible) unbiased towards any parameter outside of the
study focus. To this end, one of the critical issues that need to be tightly monitored is the
presence of batch effects. Including adequately designed replicates in the study is the most
effective way to control for the unwanted batch effects.

Another issue is due to high-throughput transcriptomics and proteomics still being
evolving fields. For each new identified problem, researchers create new tools and
algorithms. However, these are often aimed at one study only and their reuse in another
study can be difficult, or even impossible (e.g. discontinued proprietary software). On the
other hand, well established tools allow fine tuning many parameters, the impact of
which can be overlooked while the reporting. Thus, it is unsurprising that result
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agreement between different tools is unsatisfactory [Conesa et al., 2016].

1.5.1 Batch effects

Batch effects are artefactual and due to all the variables that the investigator can not
control (either by lack of technology, design or knowledge), for example, environmental
conditions, reagent or sample lots, genetic population background or experimenters. They
are often the source of complication for many studies (including high-throughput genomic
ones) [Leek et al., 2010].

The danger lies in overlooking them and then confusing these artefacts with biological
results, which will lead to flawed interpretation and conclusions. Several studies have
been refuted in the past because of unaccounted batch effects. Usually, issues in the initial
results are detected by others laboratories, which notice high correlations between the
‘biological’ findings of the original study and the running dates or processing groups. Thus,
questions about the biological validity arise.

The first step to address them is through well-designed experiments [Leek et al., 2010],
which include technical and biological replicates. These replicates are usually created and
randomly processed as to avoid creating any artefactual link between them. A replicate is
a set of measurements done in the same condition.

Correction can be applied and may help resolve batch effects in some cases. For examples,
see Oytam et al. (2016), Gagnon-Bartsch et al. (2012), and Peixoto et al. (2015).

1.5.2 Technical replicates

Technical replicates are initially from the same sample, which has been tested multiple
times through a given experimental protocol. It allows testing for the variability of the
protocol itself. While using the same sample to test different protocols may also be referred
to as ‘technical’, it is better to avoid this terminology as this creates confusion.

1.5.3 Biological replicates

Biological replicates are testing the same cells or tissues from different individuals through
the same protocol. They allow assessing the biological variability (which is higher than
the technical variability, since it also encompasses it).
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1.5.4 Study design example: meta-analyses

Meta-analyses are studies that combine (or aggregate) the results of multiple analyses.
One of their main weaknesses is that meta-analyses cannot control bias sources and
correct for bad designs [Slavin, 1986]. Because results from smaller studies are more
prone to ‘play of chance’, they are usually weighted less than bigger studies when they
are directly combined across many studies [Egger et al., 1997], particularly when
combining statistical results. However, it is not always true and bigger studies may be
subject to greater uncontrolled variations. Egger et al. (1997) recommend testing the
heterogeneity across the studies to be combined. Examining the studies outcomes’
similarity degree allows figuring out if the variation between the studies is only due to
sampling or to a distribution of different effects. In order to compare studies together,
individual results are expressed in a standardised fashion (e.g. means, confidence
interval).

1.6 discussion and conclusion

Over the years, the central dogma of molecular biology has been being refined and better
understood. However, as the first apparent linearity of the theory tends to persist, so are
many assumptions. For example, all (or almost all) information necessary to explain the
phenotype is in the cell; in its genome and edits provided by its transcription and
translation regulatory mechanisms that may be triggered by environmental stimuli.
Another assumption is that mRNA and protein levels should share strong correlates.
Alternatively, as our genomes are so similar, our transcriptomes and proteomes should
also share many similarities. Although the truth seems more intricate, these assumptions
remain as we still lack the technical means to test them to their fullest.

Due to the intrinsic nature of DNA, mRNAs and proteins, high-throughput DNA and RNA
studies are more well-established and standardised than proteomic studies. Although, the
study of the genome is the most mature, it fails to contextualise the phenotype, especially
for non-disease cases (often referred to as healthy or normal conditions in this thesis).

Proteins are in theory the best candidates to study the phenotype. Unfortunately, high-
throughput protein studies such as shotgun MS are particularly challenging. The proteins
physicochemical diversity and the lack of technology to amplify proteomes mean that in
order to optimise their studies many different protocols and experimental designs had to
be developed to reach the different proteins in a sample.

Since the transcriptome has a dynamic dimension like the proteome and is technically
easier to explore and quantify, its study has emerged as a reasonable trade-off strategy.
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Data! Data! Data! I can’t make bricks without clay!

Sherlock Homes [Doyle, 1892]

2 AVA ILABLE H IGH -THROUGHP U T
HUMAN DATASETS

In the past few years, many laboratories have studied the expression of human genes at
the transcriptome and at the proteome levels by taking advantage of high-throughput
techniques (e.g. Krupp et al. (2012), Brawand et al. (2011), Ramsköld et al. (2009), Fagerberg
et al. (2014), Uhlén, Fagerberg, et al. (2015), Gremel et al. (2015), Melé et al. (2015), Desiere
et al. (2006), M.-S. Kim et al. (2014), and Wilhelm et al. (2014)). In this chapter, I review the
openly available (for research) data I use within my thesis to explore the gene expression
in (undiseased) tissues and explain how they have been reprocessed. Besides the results I
report in the subsequent chapters, the present chapter also provides the basis for work I
have co-authored¹.

Unless otherwise stated, all the computational processing of the RNA-Seq part described
here have been performed by myself under the supervision of Dr Alvis Brazma. I also
received general feedback from Dr Mar Gonzàlez-Porta, Dr Johan Rung and Dr Nuno
Fonseca. The proteome data has been processed by Dr James Wright.

2.1 introduction

All the datasets were selected to fit three main criteria. Firstly, they comprise normal
(i.e. reported as disease-free) human samples from at least three different tissue types.
Secondly, gene expression quantifications are based on RNA-Seq for the transcriptome
and on label-free MS for the proteome². Finally, the raw data is openly available and
reusable³.

In the next section, I first describe the RNA-Seq and the MS data I use in my thesis; then I
detail how these data have been processed to be employed in the next chapters for various
analyses that explore the transcriptome, the proteome and finally, the comparison and
integration of these two biological layers.

1 J. C. Wright, J. Mudge, et al. (2016). ‘Improving GENCODE reference gene annotation using a high-stringency
proteogenomics workflow’. Nat. Commun. 7, p. 11778.

2 These technologies are non-targeted high-throughput and allow one, in theory, to study the whole repertoire
of RNAs or proteins in a sample.

3 In this context, reusable means that the data can be processed as accurately by third-party researchers than
the original authors, and this without the need to access additional information that have been not openly
released
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2.2 transcriptome rna-seq studies

I describe hereinafter the five transcriptomic datasets I used in the chronological order of
their first public release. Table 2.1 summarises the main characteristics of these datasets.

2.2.1 Castle et al. dataset

Castle et al. (2010) released this dataset along with their study: ‘Digital Genome-Wide
ncRNA Expression, Including SnoRNAs, across 11 Human Tissues Using PolyA-Neutral
Amplification’. The authors were interested in exploring the whole RNA repertoire with
sequencing-based technology and they primarily focused their study on the non-coding
part.

Purchased RNA extracts were used to create multiple-donors pooled samples for 11 tissues
from which total RNA libraries were prepared following a total transcriptomic protocol
where nonribosomal RNA transcripts are amplified specifically by PCR [Armour et al.,
2009].

For each library (tissue), an average of 50 million sequence reads were sequenced using an
Illumina Genome Analyser-II sequencer (single-end). The original reads were trimmed to
28 nt before being released through EMBL archives (ENA ID: ERP000257 and ArrayExpress
ID: E-MTAB-305).

Despite several limitations, such as the lack of replicates, the old technology and the short
reads, I have included this dataset for two main reasons. Firstly, it is the oldest available
RNA-Seq data I found that was performed on normal human tissues. Thus, the congruence
of results for this dataset with the following ones gives a rough idea on the extent of RNA-
Seq datasets that may be integrated together. Secondly, as RNA-Seq studies are prepared
mainly with polyA-selected protocols today, I was interested in gauging how the library
preparation protocols — and the presence of ncRNAs — can affect the quantifications and
then any final observation.

2.2.2 Brawand et al. dataset

In the article entitled ‘The evolution of gene expression levels in mammalian organs’,
Brawand et al. (2011) focused their interest on the evolution of the mammalian
transcriptomes⁴.

They collected 6 organs from 10 different vertebrates: 9 mammalians (including human)
and a bird. There are no technical replicates, but two biological replicates per tissue: one
male and one female for every tissue except the testis (two males). The 131 libraries
(including 23 for Homo sapiens) were prepared with a polyA-selected protocol. Hence,

4 While there were existing studies on the matter, the sequencing approach was then creating new perspectives.
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available high-throughput human datasets

they are largely enriched in protein-coding genes.

An average of 3.2 billion 76 bp-long single-end reads were generated per sample using an
Illumina Genome Analyser IIx (single-end) and they released them through GEO
(accession number: GSE30352). I personally retrieved the human data from ArrayExpress
ID: E-GEOD-30352⁵.

2.2.3 Illumina Body Map 2.0 (IBM)

This dataset, created in 2010, has been released in 2011⁶ by Illumina and it used its most
recent technology at that time: the paired-end sequencing. Until then, all the sequencing
was done from only one end of the DNA or cDNA fragments. From that date, most of the
following transcriptome studies based on RNA-Seq use paired-end sequencing.

The dataset covers 16 tissues (one donor per tissue) and the libraries were prepared
following a polyA-selected and are enriched in protein coding genes.

Although each sample has been sequenced twice and despite having in principle technical
replicates, these are “non-regular” technical replicates. Technical replicates, by contrast
to biological replicates, usually imply that their processing uses the same sample source
and protocols. Thus, the error and noise due to a specific technique could be determined.
Here, however, each tissue has been sequenced once with a single-end protocol and once
with a paired-end one to compare their ability to discriminate between mRNA isoforms.
Indeed, Illumina’s main incentive to develop its paired-end technology was to improve the
accurate identification of spliced mRNAs.

The sequencing was performed with an Illumina HiSeq 2000, and the reads were released
through ArrayExpress ID: E-MTAB-503 (ENA ID: ERP000546), fromwhere I have retrieved
both the single-end and paired-end mono-tissue samples (the original dataset includes raw
data files for mixtures that have been created with the tissue samples).

Despite the lack of biological replicates, it was for an extended time the most extensive
freely available RNA-Seq dataset of human tissues. Hence, it has been referenced many
times (e.g. Asmann et al. (2012), Barbosa-Morais et al. (2012), Smith et al. (2012), Derrien
et al. (2012), Florea et al. (2013), D. Kim, Pertea, et al. (2013), Kechavarzi et al. (2014), Zhao
(2014), Pasquali et al. (2014), Corpas et al. (2014), Petryszak, Burdett, et al. (2014), Brown
et al. (2015), Jänes et al. (2015), De Simone et al. (2016), Kern et al. (2016), Iwakiri et al.
(2016), L. Yao et al. (2017), and Akers et al. (2018)) in the literature since its release. In fact,
this dataset is the most viewed one in ArrayExpress (with 68,020 views on 31 May 2018 —
the second most viewed dataset (46,247 views) being ArrayExpress ID: E-MTAB-62[Lukk
et al., 2010]).

5 ArrayExpress was routinely importing datasets from GEO on a weekly basis until very recently. While not
automatically, GEO data are still included in EBI Gene Expression Atlas.

6 See Human BodyMap 2.0 data from Illumina - Ensembl Blog, 2011
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2.2.4 Uhlén et al. dataset

Uhlén et al. have created the Human Protein Atlas⁷ (often referred as HPA in the literature).
This atlas revolves mostly around the spatial distribution of the proteins through the
human body. Using diverse approaches and techniques, including RNA-Seq, they first
released RNA-Seq data for 27 normal tissues as part of their study: ‘Analysis of the human
tissue-specific expression by genome-wide integration of transcriptomics and antibody-based
proteomics’ [Fagerberg et al., 2014]. Later, they extended the dataset with new samples and
5 new tissues. The latest version was published within ‘Tissue-based map of the human
proteome’ [Uhlén, Fagerberg, et al., 2015] in Science.

For each of the 32 tissues, there are (at least two) biological replicates. With a few
exceptions, the tissues have both male and female donors. Many of the tissues present
also technical replicates. The total set comprises 200 samples, which have been picked by
pathologists based on the screening of frozen biopsy samples.

The polyA-selected libraries were paired-end sequenced with an Illumina HiSeq 2000 or
2500. I first started to work with the early version of this dataset (ArrayExpress ID: E-
MTAB-1733 — 171 samples for 27 tissues), and then I upgraded mywork with the extended
more recent version (ArrayExpress ID: E-MTAB-2836).

At the preparation time of this thesis, this normal human dataset is the most
comprehensive, freely and publicly available dataset: either regarding the number of
tissues (see Table 2.1) or the number of samples (see Table 2.2). Therefore, its growing
number of references is unsurprising.

2.2.5 GTEx dataset

The Genotype-Tissue Expression (GTEx) project is funded by the NIH Common Fund and
aims to establish, in its authors’ own words, ‘a resource database and associated tissue
bank for the study of the relationship between genetic variation and gene expression and
othermolecular phenotypes inmultiple reference tissues’. The project was first introduced
in GTEx Consortium (2013). It aims to quickly collect various tissues from postmortem
donors for genotype-tissue expression analyses (notably eQTL studies, which study the
function of SNPs in the modulation of RNA expression). The results of the analyses are
released through the GTEx portal⁸.

As the project is quite ambitious and the collection and sequencing of the samples spreads
over a long period of time, several intermediate data ‘freezes’ have been released⁹. My
analyses include samples up to the fourth release of the pilot phase (v4). This release

7 Human Protein Atlas — https://www.proteinatlas.org/
8 GTEx portal — https://gtexportal.org
9 Many groups are involved in collecting, producing or processing the data. To ease the communication and

work coordination, many time points are used to reference each a specific state (version) of the data. Each
version of the data is called a freeze.

59

https://www.proteinatlas.org/
https://gtexportal.org
https://www.proteinatlas.org/
https://gtexportal.org


available high-throughput human datasets

covers 54 tissues/cell types (53 normal and 1 tumoral) collected on from individuals for a
total of 3,276 samples.

The RNA-Seq libraries were prepared following a polyA-selected protocols and have been
paired-end sequenced on an Illumina HiSeq 2000/2500. There is an average of 80 million
reads per sample.

For privacy reasons, the raw data is available only through controlled access via dbGaP
ID: phs000424.v4.p1 (access number specific to the version of the data I used in my study).
Unfortunately, this translates to a slow access time to the raw data.

During the data selection process, I had to disregard a few studies as the raw data was
not fitting the reusability criterion [E. T. Wang et al., 2008; Pan et al., 2008]. Many times I
came across studies with ambiguous encoding format for the raw data such as the
ArrayExpress ID: E-GEOD-41637 dataset [E. T. Wang et al., 2008]. Despite my best
efforts, I was unable to resolve this issue by contacting the respective authors.
E. T. Wang et al. (2008) (ArrayExpress ID: E-GEOD-41637) is one example of study that I
unfortunately had to dismiss.

2.3 proteome mass spectrometry bottom-up studies

As mentioned earlier, the proteomic data have been selected and handled by Dr Jyoti
Choudhary and Dr James Wright.

Until recently, compared to the transcriptome, the proteome world was lacking in normal
human tissues expression quantification experiments. In fact, while there were human
protein maps available (e.g. the Human Protein Atlas¹⁰), these are mostly reporting the
spatial expression of proteins (as they are based on immunohistochemistry or other means
of identification) than quantifying their (non-targeted) abundance in each tissue.

In 2014, two independent groups of authors [M.-S. Kim et al., 2014; Wilhelm et al., 2014]
published (in Nature, issue 7502) their own ‘draft of the human proteome’ based on the
study of tissues with MS. These two datasets complement a previous smaller one that was
publicly released but was never the object of a publication.

Hereinafter, I present these three datasets that I use in my thesis. See Figure 2.3A (p. 69)
for a short summary.

10 Human Protein Atlas — https://www.proteinatlas.org
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2.3 proteome mass spectrometry bottom-up studies

2.3.1 Pandey Lab dataset

The Pandey Lab [M.-S. Kim et al., 2014] created the Human Proteome Map¹¹ which they
released alongside ‘A draft map of the human proteome’ in Nature.

For their study, they processed 30 kinds of histological normal human tissues and cell line
samples (17 adult tissues, 7 foetal tissues and 6 haematopoietic cell types). Each samplewas
created from pooling samples of three individuals (generally two males and one female).

Their proteomic libraries were prepared with a label-free method to quantify as many
proteins as possible. The samples were fractionated to protein level through SDS-PAGE,
and then at peptide level after trypsin digestion by RPLC to create 85 experimental
samples. Finally, state-of-art MS/MS protocols (with high-resolution and high accuracy
FTMSs Thermo Scientific Orbitrap™ instruments) was used to generate about 25 million
of (HCD) high-resolution mass spectra which account for 2,212 LC-MS/MS profiles. The
raw spectra were retrieved from ProteomeXchange via the repository PRIDE ID:
PXD000561.

While the authors’ effort to generate technical high quality raw data was highly appraised
by the scientific community, their processing (identification and quantification) methods
were criticised (see Ezkurdia et al. (2014) and Deutsch et al. (2015)). Thus, for this thesis
I have relied only on quantifications provided by Dr James Wright who reprocessed the
raw spectra.

2.3.2 Kuster Lab dataset

In their approach of the human proteome map, the Kuster Lab [Wilhelm et al., 2014]
combined newly generated LC-MS/MS spectrum data (about 40% of their complete
working set) with already publicly available data (either from their colleagues or
accessible through repositories — for the remaining 60%). They reprocessed the whole
collection of spectra to maximise proteome coverage and make it available through their
own repository: ProteomicsDB¹².

The subset of data considered in my thesis is also known as the [protein] Human BodyMap
which is the part that the Kuster Lab primary generated for their own study. They collected
48 experiments covering 36 tissues (adult and foetal) and cell lines. After LDS-PAGE
fractionation and digestion into peptides with trypsin, they processed the samples with
LC-MS/MS to create 1,087 profiles. Overall, that represents about 14 million of HCD/CID
spectra from Thermo Scientific instruments (including an Orbitrap™). This specific raw
data subpart was downloaded from ProteomicsDB ID: PRDB000042.

11 Human Proteome Map — http://www.humanproteomemap.org
12 ProteomicsDB — https://www.proteomicsdb.org/
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2.3.3 Cutler Lab dataset

This dataset was generated prior to the Pandey Lab and the Kuster Lab data as it was
released in 2011 through PeptideAtlas¹³ [Desiere et al., 2006], IDs: [PAe001768 —
PAe001778].

It was created by Paul Cutler at Roche Pharmaceuticals. It comprises 10 different tissues
(and one sample per tissue) that after trypsin digestion, were analysed through Thermo
Scientific LTQ-Orbitrap™. In total, there are 1,618 CID profiles which accounts for 13
million raw CID spectra from a LTQ-Orbitrap™ instrument.

While this dataset was never published on its own, it has been used in different studies
(e.g.Wilhelm et al., 2014). The raw fileswere accessed and downloaded fromProteomicsDB
ID: PRDB000012.

2.4 consistent processing pipelines

The authors of these five transcriptomic and three proteomic studies have, in most cases,
released the quantification of the expression values either directly (e.g. Krupp et al., 2012)
or upon requests (e.g.M.-S. Kim et al., 2014). Third-parties also distribute quantification for
these studies either retrieved from the original studies, such as BioGPS¹⁴ [C. Wu, Macleod,
et al., 2013] or Harmonizome¹⁵ [Rouillard et al., 2016], or after reprocessing the raw data
as the EBI Gene Expression Atlas¹⁶ [Petryszak, Keays, et al., 2015] does.

To primarily reduce for avoidable technical variability, and despite readily available
quantifications for most of the datasets, I only used data reprocessed from raw files by
myself or Dr Nuno Fonseca (GTEx dataset) for the transcriptomic data and by Dr James
Wright for the proteomic data as already mentioned.

In fact, each study has been originally processed with different protocols, e.g.
GTEx [Melé et al., 2015] and Castle [Krupp et al., 2012]. While the EBI Gene Expression
Atlas reprocesses raw data through the same methods and has quantification for most of
the aforementioned datasets (it is still lacking the Castle et al. one.), these were still the
products of different protocols when I started my work. Indeed, the datasets were
processed with different versions of reference (Human genome build and annotation)
and tools.

Intuitively, we expect that different processing protocols produce different results. As I
started to work with RNA-Seq data, I noticed many potential analysis variables that
impact at various levels the resulting gene expression values. Indeed, many of these have

13 PeptideAtlas — http://www.peptideatlas.org/
14 BioGPS — http://biogps.org/
15 Harmonizome — https://amp.pharm.mssm.edu/Harmonizome
16 EBI Gene Expression Atlas — https://www.ebi.ac.uk/gxa/home

62

http://www.peptideatlas.org/
http://biogps.org/
https://amp.pharm.mssm.edu/Harmonizome
https://www.ebi.ac.uk/gxa/home
http://www.peptideatlas.org/
http://biogps.org/
https://amp.pharm.mssm.edu/Harmonizome
https://www.ebi.ac.uk/gxa/home
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been reported in the literature since then; in fact, annotation versions [Frankish et al.,
2015], contamination (from viruses or bacteria DNA) [Cantalupo et al., 2015], quality
controls (and subsequent reads filtering choices) [Kroll et al., 2014], mapping and
quantifications pipelines [Fonseca, J. Marioni, et al., 2014] have considerable effects on
the final quantification. Lastly, normalisation methods also greatly impact the final
expression figures [Dillies et al., 2013; Zwiener et al., 2014]. For all these reasons, I
decided to reprocess all transcriptomic datasets with the same exact protocol as the first
step of my study. Recently, Danielsson et al. (2015) compare results based on
prepublished data and reprocessed ones and conclude that using a single processing
pipeline ensures better results.

Likewise, there are various tools and many parameters for each processing step needed to
quantify the proteomic data that may impact the final expression values [Aebersold, 2011].
For example, various search engines allow detecting different sets of peptides [Griss, 2016].
Mackay (2015) has reviewed and analysed the impact of many of these variables more
specifically for label-free proteomics, such as the effect of FDR, protein inference tools or
normalisation methods. Therefore, the three datasets were reprocessed uniformly from
the raw spectra up to the normalisation of the protein expression values.

2.4.1 RNA-Seq raw data processing

As presented in Section 1.2.5, there are many steps from the raw data files to the
quantification matrices on which this thesis’ analyses are based. Figure 2.1 presents a
general overview of the RNA-Seq processing protocol I used.

I downloaded and entirely processed four of the transcriptomic datasets myself (Castle,
Brawand, IBM and Uhlén data) and Dr Nuno Fonseca retrieved and processed the GTEx
dataset¹⁷. In this thesis, I present results computed on the quantification of these five
datasets which have been processed through the same identical pipeline.

2.4.1.1 Data retrieval and preparation

I retrieved the human raw data of each dataset from ArrayExpress and ENA through their
identifier (see section 2.2) (p. 56). After we received our access approval, Dr Nuno Fonseca
retrieved GTEx data from dbGaP.

While most of the raw files can be used as they are, an additional step is needed for the
Castle files. Indeed these files are using an older FASTQ format that is non-compliant to
the most accurate and recent tools used for this thesis. As it is a simple matter of changing
the quality score scale (see appendix A.6), I converted these files to Phred+33 FASTQ files

17 As the GTEx data is involved in many projects within the EBI and due to its huge amount of files (number and
size — see Table 2.2), it was agreed that this would be processed centrally by one person and then redistributed
to all the other interested parties. Dr Nuno Fonseca had this tremendous task.
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Figure 2.1. General steps for processing the transcriptome. The pipeline iRAP
integrates all the tools needed for the state-of-art processing of RNA-Seq data.
The quality of the reads is checked and they are trimmed if needed. After
removal of possible contaminant reads (such as E. coli), the reads are aligned
with TopHat2. The gene expression is then quantified with two different
approaches: based on the aggregation of isomers for each gene or simply
based on the number of aligned fragment on the gene locus defined in the
reference. Cufflinks2 provides directly FPKM values. HTSeq-count provides
raw counts which were normalised by an iRAP function into FPKM.
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Table 2.2. Technical description of the five transcriptomic datasets
I processed all the datasets except the one in italic.
For the Brawand dataset, I only included and processed the Homo sapiens part.

Dataset Participant
number

Library
number

File
number

Total size of
the fastq

raw files (GB)

Mean number of
biologic samples per
tissues [min;max]

Castle 10 11 11 58 10 (mixture)
Brawand 18 21 23 111 2.8 [2;3]

Illumina Body Map 16 36 48 1,004 1
Uhlén 122 200 400 1,851 3.81 [2;11]

GTEx (v4) 551 3,276 6,552 ∼ 50,000 60.67 [4;214]

with a Perl script (provided digitally as supplementary data).

2.4.1.2 Genome and annotation reference

I collected and processed the datasets through an extended period of time. Hence, for
a subset of them, I produced many intermediate sets of results based on the GRCh37.p12
(and later GRCh37.p13) human reference genome and the latest available Ensembl gene set
annotation (73, 74 or 75) at that time. In fact, the quality of each new annotation update
is generally greater than its predecessor¹⁸.

As the GTEx data was processed with GRCh38.p1 and Ensembl 76, that led me to
reprocess all the other four RNA-Seq datasets for the sake of consistency and to avoid
more biases [Guo et al., 2017]. Thus, unless indicated otherwise, the results presented in
the current work are based on the GRCh38.p1 human genome reference and the Ensembl
76 gene set annotation.

2.4.1.3 Data processing

In the early stages of my research, I was processing each of the different steps sequentially
and semi-manually with the help of custom made scripts. While the EBI computer cluster
greatly facilitated the handling of the numerous files, the task remained quite tedious.
Additionally, the scripts I wrote would need a fair amount of work to achieve general
reproducibility on other platforms.

Fortunately, Dr Nuno Fonseca developed an ‘integrated RNA-seq analysis Pipeline’:
iRAP¹⁹ [Fonseca, Petryszak, et al., 2014]. This tool allows the automation of the typical
state-of-the-art and optimised workflow to study RNA-Seq. It takes full advantages of
the capacities provided by computer clusters. Thus, I switched from my original set of

18 Although, it is not unusual to have gene or transcript additions based on new studies that are then removed
(or fused to another) in a later version.

19 iRAP — https://nunofonseca.github.io/irap/
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scripts to iRAP to improve my workflow without changing any step or parameter.

Besides the usual input files (raw RNA-Seq files and genome/annotation references), iRAP
needs a configuration file that precisely describes the dataset (its design and technical
features) and, if needed, specific parameters to use. To provide full reproducibility, each
version of iRAP is shipped with its own set of third-party version-defined tools and default
parameters. Thus, apart from remarkably speeding up the data processing, iRAP also
ensures the protocol integrity across the five transcriptomic datasets I use in my thesis
regardless of who runs the pipeline.

Each of the transcriptomic datasets is the product of the same version of the iRAP pipeline
(development version 0.6.3b) and set of parameters. As the default parameters of iRAP are
tuned for human Illumina paired-end data, I only have to define a few of them. Hence, the
quality and contamination checks, and the filtering and trimming of the reads are done
following the default options of iRAP.

Quality assessment, trimming and filtering

iRAP uses internally FastX toolkit²⁰ (0.0.13) to perform the assessment and the trimming.
The usual uninformative and ambiguous reads (see Section 1.2.5.1: Quality check,
trimming and filtering (p. 16)) have been discarded as were any with an overall quality
score below a threshold of 10.

The quality of the call decreases while the base calling progresses — see Section 1.2.3:
Sequencing-by-synthesis (p. 13). On another note, some tools (mappers in particular)
need all the reads to be trimmed to the same length. iRAP optimises the compromise
between the purity and the length of the reads to avoid more errors or biases due to smaller
reads [Williams et al., 2016] by trimming atmost 15% of the original lengthwhile discarding
more reads if necessary to maximise the length.

Reads that could be assigned to a likely contamination source, here Escherichia coli (as I
work with Homo sapiens), are also discarded. A non-splice aware mapper,
Bowtie²¹ (1.1.1) [Langmead et al., 2009] maps all the reads to the contaminant genome and
all the reads mapping perfectly and unambiguously are discarded.

Mapping

I mapped the reads to the genome (GRCh38.p1) and the transcriptome (Ensembl 76 gene
set annotation) with iRAP’s (0.6.3b) proposed default splice-aware mapper TopHat2²²
(2.0.12) [D. Kim, Pertea, et al., 2013] with its set of default predefined arguments. Indeed,
TopHat2 can handle reads from many organisms by fine-tuning the parameters (e.g.
number of mismatches or indels to tolerate), but the default parameters are adjusted for

20 FastX toolkit — http://hannonlab.cshl.edu/fastx_toolkit/
21 Bowtie — http://bowtie-bio.sourceforge.net/
22 TopHat2 — https://ccb.jhu.edu/software/tophat/index.shtml
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Gene length

Transcript 1
Transcript 2
Transcript 3
Transcript 4

Collapsed exons
+ +

Figure 2.2. Gene length is equal to the sum of the lengths of all its collapsed
exons. Though, this method lacks complete accuracy, it provides a sufficient
estimation of the gene length for an efficient normalisation regarding the
length bias. The coordinates for the 5’ and 3’ ends of each exon is extracted
from the annotation and they are collapsed together. This gene length is
unaffected by incorrect attribution of a fragment to a specific transcript when
there are many possible options.

normal human.

Quantification and Normalisation

While RNA-Seq can be used to identify (and discover) RNA isoforms, I have focused my
thesis on the gene level expression. Indeed, current annotations and knowledge are still
lacking in the reasons and external conditions that impact the expression of a specific
isoform over the others. In addition, criticisms have been raised on the accuracy of
distinction between them [Engström et al., 2013; Jänes et al., 2015; Dapas et al., 2017].

However, normalising gene expression presents more challenges than specific transcript
expression. For instance, the definition of the gene length may be different from one
laboratory to another. In this thesis’ framework, when I have to use a gene length for
a computation, I use the identical gene length definition as found in iRAP and EBI Gene
Expression Atlas. Thus, as shown on Figure 2.2 the gene length is defined as the sum of
the lengths of all its collapsed exons.

As mentioned in Section 1.2.5.4: Normalisation (p. 23), I used two different popular tools
based on different strategies to estimate gene expression levels: Cufflinks2²³
(2.2.1) [Trapnell et al., 2010] and HTSeq-count²⁴ (0.6.1p1) [Anders et al., 2015] (with the
intersection non-empty mode). These tools are also integrated in iRAP.

For Cufflinks2, I used the mode where the multi-mapped reads are probabilistically
assigned depending on the coverage of each mapped locus. In addition, Cufflinks2
provides normalised gene expression levels by aggregating their corresponding
normalised isoform expression levels. Cufflinks2 uses the equation (Canonical F/RPKM
formula) to normalise isoform expression levels. The length of the isoforms are extracted

23 Cufflinks2 — https://cole-trapnell-lab.github.io/cufflinks/manual/
24 HTSeq-count — https://htseq.readthedocs.io/
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from the reference.

On the other hand, HTSeq-count provides only raw counts for the feature of interest.
iRAP provides an internal FPKM normalisation function that is an implementation of the
equation (Canonical F/RPKM formula). As I requested HTSeq-count to work at gene level,
this formula requires gene lengths which are computed with the aforementioned method.

All the configuration files I created for this thesis may be found at my personal Github
repository²⁵.

As the paired-end set of the IBM data was presenting an overall better quality than its
single-end counterpart, I only include IBM’s paired-end data for the remaining of the
thesis.

2.4.2 MS data processing

After retrieval of the data from PRIDE and ProteomicsDB, Dr James Wright reprocessed
the three proteomeMS-based datasets. Figure 2.3 illustrates the pipeline that processed the
three datasets in a consistent and optimal manner. I summarise this protocol in Figure 2.3
(p. 69) and in the following sections 2.4.2.1 to 2.4.2.4. See Wright, Mudge, et al. (2016) and
Weisser et al. (2016) for more details.

2.4.2.1 Spectral processing

The msconvert module of ProteoWizard²⁶ (v3.0.6485) [Holman et al., 2014] converted all the
files to the standard format mzML. TOPP [Kohlbacher et al., 2007] from OpenMS²⁷ (pre-v2.0
development build) [Röst et al., 2016], processed the raw spectra. Notably, PeakPickerHiRes
which centroids them and FileMerger that merges the ones from the same fractionated
experiments.

2.4.2.2 Sequence database creation and searching preparation

The target sequence database is a critical element of the MS pipeline and thus, Dr James
Wright has carefully designed it. It combines six different parts, three based on known
protein sequences and three other covering possible new protein candidates.

The known sources include the complete human GRCh38 (v.20) coding DNA sequence
(CDS) translated sequences from GENCODE; the human reference proteome from
UniProt²⁸ [The UniProt Consortium, 2017] (in its May 2014 version); common

25 https://github.com/barzine/phd-analyses/tree/master/chapter2/irap-configuration-files
26 ProteoWizard — http://proteowizard.sourceforge.net/
27 OpenMS — https://www.openms.de/
28 UniProt — http://www.uniprot.org/
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contamination protein sequences²⁹ and HLA sequences³⁰. This known portion of the
target sequence database represents 787,587 tryptic peptide sequences.

The sources for potential novel proteins included a selection of non-coding gene
sequences (including pseudogenes, lncRNA and untranslated regions) from GENCODE
GRCh38 (v.20); prediction of novel sequences with AUGUSTUS³¹ [Stanke et al., 2004]; a
set of two-consensus predictions (December 2013) from Pseudogene.org³² [Karro et al.,
2007] and three-frame translated RNA-Seq transcript sequences. These translated
sequences include models built on IBM by Ensembl and by the Kellis lab in addition with
models built on different ENCODE cell lines by Caltech and CSHL. This novel portion of
the target sequence database provides an addition of 4,211,835 tryptic peptide sequences.

Mimic³³ generated 4,999,422 (787, 587 + 4, 211, 835) randomised decoy sequences, i.e. the
decoy database and the target database have an equal size of peptide sequences. The
different databases were then merged together. It is represented on Figure 2.3B.

To account for the isobaric peptides, all isoleucine (I) residues were converted to leucine
(L) before the search and then after the search all leucine (L) residues were converted to
(J)³⁴ to avoid later misconceptions.

2.4.2.3 Spectral identification and database search pipeline

Figure 2.3C describes the overall workflow used by Dr James Wright to quantify the
protein abundance in each tissue. As mentioned in Section 1.3.4.2, workflows involving
several algorithms produce better results. Mascot Server (v 2.4— Matrix Science) cluster
produced a first search on the mzML files submitted through MascotAdapterOnline (part
of TOPP). In parallel, Dr James Wright also used MS-GF + Search, which involves the run
of MS-GF + (v. 10089) [S. Kim et al., 2014]. MascotPercolator (v 2.08) [Brosch et al., 2009;
Wright, Collins, et al., 2012] optimised and rescored the results from Mascot and
msgf2pin/Percolator (v 2.08−1) [Granholm et al., 2014] optimised the results from
MS-GF +. Finally, SEQUEST [Eng, McCormack, et al., 1994] and Percolator [Spivak,
Weston, Bottou, et al., 2009] performed a search in a Proteome Discoverer (v 1.4 — Thermo
Scientific) workflow.

The different workflows used common stringent parameters for all the database searches:
the precursor tolerance was set to 10 ppm; fragment tolerance for HCD spectra to 0.02
Da and to 0.5 Da for CID spectra; the allowed missed cleavages were limited to 3. As
described in Wright, Mudge, et al. (2016), the research also accounted for several amino
acid modifications by including (known) mass tolerances. The fixed modification

29 Contamination sequences — http://maxquant.org/contaminants.zip
30 HLA sequences — https://www.ebi.ac.uk/ipd/imgt/hla/download.html
31 AUGUSTUS — http://bioinf.uni-greifswald.de/augustus/
32 Pseudogene.org — http://pseudogene.org/
33 Mimic — https://github.com/percolator/mimic
34 As J is one of the letter from the Latin alphabet that do not map to any amino acid.
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2.4 consistent processing pipelines

carbamidomethyl (+57.0214 Da) was specified for all cysteine residues. The searches
also comprised the following variable modifications: N-terminal acetylation (+42.01056
Da), N-terminal carbamidomethyl (+57.0214 Da), deamidation of asparagine and
glutamine residues (+0.984 Da), oxidation of methionine residues (+15.9949 Da), and
the possible N-terminal conversion to pyro-glutamine of glutamine (−17.0265 Da) and
glutamic acid (−18.0106 Da) residues.

