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Summary
We present EPISPOT, a fully joint framework which exploits large panels of epigenetic annotations as variant-level information to

enhance molecular quantitative trait locus (QTL) mapping. Thanks to a purpose-built Bayesian inferential algorithm, EPISPOT accom-

modates functional information for both cis and trans actions, including QTL hotspot effects. It effectively couples simultaneous QTL

analysis of thousands of genetic variants and molecular traits with hypothesis-free selection of biologically interpretable annotations

which directly contribute to the QTL effects. This unified, epigenome-aided learning boosts statistical power and sheds light on the reg-

ulatory basis of the uncovered hits; EPISPOT therefore marks an essential step toward improving the challenging detection and func-

tional interpretation of trans-acting genetic variants and hotspots. We illustrate the advantages of EPISPOT in simulations emulating

real-data conditions and in a monocyte expression QTL study, which confirms known hotspots and finds other signals, as well as plau-

sible mechanisms of action. In particular, by highlighting the role of monocyte DNase-I sensitivity sites from >150 epigenetic annota-

tions, we clarify the mediation effects and cell-type specificity of major hotspots close to the lysozyme gene. Our approach forgoes the

daunting and underpowered task of one-annotation-at-a-time enrichment analyses for prioritizing cis and trans QTL hits and is tailored

to any transcriptomic, proteomic, or metabolomic QTL problem. By enabling principled epigenome-driven QTL mapping transcrip-

tome-wide, EPISPOT helps progress toward a better functional understanding of genetic regulation.
Introduction

Molecular datasets and annotation databases are growing in

size and in diversity. In particular, genetic data are now

routinely collected along with gene, protein, or metabolite

levelmeasurements and analyzed inmolecular quantitative

trait locus (QTL) studies,with the aimofunravelling the reg-

ulatory mechanisms underlying common diseases. Howev-

er, these studies present additional complexities compared

to classical genome-wide association studies (GWASs). First,

they entail a very different statistical paradigm: while

GWASs consider a single or a few related clinical traits, mo-

lecularQTL studies typically involvehundreds or thousands

of molecular traits, regressed on hundreds of thousands of

genetic variants. Second, they need to accommodate two

types of genetic control: a variant may affect molecular

products of genes in its vicinity (cis action) or products of

remotegenes (trans action),where the lattermodeof control

is typicallymuchweaker and,hence,harder touncover than

the former. In particular, pleiotropic or hotspot genetic var-

iants may exert weak trans effects onmanymolecular traits.

The currentmappingpractice only partially embraces the

features of QTL studies. Indeed, widely used marginal

screening approaches1,2 suffer from a large multiplicity

burden and tend to lack statistical power as they do not

exploit the regulation patterns shared by the molecular
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entities, whereas joint modeling approaches3,4 are often

limited by the computational burden implied by the explo-

rationofhigh-dimensional spacesof candidate variants and

traits. To manage this tension between scalable inference

and comprehensive joint modeling, we recently proposed

a variational inference approach, called ATLASQTL,5 which

explicitly borrows information across thousands of molec-

ular traits controlled by shared pathways and offers a robust

fully Bayesian parametrization of hotspots; its increased

sensitivity and that of earlier related models have been

demonstrated in different molecular QTL studies.4–7

In complement to the actual mapping task, biologists

increasingly try to capitalize on the wealth of available

epigenetic annotation sources to infer the functional po-

tential of genetic variants. The standard strategy uses

epigenetic marks mostly for prioritization of hits derived

from marginal screening: it consists in looping through

all the loci with statistically significant associations and,

for each locus, inspecting marks to decide on ‘‘a most

promising’’ functional candidate genetic variant among

all those in linkage disequilibrium (LD). This approach

has the following disadvantages. First, publicly available

databases nowadays contain several hundred epigenetic

annotations. Preselecting just a few may involve omitting

others that are relevant, which may bias the conclusions.

Second, even if a comprehensive inspection were feasible,
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the degrees of relevance of the annotations may be very

uneven and may depend on the conditions, cell types, tis-

sues, and even genomic regions considered, so it is unclear

how to weight each contribution. In response to this, a

number of model-based approaches leveraging epigenetic

annotations have been proposed over the past decade,

whether for genome-wide association studies (e.g.,

iBMU,8 bfGWAS,9 FINDOR10) or fine mapping (e.g., PAIN-

TOR,11 RiVIERA12).

Despite this extensive development, no existing method

provides a solution to our problem, namely, modeling the

functional enrichment of trans-QTLs and hotspots, a task

which is substantially more complex and elusive than for

the functional enrichment of cis-QTLs or GWA signals for

a series of related phenotypes. All available modeling tools

are designed for genetic mapping with one8–11 or a few12

traits at a time, while trans-QTL and hotspot mapping re-

quires considering thousands of traits simultaneously.