The search results were converted into mzTab formatted files and uploaded along with the
mzML spectra and FASTA search database to PRIDE ID: PXD002967.

2.4.2.4 Results processing and filtering

Custom Perl scripts parsed, merged and filtered the results of each search engine so that
every PSM had the same identification in at least two of the three search engines. In each
case, the least confident PEP (i.e. the highest, see Appendix A.11) was retained.

The PSMs were then filtered to keep matches only to the three following criteria: q-value
(see Appendix A.11 and Appendix A.9.3) less than or equal to 0.01 (i.e. 1% FDR); a PEP
inferior or equal to 0.05 and a peptide length superior or equal to seven amino acids. PSMs
matching contaminant or decoy sequences were also removed.

The resulting list of peptides was then used to infer the proteins with a simple approach.
Protein clusters were created based on the common matching non-null set of peptides,
i.e. each protein cluster has at least one unique peptide. Then, the GENCODE CDS and
UniProt accession were mapped back to Ensembl identifiers. Proteins with a gene (or gene
clusters) definition matching at least three unique peptides were kept for the remaining of
the analysis while the others were discarded.

The quantification of the retained proteins was computed for each experiment with an
approach close to the Top3 method [Silva et al., 2006]. The precursor intensities of the
three most intense unique peptides per gene identifier (or for gene cluster) were summed,
before being divided by the total summed quantification of all proteins in each sample to
provide the ‘within sample abundance’. Then, these abundance values were normalised by
the ten genes displaying the lowest coefficient of variation across all tissues. When there
was more than one experiment per tissue, the final quantification values are the median
value across all the replicates of each tissue.

Protein clusters matching several Ensembl gene identifiers or failing the unique peptide
rule are discarded from the presented further analyses. The list of the discarded clusters
is different for each of the proteome datasets.

Compared to the original Pandey Lab study [M.-S. Kim et al., 2014], fewer proteins were
quantified, but the results are congruent to other previous studies on the range of
detection and quantification of LC-MS/MS. The quantifications were released along with
our paper [Wright, Mudge, et al., 2016] and the reanalysis of the Pandey data was also
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released through EBI Gene Expression Atlas under the accession: E−PROT−1 and
described in Petryszak, Keays, et al. (2015) and Wright, Mudge, et al. (2016).

2.5 discussion and conclusion

In this chapter, I introduced the five transcriptomic and three proteomic normal human
tissues datasets on which I based my thesis. I described how both the transcriptomic and
the proteomic datasets have been reprocessed from raw files with state-of-the-art unified
pipelines which are also using the same genome build and annotation references in the
final processed version.

As mentioned before, I have produced a subset of the transcriptomic datasets with the
previous human reference genome (GRCh37) and three different Ensembl gene set
annotations (73, 74 and 75). I have run many of the analyses of Chapters 3 and 4 on these
data. While the results may vary for individual genes, the overall outcomes are
congruent hence supporting the robustness of the findings presented in this thesis. In
addition, all the products of the RNA-Seq pipeline are in agreement with the original
studies findings. The MS pipeline also produces similar results to the original studies —
except for M.-S. Kim et al. (2014), which original processing and results raised many
criticisms [Ezkurdia et al., 2014].

While we are in the era of data deluge and big data, the number of tissue overlaps for
independent normal human studies is surprisingly small — see Figure 4.1. (p. 92) Most of
these datasets have been (and will be) referenced through many papers for comparison
(or as control) purposes; hence, it is essential to assess the soundness of these practices by
assessing the consistency between these datasets.
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See first, think later, then test. But always see first.
Otherwise you will only see what you were expecting.

Douglas Adams

3
ABOUT EXPRESS ION ,
V I SUAL I SAT ION , CORRELAT ION
AND CLUSTER ING

As a first step towards the different meta-analyses presented in this thesis, I have opted for
a largely empirical approach to determine a consensus set of methods and parameters on
each individual study before applying them across all the datasets in the further chapters.
This strategy has also allowed me to estimate the overall data quality per dataset and to
structure them appropriately for the upcoming analyses.

I mentioned in Chapter 2 quality checks that happened before the processing of the data.
Those quality assessments are rather technical¹. In the present chapter, I describe post-
processing quality (or sanity) checks that examine higher (and fuzzier) aspects, e.g.:

• Possible outliers in the data
• Systematic and unsystematic batch effect within each study
• Adequacy of data, concepts and statistical models

Even if every of these aspects may not be addressed or corrected, the final results and
interpretations of this study are then more solid.

3.1 visualisation of expression data

Data visualisation is a simple, but very effective method towards adequate analyses and
thus more pertinent results. It allows uncovering the detection of underlying structures
and possible unwanted artefacts.

3.1.1 Distribution plots

In the literature, expression values are frequently visualised on a log-scale (log2(𝑥)).
Figure 3.1 illustrates how this scaling improves the readability of the plot. To overcome
the lack of definition of log2(0), I have added a common pseudocount (equal to 1) to all
the observations. However, in a few cases and only for visualisation purposes, I have
removed the null values to avoid misinterpretations; for examples the expression
distribution (per tissue) plots Figures 3.1 to 3.3. When I remove the null values I clearly
state it in the plot legend as the norm is the pseudocount addition.

1 Is it true signal or noise? Are all the nucleotides called? Is it a true identification or a false positive? …
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Figure 3.1. Untransformed (left) and Log2-transformed (null values removed) (right)
profile of expression levels (FPKM, protein-coding genes only and all null
values excluded) for the IBM dataset

Figure 3.2 shows all the remaining transcriptome datasets. Overall, on this log2(𝑥) scale
(and with all null values excluded): all the samples present a similar shape; a peak near
0 for the lowly expressed and undetected genes and a long-trailing tail. The bulk of the
expressed genes on this scale is below 6 (i.e. below 63 FPKM). In Figure 3.2c, we can observe
that the general expression of the pancreas is shifted towards the left in comparison to the
other tissues. This may be an artefact as this shift of the values distribution is absent in
the pancreas of the other transcriptomic studies (Figure 3.1b and Figure 3.2d). Moreover,
as highlighted by the next chapter analyses, Uhlén’s and GTEx’s pancreas are strongly
correlated (𝑟 = 0.83;𝜌 = 0.96).

Aside from the Pandey data (Figure 3.3c), the expression of the proteins is more
heterogeneous (in particular Cutler data, see Figure 3.3a). This is concordant to the more
disparate and variable techniques involved in the proteomic sample preparation (see
Section 1.3.1: Sample preparation).

3.1.2 Scatter plots

Anscombe (1973) created four datasets (see Figure B.1) which share similar descriptive
statistics to show the importance of data visualisation even through a simple scatter plot.
He demonstrated that checking the datasets graphically with scatter plots allows one
to quickly detect outliers and roughly estimate the relationship between two variables.
Even a non-linear but strong relationship is promptly highlighted (e.g. top right corner
of Figure B.1).
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Figure 3.2. Profile of expression levels across the transcriptomic (protein-coding genes
only) studies (null values removed)
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Figure 3.3. Profile of expression levels across the proteomic studies (null values
removed)

76



3.2 main statistical approaches

(a) Technical replicates (Heart) (b) Biological replicates (Kidney)

Figure 3.4. Examples of scatter plot for replicates from Uhlén (transcriptome)
Technical replicates present very strong correlations particularly for higher
expressed mRNAs (≥ 32 FPKM). Biological replicates present lower but still
strong correlations within the same dataset.

Figure 3.4a illustrates how very lowly detected RNAs diverge even in technical replicates.
Biological replicates, within a same dataset, may present very close profiles even if the
spread for the lowly detected genes is even greater as showed in Figure 3.4b.

3.2 main statistical approaches

As the general normal distribution shape of the gene expression levels on log-scale are
similar, I have also computed Pearson correlation coefficients (in addition to Spearman
ones) to assess the similarity of the replicates within (intra) and between (inter) studies.

3.2.1 Correlation

Correlation coefficients are a measure of the statistic dependence between two
continuous variables² (e.g. 𝑋 and 𝑌 ) and always ranges within [−1, 1] (see also
appendix B.1: Correlation).

2 In the context of this study, the variables are either expression levels of a given gene across samples/tissues
or expression levels of all genes between two samples or tissues
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The correlation coefficient is computed by the pairwise comparison of observations
between two variables. Most implementation methods will manage an unbalanced
number of observations by excluding the incomplete pairs. To ease the interpretation I
filtered the data a priori; I only kept expression values effectively observed in all the
datasets (as I explain in section 3.3.3: Expressed or not expressed).

From the several methods available to compute the correlation coefficient, I chose both
the Spearman and the Pearson correlations. As Spearman correlations are computed on
ranks, they report any kind of relationship, while Pearson correlations are computed on
the values and report only linear relationships. However, Pearson correlations are easier
to interpret and can be used with one of the variable to predict the other one. (See also
Appendix B.1.1: Spearman correlation and Appendix B.1.2: Pearson correlation).

Figure 3.5. Correlation coefficients between RNA-Seq replicates. The correlation
means and medians are high across the studies replicates. However, the
range of the correlations are quite extreme in a few case. Spearman
correlations are higher than the Pearson ones. See also Appendix B.1.3.

Figure 3.5 (and Table B.1) presents the Pearson and Spearman correlation coefficients for
the technical replicates for Uhlén study and the biological replicates within Brawand,
GTEx and Uhlén studies. On average the correlation coefficients are high both for the
technical or the biological replicates. The GTEx study presents the same average
correlation coefficients but a more extreme range. This may be explained by a strong
batch effect as the samples were collected and sequenced at different times by different
laboratories.

78



3.2 main statistical approaches

3.2.2 Clustering analysis

Aswe know the tissue type for each sample of each dataset, wemay debate that supervised
analyses can be more informative than unsupervised ones. However, they would involve
proper corrections for batch effects and other technical biases for each dataset. This
is challenging as it often requires more knowledge than what is available through the
repositories. In Chapter 2, we have seen that is also unwise to rely solely on the normalised
data provided by the original authors when working with various datasets that are non-
uniformly processed³.

To assess the consistency of the quantification across the different datasets, in particular
for RNA-Seq, I picked a widely used unsupervised method for exploratory analysis in
gene expression studies: clustering analysis. There are many available approaches and
algorithms from which to pick; I chose a (bottom-up) hierarchical clustering (a.k.a.
connectivity-based clustering). This sort of clustering is widely used in gene expression
studies. Broadly speaking, this method groups samples by similarity in an extensive
hierarchy, which allows uncovering possible hidden structures within the data; thus
establishing if samples are more alike biologically or by study origin for instance.

In general, we expect biology to be a better predictor when we only consider data from
either transcriptome or proteome. Even more so if the identification technology and the
quantification workflows are consistent. Yet, a technical predictor can not be directly
excluded. Indeed, most transcripts (in particular mRNAs) are expressed in many tissues.
Two tissues chosen at random share about 60 to 90% of their pool of mRNAs [Ramsköld
et al., 2009; Gremel et al., 2015]. Parallelly, on the proteome side, M.-S. Kim et al. (2014)
estimate that 75% of themass of a cell is due to ubiquitous proteins andWilhelm et al. (2014)
estimate that about 10,000 to 12,000 proteins are ubiquitously detected, which represent
about 60 to 75% of the proteins that they identified per tissue. Thus, if the variation of
expression are too subtle from one tissue to another, a strong sample collection or data
processing bias may hide any relevant biological signal.

In practice, each sample starts in its own cluster and then iteratively, each cluster is merged
with its nearest one. Themethod has two parameters: the distance and the linkagemethod.
Debate is still going on how to pick these parameters among the many possible choices
(for more details see [Jaskowiak et al., 2014; Guinand et al., 2002]).

The distance measures the dissimilarity between two samples and one common approach
is to calculate the subtraction result of the correlation coefficient from 1 (hence, a greater
similarity between the two samples means a smaller distance). In analogy to previous
analyses, I have also used both Spearman and Pearson correlation methods.

The linkage parameter specifies which part of each cluster is used as reference for
computing the distance between the clusters. There are many methods and after trying

3 Eventual bias corrections in RNA-Seq vary according to planed downstream analyses and proteomic data is
hard to handle and two processing pipelines may rather give quite different results (see Section 5.2).
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(a) Clustering based on Ward’s method

(b) Clustering directly extracted from the original study
[Fagerberg et al., 2014]

Figure 3.6. Comparison of two clusteringmethods on a subset of theUhlén study.
((a)) includes all the samples and we observe that only a few of them are
mixed with other samples from other tissues. This mixture is only observed
between Small intestine and Duodenum.80



3.3 reducing sources of bias

several, I have arbitrarily selected the one that divides most accurately the samples by
their tissue source across the different datasets. In fact, I noticed that Ward’s
method [Ward, 1963] was the best for this task and was outperforming the
complete-linkage method⁴.

Indeed, this latter method was used in [Fagerberg et al., 2014] (first release of the Uhlén
dataset) where the authors have discarded a few samples as they were clustering
incoherently in regards of their biological nature. Figure 3.6b presents the effect of the
different clustering methods. Notice that all the tissue clusters are better defined when
Ward’s method is used: this method allows conserving all the samples for the analysis as
long as other bias sources are corrected (see Section 3.3.1: Mitochondria issue).

3.3 reducing sources of bias

Many non-trivial methods correct for the skewness present in RNA-Seq and MS-based
proteome global expression distributions and for other possible bias sources. For some
examples, see Leek et al. (2010), Leek (2014), Yi, Raman, et al. (2018), S. Li et al. (2014), and
Stegle et al. (2012).

However, it may be complex to assess the biological relevance of those corrections.
Moreover, many require more metadata that is often available in the public repositories.
In the context of this thesis, I am interested in consistent traits across the datasets that
may be consolidated into a reference. Thus, biases that are common to all the different
included studies are in practice negligible. On the other hand, I have adjusted for a few
easily avertible biases that I describe hereinafter.

3.3.1 Mitochondria issue

Mitochondria are organelles that can be found in eukaryotic cells. They have a central
role in many essential processes [Kotrys et al., 2019]. While mitochondria share many
similarities with bacteria⁵, substantial divergences, notably for mammals, have been
discussed in many reviews such as Boguszewska et al. (2020), Barshad et al. (2018), Hillen
et al. (2018), Al-Faresi et al. (2019), Ladoukakis et al. (2017), and Shokolenko et al. (2017).
One remarkable key difference is the polyadenylation of the RNAs. In bacteria, the
polyadenylation of mRNAs prompts their degradation [Hajnsdorf et al., 2018; Rorbach
et al., 2014]. On the other hand, the entire range of the polyadenylation effects is still

4 Ward’s method minimises at each step the variance within each cluster; the complete-linkage method (or
farthest neighbour clustering) uses the maximum distance between the two farthest elements of each pair of
clusters and merges the pair with the smaller inter-cluster distance.

5 Despite the many debates and investigation going on about the lineages and mechanisms, current research
accepts that mitochondria have evolved from an α-proteobacterial endosymbiont of a host cell prior to the
last eukaryotic common ancestor (LECA) [W. F. Martin et al., 2015; Stairs et al., 2015].
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(a) With the 37 mitochondrial genes included

(b) Without the mitochondrial genes

Figure 3.7. Clustering of the biological samples of Uhlén study based on the
Pearson correlation — all expressed genes are included.
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3.3 reducing sources of bias

elusive for the human mitochondrial RNAs (mt-mRNAs) [Al-Faresi et al., 2019]. The
polyadenylated tail has only a relative effect on the mt-mRNAs’ stability [Bratic et al.,
2016]. Besides, it is highly transcript-specific and can either stabilise them or flag them
for degradation [Kotrys et al., 2019]. Most likely, its prime roles are the creation of a
functional stop codon and the protection of the 3’ side of the mt-mRNA against
degradation [Bratic et al., 2016]. Except for MT-ND6, a polyadenylated tail has been
observed for the twelve other mt-mRNAs. The extent of polyadenylation can vary across
cell types [Kotrys et al., 2019]. However, the polyadenylated tail has an average length of
45 nt [Rorbach et al., 2014], which explains its possible captures by RNA-Seq (see
Section 1.2.1).

Gene expression levels of mitochondria can report very useful information, e.g. the stress
level of a cell in a single cell experiment [Ilicic et al., 2016]. However, it is unwise to
keep them for a bulk analysis, particularly when comparing different biological sources.
Indeed, it is very hard to properly normalise their expression; it involves knowing the
amount of mitochondrial genome copies in the studied samples, while the mitochondria
are from an unknown polyploidy and RNA-Seq protocols are badly suited for polyploid
organisms [Pearce et al., 2015]. Thus, I have decided to remove them from the analysis as
they skew anything relying on correlation. In fact, there are always mitochondrial genes
among the highest expressed genes and they usually dominate manifolds the expression
of the other genes.

Removing the (37) mitochondrial genes from the bulk of expressed genes (more than 10,000
protein-coding genes) produces more defined clusters as showed on Figure 3.7 (see also,
in the next chapter analysis, Figure 4.3 in comparison of Figure C.4, where the simple
exclusion of the mitochondrial genes allows all tissues to cluster by biological origin rather
than the mixtures observed when they are kept). Figure C.14 illustrates furthermore the
distinctiveness of the mitochondrial genes expression levels.

3.3.2 Protein-coding genes only

I have focused my analyses on the mRNAs (i.e. RNAs that have a biotype described as
protein-coding in Ensembl 76).

In addition to the obvious reason to match with the proteomic data, most of the
transcriptomic data is the product of poly-A selected protocols (see Section 1.2.1.2: RNA
enrichment). Thus, aside from the mRNAs, all the other RNAs are off-target and, for
many of them, their expression levels estimations may be highly imprecise.

3.3.3 Expressed or not expressed

While it can seem a trivial concept and might be overlooked, whether a specific molecule
is truly expressed — or not — in a given condition, can actually have an extensive impact
on the results of the analyses, particularly when integrating proteome and transcriptome
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Figure 3.8. Expressed or not: several cases illustrated.
Genes like Gene 1 are unequivocal: they have been detected in all the
different tissues. Genes that have been quantified in some of the conditions
are, in principle, detectable with the protocol of sampling and quantification
used for the assay. For these genes, when no signal is collected, I assume this
is a true 0 signal. In contrast, genes without any quantification in any tissue,
e.g. Gene 4, are discarded from the remaining analysis as it is impossible to
state whether they are truly absent from the biological sample or if it is due
to the protocol used; they are undefined. The same approach is used for the
transcriptome and the proteome.

together.

For example, the Pearson correlation coefficient is very sensitive to outliers and null values.
If for both samples, a vast number of null values are recorded, this will lead to a greater
similarity. Hence, it is important that the data used for the analysis is meaningful in its
entirety, i.e. a null value is a truly an observation and translates to a lack of expression,
rather than a lack of observation.

• The undefined: If a protein or transcript is never found in any of the samples of a
dataset, then I considered that we can not determine if the protein or transcript was
either truly not expressed or, for any reason, was not captured during the library
preparation or the identification/quantification steps. Hence, those are excluded
from the analyses as I can not resolve precisely if this is a technical artefact or a
biological truth. An example is illustrated by the row circled in red in Figure 3.8.

• Expression in a dataset: By contrast, if a protein or a transcript is expressed in
some samples of the dataset, then, whenever no expression was recorded in the
other samples, I consider that the expression of the considered macromolecule is
truly null for those samples.
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3.3 reducing sources of bias

• Expression within a sample: Due to the technical (and biological) differences
between proteomics and transcriptomics, I use different thresholds to classify the
presence of a protein or a transcript.

– Expressed protein: On the proteomic side, I consider that a protein is expressed
if it has been identified and quantified. In other words, a protein is expressed
if the expression value is greater than zero in a sample. As described in
Section 1.3.4.3, a protein identification and expression are inferred on a set of
selected peptides. Thus, if the peptide selection changes, the identified
proteins and their level of expression as well.

– Expressed transcript: On the transcriptomic side, while the identification is
direct, we have to account for technical noise, but also for ‘transcriptional
noise’ [Z. Wang et al., 2009; Dar et al., 2015]. Indeed, SEQC/MAQC-III
Consortium (2014) reports that excluding low-expression measurements
reduce the FDR of RNAs considerably.
While we can empirically evaluate it for each RNA-Seq dataset [Ramsköld
et al., 2009], there is a widespread threshold used in the literature: 1 FPKM (or
RPKM) — e.g. Fagerberg et al. (2014) and Uhlén, Fagerberg, et al. (2015). In
fact, Hebenstreit et al. (2011) showed in their study ‘RNA sequencing reveals
two major classes of gene expression levels in metazoan cells’, that to be
detected and quantified at protein level, an mRNA should at least present an
expression equals to 1 RPKM.
As an important part of my thesis focuses on the comparison of proteomic
and transcriptomic data (see Chapter 6), I have conducted all the analyses at
least once with this threshold of 1 FPKM (I have also used 0 (i.e. using the
same threshold for mRNAs for the proteins) and 5 FPKM as other thresholds
for a few specific analyses).

Limitations of the study

While I have chosen to define proteins as expressed if only they present a non-null value,
the truth is more complex.

One major challenge of bottom-up proteomics is the high rate of missing values. The
detection of 10 to 50% of the expressed proteins can fail in a given study, and the proportion
of a peptide/protein exhibiting a missing value at least once within the same study can
reach 90% [Lazar, Gatto, et al., 2016]. As presented in Section 1.3.3, the detection of a
protein is affected by the expression ranges of all the other proteins in the mixture. Thus,
due to its relative abundance to other proteins in two given samples or tissues, the same
protein can be detected in one andmissed in another onewhile present in both; it can reach
the MS detection limit in the first case but not in the second. Imputing the missing values
is a widespread handling approach, for which, many algorithms have been developed and
reviewed [Webb-Robertson et al., 2015; Välikangas et al., 2018a; Gardner et al., 2020].
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For this thesis, I have chosen to not impute the missing data and exclude any mRNA or
protein that is not expressed in at least one sample in each and every dataset used for the
analyses. This led me to define different working sets for the following chapters analyses
to limit the number of omitted mRNAs/proteins.

I have compared the list of undefined, expressed and unexpressedmolecules. However, the
bulk of the analyses has been done on the common expressed genes across the datasets.

3.3.4 Aggregating tissue expression

To deal with an unbalanced number of biological replicates across the datasets (see
Section 1.5: Reproducibility and Experimental design), I computed a ‘virtual’ reference for
each tissue within the datasets that present more than one biological sample per tissue,
i.e. Brawand, Uhlén and GTEx datasets. Note that, Castle, Cutler, Kuster and Pandey
datasets present by design only one measure of expression per gene per tissue.

To compute the ‘virtual’ references for Brawand, Uhlén and GTEx datasets, I have taken
the median value of each gene across all the biological replicates for each of their tissues.

Notes:
• For IBM dataset, I have discarded the single-end sequenced samples (as already

mentioned in Chapter 2).
• The Uhlén dataset required an extra a priori step to the averaging of the biological

replicates for some of the tissues as they present technical replicates. For these, I
have first averaged the gene expression levels for each subject-tissue pair before
computing the gene expression level medians of each tissue.

• The GTEx dataset required another post-processing step after the averaging of the
biological replicates. Indeed, the samples are described based on their body site
sources while the other datasets describe their samples only based on their tissue
origin. Thus, while there is only Heart samples in Castle, Brawand, IBM, Uhlén,
Cutler, Kuster and Pandey, GTEx has samples from the left ventricle of the Heart and
from the Atrial appendage of the Heart. For this case and other similar ones, I have
average the virtual reference of the body sites in GTEx that I considered relevant for
comparison with tissues found in the other datasets.

• While I have detected many samples that seem outliers to their biological
replicates within the same datasets, I have decided to keep all the samples for the
tissues expression averaging step. On this matter, in many scientific exchanges, I
was repetitively asked about the inclusion of all the GTEx dataset samples related
to Oesophagus for the averaging step. Indeed, while two of the three GTEx’s body
sites (i.e. Gastro oesophageal junction and Oesophageal muscularis) present great
similarities together (𝑟 = 0.99) and more modest correlations to Uhlén’s
Oesophagus samples (𝑟 < 0.80), the last body site (i.e. Oesophageal muscularis)
expression, very dissimilar to the two former ones (𝑟 < 0.64), presents higher
correlation to Uhlén’s (𝑟 = 0.94). Thus, while only considering this latter body site
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significantly improves the overall Oesophagus correlation between GTEx and
Uhlén, I have decided to include all three body sites (as one tissue) in my study.
Indeed, there are no suitable reasons or information that allows excluding any of
the body site prior to the analyses; gene expression scatter plots of the Uhlén’s
samples versus any of these three body sites present two trends which suggest that
Uhlén’s Oesophagus samples are composite.

The meta-analyses of the following chapters use a TREP (tissue reference expression
profile) for each tissue of each study, i.e. there is only one measure per gene for each
tissue. These measures are either the primary sample expressions for Castle and IBM
studies or these ‘virtual’ constructed references for Brawand, Uhlén and GTEx.

3.4 discussion and conclusion

In this chapter, I have reviewed many fine quality control points that may be (and often
are) overlooked. These details have critical impact on the results of the analyses I perform
and more gravely on their interpretations⁶.

Aside the datasets selection criteria, this phase is by far the most subjective one of the
whole thesis. Hence, to avoid excessive data cleaning and possible cognitive biases, I have
formulated the aforementioned filtering rules that are important but simple.

Overall, I am quite stringent and I have preferred to keep more data unless there is a
strong rationale to discard them. Therefore, there are sharper filters and samples exclusion
options that may easily improve the results I present in this thesis.

6 For more, see ‘The devil in the details of RNA-seq’ [Kratz et al., 2014] and the included references.
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So far, I think it’s been working. But who knows?

Mark Watney [Weir, 2014]

4
I N TEGRAT ING GENE EXPRESS ION
DATA FROM UND I SEASED T I S SUES
ACROSS RNA- SEQ ST UD IES

To pave the way towards a generalised baseline expression reference for the normal (i.e.
non-disease) human, I assess in this chapter the similarity of the tissues sourced from
different RNA-Seq studies and the general profiles of their expressed genes. When I started
this project in 2013, little was known of either the robustness or the shortcomings and
pitfalls of RNA-Seq and its related processing of output data. Since then, several studies
were published assessing RNA-Seq robustness (See Appendix C.4). A few are close in scope
to my own investigations. Thus whenever relevant, I introduce and discuss my results in
relation to the published ones.

In the first part of this chapter, I introduce the datasets based on the transcriptome studies
(described in Chapter 2) that I use in the different meta-analyses. In the second part, I
appraise the congruence of the interstudy tissue expression profiles. Then, I examine
different components that may contribute the most to (and thus explain) the overall strong
biological correlations that are observed between the studies’ tissues. Finally, I explore the
interstudy consistency of the gene expression profiles.

All the work presented in this chapter was performed by myself under the supervision of
Dr Alvis Brazma. I received invaluable advice and help frommy discussions with Dr Nuno
Fonseca. I also received general feedback and comments from Dr Mar Gonzàlez-Porta, Dr
Johan Rung, Dr Sarah Teichmann, Dr Gos Micklem and Dr Wolfgang Huber.
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Communication to the community derived from this chapter

• (paper) R. Petryszak, M. Keays, et al. (2015). ‘Expression Atlas update—an integrated
database of gene and protein expression in humans, animals and plants’. Nucleic
Acids Res. 44 (D1), pp. D746–52

• (short talk) Quantitative Genomics 2015 — Integration of independent human RNA-
seq datasets: a feasibility study

• (poster) ECCB 2014 — A feasibility study: Integration of independent RNAseq
datasets

• (poster) SymBLS 2014 — Integration of independent human RNAseq datasets, a
feasibility study

• (invited short talk) GM2 2013 — Baseline Gene expression Atlas
• (flash talk) CSAMA 2013 — How quantitative is RNA-seq?
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4.1 meta-analyses’ combined datasets

In the past years, RNA-Seq rapidly gained popularity for human gene expression studies
due to a broader dynamic range than previous technologies and the promise to enable
quantitative profiling [J. C. Marioni et al., 2008]. That technology was an advancement
with respect to microarray assays that are semiquantitative [M.-L. Lee, 2006] and very
prone to batch effects [Irizarry, Warren, et al., 2005]. However, RNA-Seq studies had
shown variation in their conclusions on various occasions for similar research
topics [SEQC/MAQC-III Consortium, 2014]. At the time that I started my Ph.D., it
appeared that RNA-Seq might share at least partially the problems encountered with
microarray assays. In fact, batch effects restrain the use of direct approaches for the
comparison of independent microarray data, and the resulting insights are usually limited
[Walsh et al., 2015; Chrominski et al., 2015; Rung et al., 2013; Lazar, Meganck, et al., 2013].

The following meta-analyses attempt to provide more insights into the interstudy RNA-
Seq robustness for tissues expression as a supporting exploratory study to the EBI Gene
Expression Atlas [Petryszak, Keays, et al., 2015].

4.1 meta-analyses’ combined datasets

Through this chapter meta-analyses, I use two sets based on combined subsets of the
transcriptomic studies introduced in Chapter 2.

The following Sections 4.1.1 and 4.1.2 illustrate the construction of these sets.

While many approaches exist, I usually consider the most stringent routes, i.e. I rather
exclude part of the data to infer conclusions than keep wider datasets and more partial,
biased or ambiguous results. Thus, I identified the identical core of explored tissues and
expressed genes across the studies. From this base, I created two more robust combined
datasets (𝒲1 and 𝒲2) for the meta-analyses.

4.1.1 Tissue overlaps across available normal human RNA-Seq studies

Figure 4.1 presents the tissue overlap between the five studies. All studies share at least
four tissues: Heart, Kidney, Liver and Testis. This 4-tissue set is the base of the first
combined dataset (𝒲1).

The greatest number of shared tissues occurs between the two most recent studies,
Uhlén [Uhlén, Fagerberg, et al., 2015] and GTEx [Melé et al., 2015]. This 23-tissue set is
the base of the second combined dataset (𝒲2) and includes Adipose tissue, Adrenal gland,
Bladder¹, Cerebral cortex, Colon, Oesophagus, Fallopian tube, Heart, Kidney, Liver, Lung,
Ovary, Pancreas, Prostate, Salivary gland, Skeletal muscle, Skin, Small intestine, Spleen,
Stomach, Testis, Thyroid and Uterus.

1 May also be referred to as Urinarybladder
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Figure 4.1. Distribution of unique and shared tissues between the transcriptomic
studies. The five studies share four common tissues: Heart, Kidney, Liver
and Testis. The most prominent overlap of tissues (23) is between Uhlén and
GTEx.

4.1.2 Common measured genes for each of the main shared-tissue sets

In the following sections of the thesis, I only present the results based on the HTSeq-count
quantification.

As shown in Table 2.1 (p. 57), many of the transcriptomic studies I use were produced
through polyA-selected library protocols. Hence, to avoid unnecessary biases², I have
limited my analyses to protein-coding genes (Ensembl 76). All mitochondrial genes have
been filtered out before any TREPs analysis (as specified in Section 3.3.1).

The Venn diagram presented in Figure 4.2a only includes protein-coding genes that are
observed³ at least once at 1 FPKM for one of the four shared tissues. As mentioned in
the previous chapter (Section 3.3.4 p. 87), the bulk of expressed genes at this threshold is
common to all five studies. While each study presents a tiny portion of genes that are
unique, overall most genes are detected in at least two studies. The most considerable
contingent of shared gene expression is observed between Uhlén and GTEx.

Figure 4.2b presents a similar Venn diagram which focuses on the set of twenty-three
tissues (𝒲2) betweenUhlén andGTEx studies. The uniquely expressed genes in each study
are negligible compared to the overlap. They represent at most 0.03% of the measured

2 See Section 3.3.2: Protein-coding genes only.
3 See Section 3.3.3: Expressed or not expressed.
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Figure 4.2. Unique and shared protein-coding genes expressed (≥ 1 FPKM) across
the RNA-Seq studies for 𝒲1 and 𝒲2
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genes in each of the studies.

I have also analysed all the other subgroups of genes (i.e. unique to each study or shared
only between two to four studies) for any functional annotation enrichment (see
Section 1.4). No analysis provided any conclusive result.

4.1.3 Combined datasets summary

I have based all the meta-analyses of this chapter on the two 𝒲1 and 𝒲2 datasets, which
are defined as follow:

𝒲1 ∶ 𝒟Trans1 × 𝒢protein coding1
× 𝒯1

and
𝒲2 ∶ 𝒟Trans2 × 𝒢protein coding2

× 𝒯2

where:
• 𝒟Trans𝑖 is a set of mRNA expression studies (presented in Section 2.2).

With 𝒟Trans1 = { Castle, Brawand, IBM, Uhlén, GTEx} and
𝒟Trans2 = { Uhlén, GTEx}

• 𝒢protein coding𝑖
is a set of genes 𝑔𝑝𝑐 that are shared by all elements of 𝒟Trans𝑖 and
have a biotype described as protein coding in Ensembl 76.
𝒢protein coding1

comprises 12,268 protein-coding genes.
𝒢protein coding2

comprises 17,551 protein-coding genes.
• 𝒯𝑖 is a set of tissues that are shared by all elements of 𝒟Trans𝑖 .

𝒯1 includes four tissues and 𝒯2 twenty-three tissues.

Note that as stated in Section 3.3.4, to avoid an unbalanced number of samples per tissues
across studies, I aggregate into a single virtual reference, i.e. TREP, the gene expression
measured for each gene for each tissue in each study, regardless of the number of replicates.
Thus, 𝒲1 comprises 20 TREPs, and 𝒲2 46 TREPs.

4.2 prevalence of biological signal over technical
variabilities at tissue-level

As shown in Chapter 3, the expression levels of biological replicates (i.e. identical tissue
samples) are highly correlated within the same study and allow one to group the samples
based on their biological source. Thus, clustering the samples across studies should offer
a rough assessment of the underlying driving forces for the observed gene expression
levels. A clustering by study would mean that technical variabilities are stronger than
any biological expression signature (which is an actual recurrent observation with
microarray studies due to their strong batch effects [Sudmant et al., 2015]). On the other
hand, an interstudy sample clustering by tissue would imply that RNA-Seq
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measurements demonstrate a good (biological) signal over (technical) noise ratio. In
other words, RNA-Seq would be then less prone to batch effects and more robust than
microarray assays [Taminau et al., 2014; Walsh et al., 2015].

The heatmaps of the hierarchical clustering of the TREPs⁴ for 𝒲1 and 𝒲2 are respectively
presented in Figures 4.3 and 4.4. They are based on clustering (Ward’s method linkage
[Ward, 1963]) the TREPs’ Pearson correlation coefficients (protein-coding genes expressed
at least at 1 FPKM).

Both heatmaps show that the overall biological signal measured in the tissues is stronger
than the noise generated by any technical variation or batch effect.

In Figure 4.3, each cluster corresponds to a tissue. The clustering signal by tissue dominates
over the signal from the dataset. It highlights a greater biological similarity of the TREPs
due to their sampling origins rather than any possible technical similarity due to laboratory
protocol variations.

One may object that the very different gene expression landscapes of Heart, Kidney, Liver
and Testis [Ramsköld et al., 2009; Lukk et al., 2010; Danielsson et al., 2015; Sudmant et
al., 2015; Melé et al., 2015; Uhlén, Fagerberg, et al., 2015] may drive this result and lesser
differentiated tissues may exhibit more mitigated correlations. Figure 4.4 (𝒲2) confirms
that the biological origin of the tissues is the dominant criterion for the clustering of the
TREPs.

Moreover, in many cases, TREPs mixtures occur in close biologically related tissues, e.g.
Fallopian tube and Ovary or Salivary gland with Oesophagus and Stomach TREPs. The
functional proximity of these tissues is likely supported by an overall similarity in their
gene expression. Thus, even though there are clear biological substructures emerging
like for Heart and Skeletal muscle, without correction, the biological signal to technical
noise ratio for close tissues may be insufficient to discriminate them accurately in every
case.

The general observed biological prevalence holds when I extend the analysis to include
all the available tissue samples (see Figure C.5 and Figure C.6). See also Section 2.2:
Transcriptome RNA-Seq studies (p. 56) and Table B.1: Correlation coefficients between
RNA-Seq replicates (p. 198).

Figure 4.5 shows the distribution of the Pearson correlation coefficients for the pairs of
the profiles (TREPs) of tissues with the same name sourced from the different studies for
both of the combined datasets 𝒲1 (4-tissue set) and 𝒲2 (23-tissue set). Even with the lack
of any batch effect correction, most of the Pearson correlations are above 0.5. There are
two exceptions: the correlation between the Testis TREPs of Castle and Brawand (𝑟 = 0.42)
from 𝒲1 and Salivary gland TREPs of Uhlén and GTEx (𝑟 = 0.2) from 𝒲2. The median
correlation for 𝒲1 is about 0.7 and 0.84 for 𝒲2. Spearman correlation gives even better

4 Tissue reference expression profile. See Section 3.3.4: Aggregating tissue expression.
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Figure 4.3. Heatmap of the four common tissues across the five studies.
All protein-coding genes (except the mitochondrial ones) at least expressed
at 1 FPKM are included.
All the different TREPs cluster by tissue of origin regardless of their study
sources. Each of the colours on the top bar following the x-axis is associated
to one of the study (purple for Uhlén, blue for Brawand, green for GTEx,
orange for Castle and red for IBM), and the colours on the side bar following
the y-axis are associated to the tissues (green for Kidney, red for Heart, blue
for Testis and orange Liver).
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Figure 4.4. Heatmap of twenty-three common tissues between Uhlén and GTEx
studies. All protein-coding genes (≥ 1 FPKM with the exclusion of the
mitochondrial genes) are included.
Most TREPs cluster by tissues (y-axis colour bar) rather than by study of
origin (x-axis colour bar) with a few exceptions: there is a mixture of
the Fallopian tube and Ovary TREPs. In addition, Salivary gland TREPs
is more correlated to Oesophagus or Stomach regarding the original study.
Urinarybladder TREPs seem to cluster randomly with the others. However,
these TREPs are in singleton groups.

97



integrating gene expression data from undiseased tissues across rna-seq studies

results: average correlation coefficients are 𝜌 = 0.49 for 𝒲1 and 𝜌𝒲2 = 0.9; the median
correlations are 𝜌𝒲1 = 0.88 and 𝜌𝒲2 = 0.93.

Both the Pearson⁵ and the Spearman correlation coefficients for the more exhaustive 𝒲2
set, which comprises the twomost recent studies, are higher than the observed correlations
for 𝒲1. Three main reasons may explain this situation as they contribute to lower the
technical variations:

• In addition to using paired-end sequencing, the library preparation protocols were
better established for these two more recent studies;

• The instrument used for the sequencing were from the same series (HiSeq 2000 and
HiSeq 2500); and

• These studies present a higher number of replicates per tissue.

0.00

0.25

0.50

0.75

1.00

4 common Tissues 23 common Tissues
Combined dataset

Pe
ar

so
n 

co
rr

el
at

io
n

Figure 4.5. Distribution of the Pearson correlation coefficients of same tissues
pairs for the four and the twenty-three tissues combined datasets. In
general, the Pearson correlations are high when we are directly comparing
TREPs from different studies.
The same-tissue pairs in the 23-tissues combined dataset (𝒲2) present a
higher median correlation (0.85) and narrower distribution than in the 4-
tissues combined dataset (𝒲1) (median= 0.74). However, 𝒲2 displays
one outlier with a very low Pearson correlation (0.2: Salivary gland tissue).
Sampling, processing differences or biological reasons may just as well
explain this outlier.

On the other hand, the pairs comprising different tissues are very lowly correlated in
general (see Figure C.7). Although, in a few cases of 𝒲2 (23-tissues combined dataset),
high correlations are also observed for different-tissues pairs, e.g. Fallopian tube and Uterus
from GTEx study (see also Figure 4.4). It is rather hard to decipher if this may be due to a
technical issue (e.g. at the collection or library preparation stage) or because these tissues
are biologically very close.

As the exclusion of the undefined⁶ genes from the analyses handles one possible source
of spurious Pearson correlation (due to null values), I have then checked, and, discarded,

5 Despite one major outlier in the second combined dataset (Salivary gland — Pearson correlation: 𝑟=0.2)
6 I.e. unobserved — See also Section 3.3.3: Expressed or not expressed
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another possible source that is the skewed distributions; highest expressed genes may be
technical artefacts, but they fail to show any significant correlation (see Appendix C.1).

The high correlations are the results of the overall similarity of genes expression patterns
across tissues and studies.

4.3 global stability of gene expression profiles across studies

After validating that RNA-Seq allows distinguishing the shared biological origin of most
tissues (TREPs) across different studies, the question then arises as to how consistent is
the expression of each gene for a given tissue between studies.

To this aim, I first assess the expression variability of the genes across the studies. Then, I
explore the interstudy coherence of several gene categories. I focus on the tissue-specific
(TS) genes, and on a larger number of categories developed upon classifications from
Uhlén’s laboratory.

4.3.1 Genes with tissue-specific (TS) expression

Tissue-specific (TS) genes are arguably the genes that ought to present a robust expression
profile across studies.

Tissue specificity definition

The definition of tissue specificity varies from one study to another. See also Santos et al.
(2015). Liang et al. (2006) that define tissue specificity only for genes expressed solely in
one tissue, and then tissue selectivity for genes expressed in more than one tissue with an
expression enriched in one or a subset of tissues. Other studies have a broader definition
of tissue specificity. They identify genes above a given threshold of tissue selectivity (or
enrichment) as tissue-specific genes (e.g. Fagerberg et al. (2014) and C. Jiang et al. (2016)).
In this second case, genes with a single-tissue expression are an extreme case of Tissue-
Specific (TS) genes.

Within this thesis, I use the second definition, i.e. I consider genes as TS as long as they
display a higher tissue selectivity than a preset threshold, regardless of how many tissues
express them. Indeed, every study presents a subset of genes that are expressed above 1
FPKM in a sole tissue (see Figure C.2). However, the decreasing number of these genes
when increasing the number of considered tissues highlights the arbitrary relativity
introduced by the study design.

For this definition, there are many methods to characterise genes tissue-specificity (e.g.
Cavalli et al. (2011), Xiao et al. (2010), Karthik et al. (2016), P. Kim et al. (2017), Kryuchkova-
Mostacci et al. (2017), Kadota et al. (2006), X. Yu et al. (2006), and Martínez et al. (2008)).
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There are also databases that record previously identified TS genes, for normal conditions,
e.g. TiGER⁷ [X. Liu et al., 2008] or TiSGeD⁸ [Xiao et al., 2010] and more specialised ones, e.g.
for cancer TissGDB⁹ [P. Kim et al., 2017].

TS genes characterisation approaches used in this thesis

From the possible approaches to characterise the TS protein-coding genes, I detail three
that I used in the following subsections. First, I have queried TiGER to capitalise on
previous knowledge. Then, to derive the TS genes directly from 𝒲1 and 𝒲2, I have used
a published method, that uses the gene expression fold change (FC) ratio across the tissues.
Finally, I have employed a robust method designed to detect outliers in data, i.e. Hampel’s
test [Hampel, 1974], to identify genes which present an unusual expression level in a single
tissue. In fact, as gene tissue selectivity and tissue specificity definitions are relative to a
context, if the latter changes, the genes attributes may change as well (e.g. one gene that
is non-specific in 𝒲2 may be Heart-specific in 𝒲1).

4.3.1.1 Use of prior knowledge: TiGER database

TiGER [X. Liu et al., 2008] reports TS genes for thirty independent tissues (based on ESTs
experiments).

After retrieving the list of genes for all reported tissues, I have mapped the RefSeq
identifiers provided by TiGER to Ensembl gene identifiers (GRCh38, Ensembl 76). Then, I
removed all duplicates due to the identifier translation within each tissue, and I also
filtered out all the genes identifiers that I found in more than one tissue: TiGER lists a
subset of the same genes in many tissues, but the modification in the annotation may
also explain part of the repetitive genes. Thus, for each tissue, I have a list of identifiers
that are specific to that tissue only.

Figure 4.6 is an expression heatmap based on a subset (i.e. 916) of protein-coding genes
that are present in this final list of translated TiGER genes for the Heart, Kidney, Liver and
Testis. There are three main types of genes. The largest group comprises the genes with
a corroborating profile between the TiGER definition and the real data. Then, a second
smaller group encompasses genes listed as TS in TiGER, but fails to demonstrate expression
specificity towards any tissue in the real data. Finally, the third group includes a very tiny
subset of genes which are more specific to another tissue than the initially stated one.

Thus, without any additional knowledge, it is difficult to predict beforehandwhich original
TiGER definitions will be confirmed or rejected by expression data. Remarkably, most
of the genes present the same expression pattern through the tissues across each of the
studies and thus regardless of their TiGER category. Once again, Castle expression data is

7 TiGER — http://bioinfo.wilmer.jhu.edu/tiger/
8 TiSGeD — http://bioinf.xmu.edu.cn:8080/databases/TiSGeD/index.html
9 TissGDB — https://bioinfo.uth.edu/TissGDB/index.html
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Figure 4.6. Expression heatmap of the four tissues across the five datasets based
on TiGER information. This heatmap illustrates three subsets of genes:
genes for which real expression data confirm their TiGER definition; genes
failing to show any TS profile in their expression data; and genes with
mismatching tissue specificity between TiGER definition and the expression
data. The colourbar above the heatmap is representing the tissue for which
TiGER annotates the genes (presented as columns) as TS (red forHeart, green
for Kidney, light orange for Liver and blue for Testis). TiGER definitions are
of variable accuracy.

exhibiting the only few observed discrepancies¹⁰.

4.3.1.2 Fold change method

As Love et al. (2014) noted the most common approach for detecting a gene expression
difference between two conditions is to study the expression fold change (FC) ratio
between these conditions. This method is still broadly present in the literature, especially
for studies other than differential gene expression analyses¹¹; as examples, see Uhlén,
Fagerberg, et al. (2015), Zhu et al. (2016), and N. Y.-L. Yu et al. (2015). Besides, EBI Gene

10 Reminder: the FPKM quantification (used here) is sensitive to the number of identified genes (see
Equation (Canonical F/RPKM formula) equation (Canonical F/RPKM formula) on page 24) and Castle study
identifies and quantifies many more RNAs than the other studies as it uses a whole RNA protocol while the
others are using polyA-enrichment (see Chapter 2).

11 Studies comparing gene expression of a treated or diseased condition to control samples
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Figure 4.7. Overview for the comparison of the genes across the five studies
based on a ranked descriptor. The first step applies individually to each
of the studies within the combined dataset (i.e. here 𝒲1). It consists in
extracting a single value per gene (e.g. a statistic or any other quantitative
descriptor) either for the entire dataset (referred thereafter as D-approach)
or for each tissue in each dataset (referred as T-approach). The next steps
include computing (cumulatively) the intersection size number for each rank
and plotting this number divided by the rank as a function of the number of
considered genes (i.e. rank).

Expression Atlas [Petryszak, Keays, et al., 2015] relies on this method to select the most
specific genes for baseline studies¹² (see Figure C.22). There are also a few variations on
how to compute this ratio; see Zhu et al. (2016) and Uhlén, Fagerberg, et al. (2015).

In this thesis, I compute the FC ratio by dividing the expression of each gene in a given
tissue by the average expression of this gene across all the other tissues of that study in
the combined dataset.

ℱ𝒞𝑔,𝑡,𝑑 = 𝑥𝑔,𝑡,𝑑
1
𝑛

𝑛
∑
𝑖=1

𝑥𝑔,𝑖,𝑑

(Fold change (FC) ratio)

where:
• 𝑥 is the expression value of the gene 𝑔 in the tissue 𝑡 in a study 𝑑
• 𝑛 is the number of tissues 𝑡

12 In contrast to differential gene studies, the baseline studies focus on depicting the expression landscape of
each covered condition instead of focusing on the gene expression through these conditions.
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Studies usually pick arbitrary cut-offs to characterise the specific genes. Uhlén,
Fagerberg, et al. (2015) uses two-fold and five-fold cut-offs to determine enriched and
enhanced tissue genes. Zhu et al. (2016) set their cut-off at 2 to characterise TS
protein-coding and noncoding transcripts. However, I avoid arbitrary cut-offs, and I use
the FC ratio to rank the protein-coding genes of my combined datasets according to their
specificity within each tissue: higher FC ratios indicate genes with higher specificity. I
then assess the consistency of the tissue specificity of the genes through the various
studies. For that, I have followed the T-approach overviewed in Figure 4.7.

Figure 4.8. Intersection size curve of𝒲1 genes based on their specificity (FC ratio
rank) in each tissue across the five studies. When ranked by specificity
in Heart, Kidney and Liver, one fortieth of 𝒲1 protein-coding genes are
commonly shared between the five studies. For Testis, the shared amount
of genes reaches more than one-tenth of 𝒲1 whole set of genes. Compared
to the most variable genes (Figure C.19), the most specific genes seem to be
more consistent across the studies.

Figure 4.8 presents the shifts in the intersection size curves of the four tissues of 𝒲1. The
most specific genes in each tissue of 𝒲1 are shared between the five studies. Indeed,
the slopes are very sharp before reaching a peak and dropping as sharply for the first
fortieth genes in Heart, Kidney and Liver. The intersection of the most specific genes is
even greater for Testis as it concerns more than a tenth of 𝒲1 genes. Figure 4.9 shows that
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this observation holds true for 𝒲2 when the number of tissues and genes is increased.

Figure 4.9. Intersection size curve of𝒲2 genes based on their specificity (FC ratio
rank) in each of the twenty-three tissues across the two studies.

4.3.1.3 Hampel’s test: detection of atypical expression

The last method I used to characterise the TS genes is the Hampel’s test. This test is a
robust method for detecting outliers [Davies et al., 1993; Pearson, 2002] in data that are
identically and independently distributed (i.i.d.) [H. Liu, Shah, et al., 2004], while easy to
implement and use [Linsinger et al., 1998]. Much interlaboratory or interstudy research in
the literature e.g. Linsinger et al. (1998), Lewczuk et al. (2006), Rocke (1983), and Apfalter
et al. (1999) use the Hampel’s test to detect outliers. The method uses the median and the
MAD¹³ to estimate the location and the spread, and a cut-off to define the observations
that stand apart.

For this thesis, I have derived this test to identify conditions (i.e. tissues) where the gene
expression is atypical. I rely on the two facts that most genes are expressed everywhere
[Ramsköld et al., 2009; Uhlén, Fagerberg, et al., 2015; Melé et al., 2015] (see also Figure C.2),
and they mostly present a limited variation in their expression through the various tissues
(see Figures 4.11 and 4.12). There is a tissue specificity for a genewhen its expression to this
tissue is atypical, i.e. the expression in this tissue is an outlier to the average expression
profile across the other tissues. Besides, this test allows detecting genes that are over-
or under-expressed in specific tissues, whereas the other methods are only detecting the

13 MAD: median absolute deviation
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Figure 4.10. Expression of the genes picked consistently with the Hampel
method in each study solely in one tissue.

overexpressed genes.

After implementing themethod (see Algorithm 1, p. 224) with a (widespread) adimensional
cut-off of 5.2, I have applied it to 𝒲2 and the whole original datasets. 𝒲1 comprises too
few tissues to allow detecting atypical expression. Overall, there are always more than
60% of congruence between the genes tagged as atypical in a specific tissue for 𝒲2 and
the whole dataset. The proportion of agreement between the partial and whole datasets
increases when I filter the results to keep only the genes that are recurrently picked for
both Uhlén et al. and GTEx data.

Figure 4.10 regroups the genes that the Hampel test detects as outliers for the five studies
for their four shared tissues. All corresponding-tissue TREPs present similar patterns of
expression regardless of their original study, although the Castle TREPs have overall lower
expression values than the others. Other filters may improve the results.

Overall, the TS genes, identified separately in each dataset and with several methods, are
showing a cleaner biological interstudy signal over possible technical intrastudy noise and
are contributing to the high interstudy tissue correlations presented above.
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4.3.2 Uhlén categories

Uhlén laboratory publications [Fagerberg et al., 2014; Uhlén, Fagerberg, et al., 2015;
Uhlén, Hallström, et al., 2016] use different categories of genes to describe the normal
human transcriptome. As their classification changes between these related papers, I
have redefined a classification based on them (presented in Table 4.1) before applying it
to 𝒲1 and 𝒲2 (Table 4.2).

The following classification considers the breadth¹⁴, the level and the specificity of the
gene expression.

Table 4.1. Gene classification
adaptation of Uhlén et al. classification [Fagerberg et al., 2014; Uhlén, Fagerberg, et al., 2015;
Uhlén, Hallström, et al., 2016]

Category Definition

Not detected Never detected above 0 FPKM
Not expressed Never detected above 1 FPKM
Mixed high Expressed in a subset of tissues and always ≥ 10 FPKM
Mixed Low Expressed in a subset of tissues and always < 10 FPKM
Ubiquitous High Expressed in all the tissues and always ≥ 10 FPKM
Ubiquitous Low Expressed in all the tissues and always < 10 FPKM
Group enhanced Expressed in a subset of tissues with an expression ≥ 5 ∗ meanall the tissues
Tissue enhanced Expressed in a single tissue with an expression ≥ 5 ∗ meanall the tissues
Tissue enriched Expressed in a single tissue with an expression ≥ 5 ∗ Maxall the other tissues

Table 4.2 shows that for many of these categories, the number of shared protein-coding
genes is high between the different studies of the two combined datasets 𝒲1 and 𝒲2. It
supports the previous results that protein-coding genes present in general a similar gene
expression profile for a same set of tissues across studies.

4.3.3 Similar expression variability of the genes across studies

To further appraise the robustness of gene expression, I have studied more globally their
variability across studies.

There are several available estimators to describe the gene expression variability, e.g. the
standard deviation (sd) the variance (𝑠𝑑2) or the coefficient of variation ( 𝑠𝑑

𝑚𝑒𝑎𝑛 ). I only
report here the results based on the coefficients of variation. The coefficient of variation
(cv) allows assessing the dispersion of the gene expression values across the tissues within
each dataset. As it adjusts for the mean, it is a more straightforward estimator to interpret

14 The breadth of expression of a gene is the number of tissues (or cell lines) in which it is expressed.
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than the variance itself, in particular for interstudy comparisons.

As depicted in Figure 4.11 (and Figure 4.12 for 𝒲2), the distribution of gene expression
coefficients of variation presents a similar pattern across the five studies of 𝒲1.

The five datasets present two peaks. One at approximately 0.5 which characterises genes
that are quite invariant in their expression across the four tissues within each study.
Another subset of genes forms a peak for coefficients of variation equal to 2. This last
group of genes are the most variable ones in each dataset. There is an overlap of the most
variable genes between the five datasets (as shown in Figure C.19).

While Figure 4.4 has already established that expression profiles for each tissue are very
similar across the studies, Figure 4.12 highlights that most genes seem to share the same
intertissue expression profile variability as the distribution of the coefficients of variation
across Uhlén et al. and GTEx studies are very alike.

Uhlen Gtex

Castle Brawand IBM

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

0.0 0.5 1.0 1.5 2.0
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Figure 4.11. Distribution of the coefficients of variation (cv) across 𝒲1 (common
set of expressed protein-coding genes across the four common
tissues): {Heart, Kidney, Liver, Testis} across the five studies.
The coefficients of variation (cv) of the protein-coding genes (12,268) of the
four tissues present the same bimodal distribution profile across the five
studies.
These profiles present two peaks: at 0.5 and 2.
Genes with a cv less than or equal to 0.5 have a similar expression profile to
a left-truncated version of the complete gene set ones (due to the 1 FPKM
cut-off) as in Figure 3.1. On the other hand, the protein-coding genes with
a coefficient of variation equal to or greater than 1.5 have two kinds of
distinct profiles:

• The gene expression is low across the four tissues, and it is above the
cut-off of 1 FPKM only once (see Figure C.21); or

• The gene expression is specifically high for one single tissue relative to
the three others (See Figure C.18).
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Figure 4.12. Distribution of the coefficients of variation across 𝒲2. The bimodal
distribution is more unbalanced than in Figure 4.11. Indeed, as more tissues
are included for the calculation of the coefficients of variation, the second
peak is found around 5. This peak has a smaller amplitude than the peaks
at 2 in Figure 4.12. There are still many genes that have a coefficient
of variation around 2. However, the overall distribution of the higher
coefficients of variation is smoother than for 𝒲1. Hence, most genes
present a similar profile of expression through the various tissues.

More in-depth analyses confirmed that overall the genes present an equivalent coefficient
of variation from one study to another for the same tissue set. See Figures C.19 and C.20.

4.3.4 Curated sets

Together the results from the previous sections indicate that many genes categories (if not
all of them) have an equivalent (i.e. stable) expression profile across studies for the same
tissues.

Protein-coding genes that were characterised consistently as any of the aforementioned
categories across the five datasets of 𝒲1 or the two of 𝒲2 are provided digitally as
supplementary data. They can be found at http://www.barzine.net/~mitra/thesis.
The code required to produce these results can be found at
https://github.com/barzine/phd-analyses.

4.4 discussion

In this chapter, I have directly compared and integrated the human tissue transcriptome
from five RNA-Seq studies. The meta-analyses are based on the largest number of
undiseased human tissue studies to date. I have constructed two combined datasets of
protein-coding genes. The first one (𝒲1) comprises four tissues and 12,268 shared genes
extracted from five independent studies (Krupp et al., 2012; Brawand et al., 2011; Uhlén,
Fagerberg, et al., 2015; Melé et al., 2015 and IBM) and the second one (𝒲2) comprises
twenty-three tissues and 17,554 shared genes from two studies (Uhlén, Fagerberg, et al.,

109

http://www.barzine.net/~mitra/thesis
https://github.com/barzine/phd-analyses


integrating gene expression data from undiseased tissues across rna-seq studies

2015; Melé et al., 2015).

Clustering analyses (and Welch’s Two Sample t-test) of these two sets confirm that
RNA-Seq technical noise is lower than relevant biological signals present in the data.
Indeed, Sudmant et al., 2015; Danielsson et al., 2015; N. Y.-L. Yu et al., 2015 and Uhlén,
Hallström, et al., 2016 also observe that interstudy corresponding tissues pairs are more
related than intrastudy non-corresponding tissue ones (average correlation for
corresponding tissue-pairs 𝑟 = 0.75, 𝜌 = 0.88; average for non-corresponding
tissue-pairs 𝑟 = 0.20, 𝜌 = 0.75).

I have then shown that overall genes present similar interstudy expression variability
profiles for the same tissue set. I have considered different gene groups to examine their
coherence of expression profiles more closely.

Since there is no generally accepted definition of a TS gene (see Section 4.3.1), I have relied
on three different methods to study them, including extracting TS gene definitions from
an existent resource TiGER [X. Liu et al., 2008] that I have updated to the current human
genome build (GRCh38). Mining the experimental data with this updated list highlights
the need for caution when dealing with older resources. While the congruence of the three
methods is partial, the TS genes show distinct expression profiles across tissues that are
rather consistent through the different studies.

I have also explored the congruence of several other genes categories across the studies
following a classification inspired by Uhlén et al. publications [Fagerberg et al., 2014; Uhlén,
Fagerberg, et al., 2015; Uhlén, Hallström, et al., 2016]. These gene categories are based on
the level and breadth of expression (‘Not detected’, ‘Not expressed at 1 FPKM’, ‘Ubiquitous
low expression (< 10 FPKM)’, ‘Ubiquitous high expression (≥ 10 FPKM)’, ‘Mixed low
expression (when expressed, < 10 FPKM)’, ‘Mixed high expression (when expressed, ≥ 10
FPKM)’, ‘Group Enhanced’, ‘Tissue Enhanced’, and ‘Tissue Enriched’).

Finally, I have compiled all the genes showing a consistent pattern of expression through
the meta-analyses across the studies into curated sets.

Since I started this project, other research groups have published similar studies. However,
at the time of writing this thesis, all the other studies (including the aforementioned ones)
were still based on the human genome build GRCh37 (or hg19), while I am using the more
recent GRCh38 one. These studies either have different focus, aims, approaches or more
limited scopes. Below, I outline how my work expands or completes theirs.

• M. Uhlén, B. M. Hallström, et al. (2016). ‘Transcriptomics resources of human
tissues and organs’. Mol. Syst. Biol. 12 (4) This review presents the results of
N. Y.-L. Yu et al. (2015) and Danielsson et al. (2015) discussed in the following
points. It also compares data released by the GTEx consortium [Bahcall, 2015;
GTEx Consortium, 2015; Gibson, 2015] to its authors’ own dataset (Uhlén
data [Fagerberg et al., 2014; Uhlén, Fagerberg, et al., 2015]). As many findings from
other studies (that I discuss hereafter) are reviewed, the comparison of the two
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studies is limited to the examination of the proportion of genes in each category of
a simplified classification for nineteen tissues. We reach the same conclusions:
overall, there are significant overlaps across the datasets for each of the categories
they have considered in their study, i.e. ‘Expressed in all’, ‘Not detected’, ‘Tissue
enriched’, ‘Group enriched’, ‘Enhanced’ and ‘Mixed’.

• P. H. Sudmant et al. (2015). ‘Meta-analysis of RNA-seq expression data across species,
tissues and studies’. Genome Biol. 16, p. 287. The authors focus on interspecies,
intertissue and interstudy comparisons. The major issue of the study is its use
of TMM as a gene expression unit. TMM normalisation has the assumption that
genes have a stable expression across conditions while the different analyses I have
presented indicate that many protein-coding genes expression profiles show tissue
specificity while they have a stable expression across the studies. They also limit
their scope to very specific orthologs since they explore RNA-Seq expression data
across species, tissues and studies. They confirm that with RNA-Seq expression
profiling, the interstudy technical variation is generally lower than the intrastudy
biological one, i.e. interstudy homologous tissues of the same species are usually
closer in similarity than different tissues of the same species (or matched tissues
of different species) of the same study. They found that interstudy comparisons are
more variable for human than other species. They finally note that this kind of meta-
analysis is dependent on the choice of tissues to be studied.

• N. Y.-L. Yu et al. (2015). ‘Complementing tissue characterization by integrating
transcriptome profiling from the Human Protein Atlas and from the FANTOM5
consortium’. Nucleic Acids Res. 43 (14), pp. 6787–6798, integrate Uhlén et al.
data [Fagerberg et al., 2014] with CAGE peak expression data from the FANTOM5
consortium [FANTOM Consortium and the RIKEN PMI and CLST (DGT) et al.,
2014]. Overall, their analyses are very similar to the ones I have presented in this
chapter. We also reach similar conclusions as well:

– Overall gene expression is comparable through their two datasets.
– Tissue expression signatures are independent of the data set (and profiling

method).
– Global comparison of ubiquitously expressed and TS genes are comparable

across the two studies
– They compare the two datasets at gene levels because of the lack of accuracy

of the current RNA-Seq protocols and algorithms and focus on the protein-
coding genes as the level of agreement between the two studies is low (which
they attribute to the polyA-selected protocol of Uhlén et al. data).

Besides the choice of the original studies, the few differences are (1) the version of
the annotation (they use the previous human genome build (GRCh37)) and (2) they
apply more simplified classification for ubiquitous and TS genes. In addition, they
are also more lenient to assess the congruence (e.g. expressed in all tissues in one
dataset and 95% of the tissues in the other datasets is considered as concordant).
Strikingly, they also found a discrepancy with Salivary gland compared to the other
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tissues which I have noticed in this study¹⁵.
• F. Danielsson et al. (2015). ‘Assessing the consistency of public human tissue

RNA-seq data sets’. Briefings Bioinf. 16 (6), pp. 941–949, covers three different
tissues (Brain¹⁶, Heart, Kidney) extracted from five projects (E. T. Wang et al., 2008;
Brawand et al., 2011; Uhlén, Fagerberg, et al., 2015; Krupp et al., 2012 and IBM).
Their study is limited to the comparison of precomputed data (from the original
laboratories) versus uniformly reprocessed data (by themselves). They are
exploring experimental variation factors and possible correction strategies. They
reveal that original precomputed data have considerable study-specific biases.
Their results on interstudy tissue similarities are superficial. One of their most
‘fine-grained’ results is the very low number of shared genes amongst the hundred
most expressed genes for the three tissues across their five datasets.

• A. Santos et al. (2015). ‘Comprehensive comparison of large-scale tissue expression
datasets’. PeerJ 3, e1054, focuses on the congruence of gene—tissue association
through different types of expression data (transcriptome and proteome) and
resources. They report that most genes are either expressed in every considered
tissue or in small subsets in their constructed working dataset. They also find that
tissue specificity trends are globally similar, even though there are many
differences in the identified genes set across studies. They have integrated together
five tissues (Heart, Kidney, Liver, Nervous system and Small intestine) from five
transcriptome datasets that they use ‘as-is’¹⁷, before refining a complementary set
that comprises only the three highest-quality datasets: UniGene
database¹⁸ [Wheeler et al., 2003; Pontius, Joan U. and Wagner, Lukas and Schuler,
Gregory D., 2002], Uhlén et al. data (HPA RNA-Seq) [Fagerberg et al., 2014; Uhlén,
Fagerberg, et al., 2015] and Castle et al. (RNA-Seq atlas) [Krupp et al., 2012] for
which they provide association data for 14,722 genes. They forsake the direct
quantitative exploration and comparison of gene expression between the studies,
but examine the tissue association enrichment through the gene expression fold
change (FC) for a qualitative cross-study. The main issue with their transcriptomic
study is their assumption that higher expression¹⁹ means more robust gene—tissue
association which may often (but wrongly) be translated to a greater
tissue-specificity.

• Q. Wang et al. (2017). ‘Enabling cross-study analysis of RNA-Sequencing data’.
bioRxiv (110734), have used subsets of GTEx and the cancer genome atlas (TCGA)
raw data that they have quantified mRNAs at transcript levels with GRCh37 (hg19).
They have corrected for the study effect with ComBat [W. E. Johnson et al., 2007] and
have released the normalised data to the community. Note that EBI Gene Expression
Atlas provides more recent versions of the GTEx and TCGA (as a part of the pan-

15 Salivary gland is the only tissue for which Uhlén and GTEx show a Pearson correlation coefficient 𝑟 < 0.65.
16 Either Cerebral cortex or Hypothalamus
17 Even in the follow-up paper, where they reprocess all the RNA-Seq data formouse, rat, pig, Palasca et al. (2018)

do not mention any improvement for the human RNA-Seq data (either in the results or methods and data).
18 UniGene database — https://www.ncbi.nlm.nih.gov/unigene
19 FPKM values are directly used as score for true presence and selectivity to a tissue
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4.4 discussion

cancer analysis of whole genomes (PCAWG) project²⁰) data.
• SEQC/MAQC-III Consortium (2014). ‘A comprehensive assessment of RNA-seq

accuracy, reproducibility and information content by the Sequencing Quality
Control Consortium’. Nat. Biotechnol. 32 (9), pp. 903–914, have found that relative
expression measurements by RNA-Seq are accurate and reproducible across sites.
The authors also showed that the overlap of identified and characterised genes is
imperfect (91%) even when the design includes the same two well-characterised
reference RNA samples across all sites. Also, this specific design prevents inferring
how the biological signal may compare to the individual variations and the
possible noise introduced by collection, storage and extraction protocols.

• Several papers (Khang et al., 2015; Peixoto et al., 2015; Rau et al., 2014) explore the
reliability of RNA-Seq in the context of DGEA which is outside the scope of this
thesis.

• Zhuo et al., 2016 explore the stable expressed genes across multiple (24) RNA-Seq
studies for Arabidopsis which is why I will not discuss it further.

In summary, while the expression levels are hard to translate directly from one study to
another [N. Y.-L. Yu et al., 2015; Santos et al., 2015], many facts have been highlighted in
this thesis with a subset of them confirmed by the studies mentioned before:

• Tissues are clustering preferably with corresponding (or closely biologically related)
tissues even across studies rather than clustering with different tissues from the
same study (i.e. biological signal >>> technical noise due to RNA-Seq protocols).

• More recent transcriptome studies are more congruent than previous ones.
• Testis presents the highest number of TS protein-coding genes (see Figure C.1). It

also presents the most variety of expressed protein-coding genes (≥ 1 FPKM) Castle,
Brawand, IBM and Uhlén studies. This extends to GTEx study if all detected genes
(i.e. above 0 FPKM) are considered.

• Liver has the most robust TS protein-coding genes. It may be explained either by
a robuster gene expression, its greater homogeneity than most tissues, or a greater
knowledge and better annotation than the other tissues.

• Most genes are ubiquitously expressed while a small proportion are expressed in a
very limited set of tissues.

• Well-differentiated tissues have specific expression profiles that allow using
processed data ‘as-is’ for rough comparisons such as sample swap checks or quality
controls, e.g. Salivary gland in Uhlén et al. data which presents low correlation with
GTEx data (see Figure 4.5, p. 98) and with FANTOM5 data [N. Y.-L. Yu et al., 2015].

• Annotations have an essential effect on the final results. Thus, whenever possible,
we ought to keep the resources up-to-date.

20 PCAWG project analyses conjointly all available kind of research data related to cancer
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integrating gene expression data from undiseased tissues across rna-seq studies

Unsurprisingly, updating the human genome version from GRCh37 to GRCh38 for the
reconstruction step²¹ enhances the results significantly.

Besides, as my analyses were incorporatingmore studies, the results were supportingmore
similarity in the gene expression levels across the tissues and studies. Indeed, as I focus
my analyses on the common set of genes across the studies, I remove the most interstudy
variant genes (i.e. that are probably more sensitive to technical factors), and I bias the
analyses towards the genes for which RNA-Seq is more robust to quantify their expression
profiles. Hence, it may be interesting to relax the filters by including genes that are found
in any two or more datasets as a follow-up study.

4.5 conclusion

The meta-analyses show that RNA-Seq captures a strong biological signal for tissue gene
expression despite any noise created by batch effect or technical variations.

Tissues reference expression profiles (TREPs) are well correlated across independent
studies and are the sum of the overall genes contributions.

While highest expressed genes fail to show significant correlation between the different
studies, the analyses show that most gene expression profiles are comparable from one
study to another. The gene centred heatmap (Figure 4.13) available now in EBI Gene
Expression Atlas²² [Petryszak, Keays, et al., 2015] and its corresponding widget are a
direct translation of this observation.

To assist further research, I provide extensive curated and consolidated gene sets for the
different categories reviewed in the above analyses, i.e. for the TS genes, and the categories
derived from Uhlén publications: ‘Not detected’, ‘Not expressed at 1 FPKM’, ‘Ubiquitous
low expression (< 10 FPKM)’, ‘Ubiquitous high expression (≥ 10 FPKM)’, ‘Mixed low
expression (when expressed, < 10 FPKM)’, ‘Mixed high expression (when expressed, ≥ 10
FPKM)’, ‘Group Enhanced’, ‘Tissue Enhanced’, and ‘Tissue Enriched’.

There is a need for more multi-tissue studies with biological replicates to refine and
complete the above findings for other tissues and extend them to the transcript isoform
level.

New strategies, notably normalisation methods, have to be also developed to allow the
easy reuse of uniformly processed and quantified data by the community. Ideally, the
final aim should be to provide a general human transcriptome build as it already exists
for the genome. Finally, as long as the annotations are redefined and refined,
it also means that periodic resources reprocessing may be inevitable.

21 See Section 1.2.5.2: Reconstruction strategies
22 EBI Gene Expression Atlas — https://www.ebi.ac.uk/gxa/
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I was taught that the way of progress is neither swift nor easy.

Marie Curie

5 HUMAN MS -BASED PROTE IN
EXPRESS ION LANDSCAPE

After exploring the high-throughput human transcriptomic studies in Chapter 4 and before
integrating themwith proteomic data in Chapter 6, I present in this chapter the comparison
of the three proteomic datasets introduced in Chapter 2. Ezkurdia et al. (2014) and Deutsch
et al. (2015) have partially reviewed these data. However, we have reprocessed them
starting from the raw data for this thesis. In this context, reassessing the quantified
processed proteomic data before any integration is pertinent.

The work presented in this chapter was done in collaboration with Dr James Wright
who has implemented the new protein quantification method (presented in Section 5.2).
I have received general feedback from Dr Alvis Brazma, Dr Mar Gonzàlez-Porta, Dr Sarah
Teichmann.

5.1 an overall fragmented and disparate universe to explore

As I have described in Chapter 1, proteins present a wide range of physicochemical
properties (see Section 1.1 and Appendix A.1) and are challenging to identify and
quantify in high-throughput studies (see Section 1.3). Thus, it comes as no real surprise
that while the use of MS for proteomics has been developing since the
1980s [Papachristodoulou et al., 2014], the first notable attempts to draft the human
proteome occurred only recently in 2014 [M.-S. Kim et al., 2014; Wilhelm et al., 2014], or
that the oldest (unpublished) available multi-tissue Cutler dataset is from 2010 (see
Section 2.3.3). Till early 2019, Cutler Lab, Kuster Lab and Pandey Lab datasets are the
only ones that explore concurrently several non-diseased human tissues. See Section 2.3
for more details and the processing pipeline designed and implemented by Dr James
Wright to handle them.

As presented in Figure 5.1, they share four tissues: Heart, Lung, Ovary and Pancreas. The
protein overlap of this four-tissues set between these three datasets is rather narrow as
shown in Figure 5.2. The Cutler Lab dataset shares the smallest number of tissues with the
two other studies; Pandey Lab and Kuster Lab datasets share over twice as many proteins
that they sharewith Cutler (3,338 instead of 1,384). The number of shared proteins between
Pandey Lab and Kuster Lab data rise to 4,172 when all their fourteen common tissues are
considered.
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human ms-based protein expression landscape

5 221 4 10

15Cutler Kuster

Pandey

Figure 5.1. Distribution of unique and shared tissues between the threeMS-based
proteomic studies. The three datasets share together: Heart, Lung, Ovary
and Pancreas. The two most recent studies share fourteen tissues in total;
the additional ten tissues are: Adrenal gland, Colon, Gallbladder, Oesophagus,
Kidney, Liver, Placenta, Prostate, Rectum and Testis.

286
76

373

444
1384

1510

1685

Cutler Kuster

Pandey
Figure 5.2. Proteins overlap between the common four tissues of the three

proteomic studies. Unique and shared proteins detected and quantified
across the three MS studies for their four shared tissues: Heart, Lung, Ovary
and Pancreas.

5.1.1 MS proteomic data has high detection variability

Figure 5.3 illustrates the number of proteins identified in each of these four tissues. The
colours indicate in which dataset (or group of datasets) the proteins have been identified.
See Figure D.1 for the precise numbers of each set.

The tissue with the highest number of identified proteins, regardless of which dataset, is
the Ovary.

The highest number of proteins identified in all three datasets at once (600) is in the Heart.
The other tissues have the Kuster and Pandey set as their largest protein group formed by
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Heart

Lung

Ovary

Pancreas

0 1000 2000 3000 4000
Protein count

T
is

su
e

Present in All 3 datasets
Kuster & Pandey

Cutler & Pandey
Cutler & Kuster

Pandey only
Kuster only

Cutler only

Figure 5.3. Number of identified proteins in each of the four common tissues
for the three proteomic data. Proteins found in more than one dataset
are most likely true (in red, light and darker green or purple — the most
validated ones in red as they are found in all three datasets). See Figure D.1
for the precise numbers in each set.

more than one dataset.

The largest set of identified proteins in Pancreas and the second one in Ovary are proteins
only found in the Pandey Lab dataset (Pandey only). As shown in Figure 5.4, our state-
of-the-art pipeline (see Section 2.4.2) has identified the highest number of proteins in the
Pandey Lab dataset. Thus, it is coherent that Pandey Lab proteins represent a large part of
the identified proteins in each tissue (either as Pandey only set or in agreement with the
other datasets: All 3 datasets, Kuster & Pandey or Cutler & Pandey). More surprising is that
the Cutler dataset comprises a notable amount of proteins in Lung that are missing in the
other two. A few of these proteins (82) are missing altogether, but a subset of them (410)
is still found in (at least) another tissue of the other datasets.

While proteins found in more than one dataset are more likely true positives, it is
impossible to exclude without risks the ones that are identified in one dataset only.
Whether an identified protein in one dataset is an artefact (i.e. false positive) or a miss
(false negative) in the other datasets is a challenging question; the diversified nature of
proteins involves many sample preparation and simplification methods (see
Sections 1.3.1 and 1.3.2).

5.1.2 Overall about half of the proteins identified in each study for any given
tissue are validated in a different study.

As shown in Figures 5.3, D.1 and D.3, besides a few exceptions (Oesophagus, Gallbladder
and Testis), more than half of the proteins are identified in the same tissue in more than one
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Figure 5.4. Distribution of the proteins per tissue across the three datasets. Cutler
Lab dataset has the smallest and Pandey Lab the highest number of proteins
per tissue. Coloured in red are the proteins that are specific to one tissue
(or cell type); these proteins have been identified in one tissue solely within
each dataset. Proteins in turquoise have been identified in several tissues of
the dataset.
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5.1 an overall fragmented and disparate universe to explore

dataset. Three proteins are found in every tissue of every dataset: ALB, KRT9, KRT10. This
number rises to forty when only the Pandey Lab and the Kuster Lab data are considered
(see Table D.2). I have also investigated tissue-specific (TS) proteins (in red in Figure 5.4)
that are also identified inmore than one dataset. While the three datasets lacked to identify
any TS protein at once, Pandey Lab and Kuster Lab datasets share a few (44 across eight
tissues) — see Table D.3 for the complete list.

TS proteins are more difficult to confirm through different datasets, but one needs to be
careful with the ubiquitous proteins as well. The latter may be present in the samples
due to contamination: none of the three ubiquitous proteins (ALB, KRT9 and KRT10) is
detected in Heart by the Human Protein Atlas¹ [Uhlén, Fagerberg, et al., 2015] while they
are found in epithelial cells. One hypothesis is that contamination occurredwhen sampling
from the donor or during the preparation or MS analysis. ALB found in the tissues is
more likely coming from the blood supply (where ALB is abundant); KRT9 and KRT10 are
environmental contaminants.

Lists for ubiquitous and TS proteins of each dataset separately and across the three (when
consistent) are given as digital supporting data.

5.1.3 Technical variability prevails over biological signal: intrastudy
correlations of different tissues are globally stronger than same-tissue
interstudy correlations.

After defining the (1,384) protein set that is consistently detected in the four common
tissues of the three datasets, I have assessed how consistent is their expression
quantification across tissues and studies.

Following a similar approach to Figure 4.3 (p. 96), I cluster the twelve proteomic TREPs².
I have used Ward’s method to link the TREPs based on their similarity that I have
computed by subtracting from 1 the pairwise Spearman correlation of the expression
levels of the 1,384 common proteins. As shown in Figure 5.5, the technical variability
overcomes the biological signal as the proteomic TREPs cluster according to their
original laboratory/study rather than their biological source, except for Cutler Lab and
Pandey Lab Heart. However, Cutler Lab and Pandey Lab share the same organisation of
their remaining tissues: Pancreas and Lung are the most correlated, and their pair is in
turn most correlated to Ovary. Kuster Lab TREPs display the greatest amount of study
bias (probably due to stronger batch effects — see Section 1.5.1).

Removing the proteins translated from the mitochondrial genes slightly improves the
results but excluding the three ubiquitous (likely contaminants) proteins, presented in
Section 5.1.2, is impactless.

1 Human Protein Atlas — https://www.proteinatlas.org/
2 Tissue reference expression profile. See Section 3.3.4 on page 87 for more details on TREPs.
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Figure 5.5. Heatmap of the four common tissues between the three proteome
datasets based on the pairwise Spearman correlations clustering of the
expression levels of 1,384 shared proteins. The samples mostly cluster by
laboratory. Only Heart from Cutler Lab and Pandey Lab have a stronger
intratissue correlation than an intrastudy one. Both for Pandey Lab and
Cutler Lab, Pancreas and Lung are more correlated to each other and their
pair toOvary. The heatmap (Figure D.4) based on Pearson correlation instead
prompts globally identical observations. See also Figure D.5 that shows (as
a scatterplot) the relationship for Heart between Pandey Lab and Cutler Lab,
and then, Figure D.9 between Pandey Lab and Kuster Lab.

122



5.2 new quantification method

Neither applying quantile normalisation or widespread scaling methods on top of this
quantification allowed correcting for the technical variability.

Because of the limited number of proteins included in this analysis, it is unwise to draw
definite conclusions except that there is an extensive need for new quantification
normalisation methods that can help with protein expression meta-analyses and, as for
now, one has to be very cautious when comparing proteome samples.

I attempted to expand this analysis by comparing the fourteen common tissues of Pandey
Lab and Kuster Lab datasets, but the results are as inconclusive (see Figures D.7 and D.8).

5.2 new quantification method

In this thesis context where I aim to integrate the mRNA expression levels to the protein
ones (presented in Chapter 6), I have developed with the help of Dr James Wright a new
method to infer and quantify the proteins.

Our original processing workflow (detailed in Section 2.4.2) intends to provide a reliable,
state-of-the-art, protein quantification. Our method seems more rigorous than M.-S. Kim
et al. (2014) original paper; Ezkurdia et al. (2014) challenge the correctness of their
quantification by highlighting the disputable presence of olfactory receptors (ORs) in
many tissues. On the other hand, our workflow lacks to detect or quantify any possible
OR in the Pandey Lab data. The left part of Figure 5.6 summarises our first method of
quantification.

While probably more accurate, our state-of-the-art quantification method is also more
stringent than the original authors’ one. Thus, the total number of quantified proteins is
more limited.

As presented in Chapter 1, protein quantification methods rely on PSMs identification (see
Section 1.3.4.2) and a chosen approach for protein inference (see Section 1.3.4.3). I realised
that our main limiting factor is that we get quantification only for proteins that have at
least three unique peptides since this first method is based on the Top3 approach [Silva
et al., 2006] and uses the three unique³ most expressed peptides of a protein to estimate its
overall expression (see Equation (Top3 IBAQ) on p. 123 and Section 1.3.4.4).

̂𝜇𝑖𝑗 =
∑ Intensity of Top 3 unique peptides𝑖𝑗

Total Intensity in experiment 𝑗 (Top3 IBAQ)

where:
• ̂𝜇𝑖𝑗 is the normalised expression for the protein 𝑖 in experiment 𝑗 (normalised PSM),
• ∑ Intensity of Top 3 unique peptides𝑖𝑗 is the sum of the intensity of the three most intense

unique peptides of the protein 𝑖,
• Total Intensity in experiment 𝑗 is the total sum of the intensity of all the peptides identified

in the experiment 𝑗.

3 I.e. exclusive to a single protein
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56 Million raw MS spectra

Search pipeline
(see Figure 2.3 – Chapter 2)

48 Million PSMs assigned

Filtering 
(High confidence : 0.001% FDR)

Filtering 
(1 % FDR)

7.2 Million PSMs 

200,771 peptides 

17.5 Million PSMs 

3.3 Million peptides 

Mapping to 
Ensembl Protein Coding genes 

(≥ 3 unique peptides) 

Mapping to 
Ensembl Protein Coding genes 

(> 1 unique peptide) 

Top3 quantification & 
Normalisation per experiment

PPKM quantification & 
Normalisation per experiment

First quantification method New quantification method

Average quantification per tissue Average quantification per tissue

12,290 proteins (no cluster)6,436 proteins (no cluster)

Figure 5.6. Two quantification methods applied to Pandey Lab data. For both
approaches, the search pipeline assigning PSMs remains identical (see
Section 2.4.2). The first quantification method, which follows a robust
inference method involving at least three unique peptides, relies on the
intensity of the three most intense unique peptides. The new quantification
method that I have devised allows more relaxed inference parameters
as it also uses the non-unique peptides for the quantification. See
Equation (PPKMdefinition), which is similar to Equation (Canonical F/RPKM
formula) on page 24. After averaging per tissue and removing the clusters,
the number of quantified proteins with the new method is close to twice
the number provided by the first described method. The new quantification
method was designed for the analyses in Chapter 6 in particular; this is why
the filtering is also less strict than for the first quantificationmethod sincemy
main focus is the integration of the proteomic data with the RNA-Seq data.
Clusters are protein groups that can be mapped to more than one Ensembl
gene identifier. Note that the final proteins numbers include only the fifteen
tissues used for the integration in the following Chapter 6.

124



5.2 new quantification method

For the following chapter analyses, I requested Dr James Wright to provide me a new
quantification for the Pandey Lab data where both unique and the degenerate (i.e. non-
unique) peptides are involved in the estimation of the protein expression.

The new method I have devised allocates the degenerate peptides in proportion to the
distribution of unique peptides per protein following a similar approach to Cufflinks2 for
RNA-Seq data (see Section 1.2.5.3). As three unique peptides are no longer required for the
quantification, it allows relaxing the inference parameters to two unique peptides (in order
to still avoid one-hit wonders, see Section 1.3.4.3) for the identification of the proteins.

Once the identification is done, all the unique and degenerate peptides are mapped to the
identified proteins. For the unique peptides, their quantification is directly linked to one
and only protein. However, for the degenerate peptides, it is necessary to gauge the likely
amount provided by each of their matching proteins.

For this purpose, the distribution coefficient of the degenerate peptide 𝑑 to the protein 𝑝,
𝐶𝑑,𝑝, is defined as below:

𝐶𝑑,𝑝 =

𝑁𝑢𝑝
∑
𝑖=1

Number of PSM(𝑢𝑝,𝑖)
𝑁𝑢𝑝

∑
𝑞∈𝑃𝑑

(

𝑁𝑢𝑞
∑

𝑗=1
Number of PSM(𝑢𝑞,𝑗)

𝑁𝑢𝑞
)

(Distrib. coeff. of the degenerate peptide)

where:
• 𝑃𝑑 is the set of identified proteins that include the degenerate peptide 𝑑
• 𝑁𝑢𝑝 is the number of unique peptides of the protein 𝑝, ∀𝑝 ∈ 𝑃𝑑
• 𝑢𝑝,𝑖 is the 𝑖th unique peptide of the protein 𝑝, ∀𝑝 ∈ 𝑃𝑑
• Number of PSM(𝑢) is the number of PSMs of the peptide 𝑢

Then, the contribution of the degenerate peptide 𝑑 to the quantification of a protein 𝑝 is
computed as:

Q𝑑,𝑝 = 𝐶𝑑,𝑝 ⋅ Q𝑑 (Distribution of the degenerate peptide quantification to a protein)

where:
• 𝐶𝑑,𝑝 is the distribution coefficient defined above
• Q𝑑 is the total quantification of the degenerate peptide 𝑑

The new quantification follows a similar approach to the F/RPKM normalisation — see
Equation (Canonical F/RPKM formula). Protein expression levels are expressed in
PPKMs, which stands for PSMs Per Kilobase of gene per Million. As shown in
Equation (PPKM definition), this method counts the number of PSMs that can be mapped
to the corresponding Ensembl gene identifier of a protein. Then, this raw count is
normalised by dividing it by the product of the longest transcript length and the total
number of PSMs assigned in that experiment; the result is finally multiplied by a factor
(106) to facilitate reading. Using the longest transcript length instead of the longest
protein isomer allows avoiding issues due to annotation differences between gene and
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protein levels in the analyses of the following Chapter 6.

̂𝜇𝑖𝑗 = Number of PSMs matching 𝐺𝑖 ⋅ 10−6

ℓ𝐺𝑖 ⋅ Number of PSM𝑗
(PPKM definition)

where:
• ̂𝜇𝑖𝑗 is the normalised expression of the protein 𝑖 in the experiment 𝑗,
• 𝐺𝑖 is the gene that corresponds to the protein 𝑖,
• Number of PSMs matching 𝐺𝑖 is the number of PSMs mapped to 𝐺𝑖,
• ℓ𝐺𝑖

is the length of the longest transcript of 𝐺𝑖,
• Number of PSM𝑗 is the total number of PSMs identified in the experiment 𝑗.

Dr James Wright has implemented this new method and provided me PPKM
quantifications for the Pandey Lab and Kuster Lab data.

Although smaller, another limiting factor is the filtering threshold of the selected PSMs
to be inferred in proteins. We have chosen a conservative (and state-of-the-art) threshold
prior to the first quantification filtering and a less strict one for the new method. As my
aim is to compare and integrate proteomic and transcriptomic data together, the primary
purpose of the new quantification is to provide a number of proteins that is roughly similar
to the number of mRNAs species’. Thus, we also have had to relax parameters and allow
an increased number of false positives among the identified proteins (see Section 1.3.4.2).
I have included proteins quantified with both methods in the analyses of the next chapter
(Chapter 6).
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Figure 5.7. Distribution of the protein expression levels with two different
methods. On the left, the protein expression levels distribution for the adult
tissues of the Pandey Lab datawith our first quantificationmethod (described
in Section 2.4.2). This figure is similar to Figure 3.3(c) but without the fetal
tissues. On the right are the protein expression levels of the same tissues that
have been computed with the new quantification method. The overall shape
of the density plots is very similar between the two approaches.
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5.2 new quantification method

Before moving on to the integration of the proteomic and transcriptomic data in the next
chapter, I have carried out a few comparisons between the first and the new quantification
methods. As shown in Figure 5.7, the densities of distribution of protein expression levels
per tissues have similar shapes between the two methods.

Figure 5.8 presents the number of quantified proteins per tissue. The new method allows
quantifying for some tissues up to more than twice the number quantified by the first
method. This proportion is consistent with the total number of proteins identified across
the fifteen adult tissues by the first method (6,436) and the new one (12,290).
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Figure 5.8. Comparison of the impact of the quantification method on the
protein distribution per tissue for the Pandey Lab data. This figure
partly reproduces the Pandey Lab part of Figure 5.4. Indeed, the turquoise/red
𝑄1 bars are the adult tissues of the Pandey Lab data quantified with the first
quantification method (described in Figure 5.4). The purple/green 𝑄2 bars
are their equivalent to the new quantification method. The new method
allows a considerable increase of the identified and quantified proteins
number, sometimes more than twice as many as the first quantification.
On the other hand, the rank orders of the total and tissue-specific protein
numbers per tissue are quite similar between the two methods.

I have also checked the presence of OR in the Pandey Lab data with the new quantification
method; only two ORs are present: OR1M1 in Kidney and OR13C4 in Liver. Their presence
may be artefactual, or it may be an issue with the annotation. Indeed, while these two
proteins are missing from all tissues — either at RNA or protein levels — in The Human
Protein Atlas⁴ [Uhlén, Fagerberg, et al., 2015], their mRNAs are present in the Baseline
expression of EBI Gene Expression Atlas⁵ [Petryszak, Keays, et al., 2015] in the human

4 The Human Protein Atlas — https://www.proteinatlas.org/
5 EBI Gene Expression Atlas — https://www.ebi.ac.uk/gxa/
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Chloroid plexus at 10 post-conception weeks (HDBR developing brain — ArrayExpress
ID: E-MTAB-4840) and in one sheep Testis sample (ArrayExpress ID: E-MTAB-3838). In
addition, OR1M1 seems to be expressed in the Blood of the green monkey (Chlorocebus
sabaeus —ArrayExpress ID: E-MTAB-4404). Both proteins are also found to be up or down
regulated at transcript level in different tumoral samples (Differential expression tab of EBI
Gene Expression Atlas). See also the digital supporting data.

I have also assessed the consistency of expression measurements across Pandey Lab and
Kuster Lab data and their common tissues as I have done for the three datasets with the first
quantification (presented in Section 5.1.3). The new quantification gives similar results as
shown in Figure D.12. Besides, as shown in Figure D.13, more than half of the proteins
quantified in each dataset within a given tissue is also quantified in the other dataset.

5.3 ubiquitous and ts proteins

Previously, W. Liu et al. (2014) had compiled a list of 627 TS and 1,093 housekeeping
proteins from the expression data released originally by Pandey Lab [M.-S. Kim et al.,
2014]. The data processing has a significant impact on protein identification; in our first
version of Pandey Lab data, I have found 534 housekeeping (ubiquitous) proteins and 1,491
TS proteins, and for the PPKM quantification: 2,057 ubiquitous and 2,640 TS proteins. I
provide as digital supporting data the list of the TS and ubiquitous proteins.

5.4 discussion and conclusion

In this chapter, I have reviewed human proteome data from three projects presented in
Chapter 2, that have been reprocessed by Dr James Wright with two pipelines for the two
largest studies Pandey Lab data [M.-S. Kim et al., 2014] and Kuster Lab data [Wilhelm et al.,
2014]. Currently, state-of-art bottom-up label-free MS proteomics captures human tissues
expression as a fragmented and disparate universe. Our first processing pipeline, based on
the Top3 quantificationmethod presented in Section 2.4.2, appearsmore reliable than some
of the original authors’. The original Pandey Lab data was disputably quantifying ORs in
many tissues [Ezkurdia et al., 2014]. No trace of ORs was found in any of our reprocessed
data. I have also described our new quantification method (PPKM), which allows us to
estimate the expression of nearly twice as many proteins than the first one we used.

For both quantification methods, the technical variability is generally stronger than the
biological interstudy signal even for similar tissues. Besides, across the different tissues,
about half of the proteins are consistently observed in the same tissues at least in two
datasets.

Even when limited to the protein identification only, the general lack of repeatability and
reproducibility has been well reported and described for technical and biological
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5.4 discussion and conclusion

replicates in MS proteomics (e.g. Tu, J. Li, Sheng, et al. (2014) and Tabb, Vega-Montoto,
et al. (2010)). Canterbury et al. (2014) report that the intra-assay variation between two
technical replicates for complex mixtures can be at least 50%; different runs of the same
sample or experiment are often produced to raise the interstudy results repeatability and
confidence.

Thus, beyond the quantification method I have developed with the help of Dr James
Wright by drawing on RNA-Seq ones, there is a definite need for new MS protocols and
quantification methods for baseline expression⁶ to correct the extreme variability and
ease the integration of proteomics data across studies.

6 Normalisationmethods for differential expression analysis are usually unsuited for baseline expression studies.
See Välikangas et al. (2018b) for possible differential expression quantification methods.
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Scientists like ripping problems apart, collecting as much data as possible
and then assembling the parts back together to make a decision.

Shirley M. Tilghman

6 I N TEGRAT ION OF TRANSCR I PTOMIC
WI TH PROTEOMIC DATA

After assessing the similarity of the human gene expression profiles across various tissues
at transcriptomic level (with RNA-Seq studies in Chapter 4) and proteomic level (with
bottom-up MS studies in Chapter 5), my next step is to examine how these gene expression
profiles compare between these two different biological layers.

One major aim of this study is to assess how the correlations between the transcriptome
and proteome described in the literature, mostly measured in cells, hold at the tissue level.
Moreover, good correlations may potentially lead to the development of new strategies.
These may use the expression levels of mRNA as proxies to estimate protein expression,
which is generally difficult to measure directly (see Section 1.3).

I have performed the integration and all the analyses presented in this chapter under the
supervision of Dr Alvis Brazma and Dr Jyoti Choudhary.

A few closely related studies [Kosti et al., 2016; Franks et al., 2017; D. Wang et al., 2019]
have been published while I was working on the integration of the non-diseased human
transcriptome and proteome. As their analyses rely on the same data sets (i.e.Uhlén, GTEx,
Pandey Lab data) that I include in my work, I describe and discuss together my results and
theirs whenever relevant.
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Communication to the community derived from this chapter

• (paper) Mitra P. Barzine, Kārlis Freivalds, James Wright et al. (2020). ‘Using Deep
Learning to Extrapolate Protein Expression Measurements’. Proteomics 20 (21–22),
e2000009

• (submitted paper) Andrew F. Jarnuczak; Hanna Najgebauer; Mitra Barzine; Deepti
J. Kundu; Fatemeh Ghavidel; Yasset Perez-Riverol; Irene Papatheodorou; Alvis
Brazma; Juan Antonio Vizcaíno An integrated landscape of protein expression in
human cancer

• (poster) CSHL Biology of Genomes 2015 — A feasibility study: Integration of
independent human RNA-Seq and proteomic datasets

• (talk) GTEx meeting 2017 — A. Brazma Correlating transcriptome and proteome in
human tissues

• (poster) HUPO 2018 — Jarnuczak et al. An integrated atlas of protein expression in
human cancer derived from publicly available

• (poster) ECCB 2018 — Viksna et al. An integrated approach to missing data
imputation in quantitative proteomics experiments

• (poster) RECOMB 2018 — Viksna et al. Deep learning for protein abundance
prediction using Gene Ontology and RNA abundance information
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integration of transcriptomic with proteomic data

An on-going debate in the literature is whether good correlations of expression levels
prevail between mRNAs and proteins [Uhlén, Hallström, et al., 2016]. The implicit
assumption of a proportional relationship is persisting as the many remaining
technological limitations prevent rigorous testing [Vogel and Marcotte, 2012]. To date,
the existence or concentration of a given mRNA transcript is usually insufficient to
ensure detection of the protein in a sample.

On the one hand, Ramakrishnan et al. (2009) report that mRNAs abundance are roughly
sufficient to predict the protein presence or absence from a sample and Vogel, Abreu, et al.
(2010) that mRNA level estimations and sequence features are enough to predict two-thirds
of the human protein abundance variation.

On the other hand, the literature fails to report any high correlation between the
transcriptome and the proteome for any organism. Previous investigations found low or
no correlation between the measured expression profiles of the mRNAs and proteins in
human [Anderson et al., 1997; G. Chen, Gharib, et al., 2002; Tian et al., 2004; Pascal et al.,
2008; Gry et al., 2009; Lundberg et al., 2010], other mammals [Ghazalpour et al., 2011],
and across many other species [Gygi, Rochon, et al., 1999; Maier, Güell, et al., 2009; Maier,
Schmidt, et al., 2011; Yeung, 2011; Palmblad et al., 2013; Freiberg et al., 2016].

In their encompassing reference experiment, Schwanhäusser et al. [Schwanhäusser et al.,
2011; Schwanhäusser et al., 2013] present rather moderate correlations (𝑟2 ≤ 0.41, i.e. 𝑟 <
0.64) and highlight that mRNA levels explain only about 40% of protein variations they
have observed.

Other studies have explored the mRNAs and proteins relationship in answer to
stimuli [Marguerat et al., 2012] or with an increased focus to post-transcriptional
regulations (including degradation rates) [Jovanovic et al., 2015]. While many other
regulatory processes may occur (e.g. translation rates), post-transcriptional modifications
and technical noise are (still) perceived as the probable primary sources of
mRNA/protein concentration discrepancies [Vogel and Marcotte, 2012; Plotkin, 2010].

Joint studies of transcriptome and proteome have already helped to highlight links
between genotype and phenotype [Vogel and Marcotte, 2012]. However, the mitigated
results reported above may explain the focus shift of many subsequent studies. While
previous efforts were about linking the actual expression levels, more recent studies
primarily have mostly compared qualitative attributes of given proteins and related
mRNAs. Examples include the comparison of the presence or absence of mRNAs and
their proteins in specific conditions or tissues [Santos et al., 2015; Freiberg et al., 2016;
Uhlén, Fagerberg, et al., 2015] or the comparison of their differential expression profiles
across identical sets of conditions [Väremo et al., 2015].

All (or almost all) aforementioned studies have turned to cells for their joint analyses of
transcriptome and proteome. In contrast, the analyses and integration I present in this
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chapter are based on tissue studies.

6.1 data and principal analytical approaches

Since the human proteome drafts [M.-S. Kim et al., 2014; Wilhelm et al., 2014] in 2014, we
have an unparalleled availability of large-scale tissue studies both at the transcriptomic
and proteomic layers to explore and integrate together (see Chapter 2). While these data
are independent (collected from various individuals, prepared, and characterised by
different laboratories), their combined study may help to shed light on the relationship
between the transcriptome and proteome at the tissue level. Using different sources for
the transcriptome and proteome increases the overall technical noise, but it may also
help to highlight relevant biological signals (as they need to be stronger than the noise
and batch effects to be captured).

In Chapter 4, I show that the transcriptome RNA-Seq datasets present high interstudy
tissue correlations (median value for Pearson: 𝑟𝒲1 = 0.75; 𝑟𝒲2 = 0.85 — Spearman:
𝜌𝒲1 = 0.88; 𝜌𝒲2 = 0.93). For this chapter analyses, I only consider the datasets with the
highest similarity (highest correlations) that incidentally comprise the greatest number of
tissues and are the two most recent studies, i.e. Uhlén et al. [Uhlén, Fagerberg, et al., 2015]
and GTEx [Melé et al., 2015] data.

To compensate for the shortfalls in the study design implied by the reuse of published data¹,
I use both Uhlén et al. and GTEx data to filter out mRNAs with high interstudy variability
for identical tissues. Whether this variability is technical or biological is irrelevant; in both
cases, interpreting the relationship between a highly variable mRNAs and its protein from
another dataset remains hard to interpret. For these mRNAs, it is impossible to explain
the observed variability between the two transcriptomic datasets. Indeed, any result is
subject to the transcriptomic dataset chosen for the comparison with the proteomic one.
Furthermore, the comparison of the two transcriptomic data may give a reference, i.e. an
ideal case scenario, for the proteomic/transcriptomic one.

On the other hand, as shown in Section 5.1.3, the technical variability prevails over the
biological signal of same-tissue samples for the available high-throughput proteomics.
With the current technological state, different tissues from the same proteomic study are
more likely to present a higher correlation than the same tissues from two different studies.

To avoid an overly restricted protein set for the following analyses, I only include one
proteomic study: Pandey Lab [M.-S. Kim et al., 2014]. All its samples have been run
through the same MS platform and with the same protocol. Moreover, it presents more
homogeneous protein distributions (see Figure 3.3 and Figure 5.7) and quantifies more
proteins per tissue (Figure 5.4) than the two other datasets. Since a currentmajor limitation
of bottom-up MS proteomic studies is the possible lack of detection of proteins for various

1 Independent data also means different collection and sampling processing methods and lack of information
on the samples population background.
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reasons (see Section 1.3.2), the higher number of detected proteins in Pandey Lab data
suggests that this dataset has a higher quality than the two others.

Though I include one proteomic dataset only, as the literature reports that the proteome
is more conserved than the transcriptome (across individuals and species) [Laurent et al.,
2010; Y. Liu et al., 2016], this data collection ought to provide a crude estimate of the extent
of observations that hold from cell to tissue level.

This chapter integrates and analyses the matching pairs of mRNA/proteins of the common
set of tissues between Pandey Lab and the two transcriptomic datasets.

6.1.1 Overlapping set of tissues for the three datasets
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Pandey Uhlen

GTEx

Protein

mRNA

mRNA

Figure 6.1. Number of shared and unique tissues between the proteomic (Pandey
Lab) and the transcriptomic (Uhlén et al. and GTEx) data.

All analyses include the twelve tissues shared between the three datasets (Adrenal gland,
Urinarybladder², Colon, Oesophagus, Heart, Kidney, Liver, Lung, Ovary, Pancreas, Prostate
and Testis).

In a few cases, I have also extended the analyses to three additional tissues (i.e. Gallbladder,
Placenta and Rectum) by including the Uhlén et al. data on the transcriptomic side only.

6.1.2 Matching pairs of mRNAs and proteins

To avoid unnecessary biases (described in Section 3.3), I only consider the mRNAs (i.e.
RNAs with a protein-coding biotype — Ensembl 76) for the following analyses. Moreover,
since missing data is common for proteomics [Lazar, Gatto, et al., 2016], only proteins that
are detected in each dataset in at least one of the included tissues are considered for further

2 May also be referred to as Urinary Bladder
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analyses.

Besides, while in the transcriptomics studies biological replicates of each tissue have
been processed as individual RNA-Seq libraries, in the proteomic one, the biological
replicates have been pooled per tissue before any MS profiling. Thus, to prevent an
unbalanced number of samples biasing the integration analyses (see Chapter 3), I use
‘virtual references’, i.e. TREPs³ that I computed for each tissue by taking the median
values of each gene across the biological replicates (see Section 3.3.4).

As exposed in Chapters 2 and 5, all the proteomic quantifications have been provided by
Dr James Wright.

The first quantification follows state-of-the-art practices with stringent parameters
(described in Section 2.4.2) since accurate protein identification is paramount for reliable
proteome exploration. The protein levels are the intensity of their top three unique
peptides normalised within-sample. Figure 6.2 presents the genes overlap across twelve
shared tissues between the Pandey Lab’s proteins quantified through this first method
and Uhlén et al.’s and GTEx’s mRNAs quantified with HTSeq-count (see Section 2.4.1.3).
Figure 6.3 is the same analysis across the fifteen shared tissues between Pandey Lab and
Uhlén et al. data.
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Figure 6.2. Distribution of the unique and shared proteins of Pandey Lab data
and mRNAs from Uhlén et al. and GTEx ones across their twelve
shared tissues. There are 6,357 matching gene products between the three
datasets. Only 5 proteins have apparently no matching partners in the Uhlén
et al. or GTEx data.

This first proteomic quantification is following robust guidelines, and both figures show
that almost all the genes with an observed protein also have an observed mRNA.
However, only about 32% of the quantified mRNAs in the Uhlén et al. and GTEx data
have a corresponding protein detected in the Pandey Lab data.

3 TREP: tissue reference expression profile
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Figure 6.3. Distribution of the unique and shared proteins/mRNAs for Pandey
Lab and Uhlén et al. across their fifteen shared tissues. The
number of matching pairs (6,428) and proteins that lack a counterpart in
the transcriptomic data (8) are similar regardless of how many different
transcriptomic data is included (see Figure 6.2).

Once I learned more about the bioinformatic challenges of bottom-up proteomics
(described in Section 1.3.4), I chose to be more flexible with the identification and
quantification methods to increase the number of proteins included in my analyses. As I
aim to integrate independent proteomics with transcriptomics, I mostly focus on robust
expression between the two biological layers since discrepancies in this study context are
hard to interpret. While artefacts may persist, further analyses with targeted proteomics
(see Section 1.3) can help prune or validate the results.

I have drawn on RNA-Seq transcriptomic approaches to devise a new quantification
method, which is described in Section 5.2 and implemented by Dr James Wright. The
method takes advantage of the degenerate peptides⁴ that are distributed across possible
protein parents in proportion to their unique peptides. The method produces normalised
values of the protein expression levels (whose unit is the PPKM, i.e. PSMs Per Kilobase of
gene per Million).

As shown in Figures 6.4 and 6.5, while the number of quantified proteins with our new
method covers about 62% of Uhlén et al.’s and GTEx’s quantified mRNAs, the number of
proteins for which no mRNA was detected in the transcriptomic data remains marginal.

Whether it reflects the biological reality or is solely due to RNA-Seq technology beingmore
sensitive than bottom-up MS alone, current techniques detect more individual mRNAs
than proteins as confirmed by Figures 5.4 and C.1. Thus, it may be surprising that a few
proteins lack a match in the transcriptome data. Several possible explanations exist.

4 See Section 1.3.4.3.
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Figure 6.4. Distribution of the unique and shared proteins/mRNAs across twelve
shared tissues between Pandey Lab (new quantification method), Uhlén
et al. and GTEx data.
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Figure 6.5. Distribution of the unique and shared proteins/mRNAs across fifteen
tissues between the Pandey Lab (new quantification method) and
Uhlén et al. data.
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Artefacts or technical issues are the most likely. For example, the annotation might miss
the matching RNAs definitions or defines them with another biotype than protein-coding⁵.
Or, peptides and mRNA reads may be assigned to different gene IDs. Alternatively, the
mRNAs are present in the sample, but the library preparation has missed their capture
(see Section 1.2.1). Or even, the presence of proteins in the sample is a false positive or the
result of contamination.

However, biological processes might also explain the mismatches. One example is the
case of mRNAs with short half-lives while their proteins are very stable. Another possible
explanation is that the original location of the proteins is different from the tissue in which
they were detected (like hormones or cytokines).

Lastly, as the transcriptomic and proteomic samples are independently sourced, a protein
may be specific to an individual or a population. This last hypothesis is themost unlikely as
there are several biological replicates on the transcriptomic side. Amixture of the previous
causes is also plausible.

Transcriptomics Proteomics

Uhlén
et al.

Pandey
Lab

HTSeq-count
(FPKM)

Top3
(State-of-the-art)

(PSM)

Our new 
method

GTEx

Cufflinks
(FPKM) (PPKM)

3 datasets
12 tissues
(Figure 6.2)

2 datasets
15 tissues
(Figure 6.3)

3 datasets
12 tissues
(Figure 6.4)

2 datasets
15 tissues
(Figure 6.5)

See digital 
supplementary 

data 

(mRNA)

Figure 6.6. Overview of different studied datasets combinations.

5 E.g. XXyac-YRM2039.2 annotated as unprocessed pseudogene and now known as WASH1 since Ensembl
77 (October 2014) or TRAJ61 which is annotated as TR J gene.
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I exclude the unmatched proteins and mRNAs from further analyses. Table E.1 provides
the unmatched protein lists for the Ensembl 76 annotation.

Unless otherwise stated, to avoid issues exposed in Section 3.3.1, I also remove all the
proteins and mRNAs of the mitochondrial genome from the subsequent analyses.

Note that Figure 6.6 presents an overview of the various datasets combinations presented
in Figures 6.2 to 6.5.

6.1.3 Tissue-centric and gene-centric approaches

Tiss
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mRNA a

mRNA z
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ue N

… …

mRNA x
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ue Y

Tiss
ue Y

Tiss
ue A

Protein a

Protein z

Tiss
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… …

Protein x

Comparison of the Transcriptome and the Proteome for each tissue
(across all the common mRNA/protein pairs) 
Comparison of each mRNA with its protein 
(across all the common tissues) 

Transcriptome Proteome

Tissue-centric

Gene-centric

Gene a

Gene z

Figure 6.7. Approaches summary of the expression comparison between the
transcriptome and proteome. Tissue-centric analyses focus on how the
transcriptome and proteome relate to each other within the same tissue.
Gene-centric analyses study for each gene how its mRNA expression levels
across all (or a subset of) the tissues may relate to the quantified expression
levels of its corresponding protein.

Figure 6.7 summarises the two analytical approaches I use to compare transcriptomic and
proteomic data. The tissue-centric approach compares for each tissue the global
expression of its transcriptomic landscape to its proteomic one. In contrast, the
gene-centric approach compares for each gene its expression levels in mRNA and protein
across all the tissues.

Confusion can arise when integrating proteomics and transcriptomics. Hence, it is
essential to define the taken approach clearly [Y. Liu et al., 2016].
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6.2 fair correlations between independently sourced
proteomics and transcriptomics of human tissues

For the first tissue-centric analysis, I assess for each tissue the relationship between the
expression of its proteome and transcriptome through the correlation of the protein
expression values with their corresponding mRNA ones.

After scaling with log2(𝑥 + 1), I compare proteomic and transcriptomic TREPs from
identical and random tissue pairs, which are similar and roughly correspond to Gaussian
distributions as illustrated by Figures 3.2 and 5.7.

Figure 6.8 presents the correlation distribution range of transcriptomic and proteomic
TREPs from identical and random pairs of tissues, both with Spearman and Pearson
correlation methods (see Appendix B.1).

Although transcriptomics and proteomics have independent sources, the Spearman
correlations of the same tissues TREPs are equivalent to correlations in cell
studies [Lundberg et al., 2010; Schwanhäusser et al., 2011] where the same sample
provides mRNAs and proteins. Regardless of the protein quantification method
(Top3 [Silva et al., 2006] or PPKM — equation (PPKM definition) on page 126), the median
Spearman correlation coefficients are above 0.5 for matched proteomic and
transcriptomic TREPs (also referred to as same-tissue pairs). The unscaled data presents
identical outcomes (see Table E.2 and Figure E.4).

The Pearson correlation is closer to the literature for our new PPKM quantification than
for the Top3 quantification. The PPKM Pearson correlation averages above 0.5
[min: 0.38 (Oesophagus) ; max: 0.61 (Liver)] (and is within [min: 0.45 (Oesophagus) ;
max: 0.67 (Liver)] for the untransformed data).

As tissue proteomic samples can present high correlation without being related in any
manner (see Chapter 5 and figure D.10), a Welch t-test [Welch, 1951] allows assessing the
significance of the correlation for the same-tissue pairs by comparison to random tissue
pairs. The one-sided Welch’s Two Sample t-test⁶ allows rejecting the null hypothesis 𝐻0
(the means of the correlation coefficients for same-tissues pairs are identical or lower to
random tissues pairs). Irrespective of the protein quantification or computational methods,
all the same-tissue pairs correlations are significant (p-value < 5.10−5, except for Pearson
correlation with Top3 quantification where p-value < 0.05 — see Table E.2).

The previous correlation distribution may imply a modest relationship between these
independent proteomics and transcriptomics, but the same-tissue pairs scatterplots (e.g.
Figure 6.9) show tighter links than first suggested. Besides, these scatterplots share a
coarse profile despite the wide correlation ranges.

Figure 6.9 illustrates the comparison of expression for Kidney between transcriptomics
(Uhlén et al.) on the x-axis and proteomics (Pandey Lab — PPKM) on the y-axis. Kidney’s

6 See Appendix C
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Figure 6.8. Distribution of Pearson and Spearman correlation coefficients for
same-tissue proteomic and transcriptomic pairs versus random tissue
pairs (log2-scaled data). Depending on the protein quantification method,
there are two types of distribution ranges for the Pearson correlations. Top3
quantification method provides a lower correlation (mean ≈ 0.11). The
PPKM method (Section 5.2) produces higher correlations (mean ≈ 0.5).
All the Spearman correlation ranges between same-tissue proteomic and
transcriptomic TREPs are quite similar, regardless of the method quantifying
the proteins. The median of Spearman correlation is 0.52. With the Top3
quantification (i.e. pink countered boxes — Top3 x HTSeq), two outliers
are noticeable, and they are common to the three comparisons, Pandey
x Uhlén (12 tissues and 15 tissues) and Pandey x GTEx (12 tissues): the
lowest Spearman correlation is Oesophagus (𝜌 = 0.39) and the highest Liver
(𝜌 = 0.62). Both for the Pearson and Spearman correlations, even when the
correlations are very low, same-tissue pairs always have higher correlations
than different (random) tissues pairs (all p-values computedwithWelch t-test
<0.05 — see Table E.2). Thus, even the lowest same-tissue correlations are
significant. The green boxplots, comparing the two transcriptomic datasets,
are only represented for reference purposes.
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Figure 6.9. Scatterplot of protein (Pandey Lab — PPKM quantification) and
mRNAs (Uhlén et al.) expression for Kidney. Each point of this
scatterplot represents a gene; it has the log2-transformed expression value
of the corresponding Uhlén et al. mRNA (FPKM) on the x-axis and the log2-
transformed expression value of the Pandey Lab protein (PPKM) on the y-
axis. Most of the mRNA/protein pairs are distributed in an area that can
be fitted by a linear function with a positive slope, which indicates a high
correlation between mRNAs and proteins expression levels. However, genes
with lower expressed mRNAs have a less associated expression between
their protein and mRNA, in particular, mRNAs that are expressed below
1 FPKM (i.e. below 0 on the x-axis). On the other side, genes with the
highest expressed mRNAs may present a saturation effect (Section 1.3.2) in
the quantification of the protein expression. The highest expressed protein
is HBB (i.e. Hemoglobin Subunit Beta), which is also found in the five
highest expressed proteins in all the other tissues. Possibly, its presence is
due to remaining erythrocytes in the samples. On the outer parts of the
scatterplot, there are the respective distribution densities of the proteins and
the mRNAs. Whilst the correlation calculation includes every pair of mRNA
and protein, the plot excludes any pair with an unexpressedmRNA or protein
to optimise the visualisation. Figure E.2 presents an overview of the other
tissue scatterplots.
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correlation coefficients stand in the middle of the range regardless of the considered
studies, protein quantification or correlation methods involved in the comparison.

A linear function with a positive slope (not drawn) can fit the bulk of the points. Indeed,
the expression of most mRNAs and proteins in a tissue are highly associated with the
exception of the lowest (< 1 FPKM) and a number of the highest measured mRNAs.

Besides the mismatching sampling sources, other possible explanations for the observed
divergences are technical limitations (such as protein saturation effect, see Section 1.3.2),
translational noise (see Section 3.3.3) or a consequent half-life difference between the
mRNA and its protein.

Although the number of genes presenting lowly associated levels of mRNA/protein
expression is rather limited, it is enough to impair the Pearson and Spearman correlation
coefficients.

Systematic exclusion of lowly associated pairs of mRNAs and proteins is impractical and
arguable as they are inconsistent from one tissue to another. Case-by-case treatment will
be necessary.

Removing the lowly expressed mRNAs (< 1 FPKM) only marginally changes the
correlation coefficients, e.g. for Kidney, when considering the PPKM quantification for
the proteins, the Pearson correlation increases from 0.56 to 0.58, while the Spearman
correlation is relatively unchanged (0.51 instead of 0.52). There are similar changes
observed when considering the more conservative Top3 protein quantification. The
Pearson correlation 𝑟 = 0.18 increases to 0.21. The Spearman correlation remains
unchanged (𝜌 = 0.52).

Both transcriptomic studies (Uhlén et al. or GTEx) providing alike results, I describe for
most of the following analyses the data combination that provides the greatest number of
tissues and genes to study, i.e. the fifteen-tissue set between Uhlén et al. and Pandey Lab
data quantified with the PPKM method.

The other combinations (provided in Appendix E or electronic format) may diverge for
individual genes through the various combinations, but the general trends are identical.

I focus on Pearson correlation over Spearman correlation in the following parts since the
results for the PPKM quantification are globally similar for both.

6.2.1 Mixed biological signal between the proteome and transcriptome across the
tissues

As shown in Figure 6.10, for nine tissues (in yellow) transcriptomic and proteomic
expressions correlate better in matching tissues. For four other tissues (Colon, Lung,
Oesophagus and Urinarybladder — in dark pink), only the proteomics correlate the best
with the matching transcriptomics, while the transcriptomics correlates better with other
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proteomics tissues. The remaining two tissues have their proteomics correlating as much
(e.g. Gallbladder) to other tissues or more to transcriptomics from other tissues (Rectum).

While the different correlation methods lead to similar result trends, individual differences
persist. In a few cases, e.g. Heart, these slight differences may considerably change the
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Figure 6.10. Heatmap based on the Pearson correlation between protein and
mRNAs expression (alphabetically ordered tissue). Correlations
for same tissue pairs (diagonal) are highlighted in yellow when the
highest observed correlations are between the matching proteomics and
transcriptomics pairs; in dark pink, when the proteomics correlates the
best with the matching transcriptomics. When other higher correlations
are observed for a tissue proteomics or transcriptomics they are in given
grey.
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relative correlation ranking order of the TREPs (see Figure E.5).

In the following sections, I explore several avenues to identify possible factors that
influence the association strength between the proteome and transcriptome.

I first study the effect of tissue composition (in proteins and mRNAs) on the correlations.
I begin with the assessment of the impact of the proteins and mRNAs that are found in
one tissue only, before looking into the tissue-specific (TS) proteins and mRNAs.

Then, in a more quantitative approach, I examine more closely how the mRNA expression
profiles relate to their respective protein ones.

6.2.2 Influence of the expression breadth on the tissue mRNAs/proteins
correlation

In Chapter 5, I have shown that the protein expression of both different tissues and same-
tissue pairs are sharing a similar correlation range (see Figure D.11). In this context, genes
expressed in a small number of tissues (both as a protein andmRNA) can have a significant
impact on the correlation and may explain the mitigated results.

The expression breadth of a gene is the number of tissues and cell lines within which the
gene is expressed at a given threshold⁷. Figure 6.11 allows visualising the distribution of
the expression breadth of the mRNAs (Uhlén et al.) and the proteins (Pandey Lab data)
across their fifteen common tissues. In the following sections, I may refer to a (TS) gene
as a unique gene when it is only expressed in a single tissue.

Figure 6.11a shows that the distribution of the protein expression breadth is bimodal.
Either due to technical limitations or biological reasons, proteins detected in a sole tissue
form the most numerous class and represent 20 % of the overall number. Proteins
expressed in all tissues are the second most numerous class (about 16 %); the third
largest class (12 %) comprises the proteins expressed in two tissues.

On the other hand, almost all mRNAs are expressed in every tissue (Figure 6.11b). One
hypothesis is that mRNAs levels have to exceed a sufficient threshold for their proteins
to be detected. Thus, I also studied the effect of two additional minimum expression
thresholds for the mRNAs on the expression breadth.

The two new expression breadth profiles are more alike to the proteomic one. As shown in
Figure 6.11c, the number of transcripts only found in one tissue increases at thewidespread
1 FPKM threshold, which roughly equates to one RNA in the cell [Mortazavi et al., 2008;
Hebenstreit et al., 2011].

The expression breadth profile of the mRNAs expressed at or above 5 FPKM present a
similar bimodal distribution (Figure 6.11d) to the protein one. While arbitrary, 5 FPKM

7 If a gene is expressed below the considered threshold in all the tissues, its expression breadth is null.

146



6.2 fair correlations between independent proteomics and transcriptomics

is a threshold commonly found in the literature [Uhlén, Fagerberg, et al., 2015; Gonzàlez-
Porta et al., 2013; J. Chen et al., 2018].
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Figure 6.11. Expression breadth of the proteins and mRNAs. The expression
breadth of the proteins has a bimodal distribution. Many proteins are
detected either in a single tissue or in all of them. Almost every
mRNA is detected in every tissue. Their breadth becomes bimodal when
their expression threshold is increased to 5 FPKM. To ease the general
visualisation, I have omitted to plot the mRNAs for which the expression
remains below the threshold for all tissues (i.e. expression breadth=0 for
the considered threshold).

Figure 6.12 displays the fraction of unique genes (i.e. only expressed in a single tissue)
detected as a protein or anmRNA at a considered threshold for each tissue as the analysis is
seeking a possible link between the number of uniquely detected genes and the correlation
strength between the proteomic and transcriptomic TREPs. Hence, these fractions are
computed by dividing the number of unique genes (proteins or mRNAs) of each tissue by
the total amount of uniquely detected genes across all tissues. The tissues are ordered by
increasing order of their fraction.
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Figure 6.12. Unique proteins or mRNAs fractions across tissues.

Although their proportion varies from one tissue to another, all fifteen tissues have
proteins that are specifically detected in each tissue solely, as shown in the top plot in
Figure 6.12. In contrast, unique mRNAs are detected in a more limited number of tissues
(see the three bottom plots of Figure 6.12). Besides, the unique proteins are more evenly
distributed between the fifteen tissues than the unique mRNAs.

Except for Testis and Liver, which are consistently expressing the highest number of
uniquely detected genes, the other tissues fail to present any similarity between the
available proteomic and transcriptomic data.

Liver is the most correlated tissue (Figure 6.10) and comprises the second-highest
number of unique genes. Testis is the third-best correlated tissue despite having the
highest fractions of unique proteins and mRNAs regardless of any threshold. It may be
tempting to hypothesise that the number of unique genes relate to correlation levels, but
the other tissues fail to show any relationship between the number of unique mRNAs
and proteins they expressed and the strength of the correlations.

Put together, these results suggest that the number of proteins and mRNAs uniquely
expressed in these tissues play a minor role at best in the mRNA/protein correlation
computed for each tissue. The lack of relation between the proteomic and transcriptomic
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observations is confirmed by a more refined analysis of the expression breadth.
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Figure 6.13. Comparison of proteins expression breadth to their corresponding
mRNA. The proteins’ expression breadth (Figure 6.11a) is coloured
according to their corresponding mRNA expression breadth at 5 FPKM
(Figure 6.11d). About one-fifth of the uniquely detected proteins have their
corresponding mRNA identically expressed once at or above 5 FPKM. The
number of proteins classified as Identical decreases significantly through
other breadths until it raises again from thirteen tissues to reach about one-
third of the ubiquitous proteins. Proteins and mRNAs with mismatching
expression breadth are split into several categories. Proteins and mRNAs
that are both detected within four to twelve tissues are described as Mixed.
If the expression breadths of the remaining pairs are close (± 2), they are
identified as Similar otherwise as Different. Finally, many genes detected
at least once as a protein have an mRNA expression that never reaches 5
FPKM (Expression < 5 FPKM).

Figure 6.13 shows that the expression breadth of mRNAs (expressed ≥ 5 FPKM or even
smaller threshold) concurs in very few cases to their corresponding protein breadth.
Thus, the mRNA expression breadth is insufficient to predict the expression breadth of
the corresponding protein. Even for the two extreme cases where the protein is unique to
a tissue or ubiquitous (found in all fifteen tissues), there are differences between the
expression breadths of the mRNA and the protein of the same gene.

All the expression breadth analyses of the transcriptome rely on expression levels.
However, Chapter 4 underlines that high mRNA expression levels are unrelated to high
interstudy correlation of same-tissue pairs while TS mRNAs present a rather strong
relation with it. For this reason, the following analysis examines the relationship
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between TS mRNAs and TS proteins.

6.2.3 Tissue-specific mRNAs have significant overlap with tissue-specific
proteins

Unlike mRNAs, many proteins are only expressed in one unique tissue. These are the ones
I refer to as TS proteins in the remainder of this thesis.

To enable the comparison of these TS proteins with possible transcript partners, I first
need to define a set of TS mRNAs. To find the latter, I choose the 𝑛 mRNAs most specific
to a tissue based on the Fold change method (Section 4.3.1.2) where 𝑛 is the number of
TS proteins of that tissue. Then, as detailed in Figure 6.14, I examine for each tissue the
overlap between its 𝑛 TS proteins with its 𝑛 mRNAs with the highest tissue-specific ranks.
Figure 6.15 illustrates the Heart example.

Detected 
only in T

Protein

Sort the
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	Specificity of mRNAi =
ExpressionT𝑖
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Figure 6.14. Overview of the comparison of the TS proteins and TS mRNAs. TS
proteins are the 𝑛 proteins only expressed in one tissue. Once the mRNAs
have been sorted by decreasing order of their relative specificity to a given
tissue, the first 𝑛 mRNAs identities are compared to the ones of the 𝑛 TS
proteins present in the same tissue.

Each tissue has a different number of TS proteins. I thus refine this analysis by
computing Jaccard similarity coefficients (or Jaccard indices) [Jaccard, 1901; Lin et al.,
2008], see Equation (Jaccard similarity coefficient). The Jaccard indices allow assessing
the relationship between TS proteins and mRNAs across all the tissues at the same time
and ease the result interpretation in contrast to the raw overlap numbers.
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Heart
Jaccard index =  0.075 

p-value = 2.43e-18

154 15425

Pandey Uhlén

Figure 6.15. Example of overlap of TS proteins and TS mRNAs.

The Jaccard index is computed as follow:

𝐽(𝑥1, 𝑥2) = |𝑥1 ∩ 𝑥2|
|𝑥1 ∪ 𝑥2|

= |𝑥1 ∩ 𝑥2|
|𝑥1| + |𝑥2| − |𝑥1 ∩ 𝑥2|

(Jaccard similarity coefficient)

When applied specifically to Figure 6.14, we get: 𝐽( , ) = 𝑘
2𝑛−𝑘 ,

with 𝑛 the number of proteins ( ) that are only found in a given tissue and 𝑘 is the number
of common genes between these 𝑛 unique proteins and the 𝑛 most specific mRNAs of the
tissue ( ).

To measure the Jaccard indices significance, I use the hypergeometric test [Field et al.,
2012] (see Appendix E.1). In the current analysis, I consider as ‘success’ when a TS mRNA
is among the 𝑛 TS proteins and test if the number of observed successes is greater than
the expected number for random sampling.

The Jaccard indices for all pairs of the fifteen shared tissues between the Pandey Lab (PPKM
quantification) and Uhlén et al. are summarised in Figure 6.16, while Figure 6.17 displays
their respective p-values (hypergeometric test).

I have rerun these analyses with different sets of parameters and I have consistently
observed statistically significant overlaps except in rare cases, which include the
comparison of TS genes for Urinarybladder between Pandey Lab (PPKM quantification)
and Uhlén et al. (HTSeq-count) based on the fifteen-tissue set and where the TS mRNAs
are selected with the fold change method. Overall, the Jaccard indices remain within the
same ranges for different sets of parameters.

If ranked by their Jaccard indices, several tissues fall within a range similar to their
correlation coefficient, while others not — as shown by Figure E.5. For instance, Liver,
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Figure 6.16. Heatmap of Jaccard indices across the common fifteen tissues
between Uhlén et al. and Pandey Lab data. For each tissue, the TS
proteins are the proteins (quantified with PPKMmethod) that are expressed
only in that tissue. The TS mRNAs are the mRNAs with the highest specific
coefficients in that tissue.

Testis and Pancreas have high ranks and Urinarybladder and Gallbladder low ones for
both their correlation and their Jaccard indices. On the other hand, Kidney ranks first for
the Jaccard index, but only reaches the seventh rank for Pearson correlation. While the
Rectum has the smallest Jaccard index and thus ranks last (i.e. fifteenth), it gets ranking
number nine for Pearson correlation. These results suggest that TS proteins and TS
mRNAs are unrelated to the tissue correlation levels.

Overall, the above direct approaches (based on the gene expression breadth across tissues
and their tissue-specificity) fail to show a prominent (if any) contribution or association
to the correlation levels between the proteome and transcriptome. These are most likely
resulting frommultiple subtle similarities based on identical differential expression within
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Figure 6.17. p-values associated with the Jaccard indices of Figure 6.16. These p-
values have been computed with the hypergeometric test.

many clusters of the proteins and mRNAs.

Given the mixed results of the direct approaches built on uniquely detected genes, I next
examine whether or not an indirect method may be more appropriate. For this new
analysis, I build hierarchical cluster trees that try to translate the tissues’ expression
‘closeness’ or differentiation distances. Then, I compare the proteins’ and transcripts’
trees.

6.2.4 Proteins and mRNAs tissue trees present partial concordant results

As presented in Section 3.2.2, a hierarchical clustering analysis requires a linkage method
and a distance between each element that is included in the analysis.
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integration of transcriptomic with proteomic data

I have built the tree of each dataset by linking the tissues withWard’s method [Ward, 1963]
like in the previous analyses.

I have performed an initial analysis that used the tissue correlations for the distance, but
it did not highlight any similarity between the proteomics and transcriptomics trees of
hierarchical clusters.

The distance used in the following analysis reflects the difference in composition of gene
populations expressed by the tissues. It is based on the Jaccard index (see Equation (Jaccard
similarity coefficient)) of the tissues where I only consider genes (proteins or mRNAs) that
are detected in two tissues strictly.

Making the hypothesis that the closeness of two tissues increases with the number of
genes they share, I compute the distance between two tissues, 𝑡1 and 𝑡2 using the following
formula: distance(𝑡1, 𝑡2) = 1 − 𝐽(𝑡1, 𝑡2).

Note that for this analysis, I present the results for Pandey Lab (PPKM quantification) and
Uhlén et al. for their fifteen shared tissues as for the other analyses, but I also present and
compare with the GTEx data and their twelve shared tissues.

Figure 6.18 shows the hierarchical clustering of the fifteen tissues for Pandey Lab (PPKM
quantification) and Uhlén et al. (≥ 5 FPKM) studies.
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(a) Pandey Lab tissues
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Figure 6.18. Hierarchical clustering for the fifteen tissues of Pandey Lab and
Uhlén et al. studies.

Both Pandey Lab and Uhlén et al. trees, respectively Figures 6.18a and 6.18b display the
same four pairs of tissues the most closely related: Rectum and Colon, Placenta and Lung,
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6.2 fair correlations between independent proteomics and transcriptomics

Liver and Kidney, and Testis and Ovary.

Comparing more than two hierarchical trees for possible finding congruence is
cumbersome manually; thus, methods exist to create consensus trees [Felsenstein et al.,
2004]. The methods can be strict or create a consensus based on the majority. Since there
is a maximum of three trees (one for each dataset) to compare at a time, all the consensus
trees within this thesis are strict, i.e. all the trees must be in agreement on a hierarchical
organisation for the consensus tree to include it. I use one of the possible
implementations of these methods from the R package ape (v5.3) [Paradis et al., 2019].
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(a) Consensus tree of the fifteen shared
tissues between Pandey Lab and
Uhlén et al. (≥ 5 FPKM) data
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(b) Consensus tree of the twelve shared
tissues between Pandey Lab data and
Uhlén et al. and GTEx data (≥ 5
FPKM)

Figure 6.19. Consensus of the hierarchical clustering of the tissues across the
different studies.

Figure 6.19 shows two consensus trees. Figure 6.19a is the consensus tree built on the
previous trees of Pandey Lab and Uhlén et al. fifteen shared tissues. The tree groups are
clearly featured. To assay if these groups may still be found beyond these two datasets, I
extend the analysis with the GTEx data.

Figure 6.19b relies on the set of twelve shared tissues between Pandey Lab data (quantified
by the PPKM method) and the two transcriptomic datasets (≥ 5 FPKM): Uhlén et al. and
GTEx data. Compared to Figure 6.19a, only two tissue-sets are consistently observed as
most closely related: Liver and Kidney, and Testis and Ovary.

Note that the results seem unaffected by the protein quantification method as PPKM and
Top3 methods give identical results. However, the threshold, above which the mRNAs are
considered, influences the analysis’ outcomes. As very few mRNAs are found uniquely
in two tissues at 0 FPKM, this threshold is insufficient to identify any hierarchical
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integration of transcriptomic with proteomic data

organisation in the transcriptomic data. Increasing the threshold, for instance to 1 FPKM,
allows exposing clusters of tissues, e.g. Liver and Kidney.

However, different thresholds can also highlight different tissue clusters, including
Rectum and Colon at 5 FPKM or Pancreas and Gallbladder at 1 FPKM. The influence of
the thresholds on the results suggests that genes have their expression levels varying
depending on their tissue context.

In summary, even indirect analyses based on the proteins and mRNAs breadth expression
have some degree of similarity in their results and seem to partially capture a biological
signal.

Furthermore in-depth (direct or indirect) analysesmay clarify the relationship between the
proteome and transcriptome. For example, equivalent correlation levels between specific
gene groups (gene co-expression correlation) may be highlighted for each tissue at both
biological layers. However, this kind of analysis requiring a case-by-case approach will
greatly benefit from well-established and proven mRNA and protein expression baselines
for each tissue.

The following section Section 6.3 analyses precisely whether genes have comparable
expression profiles as a protein than as an mRNA.

6.3 wide correlation range for protein/mrna pairs

As previously reported, the expression levels of mRNA/protein pairs can present a tight
relationship in one tissue while being seemingly unrelated in another. The first gene-
centric analysis explores for each gene the relationship between the expression levels of
its mRNAs and proteins across all available tissues. This analysis helps one to determine
whether any intrinsic trend structures the gene expression or if it is only subject to the
environment.

Figure 6.20 displays the Pearson correlation between the matching pairs of mRNAs from
Uhlén et al. and the proteins from Pandey Lab (quantified with the PPKM method) across
their fifteen common tissues. The observed levels of correlation (in pink) are higher than
the expected levels computed by random permutation (the grey line is showing the average
of 10,000 permutations).

I also compare the Pearson correlation of the matching mRNAs/protein pairs with the
ones (in green) of the mRNAs/mRNAs pairs from Uhlén et al. and GTEx data to provide
more context. About two-thirds of the genes (8,550) present a strong correlation (𝑟 > 0.8)
between the mRNA expression levels of Uhlén et al. and GTEx data, but only about 6%
(775) of the mRNA/proteins pairs are above this limit (in dark blue).

The Pearson correlation between the mRNA/protein pairs ranges rather widely from 1 (for
32 pairs, which are detected as mRNA and protein in the same single tissue only) to below
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6.3 wide correlation range for protein/mrna pairs

Figure 6.20. Pearson correlation of gene expression levels between studies across
the shared tissues in descending order. For each mRNA and its
corresponding protein, I have computed their Pearson correlation (in
pink) across the fifteen common tissues between Pandey Lab (PPKM) and
Uhlén et al. data and then ordered them in decreasing order. The x-
axis shows the rank of each pair and the y-axis its correlation coefficient
(computed with log2(level + 1)). The grey line represents the mean of the
10,000 randomisations (by pair composition permutation). The permutation
confirms that the observed correlation coefficients are significantly higher
than expected by chance. The green line serves as the most ideal
comparison case: it represents the Pearson correlation of mRNAs pairs
between Uhlén et al. and GTEx data.

−0.5 (for 105 pairs, with 𝑟 = −0.83 for the most anticorrelated one).

A closer look at both extremes (Figure 6.21) reveals several possible relationship profiles
between the expression of the mRNAs and proteins. The negatively correlated genes can
present overall anticorrelated (Figure 6.21a) or rather unrelated (Figure 6.21b) expression
levels of mRNAs and proteins. On the other end, the highest correlated genes present
genes with a tissue-specific (TS) protein or whose mRNA and protein expression levels
are tightly related (Figures 6.21c and 6.21d).

I only present herein (and in the following sections) the set of results based on the Pearson
correlation of the gene expression levels between the Pandey Lab data quantified with the
PPKM method and Uhlén et al. data across their fifteen shared tissues since the different
sets share similar results trends. Furthermore, this data combination provides the highest
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Figure 6.21. Different cases of correlation for protein/mRNA pairs. The

scatterplots show the expression of the genes as mRNA in Uhlén et al. data
on the x-axis and as a protein in Pandey Lab data on the y-axis across
their common fifteen tissues. Figure 6.21a shows that SSR3 apparently has
a protein expression anticorrelated to its mRNA’s one: when the mRNA
expression is low (e.g. Pancreas, Liver), the protein expression is high and
when the mRNA expression is high (e.g. Adrenal gland, Prostate), the protein
expression is low. Figure 6.21b features COL2A1 and for which protein
expression is observed for many tissues (e.g. Oesophagus, Kidney, Pancreas)
while no or very low mRNA expression has been captured. Figure 6.21c
shows that TPM2 is expressed in all tissues and the expression of the protein
is well correlated to the mRNA’s one. Figure 6.21d shows that HGD has
highly correlated protein and mRNA expression when found in a tissue.
Note that true perfect correlation can be observed for pairs where both
mRNA and protein are tissue-specific (TS).158



6.3 wide correlation range for protein/mrna pairs

number of pairs to be studied across the highest number of tissues. It also allows continuity
with the above tissue-centric analyses. Complementary results for Spearman correlation
and sets that include GTEx data can be found in digital format at http://www.barzine.net/

~mitra/thesis.

6.3.1 TS protein enrichment for the most correlated pairs

Figure 6.22. TS proteins percent as a function of the considered number of genes
(ranked by Pearson correlation). Before being plotted, the genes are first
ranked in decreasing order of Pearson correlation between the expression
levels of the two considered datasets across their shared tissues. The top
plot, which is a reproduction of Figure 6.20, is for interpretive convenience
only. The two parts of the figure have corresponding x-axes. The x-axis
of the top plot presents the rank associated with the Pearson correlation
coefficients of the genes on the y-axis. The x-axis of the bottom plot
represents the upper limit rank up towhich are considered the genes (for the
calculus). The lower limit rank is 1. The y-axis of the bottom plot displays
the percentage TS protein for a set of (ordered) genes.
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integration of transcriptomic with proteomic data

Here, I investigate the incidence of the TS proteins on the level of correlation between
mRNAs and their proteins.

I first compute for each gene the correlation between the expression levels of Uhlén et al.
data and Pandey Lab data. Then, I organise the genes in a sequence⁸ by ranking them by
decreasing order of correlation. Thus, the first most correlated gene’s rank is 1. Finally,
for each rank 𝑘, I calculate the number of genes with TS proteins among the first 𝑘 ranks
before converting it into percentage.

Equation (TS protein percentage) on page 256 presents the formula with which I compute
the percentage of TS proteins. Figure 6.22 illustrates the percentage of TS proteins for a
given number of considered genes, which have been ranked in decreasing order of Pearson
correlation coefficients. Similarly to Figure 6.20, randomised protein/mRNA pairs (average
for 10,000 permutations) in grey and mRNA/mRNA pairs (Uhlén et al. data and GTEx data)
in green are providing some context.

The TS protein percentage in pink is extremely high for the highest range of observed
correlation between the expression of the Pandey Lab proteins (quantified with PPKM) and
Uhlén et al. mRNAs pairs across their shared fifteen tissues. The TS protein percentage
then decreases quickly before finally increasing slowly for the lower range of correlation.
Thus, the genes identified as TS proteins in Pandey Lab data enrich the most correlated
and most anticorrelated mRNA/protein pairs clearly. Most of the pairs have a Pearson
correlation above 0.5, although they show a wide range of Pearson correlation, from 𝑟 =
−0.77 (for ZNF770) to 𝑟 = 1 (for several genes).

However, the correspondingmRNA/mRNApairs between Uhlén et al. and GTEx data show
a more evenly distribution of these genes through the 10,000 highest gene correlations
after an initial peak. The average of the 10,000 permutations (in grey) of the Pandey Lab
with the Uhlén et al. data also shows an initial high TS protein percentage that drops to
the global amount of TS proteins among the complete set of shared genes. Overall, TS
proteins represent about one-fifth of all the genes.

6.3.2 Gene expression profiles clue about biological and technical differences

As mentioned previously, either artefacts or biology may explain the observed low
correlations. It is rather difficult to identify which artefacts are specifically impacting
each protein/mRNA pair as there are many and can occur in combination. However, two
major technical sources of artefacts, which have been reported, are dispersion for the
lowly expressed mRNAs and saturation for the highly expressed proteins. See
Sections 1.2 and 1.3 (from p. 7) for more details.

Figure 6.23 shows possible profiles of relationships between the protein and mRNA pairs.
Well-correlated pairs are in the grey area delimited by the green line. For these genes,

8 A sequence is an ordered set.
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the expression levels of the protein observed in a tissue is tightly related to the levels
of the mRNA. Although the data have been sampled from different sources, the stronger
associations suggest a similar translation process across the tissues andmay also imply less
post-translational modifications that can hinder protein identification and quantification
than for other genes.

Transcriptome

Pr
ot
eo
m
e

Figure 6.23. Possible mRNA/protein expression profiles due to biological
reasons. Genes with well-correlated transcriptomic and proteomic
expression are found in the grey area delimited by the green line. The genes
in the yellow area, i.e.which present a high protein concentration and a low
mRNA concentration, may have stable proteins and mRNAs with short half-
lives. The genes in the blue area, which present a low protein concentration
and high mRNA concentration, may have a highly regulated translation, a
protein challenging to capture with MS or a misfit between the annotation
definition of their mRNA and protein.

Genes in the yellow area present a high protein concentration and low mRNA
concentration. One possible cause may be that these genes have stable proteins and
mRNAs with short half-lives. On the other hand, genes in the blue area present a low
protein concentration high mRNA concentration. These latter genes may have a protein
that is more challenging to capture (either because of unsuited protocols as described in
Section 1.3 or annotation misfits, e.g. STAU2 as shown in Figure E.3), may forego through
higher regulation through their translation or may be actively exported outside of the
tissue that synthesises them. Anticorrelated genes are another category that will likely
require further analysis for a better overall understanding. The observed anticorrelation
between the proteins and mRNAs expression can be caused by various elements, which
may include tissue-dependent isomers (either for the mRNA or protein) expression,
self-regulation or a variable secretion rate of the protein.

At the time of writing, the most accurate way to classify the protein/mRNA pairs remains
empirical, i.e. human interpretation based on the joint visualisation of protein and mRNA
expression across the different tissues (and dataset combination).
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As empirical approaches are better designed to examine a few genes of interest per study
than to give a broader view of the expression landscape, in the next section I favour a
more general strategy instead. I study the three gene groups of interest highlighted above
with a GO enrichment analysis (see Section 1.4) to find possible biological factors that may
differentiate them.

As the pairs with a TS protein enrich both the most correlated and the most anticorrelated
genes, I also choose to study them but separately, and thus, I remove them from the most
correlated and anticorrelated gene lists.

6.3.3 Distinct functional enrichment profiles for pairs with a TS protein, and for
the best correlated and most anticorrelated ones

A GO enrichment analysis (GOA — see Section 1.4.1) uses gene ontologies that provide
defined terms covering the gene product (i.e. mRNA and protein) properties. These terms
are structured into categories, which helps to assess whether a gene set is associated with
a biological process (BP), a molecular function (MF) or a cellular component (CC). The
three ontologies are included in the Bioconductor package org.Hs.eg.db [Carlson, 2019] for
analysis in R⁹ [R Core Team, 2019].

The enrichment computation requires the comparison between the GO terms set
associated with each studied list of genes to a reference. I consider three gene lists: the
three hundred best correlated and the three hundred most anticorrelated protein/mRNA
pairs and all the pairs (2,613) with a TS protein. As a reference, I use the 12,921 matching
protein/mRNA pairs between Pandey Lab (PPKM quantification) and Uhlén et al. data.

The Bioconductor package clusterProfiler (v3.12) [G. Yu et al., 2012] provides a function
enrichGO, which implements the GOA as the over-representation test described by Boyle
et al. (2004) and handles all the required statistical testing and (Benjamini and
Hochberg [Benjamini et al., 1995]) correction.

The lists of the best correlated pairs and the ones with a TS protein present distinctive
enrichment profiles through the three ontologies. However, the most anticorrelated pairs
list presents an enrichment only for biological process (BP) terms. All the individual
enrichment GO analyses along with the comparison of the enrichment for the CC and
MF ontologies are provided as digital supplementary material.

Figure 6.24 presents the results for the comparison of the enrichment of the three
considered gene lists for the BP ontology.

The left side of the figure is a heatmap that marks the pairs’ associations with the GO
categories on the y-axis. It includes all protein/mRNA pairs of the three studied gene lists.
They are sorted on the x-axis in decreasing order of their Pearson correlation.

9 R — https://cran.r-project.org/
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These GO categories, shared between both sides of the figure, combine the five most
enriched categories for each of the three lists (TS proteins, best correlated and most
anticorrelated pairs). The categories enrichment is provided by another clusterProfiler
function, compareCluster (which internally invokes enrichGO), which has also produced
the right side plot. No cross-enrichment of GO category exists between the three groups
(ensured by the ‘includeAll=TRUE’ option).

Notably, the GO categories associated with each gene list create coherent groups of
similar biological processes. The genes with a TS protein are enriched in terms for
specific signalling, either for its detection (‘detection of chemical stimulus’, ‘sensory
perception of chemical stimulus’, ‘sensory perception’), as a response to a signal (‘G
protein-coupled receptor signalling pathway’) or as a regulation (‘regulation of signalling
receptor activity’).

Concurrently, genes with the best correlated mRNA and protein pairs of expression are
associated with catabolic processes¹⁰, and genes with the most anticorrelated pairs are
related to ribosomes and ncRNAs regulation, thus by extension to the translation and its
regulation.

The GO terms enrichment analysis with the CC ontology shows that the best correlated
genes are the most enriched for the following categories: the ‘postsynaptic membrane’,
‘apical plasma membrane’, ‘apical part of cell’, ‘cluster of actin-based cell projections’, ‘brush
border’ and the ‘cornfield envelope’.

On the other hand, the pairs presenting a TS protein show a slight enrichment for ‘ion
channel complex’, ‘transmembrane transporter complex’, ‘transporter complex’, and ‘cation
channel complex’. Whereas the categories associated with the TS proteins are more
ubiquitous and can concern every cell type, the enriched categories for the best
correlated genes are referring more specifically to subsets of cells. The localisation of the
best correlated pairs probably suffers from their overall ubiquity. Thus, the results for
the best correlated genes are probably an artefact of annotation even though they
comparatively rely on more genes.

The enrichment analysis with the MF ontology for the best correlated pairs points to
different activities: oxidoreductase, cofactor and transmembrane transporter or signalling
activities (‘anion transmembrane transporter activity’, ‘oxidoreductase activity, acting on CH-
OH group of donors’, ‘oxidoreductase activity, acting on the CH-OH group of donors NAD or
NADP as acceptor’, ‘cofactor binding’, and ‘coenzyme binding’).

The pairs with a TS protein are also associated transporter and signalling activities (with
the following five categories: ‘transmembrane signalling receptor activity’, ‘signalling
receptor activity’, ‘molecular transducer activity’, ‘channel activity’, and ‘passive
transmembrane transporter activity’).

10 Catabolic processes are an energy release source and depend onmolecules requiring to be break down [Alberts
et al., 2002].
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Put together, these results suggest that when there is a high correlation or anticorrelation
between anmRNAand its protein, biological processes play amore likely role than possible
technical confounding.

The anticorrelated pairs fail to present any enrichment for a specific cell compartment or
a molecular function. Thus, it implies that regardless of their localisation within the cell
or their chemical properties (which relate to their molecular function), the bottom-up MS
studies manage to capture most of the proteins with variable effectiveness.

Nevertheless, bottom-up MS studies favour some proteins, and missing proteins are a
primary source of ambiguities [Poverennaya et al., 2017]. Hence, comparing the relative
expression levels of proteins within a tissue may lead to misinterpretations. On the other
hand, while it requires caution, the relative expression levels of each protein across tissues
ought to provide biological insights.

Finally, running all the gene-centric analyses presented above with the other possible
combinations of parameters mentioned for the tissue-centric analyses gives similar results.

6.4 discussion

In this chapter, I describe the integration and comparison of independent large-scale
proteomic and transcriptomic expression datasets of undiseased human tissues. After
assessing the range of correlation between the two biological layers, I have tried to
identify possible factors that may influence the association between the expression of the
mRNAs and proteins. I have employed both tissue- and gene-centric approaches.

Building on insights gained in previous chapters (particularly Chapters 4 and 5), I have
restricted the integration study to the three following independent sources: Uhlén et
al. [Uhlén, Fagerberg, et al., 2015] and GTEx [Melé et al., 2015] data for the transcriptomics
and Pandey Lab data [M.-S. Kim et al., 2014] for the proteomics. The three datasets share
twelve tissues, while the combined datasets based only on Uhlén et al. and Pandey Lab
data present three additional tissues.

The above analyses provide the comparison of mRNA and protein expression across fifteen
tissues for 12, 921 pairs as they include Uhlén et al. data and Pandey Lab data quantified
with our PPKM method (see Chapter 5). This new quantification allows encompassing
about twice as many proteins than with the standard state-of-art method (see Chapter 2),
which identifies 6,428 proteins only.

The tissue-centric analyses show that even independently sourced proteomics and
transcriptomics of similar tissues present reasonable correlation coefficients. For
instance, the range of Spearman correlation (𝜌Oesophagus = 0.39 ≤ 𝜌𝑖 ≤ 𝜌Liver = 0.62) is
consistent with the literature, either published before or during this study (see examples
further below).
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Besides, the new PPKM quantification method for proteins provides similar Pearson
correlation ranges (𝑟Oesophagus = 0.38 ≤ 𝑟𝑖 ≤ 𝑟Liver = 0.61) to ones previously described
for cell studies specifically designed for the joint integration of same-sourced proteomics
and transcriptomics (e.g., Marguerat et al. (2012), Schwanhäusser et al. (2011),
Schwanhäusser et al. (2013), and J. J. Li et al. (2014)).

Most remarkably, all the same-tissue pairs of transcriptome and proteome have a
statistically significant correlation despite the tissue proteomic expression profiles
closeness.

I have based my following considerations and discussion on the Pearson correlation
results even though Spearman correlation is often used in the literature when comparing
independent sources of data. The use of the Spearman method is regularly motivated by
the lack of data distribution normality. As shown in Figure 5.7, the PPKM quantification
produces protein expression levels that share the same logit-normal profile of
distribution observed for the mRNAs (see Chapter 3), thus allowing an appropriate use of
the Pearson method.

Next, I have considered several possible properties that might be factors influencing the
mixed correlation levels. I have compared the expression breadth of the mRNAs and the
proteins before comparing the most specific proteins and mRNAs of each tissue to one
another.

The mRNAs and proteins expression breadths (i.e. the number of tissues within which an
mRNA or protein is expressed) share the same overall shape for their distribution, but are
only partially concordant. For example, at 5 FPKM, only about 26% of the proteins that are
expressed in one tissue and about 40% that are expressed in fifteen tissues have an mRNA
with an identical breadth of expression.

The analysis of expression breadth highlights noteworthy facts — including a few recently
reported in the literature; Testis displays the most unique and diverse expression both at
transcriptomic and proteomic levels (see also D.Wang et al. (2019) and Y. Zhang, Q. Li, et al.
(2015)); Liver (the most correlated tissue) presents the second-highest number of mRNAs
and proteins with a unique expression breadth. Besides, when the expression breadth of a
protein is unique, the expression breadth of its related mRNA is more likely to be unique
at the threshold of 1 or 5 FPKM as well. However, the expression breadth of mRNAs gives
no indication of the proteins’ one.

Nonetheless, mRNAs’ and proteins’ expression breadths convey part of the biological
signal consistently. From the Jaccard indices of the proteins and mRNAs solely expressed
in two tissues, I have built hierarchical trees, and their consensus tree outlines the
Ovary/Testis and the Kidney/Liver clusters at both proteomic and transcriptomic layers.

I have then compared the TS proteins with the TS mRNAs. The overlaps between the 𝑛
TS proteins (expressed in a single tissue only) and the 𝑛 most TS mRNAs of each tissue
are non-empty, and except for one tissue (Urinarybladder), statistically significant with

166



6.4 discussion

an 𝛼 level of 0.01. While most tissues have similar ranking trends for their overlaps of
TS genes and correlation between their proteomics and transcriptomics, either high levels
(e.g. Liver, Testis or Pancreas), medium (e.g. Prostate) or low ones (Urinarybladder, Lung or
Gallbladder), other tissues have not.

Regarding the gene-centric analyses, they show that about 6% of the mRNAs/proteins are
highly correlated (𝑟 ≥ 0.8), about 18% of them are well correlated (0.8 > 𝑟 ≥ 0.5), about
75% of them are poorly correlated (0.5 > 𝑟 ≥ −0.5), and less than 1% of the pairs are
anticorrelated (−0.5 > 𝑟 ≥ −0.83).

A fourth of the genes included in this study have a TS protein. Most of them have a Pearson
correlation above 0.5, and they considerably enrich the set of most correlated pairs of
mRNAs and proteins. However, their correlation range remains rather wide (−0.77 ≤
𝑟 ≤ 1).

Finally, using a GO enrichment analysis, I have investigated whether the three groups of
mRNA/protein pairs (the ones with a TS protein, the best correlated pairs and the most
anticorrelated ones) are related to any biological or technical reason.

While the most correlated pairs and the ones including a TS protein present an enrichment
in biological process (BP), molecular function (MF) and cellular component (CC) terms, the
anticorrelated pairs present an enrichment only in BP terms. Overall, the most correlated
mRNA/protein pairs seem highly associated with catabolic processes; the pairs with a TS
protein are most likely involved with specific signalling (its detection, transduction or
answer) and more concentrated in the transmembrane area. The most anticorrelated pairs
are enriched in regulation processes.

On top of the true relationship between the expression of the mRNAs and proteins,
correlations are dependent on the quantification of identified molecules. In general,
while many biological reasons (e.g. protein degradation) can lead to midrange or low
correlation levels, other technical artefacts may also be at play: saturation effect of more
abundant proteins (see Section 1.3.2); degenerate peptides (see Section 1.3.4.3);
quantification inconsistencies between methods; platforms and studies [Dapas et al.,
2017; Aebersold, Agar, et al., 2018]; annotation, or other oft-neglected sources, e.g. gene
or isoform length.

One example where the annotation might be at fault is STAU2 (Pearson 𝑟 = −0.59;
Spearman 𝜌 = −0.65), which appears to be known to have different annotations in
the proteomic and transcriptomic communities. Thus, STAU2’s anticorrelation observed
between its mRNA and protein expressions might predominantly result from artefacts
rather than any biological cause.

Normalisation methods for RNA-Seq require the genes or transcripts length (see
Section 1.2.5.4). To keep congruity with the gene length employed by EBI Gene
Expression Atlas¹¹ [Petryszak, Keays, et al., 2015], I use the sum of the lengths of all its

11 EBI Gene Expression Atlas — https://www.ebi.ac.uk/gxa/home/
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collapsed exons, which is graciously provided by the metapipeline iRAP¹² [Fonseca,
Petryszak, et al., 2014].

Although, each gene has various mRNA isoforms [Gonzàlez-Porta, 2014] and
proteoforms [Aebersold, Agar, et al., 2018] I chose to perform all the analyses at
gene-level expression (see p. 67) due to the many existing criticisms about current
algorithms’ accuracy with isoforms [Engström et al., 2013; Jänes et al., 2015; Dapas et al.,
2017].

Yet, most genes present one dominant transcript [Gonzàlez-Porta et al., 2013]. One
possible method to improve the mRNA/protein correlations is to identify the most
dominant transcript isoform of each gene and use their length for the normalisation.
This method ought to be rather easy to implement, either with the help of resources like
APPRIS¹³ [Rodriguez et al., 2018] or through a direct data analysis. More generally,
besides improving current results, (even partial) better identification of the mRNAs and
proteins isoforms will most likely unveil still undetected divergences.

In terms of the true relationship between the expression of mRNAs and proteins, it is
imperative to remember that the proteome and the transcriptome I use in the analyses
are independently sourced and aggregated over several individuals. Therefore, some
genes displaying mixed correlation in this thesis may present high correlation or
anticorrelation in matched samples. The most affected genes are the most sensitive ones
to inter-individual variation and batch effects. On the other hand, the highly correlated
(or anticorrelated) pairs highlighted above are more likely having a robust expression
across individuals and time, while being less subject to technical noise.

Among the studies published during my thesis’ works, three are most notably pertinent to
the integration and comparison analyses I have outlined above.

A first published comparison [Kosti et al., 2016] of the expression data of GTEx [Melé et
al., 2015] and the Pandey Lab [M.-S. Kim et al., 2014] provides weaker results than the
above-presented ones as the authors have based their complete study on data provided as-
is by the primary studies. Overall, the range of Spearman correlation they present for the
tissues does not exceed 𝜌 = 0.5. Additionally, this study also fails to show any functional
enrichment in their selection of matched pairs of mRNA and protein. Hence, although
these primary data resources are useful for others to appraise the presence of a given
gene in a particular tissue, more thorough uses need more considerations and probably
preliminary treatments.

Franks et al. (2017) integrate a subset of the Uhlén data included in this chapter analyses as
they have extracted their transcriptomic data as-is from Fagerberg et al. (2014) to integrate
it with the data they have reprocessed from Pandey Lab data [M.-S. Kim et al., 2014] and
Wilhelm et al. (2014). The study’s primary aim is to quantify the post-transcriptional
regulation of the genes through their translational efficiency. To this end, they compute

12 iRAP — https://nunofonseca.github.io/irap/
13 APPRIS — http://appris-tools.org/
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for each gene a protein-to-mRNA (PTR). PTRs ease the assessment of the gene expression
variability across their set of tissues. This study underlines the utmost caution required
when one considers the transcriptome as a possible proxy for the proteome. It also reminds
that data quality and reliability are primary caveats for possible analyses. Franks et al.
(2017) also show that genes from the same set of GO terms display similar relative protein-
to-mRNA (rPTR) profile across tissues, i.e. they have higher and lower rPTR in the same
tissue sets. This observation suggests concerted functional regulations.

Overall, the results presented in this thesis are confirmed and unsurprisingly improved
by D. Wang et al. (2019) since they have matching samples (same sources) for the
proteomics and transcriptomics. Moreover, there are many biological replicates per
tissue. In that follow-up study, the authors have generated proteomics data¹⁴ from the
original samples they had used to produce transcriptomic data¹⁵ [Uhlén, Fagerberg, et al.,
2015], which I am using in this thesis, including this chapter. While the (Spearman)
correlation between the transcriptome and proteome of each tissue has a similar range
globally, the expression of an mRNA and its protein across the tissues have a positive
correlation in about 90% of all cases and half of them are statistically significant. They
also report that there is a core set of ubiquitously expressed pairs of mRNA/protein and
that key differences between tissues are more characterised by the level of expression of
the molecules rather than their presence or absence. When they compare the highest
expressed proteins and mRNAs, they observe a limited overlap that, in my opinion,
further confirms that TS genes are more pertinent for integration than the highest
expressed genes. They observed that while disease-associated genes are expressed more
globally, G protein-coupled receptors are mostly restricted to specific tissues, and are
often identified drug targets. Finally, the authors point out that part of the observed
discrepancies in the proteomic and transcriptomic expression may be due to the
difference in strategies of each community on how to handle the degenerate peptides or
multireads. Our PPKM quantification presented in Section 5.2 is one solution to this
issue, and it proves to improve the results, particularly for the Pearson correlation.

A companion study, by Eraslan et al. (2019), reports that mRNA expression variation
across a set of tissues is a better predictor for protein levels than considering all mRNAs
expression levels in a tissue. The authors have thus computed a protein-to-mRNA (PTR)
for over 11,500 genes. The study uses these PTR to model and probe possible regulatory
mechanisms. However, while Franks et al. (2017)’s PTRs may be partially miscalculated
because of the independent sampling sources, for Eraslan et al. (2019), there might be an
overfitting problem. Further analyses based on other datasets are required to ensure the
reproducibility of these results. They warn that for many genes, PTRs is only useful as a
gauge of the protein abundance magnitude order.

Considering the previous papers together with my results, I have similar correlation
levels for same-tissue pairs of independent proteomics and transcriptomics to the ones

14 The proteomic data can be retrieved in PRIDE ID: PXD010154 —
https://www.ebi.ac.uk/pride/archive/projects/PXD010154

15 ArrayExpress ID: E-MTAB-2836 — https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-2836/.
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for matched samples (i.e. collected from the same source) as I have processed the raw
data with consistency.

Despite many deployed efforts, Franks et al. (2017) and Eraslan et al. (2019) suggest that
predicting protein levels directly from mRNA levels is still unlikely at the moment.

However, GO information can be useful to appraise protein expression as confirmed in
the recent collaborative work I was involved. With the help of Dr Kārlis Freivalds, we
have shown that deep learning algorithms that include GO information can reasonably
predict the order of expression magnitude of missing proteins in a given label-free MS
proteomic study from RNA expression data. While our approach, described in [Barzine,
Freivalds, Wright et al. — Barzine et al., 2020], is not an imputation method, it can be used
in complement or instead of one.

Beyond any predictive interest, GO annotation, through enrichment analyses for
instance, can provide biological or mechanism insights and help the design of new
research avenues. Previous studies have reported similar results to the highest correlated
pairs of mRNA/protein that are enriched with catabolic genes, and the most
anticorrelated ones that are enriched for regulatory processes.

Vogel, Abreu, et al. (2010) have observed the highest protein-per-mRNA ratios for
mammalian metabolic genes. Several papers [Vogel and Marcotte, 2012; Schwanhäusser
et al., 2011] observe higher expression stability for RNAs and proteins related to
mammalian metabolism and a more rapid degradation tendency for proteins involved in
transcriptional regulation (and chromatin organisation). Furthermore, organs appear to
present different metabolic profiles [Berg et al., 2002], and, regardless of each individual’s
particulars (e.g. sex, alimentary diet, age, physical level), the expression of many
catabolic genes only varies according to the tissue.

Accepting the premise that, regardless of the tissue, a similar sequence of regulatory
steps apply to a gene (from its transcription to possible post-translational modifications),
taken together the above facts may suggest that the catabolic genes may have a more
straightforward modulation of their expression than the other genes. In organic
chemistry, it is well-known that the more a molecule requires steps to be produced,
lesser is its yield (i.e. final amount). One possible way to test this hypothesis is to explore
if the amount of substrate can regulate these genes’ expression levels. An indirect
approach can be the comparison across tissues of the co-expression profiles of these
catabolic genes with others involved with the active or passive transport of the
molecules to be degraded (e.g. transmembrane channel proteins).

Another research avenue can be the exploration of possible links between the
tissue-specific (TS) genes and the G protein-coupled receptors.
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6.5 conclusion

Despite possible batch effects and technical noise, a part of the biological signal is strong
enough to be consistently captured by the transcriptome and proteome through direct and
indirect analyses.

At tissue level, the independent transcriptomics and proteomics included in these
analyses give similar Spearman or Pearson correlation to samples produced from the
same biological sources. The signal appears stronger for more homogeneous tissues, e.g.
Liver, or which expression is more distinctive, e.g. Testis.

In any cases, a significant number of tissue-specific (TS) genes are consistently shared
between proteome and transcriptome. Besides, even indirect analyses, such as hierarchical
clustering trees created with genes that are only shared by two tissues, can highlight
identical structures between the two biological layers.

On the other hand, the gene-centric analyses have shown that while only 24% of the
mRNA/protein pairs are well correlated (r>0.8), most (about 73%) have a positive
correlation for their expression. While the highest correlated genes are enriched in TS
proteins, many of them are expressed ubiquitously.

The GO enrichment analysis highlights that genes presenting a TS protein are enriched
in specific signalling, genes with the highest correlated mRNA/protein pairs in catabolic
processes and genes with the most anticorrelated ones in regulatory processes.

Providing proper care and consistent processing, onemay use these independent resources
as part of their study to achieve lower but still significant results.

Results can improve from better identification and quantification alone. A possible
approach can be the standardisation of annotations between communities. Optimisation
or new algorithmic strategies are other ones as illustrated by our PPKM quantification
applied for this thesis’ works.
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Has been done. Can be done. Must be done…
Fandarel [McCaffrey, 1964]

7 CONCLUD ING REMARKS

At the time I started my doctorate, an increasing number of gene expression datasets
assaying undiseased human tissues for RNA expression were published. In addition, the
first genome wide MS-proteomics studies were performed soon after and raw data made
available. My primary aim was to integrate and compare these data, first, on RNA level,
and second, to compare RNA and protein expression. I concluded that the published RNA
measurements were robust and different datasets were highly consistent when processed
uniformly. I also found that correlation between RNA and protein expressionwas typically
higher than 0.5, though different groups of genes behaved differently and correlation in
some tissues was better than others. Lately, the focus of RNA gene expression studies
has been shifting towards single cell level, however genome wide proteomics studies are
still in their infancy. Therefore, comparative studies of genome wide transcriptomics and
proteomics data on whole tissue level are of significant interest.

summary

In Chapter 1, I reviewed the biological, chemical and bioinformatic aspects and challenges
involved in expression studies based on the high-throughput technologies of RNA-Seq for
mRNAs and MS for proteins.

Then in Chapter 2, I presented the five transcriptomic and three proteomics studies that I
have considered for this thesis. I also described the pipelines with which I have processed
them. Since for each dataset the number and size of files are extremely large, automation
is paramount to ensure consistency and minimise errors.

I detailed in Chapter 3 various data quality controls and statistical approaches. I also
discussed possible biases and how the contextual scope of the tissues and genes
considered for analyses can influence results. To minimise errors due to context issues, I
limited most of my further investigations to a common subset of tissues and expressed
genes. Normalisation methods are still inadequate to treat mitochondria genes
accurately. Therefore, I chose to remove them from most analyses, which led to better
results as it allowed me to integrate samples that the original authors had to discard
because of their lack of congruency with the other samples of the same tissue.
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In Chapter 4, I integrated the five independent transcriptomic datasets and showed that
the biological signal dominates the technical noise. All datasets have a higher interstudy
correlation for the same tissues than any intrastudy correlation for different tissues. This
trend is stronger for more recent studies. I tested various criteria as possible driving
forces of the high interstudy tissue correlations. I found that the most variable genes
and tissue-specific (TS) genes are more robustly identified across studies than the highest
expressed ones. Besides, I also noted that the inclusion of external resources, especially
when outdated like TiGER [X. Liu et al., 2008], requires caution. Many listed genes are
either wrongly attributed to a tissue or lack to display any specificity and many TS genes
highlighted by RNA-Seq are missing. Overall, the integration has revealed that genes
present identical general profiles across the studies, even though direct comparisons of
independent data may be still impossible. By repeatedly showing that genes show a similar
expression profile for a tissue across studies, my analyses prompted the creation of the
heatmap visualising expression data and its associated widget for baseline expression data
in EBI Expression Atlas¹ [Petryszak, Keays, et al., 2015]. Finally, I provided a core set of
genes that are expressed ubiquitously or as TS consistently across all studies.

The comparison of three available proteomic datasets in Chapter 5 illustrates the
fragmentation and the disparity of the high-throughput MS-based proteomics. MS
detection variability induces considerable technological noise, which explains the
intrastudy correlations I observed between different tissues are higher than the
interstudy correlation for the same tissues. I provided curated sets of the TS and
ubiquitous detected proteins. Finally, with the help of Dr James Wright, I have devised
the PPKM quantification method, which quantifies more proteins by also accounting for
degenerated peptides.

Chapter 6 reported the integration of the independent proteomic and transcriptomic data.
Regardless of the quantificationmethod, I found similar Spearman correlation levels for the
included independent studies to those typically observed in the literature for same-sourced
proteome and transcriptome source. While proteomic standard state-of-art processing
leads to very low Pearson correlation: 0.04 ≤ 𝑟 ≤ 0.28, our PPKM quantification broadly
improves this range (0.38 ≤ 𝑟 ≤ 0.61). Two tissues, Testis and Liver, have exhibited
distinct characteristics across the various analyses that are supported by the literature.
Testis has the most diverse and specific expression at both transcriptomic and proteomic
levels. On the other hand, Liver has the most robust expression across studies and the
highest correlation between its mRNAs and proteins expression levels. However, there are
shared coherent gene signatures across tissues between the proteome and transcriptome.
Furthermore, even indirect analyses can capture part of the biological signal. The tissue
specificity of proteins and mRNAs are globally more relevant than their expression levels.
In addition to the significant overlaps of TS proteins with the most TS mRNAs, most genes
with a TS protein have a high correlation between their mRNA and protein expression
across tissues. GO analyses show distinct profiles for three gene lists of interest. First,
the genes with a TS protein are enriched for specific signalling, including signal detection,

1 EBI Expression Atlas — https://www.ebi.ac.uk/gxa/home
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response pathway and regulation. Second, the geneswith the highest correlations between
their mRNA and protein expression are enriched for catabolic processes. Thirdly, the
genes with the highest anticorrelation between their mRNA and protein expression have
shown enrichment for ribosome complexes and ncRNAs regulation. I provide (digitally)
the complete set of mRNA/protein pairs with their correlation across the common set of
tissues. I also supply the list of overlapping TS proteins and mRNAs.

practical challenges

Throughout this thesis’ analyses, I had to overcomemany practical challenges. While most
of the difficulties encountered ordinarily pertain to Big data projects, one unexpected issue
was the current global complexity state of the proteomic world.

Proteomics: a hard field to grasp by newcomers

While constituting a technical obstacle, the characterisation of proteins (or assimilated
complexes) is a strong interest for many fields (e.g. molecular biology, medicine, drug
design, green chemistry). As shown in Section 1.3, the physicochemical properties of the
proteins make them intrinsically complex to study, which can partly explain the
complexity of the theoretical approaches. Understanding high-throughput proteomics
requires many prerequisites. However, there is a lack of a clearly identified entry-level
document reviewing the field from the bench to normalised protein levels. The available
teaching materials are mostly practical or experimental oriented [Y. Zhang, Fonslow,
et al., 2013; Z. Zhang et al., 2014; Domon et al., 2010] or on particular steps, e.g. protein
inference [He et al., 2016]. The scattered information hampers the ability of newcomers
to achieve a global vision of high-throughput proteomics.

Big data Challenges

Big data is often characterised through, what was first defined by IBM², the 4 V’s: volume,
variety, veracity and velocity. Each of them can entail issues at different project levels.

Volume

The volume of files (see Table 2.2) to handle and process just for the transcriptomics is
overwhelming. It requires appropriately dimensioned infrastructure like in the EBI, which
can provide high-throughput computing. It is in practice impossible to reproduce the
complete work underlying this thesis in a personal computer within a reasonable time.
Although (commercial) solutions are increasingly in use for academic projects, dedicated

2 https://www.ibmbigdatahub.com/infographic/four-vs-big-data
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storage, and high computing facilities ease the analyses considerably and allow more in-
depth testing. Even if best practices are continuously refined for transcriptomics, there are
still many factors that can be improved and tuned. Besides the raw data, storage capacity
is also required for the intermediate and final files. Organising such a large amount of data
was time-consuming and challenging at times.

Variety

The variety of the type of input data files is kept to a minimum as the data was retrieved
from public or academic repositories that follow community guidelines³. Issues still ensued
from the matching of samples or tissues across the studies. For many tissues, I chose to
mix several ‘body parts’ from the same tissue or organ (e.g. ‘Left Ventricle’ and ‘Atrial
Appendage’ for Heart) in GTEx to match them to the other studies’ tissues. Perhaps, in
some case, one ‘body part’ is perfectly matched to the samples from another study where
the authors have only reported the tissue instead. Hence, for these cases, keeping only one
of the ‘body parts’ would have been a better choice if additional data had been available.

Another source of variety that I have limited in the above work is the diverse annotation
versions. Even when mapped to the same genome and annotation versions, discrepancies
persist between how transcriptomics and proteomics are defined and assigned to the genes.
A possible improvement of the present work will be to develop new quantification tools
that use the chromosome coordinates to which mRNAs and proteins map instead of using
their gene identifiers.

Veracity

With all possible tunable parameters for the raw data processing, the data to be integrated
can vary widely. Although I have tried a limited number of combinations, my study shows
that the results’ trend remains the same regardless of the chosen settings. Moreover, as
the number of datasets I included in my analyses grows, the results became increasingly
more stable. Many of them are also confirmed by the literature, adding credibility and
confidence to the findings, especially considering the recent discussions on reproducibility
crisis [Morrison, 2014; Glenn Begley et al., 2015; Goodman et al., 2016; Fatovich et al., 2017;
Coiera et al., 2018; Lindner et al., 2018]. However, results for individual genes can vary
from one set of settings to another one, and need to be considered with more caution.

Velocity

Finally, the velocity of new data availability and the required preparation time made the
prospect of including all the latest studies in my analyses impractical. Unfortunately,
although new GTEx samples or other tissue studies (e.g. Oncobox Atlas of Normal Tissue
Expression (ANTE) [Suntsova et al., 2019]) kept being released, I had to stop including

3 ENA for the sequencing data and ProteomeXchange for MS/MS proteomics.
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them in my study. Likewise, I ceased updating the genome and annotation and settled for
GRCh38.p1 and Ensembl 76.

My resolving approach

To minimise errors, assure consistency and ease future reiterations or extension of these
analyses, I provide script files that can reproduce the whole study and its results. I have
also automated and structured the analyses throughmodular functions asmuch as possible.
I have avoided any manual change and have documented all the name change and sample
pairings in the scripts. I provide the necessary code to replicate all of the above (and
complementary) results as supplementary material⁴.

I chose to develop the analyses with open-source software around the programming
language R⁵ [R Core Team, 2019]. See Appendix F for the complete list of R packages
involved in this work. This language provides statistical and visualisation functions and
is easily expanded through packages developed by the community. While packages are
allowing to easily built on previous work, they can be highly interdependent and may
evolve rapidly. To draw from an extra package (or fix an identified bug), a
comprehensive and time-consuming update of the working environment will often
ensue. In turn, I had also to update or rewrite my analyses’ code on many occasions.
Furthermore, new software installations or updates are more complicated for distributed
computing facilities than on a personal computer. Today, new solutions are developed to
facilitate these tasks (e.g. Packrat [Ushey et al., 2018] that create isolated environment)
and, hopefully, this burden will be significantly lowered.

Note that Dr Nuno Fonseca, who provided me with the quantification of the GTEx data,
and Dr James Wright, who provided me with the proteomics ones, have also both
developed their processing pipelines with open-source software. Hence, the entirety of
the thesis can be repeated (conditionally upon access to GTEx data and high-throughput
computing facilities).

future works

Many improvements are conceivable:

• The inclusion of new samples and dataset of transcriptomics (preferably with
biological replicates), e.g. extend to the last version of GTEx and the ANTE
dataset [Suntsova et al., 2019].

• Add the matching proteomics of D. Wang et al. (2019) to the transcriptomic Uhlén
data [Uhlén, Fagerberg, et al., 2015] and then compare the results to the unmatched
samples.

4 https://github.com/barzine/BaselineAtlas/tree/thesis
5 R — https://cran.r-project.org
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• Work on new models of annotation or build a consensus between the current
transcriptomic and proteomic annotations. Today, it is difficult to determine for
some genes if the observed anticorrelation or lack of correlation between the
mRNA and protein expression levels is due to the biology, batch effects or
divergences between transcriptomic and proteomic annotations.

• Changing the quantification (parameters or methods) may also give better results.

New quantification proposal for baseline studies

Most normalised quantification methods are designed for differential expression studies,
particularly in transcriptomics [Dillies et al., 2013]. Most of these methods are built with
the premise that only a limited number of genes present a differential expression across
conditions while most gene expressions remain unaffected by the context [P. Li et al., 2015].
As a result, most normalisations are ill-suited for comparing independent samples across
multiple studies. Two normalisationmethods do not imply any preconception on the study
design: FPKM [Mortazavi et al., 2008; Trapnell et al., 2010] (see Section 1.2.5.4), which I use
in this thesis, and TPM (Transcript per Million)⁶ [Wagner et al., 2012]. Both normalisation
methods account for the global library size of each sample. While the motivation is sound,
the quantification is thus contextual to how many and how much RNAs are detected.

Previous efforts to improve the quantification have focused on differential expression
studies. Synthetic spike-in molecules [L. Jiang et al., 2011] ensure more reliable quality
controls. However, while theoretically plausible, accurate absolute quantification for the
whole dynamic expression range has yet to be reached [L. Jiang et al., 2011; SEQC/MAQC-
III Consortium, 2014; Hardwick et al., 2017]. Furthermore, spike-ins fail to permit the
absolute quantification of the other molecules in the sample. Incidentally, Rudnick et al.
(2014) find that spike-in proteins and peptides lack effectiveness for proteomic studies. For
proteomics, Wiśniewski, Hein, et al. (2014) propose to use the histone to create a ‘proteomic
ruler’. They can assess through this proteomic ruler the amount of DNA in the sample, and
thus, give an estimate on the cell number, which provides some context to interpret the
quantification of the proteins. Histone genes are, however, ill-suited for bulk RNA-Seq
studies [Zhao et al., 2018].

I firmly believe that using internal standards chosen within the naturally expressed
population of the studied macromolecules is more appropriate than any external additive.
I expect that giving each gene (RNA or protein) expression as a ratio of the expression of
a reference gene will be more robust. It will free the expression from the influence of the
presence of quantification of any other gene while it will still account for the difference
of sequencing depth between samples. Then, the next question is: ‘Which gene (or set of
genes) will possibly enable the best normalisation?’

6 FPKM is easily converted to TPM by scaling with a constant to correct the sum of all values in a library to 1
million.
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Through this thesis’ various analyses, I have highlighted genes that have a robust and
ubiquitous expression across all the studied tissues both at transcriptomic and proteomic
levels. Moreover, many genes present high correlation coefficients between the expression
of their mRNA and protein. These genes are the best potential candidates as reference.
With Dr Nuno Fonseca, we have performed preliminary analyses in this direction across
other studies to reduce the list of these candidates.

However, considering the best practices in analytical chemistry [Arvid, 1997], a set of
standards that can cover the complete dynamic expression ranges of the considered
molecules and adjust for the saturation effects, may resolve the abundances better, and
thus, be better suited than a single reference. On the other hand, studies focusing on a
single tissue may better benefit from a reference built on TS genes.

The recent development of single-cell transcriptomics (scRNA-Seq) [G. Chen, Ning, et al.,
2019], and the probable feasibility of single cells proteomics [Marx, 2019], may ease refining
which genes are the most suitable as universal references, or for specific conditions.

Ongoing implementation of an application

Integrating proteomics and transcriptomics remains laborious, and results can be mixed.
Nonetheless, even simple comparisons can help to improve our general knowledge and
current biological models. For instance, in one of our papers [Wright, Mudge, et al., 2016],
we have confirmed the existence of putative proteins by observing coverage of the genome
both by transcriptomics and proteomics.

To help further possible projects, I am currently compiling the different analyses into a
set of interactive applications that can replicate all the results and figures presented in
this thesis without requiring any programming skill as a prerequisite. Figure 7.1 covers
Chapter 3⁷.

Once completed, one will be able to analyse and compare their own data to the different
datasets I have presented in this thesis. Furthermore, I share all my code (including for the
application) under a creative commons license, Attribution 4.0 International (CC BY 4.0)

⁸. Anyone can thus use, adapt or build upon this work as they wish.

7 For a live demo, see http://barzine.net/shiny/mitra/thesis/chapter3/.
8 Attribution 4.0 International (CC BY 4.0) — https://creativecommons.org/licenses/by/4.0
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Figure 7.1. Preview of the application developed with R and served through a shiny
server [Chang et al., 2019].
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A SUPPLEMENTARY MATER IAL FOR
CHAPTER 1

a.1 amino acids

As shown in Figure A.1, the amino acids have different chemical properties. Their primary
and side chains are respectively shown in black and green. The amino acids all share the
same primary chain.

Figure A.1. Amino acids formulas — from Morris et al. (2016)
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Table A.1. Molecular weight of the most common aas and their residues (from Lide,
2005)

Name Abbr. Molecular
Formula

Molecular
Weight

Residue
Formula

Residue Weight
(-H2O)

Alanine Ala A C3H7NO2 89.10 C3H5NO 71.08
Arginine Arg R C6H14N4O2 174.20 C6H12N4O 156.19
Asparagine Asn N C4H8N2O3 132.12 C4H6N2O2 114.11
Aspartic acid Asp D C4H7NO4 133.11 C4H5NO3 115.09
Cysteine Cys C C3H7NO2S 121.16 C3H5NOS 103.15
Glutamic acid Glu E C5H9NO4 147.13 C5H7NO3 129.12
Glutamine Gln Q C5H10N2O3 146.15 C5H8N2O2 128.13
Glycine Gly G C2H5NO2 75.07 C2H3NO 57.05
Histidine His H C6H9N3O2 155.16 C6H7N3O 137.14
Hydroxyproline Hyp O C5H9NO3 131.13 C5H7NO2 113.11
Isoleucine Ile I C6H13NO2 131.18 C6H11NO 113.16
Leucine Leu L C6H13NO2 131.18 C6H11NO 113.16
Lysine Lys K C6H14N2O2 146.19 C6H12N2O 128.18
Methionine Met M C5H11NO2S 149.21 C5H9NOS 131.20
Phenylalanine Phe F C9H11NO2 165.19 C9H9NO 147.18
Proline Pro P C5H9NO2 115.13 C5H7NO 97.12
Pyroglutamatic Glp U C5H7NO3 139.11 C5H5NO2 121.09
Serine Ser S C3H7NO3 105.09 C3H5NO2 87.08
Threonine Thr T C4H9NO3 119.12 C4H7NO2 101.11
Tryptophan Trp W C11H12N2O2 204.23 C11H10N2O 186.22
Tyrosine Tyr Y C9H11NO3 181.19 C9H9NO2 163.18
Valine Val V C5H11NO2 117.15 C5H9NO 99.13
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a.2 original material

To create Figure 1.1, I used original material by Kelvinsong
(https://commons.wikimedia.org/wiki/User:Kelvinsong): ‘Simplified diagram of mRNA
synthesis and processing. Enzymes not shown.’
(https://commons.wikimedia.org/wiki/File:MRNA.svg) and ‘Protein synthesis’
(https://commons.wikimedia.org/wiki/File:Protein_synthesis.svg).

a.3 expressed sequence tag (est) sequencing

ESTs are short nucleotide sequence generated from randomly selected RNA
transcript [Parkinson et al., 2009]. mRNAs are reverse transcribed into double-stranded
cDNAs (either from the 5’ or 3’ end of the transcript) [Lowe et al., 2017]. These cDNAs
are cloned to create libraries [Harbers, 2008] and then sequenced either by Sanger
method [Sanger et al., 1975] or a more high-throughput one such as the
sequencing-by-synthesis (Section 1.2.3). Although this technique is subject to sampling
bias [Nagaraj et al., 2007] and often account for only 60% of an organism expressed
genes [Bonaldo et al., 1996], it remains a relatively low cost alternative approach to study
the transcriptome (gene discovery).

a.4 microarrays

Microarrays require prior knowledge (e.g. annotated genome or ESTs libraries) of the
organism of interest as they exploit it to design probes (short nucleotide oligomers) that
are arrayed on a solid support (e.g. a glass or silicon thin film cell) [Lowe et al., 2017;
Schena et al., 1995; Bumgarner, 2013]. For transcriptome profiling, the expressed RNAs
are first reverse transcribed into cDNAs (also referred as targets) and then, after being
fluorescently labelled, they are complimentary hybridised to the microarray probes; the
relative abundance of the transcripts is assessed by measuring the intensity of the
fluorescence after the excess of unhybridised cDNAs is washed away [Lowe et al., 2017].
This technology is extremely powerful and popular as it allows global and parallel
analyses of cellular activity. Microarray technology also has many variations [Hoheisel,
2006] in addition to its original cDNA version for transcriptional profiling [Schena et al.,
1995], e.g. for genotyping [D. G. Wang et al., 1998; Gunderson et al., 2006], protein
profiling [Hall et al., 2007; Sutandy et al., 2013; Duarte et al., 2017], splice-variant
analysis [Cuperlovic-Culf et al., 2006] or transcription factor binding [Bulyk et al., 2002;
Bulyk, 2007] studies.
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a.5 fastq format

@ERR030856.1 HWI-BRUNOP16X_0001:1:1:2669:1073#0/1

AAAGGATTATGCAGANGTAGGGCGTGTNNNNNNNNNNNNNGGCTGGGGNNNNNNNNNNNNNNNNNNATNNNCTGACCANCTGAAGTATGTCANGCTGCCT

+
HHHHHHHIHHFFFFF#>>@>GGGFG###########################################################################

@ERR030856.2 HWI-BRUNOP16X_0001:1:1:4476:1072#0/1

GATAGATTATCAGAANGACAGTTACTTNNNNNNNNNNNNNGGGCACTTNNNNNNNNNNNNNNNNNNATNNNTCATAAGNNCTGTTGCCAAATNAGTGATA

+
HHHHHHHHHHDDDDD#@@AAGGGGG###########################################################################

Legend:
• Read identifier
• Optional information (here flow cell lane:tile number:x:y:z)
• First member of pair (here) or single-end
• Nucleotide sequence of the read
• Separator (+ or any string of character)
• Phred score (here Phred 33)

Figure A.2. FASTQ format

a.6 phred score

Table A.2. Phred quality score to accuracy significance

Phred quality
score (𝑄)

Probability of
incorrect
base call

Base call
accuracy

10 1 in 10 90%
20 1 in 100 99%
30 1 in 1,000 99.9%
40 1 in 10,000 99.99%

The Phred quality score can be encoded in several standards as shown in Figure A.3.
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SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS.....................................................
..........................XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX......................
...............................IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII......................
.................................JJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJJ......................
LLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLL....................................................
!"#\$\%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~
| | | | | |
33 59 64 73 104 126
0........................26...31.......40

-5....0........9.............................40
0........9.............................40

3.....9.............................40
0........................26...31........41

S - Sanger Phred+33, raw reads scores between 0 and 40
X - Solexa Phred+64, raw reads scores between -5 and 40
I - Illumina 1.3+ Phred+64, raw reads scores between 0 and 40
J - Illumina 1.5+ Phred+64, raw reads scores between 3 and 40

with 0=unused, 1=unused, 2=Read segment Quality Control Indicator
L - Illumina 1.8+ Phred+33, raw reads scores between 0 and 41

Figure A.3. The available Phred score quality score encoding formats

Figure A.4. Overlap resolution effects for each HTSeq-count mode. Each mode
resolves a number of overlap situations differently. The mode used in
this thesis is the intersection non-empty mode. This specific mode resolves
more situations than the two others. Hence, the loss of ambiguous reads is
reduced in this mode. [Adaptated from HTseq documentation: http://www-
huber.embl.de/HTSeq/doc/count.html]
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Table A.3. FPKM are unsuitable for differential expression analysis
Sample 1 Sample 2

raw counts normalised counts raw counts normalised counts

𝐺𝑒𝑛𝑒1 100 0.010 80 0.008
𝐺𝑒𝑛𝑒2 100 0.010 80 0.008

… … … … …
𝐺𝑒𝑛𝑒𝑖 100 0.010 80 0.008
𝐺𝑒𝑛𝑒𝑖+1 0 0 2000 0.2

Total number
of fragments (𝐹 ) 10,000 1 10,000 1

a.7 mass analysers

See Haag (2016) for more details on other types of analysers.

Quadrupole analyser

It is one of the most popular analysers as they are cheap compared to the others. They
are also compact, durable and reliable. The quadrupole analyser can filter the ions based
on their difference of 𝑚/𝑧. They are adequately named quadrupole as they comprise
four cylindrical or hyperbolic rods in parallel to each other. Opposite rods are connected
together electrically and radio frequency (RF) potential is applied. A direct current (DC)
potential is superimposed on the RF one. These combinations of RF and DC potentials
constrain the ions to oscillate between the rods as they pass through them. Hence, by
tuning the RF and DC, it is easy to select for which range of 𝑚/𝑧 ions will have a stable
trajectory and thus the only one detected. Indeed, the ions with unstable trajectory will
collide with the rods and be ‘filtered’ out. If used in ‘RF-only’ mode (DC reduced to a
minimum), the quadrupole may have other applications. For example, it can guide specific
𝑚/𝑧 ions to other areas (while the bulk of ions will remain trapped). It may also be
used as collision cells for CID: by introducing an inert gas and tuning with the RF-energy,
the amount of fragmentation undergone by the targeted ions can be precisely controlled.
[Haag, 2016]
The quadrupole analyser is also qualified as the mass filter.

Linear trap quadrupole (LTQ)

LTQ is a particular kind of linear ion trap (LIT) which is in principle a sort of a
quadrupole mass analyser [Z. Zhang et al., 2014]. A LTQ uses a set of quadrupole rods
and a two-dimensional RF field confines the ions radially. In addition, a static electrical
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potential is applied to end electrodes which forbid the ions to escape axially. However,
the quadrupole is commonly segmented into three parts which ensure a perfect
homogeneity of the electric field of the trap area and thus avoiding ion loss when the
trapping is done. While they may be used as an ion trap, they may be also used as a
simple mass filter. RF voltage is tuned to produce multi-frequency resonance ejection
waveforms are applied as to eliminate all the undesirable ions in the trap before the
fragmentation and mass analysis of the remaining ones. Frequently, these LTQs are used
as a front-end to other mass analysers as they have high injection efficiencies and high
ion storage capacities. They may be equipped then with two biased radial ejection slits
and then be used with two detectors hence the signal-to-noise ratio may be
doubled.

Compared with other traps, linear ion traps provide an enhanced dynamic range with
a reduced low mass cut-off as the ion cloud is spatially distributed on a linear axis and
not a 3D centre which improves the sensitivity. And then, for example, the ions may
then be accumulated before being released into another mass analyser [Madalinski et al.,
2008].

Orbitrap™

It is a very recent analyser and it relies on FT. Recently, there is increasing use of FTMSs
for proteomic studies. Indeed, these FTMSs are more precise than previous analysers and
allow the detection of a greater range of ions in very short lapses of time [Scigelova et al.,
2011]. In this kind of analyser, ions are trapped and both orbit around and oscillate in an
electrostatic field between an inner and outer part of a central electrode shaped as a spindle.
The ions can only move following the spindle long axis [Makarov, 2000]. While moving
around the spindle the ions create a current. The outer part of the spindle records images of
this current. Fourier transformation of these images allows obtaining very highly accurate
and sensitivemass spectra for a greater dynamic range thanmost of the other analysers. [Q.
Hu et al., 2005]

LTQ-Orbitrap™

It is a hybrid (tandem) mass spectrometer that uses ESI for the ionisation step and has an
LTQ as a first analyser (MS1) and an Orbitrap™ as a second one (MS2). This MS/MS
enables multiple levels of fragmentation for the elucidation of a wide range of peptides
and can be coupled with an ESI which is a continuous source of ionisation. This
instrument allows analysing proteomic samples optimally both in terms of starting
material, time [Scigelova et al., 2011] and provides ‘ultrahigh’ mass resolution, high mass
accuracy and enhanced dynamic range with respect to mass accuracy [Madalinski et al.,
2008].
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a.8 isotopes of common elements and their natural
frequency

Table A.4 lists the mass [Audi et al., 1993; Audi et al., 1995] and the percent natural
abundance [Rosman et al., 1998] for stable nuclides (i.e. atom distinctly characterised by
its number of protons (Z) and number of neutrons (N)) that may be found in DNAs,
RNAs and proteins.

Table A.4. Most common constitutive elements and their stable isotopes
found in DNAs, RNAs and proteins. Asterisks (*) mark abundances that
are not available. Adapted from [Audi et al., 1993; Audi et al., 1995; Rosman
et al., 1998]
z

(Atomic number) Name Isotope Mass atomic
(u)

Natural frequency
(%)

1 Hydrogen 1H 1.007825 99.9885
Deuterium 2H 2.014102 0.0115
Tritium 3H 3.016049 *

6 Carbon 12C 12.000000 98.93
13C 13.003355 1.07
14C 14.003242 *

7 Nitrogen 14N 14.003074 99.632
15N 15.000109 0.368

8 Oxygen 160 15.994915 99.757
170 16.999132 0.038
180 17.999160 0.205

15 Phosphorus 31P 30.973762 100
16 Sulphur 32S 31.972071 94.93

33S 32.971458 0.76
34S 33.967867 4.29
35S 35.967081 0.02

53 Iodine 127I 126.904468 100

a.9 hypothesis testing

a.9.1 ℋ0

In statistical testing, the null hypothesis ℋ0 is an answer to the intrinsic nature of
statistical calculation: the smaller a given interval is, the lower the probability of a simple
random draw in that interval. The null hypothesis can be of different natures. It is
generally formulated as an absence of difference between two objects to be compared, or
as an absence of relationship between two variables of a same population; its purpose is
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to be rejected. It is always opposed to another alternative hypothesis (ℋ1), which is
accepted when ℋ0 is rejected.

To test an hypothesis, one needs to construct a statistical model that can represent an ideal
form of the data if it were to be generated by random processes alone. This model is also
referred as the distribution under the null hypothesis. Then, the likelihood of the collected
(observed) data is computed. Finally, it is compared to the (random) probability determined
by the model to either accept ℋ0 or reject it if the observed data is very unlikely under
the null hypothesis. Usually a test statistic (i.e. quantity derived from the sample used
for the hypothesis testing) that measures the apparent departure from the null hypothesis
is compared to a value defined such as the probability of a ‘more extreme value’ is even
smaller under the null hypothesis. Prior to the analysis, an arbitrary level of significance
(or 𝛼) is set either to 0.1, 0.05, 0.01, 0.005 or 0.001, i.e. 10%, 5%, 1%, 0.5% or 0.1% risk to reject
ℋ0 by mistake.

Depending on whether the observed data is tested, case (1): in both direction, i.e. the data
is either greater or equal to the critical value (𝑥) or lesser or equal to the additive inverse
of the critical value (−𝑥), or, case (2) in one direction only, i.e., (for example) the data is
(only) greater or equal to the critical value (or the data is (only) lesser or equal to the critical
value), the statistical test is two-tailed (case 1) or one-tailed.

a.9.2 p-value

In statistical hypothesis testing, the p-value quantifies the statistical significance of results,
under the null hypothesis ℋ0 (see Appendix A.9.1). It allows rejecting (or not) ℋ0. The
p-value is the probability for a given statistical model of obtaining an equal value or an
even more extreme value than what has been observed when ℋ0 is true. Depending on
the situation, the more extreme value can mean:

One-tail event Left tail event Pr(𝑋 ≤ 𝑥 ∣ ℋ0)

Right tail event Pr(𝑋 ≥ 𝑥 ∣ ℋ0)

Two-tail event 2min(Pr(𝑋 ≤ 𝑥 ∣ ℋ0), Pr(𝑋 ≥ 𝑥 ∣ ℋ0))

The smaller is a p-value, the higher the significance, i.e. the stronger the evidence that ℋ0
has to be rejected. ℋ0 is rejected if the adequate probability is less than or equal to an
arbitrary pre-defined (i.e. prior to the analysis) threshold value 𝛼.

Under ℋ0, the assumption is that the p-values are uniformly distributed.
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a.9.3 q-value

A q-value is an adjusted p-value (which the calculation may or may not be based on
the p-value). In the context of multi-testing, i.e. when multiple simultaneous statistical
tests occur, the likelihood of rejecting ℋ0 due to a random sampling increases. To avoid
accepting the alternative hypothesis by mistake, the whole p-values collection is tested
and adjusted for false discovery rate. A q-value of 5% means that 5% of all the significant
results are actually false positives.

a.10 target decoy search database

For best effectiveness, decoy and target peptide sequence databases are searched with
the same parameters. Furthermore, to ensure that a wrong hit in the target database
and a hit in the decoy one are equally likely, the decoy sequences have to be as similar
as possible to the target ones (concerning aa frequencies and composition, length, mass,
charges, assigned scores). There are different ways to design the decoy sequences. For
example, by reversing the peptide or protein sequences, either with complete or pseudo-
reversion (where the last aa is kept in place). Alternatively, by using stochastic methods
on the target database such as the randomisation of the sequences or through the creation
of new ones based on aa frequencies, their length distribution, and their number in the
original database; Markovmodels [Gagniuc, 2017] are often used tomimic the closest target
sequences. Many studies explore and compare the different decoy creation methods [Elias
et al., 2007; G. Wang et al., 2009; Elias et al., 2010; Wright and Choudhary, 2016]. As for
the target database, the decoy sequences are digested in silico before the search. While
the search can be done independently on the target and the decoy databases [Blanco et al.,
2009], Elias and Gygi (2007) report that searching their resulting concatenation gives better
results.

Besides, the TDA approach can guide the selection of sensitive PSM attributes (e.g.,
elution time, charge, peptide length, score) as filtering criteria to discern correct
identifications [Elias et al., 2010].

a.11 psm validation with q-value and pep

A possible definition of PSM’s q-value is the minimal FDR threshold for which the PSM is
accepted as correct. As the q-values are derived from the FDR, which is specific to a PSM
collection, they are also (solely) specific to this collection. For example, Percolator
estimates the q-value by using the score distribution from the TDA. On the other hand,
posterior error probability (PEP) (also known as local FDR [Efron et al., 2001]) is the
probability of a PSM being incorrect; a PSM’s PEP is independent of the PSM collection.
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A classical approach to estimating PEPs uses training sets of target and decoy PSMs to
learn the parameters of a probability model (indispensable to compute the PEPs). Thus,
for each given score (of any collection), a specific PEP is associated. Choi et al. (2008)
showed that for a given collection, the sum of the PEPs is equal to the expected number
of incorrect PSMs, which allows calculating the (global) FDR.

a.12 protein inference: computational challenging step

To explain the computational challenges of the peptide assembly, T. Huang et al. (2012)
propose to start with two assumptions: (1) all (𝑚) peptides are true positive, and (2)
peptides have an equal probability of detectability. A first assumption corollary is the
presence of many homologous proteins in the sample.

Besides, one can derive from the first assumption that there are a minimal and a maximal
value for the number 𝑛 of proteins that can be identified from the set of 𝑚 peptides.
Returning the exhaustive list of proteins (i.e. 𝑛Max) that comprise all 𝑚 peptides (e.g. Tabb,
McDonald, et al. (2002)) is one possible solution, but it is much more difficult to calculate
the minimal list (i.e. 𝑛min) that does the same. As all the peptides 𝑚 are supposed to
be true, they have to be included in any of the final minimal list proteins. Therefore
inferring this protein list can be formulated as a set covering problem [Cormen et al., 2009;
Hochbaum, 1997]. The set covering problem is known to be NP-complete [van Leeuwen
et al., 1990], and for which it is in practice impossible to calculate an optimal solution.
Usually, algorithms approximate this solution through a parsimonious approach.

Many inference algorithms seek a compromise between the minimal and exhaustive lists
of possible proteins. While the minimal list probably excludes many true positives (but can
still include false positives), the exhaustive list is indisputably comprising a large number
of false positives as the parameters are set to maximise the number of peptide/proteins
matches; statistically, a subset of these matches are random. In the sequence database,
there are many proteins with the same peptidic sequence, e.g. a protein 𝐴, expressed in
one set of cells, and another, 𝐵, expressed only in another non-overlapping set of cells.
While a sample is only expressing 𝐴, an exhaustive solution will also report 𝐵 as one of
the proteins expressed in the sample. Statistically, the greater the size of the reference
database and the expression complexity of the sample, the greater is the number of false
positives in the results because of degenerate peptides.

On the other hand, if a peptide is associated to one unique protein in a database when
this peptide is identified with high confidence in a sample, it is extremely probable that
the protein is truly present. However, these one-hit wonders are also trickier because the
protein presence is reduced to the probability of the peptide to be a true positive instead
of an artefact. Even a greater number of MS/MS spectra supporting a peptide existence
is only the reflection of a remarkably low probability of the protein being absent in the
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sample.

In this hypothetical setting where all peptides are true positives and equally likely to be
detected, the inference is already challenging; it becomes even more complex with real
data. The minimal list can be shorter than the theoretical one as the identified peptides
can be false positives. On the other hand, proteomic platforms and pipelines tend to
repeatedly and consistently detect and quantify particular sets of peptides (proteotypic
peptides) [Mallick et al., 2007; Bergeron et al., 2007; Fusaro et al., 2009]. Thus, many
peptides are difficult to capture with MS. This has two implications.

First, many algorithms associate additional information to the bipartite peptide/protein
graph (shown in Figure 1.14) to improve the identification coverage. The algorithms can
exploit different data sources, e.g. raw and corrected PSM scores, single stage MS or raw
MS/MS spectra, peptide expression profiles, mRNA expression data, protein-protein
interaction network or gene model. T. Huang et al. (2012) propose that additional
information can further extend the exhaustive list of possible proteins.

Secondly, proteotypic peptides have led to the development of peptide detectability [Tang et
al., 2006; Alves et al., 2007], which can help to deal with degenerate peptides by attributing
probabilities to each peptide/protein assignment. Peptide detectability is considered as a
intrinsic peptide property. It is only determined by the peptide primary sequence and its
location within the protein.

Many different algorithms tackle this peptide assembly key step. T. Huang et al. (2012)
organise them in two categorisation frameworks: one based on the needed search engine
for the list of PSMs, the second one (presented in Figure A.5) based on the underlying
algorithmic technique.

T. Huang et al. (2012) describe parametric approaches as those that request prior
knowledge to estimate the peptides’ distribution. When there is no need for prior
knowledge, they describe the approach as non-parametric, even when the tool assesses
the peptide distribution by extracting information from the MS or MS/MS spectra.

a.13 bayesian inference

Bayesian inference is developed upon Bayes’ theorem, which allows the computation of
conditional probabilities, i.e. computation of the likelihood of an event happening given
prior known conditions, including the likelihood of another event being true.

Bayesian statistics focuses on the credibility of events happening rather than their
occurrence frequencies (as in frequentist statistics). See B. Li et al. (2019) for general
mathematical definitions of Bayesian inference models and Kurt (2019) for a layman’s
guide to Bayesian statistics.
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Figure A.5. T. Huang et al. (2012) peptide assembly models classification.
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b.1 correlation

Correlation can be considered as a scaled version of the covariance
(Equation (Covariance)) of two random variables. Correlation coefficients are
adimensional and varie in a restricted range [−1, 1]. While 1 and −1 mean a perfect
correlation (either positive or negative), a value equal to 0 expresses that the two
variables are not sharing any linear relationship. A value within (−1, 0) or (0, 1) needs
more interpretation. In gene expression studies, if the coefficient is within [−0.5, 0.5],
the variables are generally considered as independent.

Spearman and Pearson are only two methods to compute correlations among other
ones.

b.1.1 Spearman correlation

The Spearman correlation coefficient (usually noted as 𝜌) is more robust than the Pearson
correlation. However, it only assesses the monotonic dependence between two variables.
The Spearman correlation coefficient is defined as the Pearson correlation of the ranked
values of two variables. Spearman correlations are widely used within the literature for
biological studies [Brawand et al., 2011; Fagerberg et al., 2014; Danielsson et al., 2015;
N. Y.-L. Yu et al., 2015].

b.1.2 Pearson correlation

The Pearson correlation coefficient (usually noted as 𝑟) assesses the linear dependence
between two variables. It is invariant to systematic addition of a constant or to simple
scaling factors between the two variables.

The correlation coefficients computed for this thesis rely on the Sample correlation
coefficient (as opposed to the Population formula — see equation (Population correlation
coefficient)).
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The (sample) Pearson correlation coefficient can be defined as the following equation
(indeed, many rearrangements are possible):

𝑟𝑥,𝑦 = ∑𝑛
𝑖=1(𝑥𝑖 − ̄𝑥)(𝑦𝑖 − ̄𝑦)

√∑𝑛
𝑖=1 (𝑥𝑖 − ̄𝑥)2√∑𝑛

𝑖=1 (𝑦𝑖 − ̄𝑦)2

= 𝑐𝑜𝑟𝑟(𝑥, 𝑦)
((Sample) Pearson correlation coefficient)

where:
• 𝑥, 𝑦 are observed values of two random variables 𝑋 and 𝑌
• 𝑛 is the sample size of 𝑥 and 𝑦
• 𝑖 is the index of the current observed value 𝑥 or 𝑦
• ̄𝑥, ̄𝑦 are respectively the sample (𝑥 and 𝑦) means (see Equation (Mean))
• 𝑐𝑜𝑟𝑟(𝑋, 𝑌 ) is another notation of 𝑟𝑥,𝑦

̄𝑥 = 1
𝑛

𝑛
∑
𝑖=1

𝑥𝑖 (Mean)

where:
• 𝑥 is the possible observed values of 𝑋
• 𝑛 is the sample size of 𝑥
• 𝑖 is the index of the current observed value of 𝑥

b.1.3 Different advantages of Pearson and Spearman correlations

Pearson correlations are easier to understand, interpret and then to use as predictor
while Spearman correlations are more robust and thus better fitted for interstudy
comparisons. Computationally, correlations (Spearman in particular) can be challenging
to compute, especially for large matrices such as gene expression matrices [S. Wang et al.,
2014].

de Siqueira Santos et al. (2014) review Spearman and Pearson correlations along with six
other statistical methods. They also summarise many use cases of each of these methods
in the general context of gene expression study.

Table B.1. Correlation coefficients between RNA-Seq replicates Numeric summary of
Figure 3.5 — The correlation means are high across the studies replicates. However, the range
of the correlations (in brackets) are quite extreme in a few case.

Tissue Replicates type Pearson Correlation Spearman Correlation

Brawand Biological 0.90 [0.45;1] 0.93 [0.80;0.99]
GTEx Biological 0.75 [0.01;1] 0.93 [0.06;0.99]
Uhlén Biological 0.81 [0.15;1] 0.95 [0.70;0.99]

Technical 0.99 [0.68;1] 0.99 [0.92;1]
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b.2 other common mathematical definitions

The population correlation coefficient (𝜌) of two random variable 𝑋 and 𝑌 is defined as:

𝜌𝑋,𝑌 = 𝑐𝑜𝑣(𝑋, 𝑌 )
𝜎𝑋𝜎𝑌

= 𝑐𝑜𝑟𝑟(𝑋, 𝑌 )
(Population correlation coefficient)

where:
• 𝑋, 𝑌 are two random variables
• 𝑐𝑜𝑣(𝑋, 𝑌 ) is the covariance of 𝑋 and 𝑌 (see Equation (Covariance))
• 𝜎𝑋, 𝜎𝑌 are the standard deviations of 𝑋 and 𝑌 (see Equation (Standard deviation))
• 𝑐𝑜𝑟𝑟(𝑋, 𝑌 ) is another notation of 𝜌𝑋,𝑌

The covariance is the measure of the joint variability of two random variables, e.g. 𝑋
and 𝑌 . Specifically, it allows quantifying the degree to which two variables are linearly
associated.

𝑐𝑜𝑣(𝑋, 𝑌 ) = ∑ (𝑥𝑖 − ̄𝑥)(𝑦𝑖 − ̄𝑦)
𝑁 − 1 (Covariance)

where:
• 𝑋, 𝑌 are random variables
• 𝑥, 𝑦 are respectively one observation of 𝑋 and 𝑌
• ̄𝑥, ̄𝑦 are the means of all observed values of 𝑋 and 𝑌
• 𝑁 is the number of observations of 𝑋 and 𝑌

The standard deviation (𝑠𝑑 or 𝜎) measures the amount of dispersion of the possible
values of a random variable around its expected value (𝐸) (theoretical average).

𝑠𝑑(𝑋) = √𝐸[𝑋2] − (𝐸[𝑋])2

= √𝑉 𝑎𝑟(𝑋)
(Standard deviation)

where:
• 𝑋 is a random variable
• 𝐸[𝑋], 𝐸[𝑋2] are respectively the expected values (or theoretical averages) of 𝑋 and 𝑋2

(see equation (Expectation))

𝐸[𝑋] = 𝑥1𝑝1 + 𝑥2𝑝2 + ⋅ + 𝑥𝑘𝑝𝑘
= weighted average(𝑋)
= 𝜇𝑋

(Expectation)
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where:
• 𝐸 is the expectation
• 𝑋 is a random variable
• 𝑥1, 𝑥2, …, 𝑥𝑘 are possible value of 𝑋
• 𝑝1, 𝑝2, …, 𝑝𝑘 are the probabilities of the different values of 𝑋 and their sum is equal to

1.
• 𝜇𝑋 is the theoretical average of X

𝑉 𝑎𝑟(𝑋) = ∑ (𝑥𝑖 − ̄𝑥)2

𝑁 − 1
= 𝑠𝑑2(𝑋)

(Variance)

where:
• 𝑋 is a random variable
• 𝑥 is one observation of 𝑋
• ̄𝑥 is the mean of all observed values of 𝑋
• 𝑁 is the number of observations of 𝑋
• 𝑠𝑑2 is another notation of the variance as the standard deviation is equal to the square

root of the variance.

b.3 data visualisation

Figure B.1. Anscombe quartet — why data should always visually checked.
All the datasets, while presenting different distributions, have equal or very
similar descriptive statistic indicators; the means and variances for both 𝑥
and 𝑦 variables and the Pearson correlation between 𝑥 and 𝑦, and their linear
regressions are very similar.
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Figure B.2. Profile of expression across the transcriptome (protein coding genes only)
and proteome datasets
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Figure C.1. Number of protein-coding genes expressed per tissue
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Figure C.2. Breadth of expression of the protein-coding genes expressed above 1 FPKM
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Table C.1. Expressed protein-coding genes.
In Ensembl 76, there are 22,469 genes that have a biotype annotated as ‘protein-
coding’.

Dataset Number of
Tissues

Number of mRNAs
expressed across

all tissue

Number of mRNAs expressed at least once
4 common
tissues

23 common
tissues

›0 FPKM ≥ 1FPKM ›0 FPKM ≥ 1FPKM ›0 FPKM ≥ 1FPKM

Castle 11 19,066 15,798 18,477 13,443 — —
Brawand 8 19,505 16,410 19,324 15,327 — —

IBM 16 19,776 17,171 19,334 15,058 — —
Uhlén 32 19,807 18,060 19,379 15,739 19,737 17,832
GTEx 47 20,272 18,386 20,242 16,100 20,263 18,013

Two-sample test

Welch’s test [Welch, 1947], also known as the unequal variances t-test, is an adaptation
of the Student t-test [Student (Gosset, 1908] and it is better fitted for groups that have
different variance and sample sizes. Except in the case of (true) paired data (sampled on
the same source), it gives better or at least equal results than the traditional Student t-
test [Fagerland, 2012; Derrick et al., 2016; Delacre et al., 2017].

Student’s two-sample location test (i.e. t-test) is a test where the null hypothesis is
defines as the means of the two populations which have been sampled are equal.
Student’s t-test relies on the assumption that the variance of the population is also
equal.
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Figure C.4. Comparison of profiles across the 5 studies for their 4 common
tissues — including the 37 mitochondrial genes.
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Figure C.5. Heatmap including all the replicates of the four common tissues
across the five studies. All protein-coding genes (except themitochondrial
ones) at least expressed at 1 FPKM are included. All the samples, except from
the Castle study are clustering by their tissue of origin. Remarkably, while
the replicates may cluster by their study in each of the tissue groups, many
pairs with higher correlations are involving replicates from different studies.
Castle study is not a polyA-selected study, hence, its samples clustering may
be due entirely to the effect size bias of the FPKM normalisation method.
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Figure C.6. Heatmap including all the replicates of the twenty-three common
tissues between Uhlén et al. and GTEx studies. All protein-coding
genes (except the mitochondrial ones) at least expressed at 1 FPKM are
included. Most samples are clustering by their tissue of origin while we
can observe than many single replicates may cluster less expectedly. Many
small mixtures are observed; often they involve closely related tissues, i.e.
Heart and Skeletal muscle or Ovary and Fallopian tube.
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(a) Pearson correlation

(b) Spearman correlation

Figure C.7. Distribution of the correlation of matched and unmatched tissues
pairs for the two working sets. The displayed p-valuesa have been
computed with a Welch two-sample t-test.

a Thresholds above which the 𝐻0 hypothesis is safe to be rejected.
𝐻0: The correlations of same tissue pairs and different tissues pairs are similar.
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c.1 highest expressed genes

Note: the cut-off used in Figure C.9 and Figure C.8 is a range (step 10) of possible values
(integers) of gene expression.

Here below, the few exceptions grouped by tissue for 𝒲1:

Heart Uhlén-GTEx pair

Kidney Uhlén-GTEx, Castle-Uhlén and Castle-GTEx pairs,

Liver Brawand-IBM, IBM-Uhlén and IBM-Uhlén pairs;

Testis IBM-Uhlén, Brawand-GTEx, Brawand-Uhlén and Uhlén-GTEx pairs

Figure C.8. Pearson correlation coefficient trend based on the expression levels
of the genes considered for each of the twenty-three common tissues
betweenUhlén andGTEx. In almost every case the complete set of common
expressed protein-coding genes of each tissue gives the highest correlations.
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C.1 highest expressed genes

𝒲2’s results should be interpreted more carefully as there are only two studies involved
and there are no actual means to distinguish between an artefact or a true biological reason
that may drive the higher correlations.

Both for Figures C.8 and C.9, it seems that a couple of TREPs are perfectly anticorrelated
for subsets of highest expressed genes, These are most likely mathematical artefacts. The
correlation calculations are involve very few genes and as such the correlations are more
sensitive to any change.

As very few genes are involved, the slightest changes in their respective order ofmagnitude
may imply reversed trends.

Table C.2. Example of gene subsets for a two studies (A and B) for a tissue
𝐺𝑒𝑛𝑒𝑎 𝐺𝑒𝑛𝑒𝑏 𝐺𝑒𝑛𝑒𝑐 𝐺𝑒𝑛𝑒𝑑 𝐺𝑒𝑛𝑒𝑒

Study A, TREP 𝑇1 (𝑇 𝑆𝑡𝑢𝑑𝑦𝐴
1 ) 1000 2000 3000 4000 5000

Study B, TREP 𝑇1 (𝑇 𝑆𝑡𝑢𝑑𝑦𝐵
1 ) 500 2800 6000 5000 4000

For example, if we consider 𝑇 𝑆𝑡𝑢𝑑𝑦𝐴
1 and 𝑇 𝑆𝑡𝑢𝑑𝑦𝐵

1 for a set of genes 𝑎, … , 𝑒 (see Table C.2)
and a cut-off at 3,000 FPKMs, then the correlation will only involve 𝐺𝑒𝑛𝑒𝑐, 𝐺𝑒𝑛𝑒𝑑 and
𝐺𝑒𝑛𝑒𝑒. Thus,
while 𝑐𝑜𝑟𝑟𝑇 𝑆𝑡𝑢𝑑𝑦𝐴

1 ,𝑇 𝑆𝑡𝑢𝑑𝑦𝐵
1

(𝑐, 𝑑, 𝑒) = −1,
𝑐𝑜𝑟𝑟𝑇 𝑆𝑡𝑢𝑑𝑦𝐴

1 ,𝑇 𝑆𝑡𝑢𝑑𝑦𝐵
1

(𝑎, 𝑏, 𝑐, 𝑑, 𝑒) = 0.6836

2000

4000

6000

1000 2000 3000 4000 5000

Study A

St
ud

y 
B

Expression of TREP T1

Figure C.10. Example on how correlation may change to cut-offs

c.1.1 Overlap of the top high expressed genes between the five datasets

Figure C.11 shows the ratios of the number of common protein-coding genes for a given
amount of highest expressed protein-coding genes to that very number across the studies
and for each tissue. Among these (cumulative) proportions, a few present very high value
for a minimal subset of genes (below 10 FPKM across all the tissues) which then drop
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Figure C.11. Cumulative shared set of genes ranked by their decreasing order of
expression across the five studies. Apart from a very small subset for
the highest expressed protein coding genes, the overlap of the gene ranks
across the 5 studies is rather small. The grey line presents the evolution of
the ratios for the randomly permuted data which highlights that there is an
underlying structure.

dramatically to finally increase slowly to reach the expected ratio of 1 FPKM.

Figure C.12 presents the same kind of ratios, however, limited to Uhlén and GTEx only.
Here as well, aside from the expected perfect ratio for the complete set of protein-coding
genes, only a tiny subset of the highest expressed genes produce high rates of highly
expressed common genes to the number of considered ranked genes. These results are
quite unsurprising as they involve only two studies. In addition to increasing the number
of overlaps probabilistically, these two studies are also the two most recent ones and
comprise a higher number of replicates per tissues; thus the measurements for each gene
in each condition are likely more robust.

Comparing the calculated ratios between the real (colour) and the randomly permuted data
(grey) on Figures C.11 and C.12 plainly show that there are common (biological) structures
that are nonfortuitous across studies.
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Figure C.12. Cumulative shared set of genes, ranked by their decreasing order
of expression, between Uhlén et al. and GTEx studies. The highest
expressed genes present greater ratios than when the 5 studies are
considered (see Figure C.11). The fewer number of studies considered,
which, additionally to be the most recent studies, are the ones to comprise
greater number of biological replicates per tissues may be the sole reasons
for the improved results.

c.2 most variable genes

c.2.1 Validation of the association of the most variable genes with the highest
correlations

After ordering the genes by decreasing order of their coefficient of variation within each
of the datasets comprised in 𝒲1, I have calculated the size of overlap for each rank (i.e.
from 1 to 12,268) between the five datasets. To help with the interpretation, I finally divide
the previous number by the rank.

Figure C.19 and Figure C.20 present the result for 𝒲1 and 𝒲2. Many of the most variable
genes are commonly present in the top tier of the five studies, though they have different
individual rank. There is a strong growth for about the first 1,250 genes that then settles
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Figure C.13. Overlap of the most variable genes across the five studies for the set
of the four common tissues. In each study, I rank the protein-coding
genes in decreasing order. This Venn diagram presents the shared and
unique protein-coding genes in the top quarter of the most variable genes.

a plateau which increases toward the final ratio (1). Using the first quarter of the most
variable genes as a cut-off appears to be an acceptable threshold as it comprises the initial
growth and part of the plateau.
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Figure C.15. Clustering of the four common tissues across the five studies for the
most common variable genes. The samples cluster by tissue of origin
rather than by original study. Each cluster of tissue presents a different
hierarchy of study: for Kidney, Uhlén sample is closer to the IBM sample,
while for Testis, Uhlén sample is closer to the GTEx one.
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Figure C.16. Clustering of the four common tissues across the five studies
(excluding themost variable genes). Apart from the Castle samples, the
samples cluster by tissue of origin rather than by original study. (Note that
Pearson correlations give stronger clustering results towards the biological
origin of the TREPs.)
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Figure C.17. Expression of the most common variable genes.

Figure C.18. Ratio of Maximum of expression/Sum of expression for the most
variable genes (cv≥1.5) in 𝒲1 that are expressed at least in two
different tissues at 1 FPKM. The lowest ratio is above 0.79 and the
highest ratio is close to 1. This range shows that the most variable genes
are expressed in one tissue more specifically than the three others as the
tissue where they are the highest expressed accounts for more than 79% of
the sum of expression across the four tissues.
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Figure C.19. Intersection size course of 𝒲1 genes (based on their coefficient of
variation rank in each of the five studies). There are three main
parts. There is an initial strong growth (a) which then settles a plateau
(b). Eventually, the ratio increases slowly again until reaching the expected
ratio of 1 once all the genes from 𝒲1 are included (c). The first quarter
of the genes covers (a) and a part of (b). Apart from (a), the overlap of
shared genes between the five datasets when ranked on their coefficient
of variation is above 70%. The sigmoid curve (dashed line) is based on
randomised data where permutations break the original order of the genes.
(Within each dataset, all the gene expression levels are permuted within
each tissue, i.e. the overall pattern of expression of each tissue is conserved.
This operation is performed 10,000 times. The dashed line is a summary of
all these permutations). There is a distinct dissimilarity between the real
and the randomised data.
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Figure C.20. Intersection size course of 𝒲2 genes (based on their coefficient of
variation rank in each of the two studies). Globally, there are two parts:
one initial strong growth (a) and a second part (b) where the curve shifts
shallowly towards the expected final ratio of 1. While the number of genes
involved in𝒲2 is higher than in𝒲1, the ratio of common genes that are the
twentieth most variable in each study is above 75%. There are three main
reasons that may explain this improved result compared to Figure C.19.

• 𝒲2 involves a smaller degree (i.e. number of studies) than 𝒲1
(respectively 2 and 5). Hence, bigger intersection sizes are easier to occur.

• As previously mentioned, GTEx and Uhlén studies provide probably
more accurate TREPs than the other studies (see section 4.2 on page 98).

• The greater number of tissues induces a wider range of coefficients of
variation, which allows picking up genes with more subtle variations.
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Figure C.21. Breadth of expression (≥1 FPKM) for the most variable mRNAs
(cv≥1.5) across 𝒲1. Most of these mRNAs are expressed only at 1 FPKM
or above.
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c.3 tissue specific (ts) genes

c.3.1 Hampel method

The Hampel method allows detecting outliers and it relies on the median and the MAD
(median absolute deviation) as robust estimate of the location and spread (instead of the
more commonly used mean and standard deviation). [Hampel, 1971; Hampel,
1974]

Algorithm 1: Hampel method
Data: Expression matrix; Genes as rows and conditions (tissues) as columns
Input: threshold: numeric
Input: bool: boolean
Result: Indicates if a gene presents an atypical (outlier) expression for any condition

(as a boolean or a numeric ratio)

foreach Gene g (i.e. row) of the input matrix do
med=compute median(g);
/* compute the M.A.D. (median absolute deviation) */

mad=median(absolute(g-med));
if !bool then

/* Return boolean answer */

newg=absolute(g-med) > threshold*mad;
else

/* Return ratios that can be later sorted */

newg=(absolute(g-med))/mad;
end
return(newg);

end

c.3.1.1 Median

Median can be found by listing all values from smallest to greatest.
If the number of values is odd, the median is the middle value.
If the number of values is even, the median is the mean of the two middle
values.

c.3.1.2 Median absolute deviation (M.A.D.)

For a give variable X, M.A.D. is defined as follow:

𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑋𝑖 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑋)|) (M.A.D.)
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c.3.2 List of the tissues available in TiGER

Thirty tissues (or equivalent) are available through this database: Bladder, Blood, Bone,
Bone marrow, Brain, Cervix, Colon, Eye, Heart, Kidney, Larynx, Liver, Lung, Lymph node,
Mammary gland, Muscle, Ovary, Pancreas, Peripheral nervous system, Placenta, Prostate,
Skin, Small intestine, Soft tissue, Spleen, Stomach, Testis, Thymus, Tongue and
Uterus.

c.3.3 Uhlén categories

c.4 list of publications based on rna-seq and covering at
least partially its robustness

• SEQC/MAQC-III Consortium (2014). ‘A comprehensive assessment of RNA-seq
accuracy, reproducibility and information content by the Sequencing Quality
Control Consortium’. Nat. Biotechnol. 32 (9), pp. 903–914

• A. Santos et al. (2015). ‘Comprehensive comparison of large-scale tissue
expression datasets’. PeerJ 3, e1054

• P. H. Sudmant et al. (2015). ‘Meta-analysis of RNA-seq expression data across
species, tissues and studies’. Genome Biol. 16, p. 287

• F. Danielsson et al. (2015). ‘Assessing the consistency of public human tissue
RNA-seq data sets’. Briefings Bioinf. 16 (6), pp. 941–949

• M. Uhlén, B. M. Hallström, et al. (2016). ‘Transcriptomics resources of human
tissues and organs’. Mol. Syst. Biol. 12 (4)

• L. Peixoto et al. (2015). ‘How data analysis affects power, reproducibility and
biological insight of RNA-seq studies in complex datasets’. Nucleic Acids Res. 43
(16), pp. 7664–7674

• Q. Wang et al. (2017). ‘Enabling cross-study analysis of RNA-Sequencing data’.
bioRxiv (110734)
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Figure D.1. Unique and shared proteins across the proteomic studies
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Figure D.2. Proteins overlap between the fourteen common tissues between
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Figure D.3. Unique and shared proteins across the other ten common tissues
between Pandey and Kuster proteomic studies

Table D.1. Proteins found in every tissue in all three datasets
Ensembl (76) gene ID Gene symbol

ENSG00000163631 ALB
ENSG00000171403 KRT9
ENSG00000186395 KRT10
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Table D.2. Proteins found in every tissue in Pandey and Kuster datasets
Ensembl (76) ID Gene symbol

ENSG00000023191 RNH1
ENSG00000044574 HSPA5
ENSG00000067225 PKM
ENSG00000071127 WDR1
ENSG00000074800 ENO1
ENSG00000080824 HSP90AA1
ENSG00000089220 PEBP1
ENSG00000089597 GANAB
ENSG00000092820 EZR
ENSG00000096384 HSP90AB1
ENSG00000100345 MYH9
ENSG00000102144 PGK1
ENSG00000108518 PFN1
ENSG00000108953 YWHAE
ENSG00000111530 CAND1
ENSG00000111640 GAPDH
ENSG00000111669 TPI1
ENSG00000111716 LDHB
ENSG00000117450 PRDX1
ENSG00000130985 UBA1

ENSEMBL (76) ID Gene symbol

ENSG00000134308 YWHAQ
ENSG00000134333 LDHA
ENSG00000140575 IQGAP1
ENSG00000148180 GSN
ENSG00000149925 ALDOA
ENSG00000160752 FDPS
ENSG00000163631 ALB
ENSG00000164924 YWHAZ
ENSG00000165280 VCP
ENSG00000166598 HSP90B1
ENSG00000166794 PPIB
ENSG00000167658 EEF2
ENSG00000170027 YWHAG
ENSG00000170248 PDCD6IP
ENSG00000171403 KRT9
ENSG00000178209 PLEC
ENSG00000179218 CALR
ENSG00000182718 ANXA2
ENSG00000186395 KRT10
ENSG00000204628 GNB2L1
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Table D.3. Tissue specific proteins found both in Pandey et al. and Kuster et al. datasets
Tissue Ensembl (76) ID Gene symbol

Adrenal gland ENSG00000141744 PNMT
Adrenal gland ENSG00000148655 C10orf11
Adrenal gland ENSG00000160882 CYP11B1
Adrenal gland ENSG00000163428 LRRC58
Adrenal gland ENSG00000163626 COX18
Kidney ENSG00000074803 SLC12A1
Kidney ENSG00000100253 MIOX
Kidney ENSG00000112499 SLC22A2
Kidney ENSG00000113361 CDH6
Kidney ENSG00000148942 SLC5A12
Kidney ENSG00000149452 SLC22A8
Kidney ENSG00000154025 SLC5A10
Kidney ENSG00000158296 SLC13A3
Kidney ENSG00000169344 UMOD
Kidney ENSG00000170482 SLC23A1
Kidney ENSG00000186335 SLC36A2
Kidney ENSG00000197901 SLC22A6
Liver ENSG00000084734 GCKR
Liver ENSG00000100197 CYP2D6
Liver ENSG00000135094 SDS
Liver ENSG00000172497 ACOT12
Liver ENSG00000198650 TAT
Pancreas ENSG00000010438 PRSS3

Tissue Ensembl (76) ID Gene symbol

Pancreas ENSG00000114204 SERPINI2
Pancreas ENSG00000141086 CTRL
Pancreas ENSG00000143954 REG3G
Pancreas ENSG00000187021 PNLIPRP1
Pancreas ENSG00000215704 CELA2B
Pancreas ENSG00000266200 PNLIPRP2
Placenta ENSG00000105825 TFPI2
Placenta ENSG00000116183 PAPPA2
Placenta ENSG00000137868 STRA6
Placenta ENSG00000148848 ADAM12
Placenta ENSG00000163283 ALPP
Placenta ENSG00000172296 SPTLC3
Placenta ENSG00000172901
Placenta ENSG00000183668 PSG9
Placenta ENSG00000243137 PSG4
Prostate ENSG00000044524 EPHA3
Prostate ENSG00000103710 RASL12
Rectum ENSG00000205277 MUC12
Testis ENSG00000052841 TTC17
Testis ENSG00000109762 SNX25
Testis ENSG00000130948 HSD17B3
Testis ENSG00000160310 PRMT2
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Figure D.4. Heatmap of the four common tissues between the three proteome
datasets based on the pairwise Pearson correlations clustering of 1,384
proteins expression levels. See Figure 5.5 for the heatmap based on
Spearman correlation.
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Figure D.5. Scatterplot of Heart for Cutler and Pandey data. There is an overall
strong correlation between the expression of the Heart proteins between
Pandey (y-axis) and Cutler (x-axis) even though the dispersion is quite
substantial. The black line 𝑦 = 𝑥 is only present as a visual reference.
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Figure D.6. Scatterplot of Heart for Kuster and Pandey data. The dispersion
of expression is more significant than between Pandey and Cutler (see
Figure D.5). It is rather difficult to assess the protein expression in Heart
from Pandey (or Kuster) based on the other study. The black line 𝑦 = 𝑥 is only
present as a visual reference.
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Figure D.7. Heatmap of the fourteen common tissues between Pandey and
Kuster datasets based on the pairwise Spearman correlations of the
expression levels of their 4,172 common proteins. Placenta, Lung and
Kidney TREPs between Pandey and Kuster show an overall higher biological
similarity than technical variability to the other tissues from the same study
source. See also Figures D.8 to D.11.
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Figure D.8. Heatmap of the fourteen common tissues between Pandey and
Kuster datasets based on the pairwise Pearson correlations of the
expression levels of their 4,172 common proteins. Only Placenta andAdrenal
gland TREPs between Pandey and Kuster show a greater biological similarity
than technical one. See also Figures D.7 and D.9 to D.11.
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Figure D.9. Scatterplot of Placenta for Kuster and Pandey data. While the
expression of some proteins are more spread between both datasets, there
is an overall strong linear correlation between Pandey and Kuster for their
Placenta tissue. Besides a few exception, protein expression levels in Pandey
seem to be underestimated compared to Kuster. This is most probably due
to the normalisation method. The black line 𝑦 = 𝑥 is only present as a visual
reference.
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Figure D.10. Scatterplot of Pancreas andAdrenal (fromKuster). Although Kuster’s
Pancreas and Adrenal gland are never found in Figures D.7 and D.8 as the
most similar to each other, their expression levels present a strong linear
relationship to each other. The dispersion and outliers seem insuffisant
to unquestionably distinguish different tissues. Figure D.11 is even more
compelling. The black line 𝑦 = 𝑥 is only present as a visual reference.
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Figure D.11. Scatterplot of Kuster Pancreas and PandeyAdrenal. As in Figure D.10,
Kuster’s Pancreas and Pandey’s Adrenal gland are never found as the most
similar to each other. Once again, there is a strong linear relationship
between their protein expression levels, even though the dispersion is
greater and the outliers more numerous. The black line 𝑦 = 𝑥 is only present
as a visual reference.
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Figure D.12. Heatmap of the fourteen common tissues between Pandey and
Kuster (PPKM) datasets based on the pairwise Spearman correlations
of the expression levels of their 8,680 common proteins. Compared to
Figure D.7, once again Placenta, Lung, Kidney are displaying a higher
biological signal than technical variability. This is also the case of Adrenal
gland tissue (as in Figure D.8). Thus, the results are similar to the ones from
the first quantification method.
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Figure D.13. Number of identified proteins in each of the fourteen common
tissues for Kuster and Pandey proteomic data with our new PPKM
quantification method. Although the number of proteins quantified by
each method is different, this figure is very similar to Figure D.14.
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Figure D.14. Number of identified proteins in each of the fourteen common
tissues for Kuster and Pandey proteomic data quantified with the
quantification described in Chapter 2.
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e.1 hypergeometric test

The hypergeometric test uses the hypergeometric distribution and equates to the one-sided
Fisher’s exact test. It allows measuring the statistical significance of randomly sampling
𝑘 successes out of 𝑛 draws, without replacement, from a population of 𝑁 that contains 𝐾
successes. Depending on whether the test is about an over or under-representation, the p-
value is the probability of drawing respectively a minimum or a maximum of 𝑘 successes.

See also N. L. Johnson et al. (2005) for more examples using this test.

Figure E.1. Scatterplot of protein (Pandey et al. — Top3 quantification) and
mRNA (Uhlén et al.) expression for Kidney.
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Figure E.2. Overview of the tissue scatterplots between Uhlén and Pandey data.
The Liver presents the highest correlation and the Oesophagus the lowest
one.
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Table E.1. Found proteins without a counterpart in the transcriptomic data

Set ENSEMBL (76) ID Gene name Biotype Description Source and
Accessing number

a, b, c, d ENSG00000173349 SFT2D3 p. coding SFT2 domain containing 3 HGNC Symbol
Acc: 28767

a, b ENSG00000198788 MUC2 processed
transcript

mucin 2,
oligomeric mucus/gel-forming

HGNC Symbol
Acc: 7512

a, b, c, d ENSG00000223953 C1QTNF5 p. coding C1q and tumor necrosis
factor related protein 5

HGNC Symbol
Acc:14344

a, b ENSG00000256453 DND1 p. coding DND microRNA-mediated
repression inhibitor

HGNC Symbol
Acc:23799

a, b, c, d ENSG00000262664 OVCA2 p. coding ovarian tumor suppressor
candidate 2

HGNC Symbol
Acc:24203

b ENSG00000163157 TMOD4 p. coding tropomodulin 4 (muscle) HGNC Symbol
Acc:11874

b ENSG00000203618 GP1BB p. coding glycoprotein Ib (platelet),
beta polypeptide

HGNC Symbol
Acc:4440

b ENSG00000251322 SHANK3 processed
transcript

SH3 and
multiple ankyrin repeat domains 3

HGNC Symbol
Acc:14294

c, d ENSG00000105371 ICAM4 p. coding intercellular adhesion molecule 4
(Landsteiner-Wiener blood group)

HGNC Symbol
Acc:5347

c ENSG00000164708 PGAM2 p. coding phosphoglycerate mutase 2 (muscle) HGNC Symbol
Acc:8889

c, d ENSG00000181404 XXyac-YRM2039.2 unprocesssed
pseudogene

c, d ENSG00000183336 BOLA2 p. coding bolA family member 2 HGNC Symbol
Acc:29488
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Table E.1. Found proteins without a counterpart in the transcriptomic data

Set ENSEMBL (76) ID Gene name Biotype Description Source and
Accessing number

c ENSG00000196101 HLA-DRB3 p. coding major histocompatibility complex,
class II, DR beta 3

HGNC Symbol
Acc:4951

c ENSG00000203618 GP1BB glycoprotein Ib (platelet),
beta polypeptide

HGNC Symbol
Acc:4440

c, d ENSG00000206203 TSSK2 p. coding testis-specific serine kinase 2 HGNC Symbol
Acc:1140

c, d ENSG00000206240,
ENSG00000206306 HLA-DRB1 p. coding major histocompatibility complex,

class II, DR beta 1
HGNC Symbol
Acc:4948

c, d ENSG00000206305 HLA-DQA1 major histocompatibility complex,
class II, DQ alpha 1

HGNC Symbol
Acc:4942

c, d ENSG00000206450,
ENSG00000223532 HLA-B p. coding major histocompatibility complex,

class I, B
HGNC Symbol
Acc:4932

c, d ENSG00000225691 HLA-C p. coding major histocompatibility complex,
class I, C

HGNC Symbol
Acc:4933

c, d

ENSG00000206505,
ENSG00000224320,
ENSG00000227715,
ENSG00000235657,
ENSG00000223980,
ENSG00000229215

HLA-A p. coding major histocompatibility complex,
class I, A

HGNC Symbol
Acc:4931

c, d ENSG00000211594 IGKJ4 IG J gene immunoglobulin kappa joining 4 HGNC Symbol
Acc:5722

c, d ENSG00000211595 IGKJ3 IG J gene immunoglobulin kappa joining 3 HGNC Symbol
Acc:5721
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Table E.1. Found proteins without a counterpart in the transcriptomic data

Set ENSEMBL (76) ID Gene name Biotype Description Source and
Accessing number

c ENSG00000213402 PTPRCAP p. coding protein tyrosine phosphatase,
receptor type, C-associated protein

HGNC Symbol
Acc:9667

c ENSG00000215695 RSC1A1 p. coding regulatory solute carrier protein,
family 1, member 1

HGNC Symbol
Acc:10458

c, d ENSG00000227357 HLA-DRB4 p. coding major histocompatibility complex,
class II, DR beta 4

HGNC Symbol
Acc:4952

c, d ENSG00000231021 HLA-DRB4 p. coding major histocompatibility complex,
class II, DR beta 4

RefSeq mRNA
Acc:NM_021983

c, d ENSG00000231286 HLA-DQB1 p. coding major histocompatibility complex,
class II, DQ beta 1

HGNC Symbol
Acc:4944

c, d ENSG00000231679 HLA-DRB3 p. coding major histocompatibility complex,
class II, DR beta 3

RefSeq mRNA
Acc:NM_022555

c, d ENSG00000256453 DND1 p. coding DND microRNA-mediated
repression inhibitor

HGNC Symbol
Acc:23799

c ENSG00000263353 CH17-118O6.1 processed
transcript

c, d ENSG00000276938 FAM157A p. coding Homo sapiens family with
sequence similarity 157, member A

RefSeq mRNA
Acc:NM_001145248

c, d ENSG00000277656 GSTT1 p. coding glutathione S-transferase theta 1 HGNC Symbol
Acc:4641

c, d ENSG00000277897 GSTT2 p. coding

d ENSG00000105507 CABP5 p. coding calcium binding protein 5 HGNC Symbol
Acc:3714

d ENSG00000105954 NPVF p. coding neuropeptide VF precursor HGNC Symbol
Acc:13782
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Table E.1. Found proteins without a counterpart in the transcriptomic data

Set ENSEMBL (76) ID Gene name Biotype Description Source and
Accessing number

d ENSG00000142539 CTD-2545M3.6 p. coding

d ENSG00000147896 IFNK p. coding interferon, kappa HGNC Symbol
Acc:21714

d ENSG00000148136 OR13C4 p. coding olfactory receptor, family 13,
subfamily C, member 4

HGNC Symbol
Acc:4722

d ENSG00000163157 TMOD p. coding tropomodulin 4 (muscle) HGNC Symbol
Acc:11874

d ENSG00000164708 PGAM2 p. coding phosphoglycerate mutase 2
(muscle)

HGNC Symbol
Acc:8889

d ENSG00000166884 OR4D6 p. coding olfactory receptor, family 4,
subfamily D, member 6

HGNC Symbol
Acc:15175

d ENSG00000169840 GSX1 p. coding GS homeobox 1 HGNC Symbol
Acc:20374

d ENSG00000170929 OR1M1 p. coding olfactory receptor, family 1,
subfamily M, member 1

HGNC Symbol
Acc:8220

d ENSG00000171053 PATE1 p. coding prostate and testis expressed 1 HGNC Symbol
Acc:24664

d ENSG00000171396 KRTAP4-4 p. coding keratin associated protein 4-4 HGNC Symbol
Acc:16928

d ENSG00000172155 LCE1D p. coding late cornified envelope 1D HGNC Symbol
Acc:29465

d ENSG00000176239 OR51B6 p. coding olfactory receptor, family 51,
subfamily B, member 6

HGNC Symbol
Acc:19600

d ENSG00000182346 DAOA p. coding D-amino acid oxidase activator HGNC Symbol
Acc:21191

248



Table E.1. Found proteins without a counterpart in the transcriptomic data

Set ENSEMBL (76) ID Gene name Biotype Description Source and
Accessing number

d ENSG00000182591 KRTAP11-1 p. coding keratin associated protein 11-1 HGNC Symbol
Acc:18922

d ENSG00000184321 OR51J1 p. coding
olfactory receptor, family 51,
subfamily J, member 1
(gene/pseudogene)

HGNC Symbol
Acc:14856

d ENSG00000187173 LCE2A p. coding late cornified envelope 2A HGNC Symbol
Acc:29469

d ENSG00000187766 KRTAP10-8 p. coding keratin associated protein 10-8 HGNC Symbol
Acc:20525

d ENSG00000196101 HLA-DRB3 p. coding major histocompatibility complex,
class II, DR beta 3

HGNC Symbol
Acc:4951

d ENSG00000203618 GP1BB p. coding glycoprotein Ib (platelet),
beta polypeptide

HGNC Symbol
Acc:4440

d ENSG00000203818 HIST2H3PS2 p. coding histone cluster 2, H3,
pseudogene 2

HGNC Symbol
Acc:32060

d ENSG00000205883 DEFB135 p. coding defensin, beta 135 HGNC Symbol
Acc:32400

d ENSG00000206452 HLA-C p. coding major histocompatibility complex,
class I, C

HGNC Symbol
Acc:4933

d ENSG00000211831 TRAJ61 TR J gene T cell receptor alpha joining 61
(non-functional)

HGNC Symbol
Acc:12094

d ENSG00000211835 TRAJ56 TR J gene T cell receptor alpha joining 56 HGNC Symbol
Acc:12088

d ENSG00000213316 LTC4S p. coding leukotriene C4 synthase HGNC Symbol
Acc:6719
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Table E.1. Found proteins without a counterpart in the transcriptomic data

Set ENSEMBL (76) ID Gene name Biotype Description Source and
Accessing number

d ENSG00000213402 PTPRCAP p. coding protein tyrosine phosphatase,
receptor type, C-associated protein

HGNC Symbol
Acc:9667

d ENSG00000215695 RSC1A1 p. coding regulatory solute carrier protein,
family 1, member 1

HGNC Symbol
Acc:10458

d ENSG00000224902 GAGE12H p. coding G antigen 12H HGNC Symbol
Acc:31908

d ENSG00000233732 IGHV3OR16-10 IG V gene immunoglobulin heavy variable 3
OR16-10 (non-functional)

HGNC Symbol
Acc:5634

d ENSG00000249209 AP000304.12 p. coding

d ENSG00000249730 OR10J4 polymorphic
pseudogene

olfactory receptor,
family 10, subfamily J,
member 4 (gene/pseudogene)

HGNC Symbol
Acc:15408

d ENSG00000253148 RGS21 p. coding regulator of G-protein signaling 21 HGNC Symbol
Acc:26839

d ENSG00000255009 UBTFL1 processed
pseudogene

upstream binding transcription factor,
RNA polymerase I-like 1

HGNC Symbol
Acc:14533

d ENSG00000255472 RP11-998D10.1 p. coding uncharacterized protein UniProtKB/TrEMBL
Acc:E9PR74

d ENSG00000259490 IGHV3OR15-7 IG V gene immunoglobulin heavy variable 3
OR15-7 (pseudogene)

HGNC Symbol
Acc:5633

d ENSG00000263353 CH17-118O6.1 processed
transcript

d ENSG00000270467 IGHV3OR16-12 IG V gene immunoglobulin heavy variable 3
OR16-12 (non-functional)

HGNC Symbol
Acc:5636
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Table E.1. Found proteins without a counterpart in the transcriptomic data

Set ENSEMBL (76) ID Gene name Biotype Description Source and
Accessing number

d ENSG00000270472 IGHV3OR16-9 IG V gene immunoglobulin heavy variable 3
OR16-9 (non-functional)

HGNC Symbol
Acc:5644
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Figure E.3. STAU2 definition The chromosome annotations for the mRNA and the protein of STAU2 are different.
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Table E.2. Summary of Pearson and Spearman correlation coefficients between proteomics and transcriptomics across several data
combinations. See also Figure 6.8.

Mean correlation of
Datasets Number

of tissues
Quantification

methods
Scaled data
log2(𝑥 + 1)

Correlation
method Same-tissue pairs Different tissues pairs p-value

Pandey et al. Uhlén et al. 12 Top3 x HTSeq True Spearman 0.51 0.37 4.66e-07
Pandey et al. GTEx 12 Top3 x HTSeq True Spearman 0.5 0.37 7.379e-07
Uhlén et al. GTEx 12 HTSeq x HTSeq True Spearman 0.91 0.66 < 2.2e-16
Pandey et al. Uhlén et al. 15 Top3 x HTSeq True Spearman 0.5 0.38 2.659e-08
Pandey et al. Uhlén et al. 12 Top3 x HTSeq True Pearson 0.11 0.06 0.03696
Pandey et al. GTEx 12 Top3 x HTSeq True Pearson 0.12 0.07 0.02895
Uhlén et al. GTEx 12 HTSeq x HTSeq True Pearson 0.93 0.68 < 2.2e-16
Pandey et al. Uhlén et al. 15 Top3 x HTSeq True Pearson 0.1 0.06 0.02271
Pandey et al. Uhlén et al. 12 PPKM x HTSeq True Spearman 0.52 0.42 4.795e-05
Pandey et al. GTEx 12 PPKM x HTSeq True Spearman 0.52 0.43 8.475e-05
Uhlén et al. GTEx 12 HTSeq x HTSeq True Spearman 0.92 0.72 < 2.2e-16
Pandey et al. Uhlén et al. 15 PPKM x HTSeq True Spearman 0.52 0.43 8.422e-06
Pandey et al. Uhlén et al. 12 PPKM x HTSeq True Pearson 0.5 0.37 0.0004002
Pandey et al. GTEx 12 PPKM x HTSeq True Pearson 0.5 0.41 0.0003306
Uhlén et al. GTEx 12 HTSeq x HTSeq True Pearson 0.94 0.73 < 2.2e-16
Pandey et al. Uhlén et al. 15 PPKM x HTSeq True Pearson 0.49 0.4 9.941e-05

Pandey et al. Uhlén et al. 12 Top3 x HTSeq False Spearman 0.51 0.37 4.66e-07
Pandey et al. GTEx 12 Top3 x HTSeq False Spearman 0.5 0.37 7.379e-07
Uhlén et al. GTEx 12 HTSeq x HTSeq False Spearman 0.91 0.66 < 2.2e-16
Pandey et al. Uhlén et al. 15 Top3 x HTSeq False Spearman 0.5 0.38 2.66e-08
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Table E.2. Summary of Pearson and Spearman correlation coefficients between proteomics and transcriptomics across several data
combinations. See also Figure 6.8.

Mean correlation of
Datasets Number

of tissues
Quantification

methods
Scaled data
log2(𝑥 + 1)

Correlation
method Same-tissue pairs Different tissues pairs p-value

Pandey et al. Uhlén et al. 12 Top3 x HTSeq False Pearson 0.17 0.09 0.022
Pandey et al. GTEx 12 Top3 x HTSeq False Pearson 0.17 0.1 0.015
Uhlén et al. GTEx 12 HTSeq x HTSeq False Pearson 0.92 0.64 < 2.2e-16
Pandey et al. Uhlén et al. 15 Top3 x HTSeq False Pearson 0.16 0.1 0.012
Pandey et al. Uhlén et al. 12 PPKM x HTSeq False Spearman 0.52 0.42 4.795e-05
Pandey et al. GTEx 12 PPKM x HTSeq False Spearman 0.52 0.43 8.475e-05
Uhlén et al. GTEx 12 HTSeq x HTSeq False Spearman 0.92 0.72 < 2.2e-16
Pandey et al. Uhlén et al. 15 PPKM x HTSeq False Spearman 0.52 0.43 8.422e-06
Pandey et al. Uhlén et al. 12 PPKM x HTSeq False Pearson 0.55 0.43 1.059e-06
Pandey et al. GTEx 12 PPKM x HTSeq False Pearson 0.56 0.45 2.026e-06
Uhlén et al. GTEx 12 HTSeq x HTSeq False Pearson 0.93 0.69 < 2.2e-16
Pandey et al. Uhlén et al. 15 PPKM x HTSeq False Pearson 0.55 0.45 1.061e-07
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E.1 hypergeometric test
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Figure E.5. Rank comparison between the Pearson/Spearman correlation
and the Jaccard indices computed for matching proteomics and
transcriptomics.
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supplementary material for chapter 6

e.2 ts protein percent

The percentage of TS proteins is calculated as follow:
∀𝑎 ∈ 𝒜,∀𝑛 ∈ [1, 𝒩] 𝑝𝒯𝒮(𝑛, 𝑎) =

𝑛
∑
𝑘=1

𝛿𝑔𝑎,𝑘 ⋅ 1
𝑛 ⋅ 100 (TS protein percentage)

where:
• 𝒮 is the set of 10,000 randomised expression datasets based on Pandey Lab data.

These simulated datasets are created by random permutation of the gene
labels and their associated vector of expression values across the tissues.

• 𝒟 is the set of expression datasets; 𝒟 = 𝒮 ∪ { protein expression for Pandey
Lab data; mRNA expression for Uhlén et al. data; mRNA expression for GTEx
data }.

• 𝒢 is the set of genes 𝑔 that are shared by all elements of 𝒟.
• 𝒩 is the number of elements in 𝒢.
• 𝒯𝒮 is the set of genes 𝑔 for which the protein is TS (tissue-specific) in Pandey

Lab data. 𝒯𝒮 ⊂ 𝒢.

• ∀𝑔 ∈ 𝒢, 𝛿𝑔 = {1 if 𝑔 ∈ 𝒯𝒮
0 if 𝑔 ∉ 𝒯𝒮

• 𝒜 is a set of unordered 2-tuples of elements from 𝒟; 𝒜 = {(protein expression
for Pandey Lab data, mRNA expression for Uhlén et al. data); (mRNA
expression for Uhlén et al. data, mRNA expression for GTEx data); (𝑠, mRNA
expression for Uhlén et al. data)}. ∀𝑠 ∈ 𝒮.

• 𝒞 is a correlation function such that: ∀𝑔 ∈ 𝒢, ∀𝑎 = (𝑑1, 𝑑2) ∈ 𝒜 𝒞(𝑔, 𝑎) ⟼
correlation coefficient of 𝑔 for its expression across tissues shared by 𝑑1 and
𝑑2.

• (𝑔𝑎,𝑘) is the sequence of genes 𝑔𝑎,𝑘 of 𝒢 such that: ∀𝑘 ∈ [1; 𝒩 − 1] 𝒞(𝑔𝑎,𝑘, 𝑎) ≥
𝒞(𝑔𝑎,𝑘+1, 𝑎)
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F L I ST OF R PACKAGES

R [R Core Team, 2019] packages versions are only given as an indication. Most of the code
can be run with older or newer versions.

• extrafont (0.17) [Chang, 2014]

• RColorBrewer (1.1) [Neuwirth, 2014]

• Cairo (1.50) [Urbanek et al., 2019]

• reshape2 (1.4.3) [Wickham, 2007]

• scales (1.0) [Wickham, 2018]

• MASS (7.3) [Venables et al., 2002]

• data.table (1.12.2) [Dowle et al., 2019]

• ggplot2 (3.1.1) [Wickham, 2016]

• gridExtra (2.3) [Auguie, 2017]

• gridBase (0.4) [Murrell, 2014]

• ggthemes (4.1.1) [Arnold, 2019]

• devtools (2.1.0) [Wickham et al., 2019]

• modules [Schubert and Rudolph, 2014]

• ebits [Rudolph, 2014]

• VennDiagram (1.6.20) [H. Chen, 2018]

• gplots (3.0.1.1) [Warnes et al., 2019]

• Bioconductor (2.44) [Huber et al., 2015]

• ape (5.3) [Paradis et al., 2019]

• biomaRt (2.40) [Durinck et al., 2005]

• clusterProfiler (3.12) [G. Yu et al., 2012]

• org.Hs.eg.db (3.8.2) [Carlson, 2019]

• WGCNA (1.67) [Langfelder et al., 2008]

• mgcv (1.8) [Wood, 2004]

• europepmc (0.3) [Jahn, 2018]

• rmarkdown (1.12) [Xie, Allaire, et al.,
2018]

• DT (0.6) [Xie, Cheng, et al., 2019]

• shiny (1.3.2) [Chang et al., 2019]

• clustermq (0.8.5) [Schubert, 2019]

I have created two packages to help reproduce the different analyses presented in this
thesis:

• barzinePhdData for the data (https://github.com/barzine/barzinePhdData), and

• barzinePhdR (https://github.com/barzine/barzinePhdR).
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