It is also worth noting that many approaches accommo-

date only small numbers of candidate annotations by

computational or statistical stability constraints,8,9 or

take as input GWA summary statistics rather than individ-

ual-level data, thereby not benefiting from the added sta-

tistical power obtained from jointly modeling the latter,

along with the functional information.10–12

Our work enables large-scale inference for cis- and trans-

QTL regulation using whole panels of external epigenetic

annotations and argues that the epigenome can serve both

to increase statistical power for QTL mapping and to shed

light on the biology underlying the uncovered genetic

map in a systematic manner. Specifically, it couples a fully

BayesianQTLmapping strategy, inwhichall loci andmolec-

ular traits are analyzed jointly, with a principled leveraging

of epigenetic information by treating this information as

complementary predictor-level data that may inform the

probability of genetic variants to be involved in QTL associ-

ations. As successfully demonstrated in the context of ge-

netic mapping with clinical traits, suitable use of epigenetic

information can boost the detection of weak associations

and help in discriminating genuine signals from spurious

ones caused by LD or other confounding factors.13,14

Our modeling framework, called EPISPOT, directly infers

the role of sparse sets of annotations—from hundreds of

candidate functional annotations—in the activation of

both cis and trans mechanisms affecting hundreds to thou-

sands of molecular traits. Importantly, it combines this epi-

genome-driven feature with a flexible hotspot modeling

feature inspired from our previous work,5 thereby offering

a unified toolkit to refine the detection of hotspots, aided

by the epigenetic information at hand. The base version of

EPISPOT assesses the action of the annotations uniformly

for the full set of analyzed transcripts. However, for cases

wherea sensiblepartition intosubsetsof co-expressedmolec-

ular traits (modules15) is available, we also develop amodule

version of EPISPOT, which accommodates module-specific

epigenetic action by estimating the contribution of the

epigenetic marks to the QTL associations in each module.
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Our take is that fully joint modeling is paramount to

borrow information across loci, epigenetic marks, and mo-

lecular traits with complex dependences, but this requires

careful algorithmic considerations to ensure scalable infer-

ence while retaining accuracy. EPISPOT implements an

adaptive and parallel variational expectation-maximiza-

tion (VBEM) algorithm, augmented with a simulated an-

nealing scheme which effectively explores the multimodal

parameter spaces induced by highly structured data. This

optimization routine is purposely tailored to the analysis

of genetic data with strong LD blocks, for which the inclu-

sion of the epigenetic data has the greatest impact.

Our framework also constitutes an effective tool for inter-

preting (1) the detected trans-acting and hotspot variants

based on their overlap with the selected epigenetic marks

and (2) the molecular traits under genetic control in light

of these marks. This additional purpose of EPISPOT is key

given that elucidating themechanismsof actionofhotspots

is often as challenging as mapping them in the first place.

Indeed, there is accumulating evidence that most genetic

variants acting in trans lie in intergenic regions,16–18 where

functional roles are difficult to decipher. Moreover, the

massive trans-gene networks under genetic control are

thought to be subject to subtle interplays, and researchers

are often leftwith a variety of possible strategies to try to un-

derstand the interacting pathways between the genotype

and underlying disease endpoints.19 These strategies range

from hypothesis-driven bottom-up approaches that start

from isolated mechanisms and try to generalize them (e.g.,

based on cis-mediation hypotheses) to agnostic top-down

approaches that directly model the whole system in view

of teasing apart its fundamental components (e.g., based

on graphical modeling approaches).20 Our approach pro-

vides an alternative anchor toward decoding the complex

networks controlled by hotspots, namely via the epigenetic

marks found to be informative for the genetic mapping.

EPISPOT is not targeted at genome-wide discovery but at

effecting refined QTL mapping and hotspot prioritization,

based on genomic regions—hereafter called candidate

loci—harboring SNPs thought to be involved in QTL regu-

lation. A crucial distinction with the existing enrichment

approaches is that the candidate loci do not correspond

to a previously determined list of QTL hits but are whole

genomic regions, which can involve hundreds of genetic

variants (most of them with no QTL activity). EPISPOT ex-

ploits shared epigenetic signals across these regions to then

select QTL hits with an increased statistical power.

Importantly, fruitful applications of EPISPOT, which can

successfully decipher part of the molecular regulation ma-

chinery, require problems where the signal-to-noise and

density of epigenetic/QTL signals are sufficient. In this

work, we will describe extensive simulation experiments

to highlight the benefits of using epigenetic information

when available for a panel of regulation scenarios, and

we will question the conditions under which inference is

adequately powered to leverage this information. We will

therefore formulate guidelines for practical use and
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provide a software implementation of EPISPOT along with

documented code for the data-generation procedure used

in the simulation experiments.

Another key component of the present paper concerns

illustrating and exploiting the advantages of EPISPOT in

real molecular QTL conditions. We will conduct and discuss

the findings of a thorough monocyte expression QTL

(eQTL) study leveraging a panel of annotations, including

DNase-I sensitivity sites identified in different tissues and

cell types, Ensembl gene annotations, and chromatin state

data from ENCODE. In particular, by pinpointing context-

relevant marks in a hypothesis-free manner, EPISPOT will

allow us to disentangle key mechanisms pertaining to the

lysozyme pleiotropic activity of chromosome 12—an activ-

ity which, although reported in several studies, is so far left

unexplained in terms of its functional and mediation pro-

cesses. Obtaining such evidence without EPISPOT would

involve the daunting task of evaluating the enrichment of

candidate eQTL hits in each individual epigenetic mark;

this would also have no guarantee of success since one-at-

a-time inspection strategies are deprived of the enhanced

statistical power obtained with a unified joint epigenome/

QTL mapping strategy.
Material and methods

Two-level hierarchical regression model
We consider a Bayesian model linking three data sources

(Figure 1A) with two levels of hierarchy. The bottom level param-

etrizes the QTL effects and the top level parametrizes the epige-

netic modulations of the primary QTL effects.

Specifically, the bottom level hierarchy uses a series of condi-

tionally independent spike-and-slab regressions to model the

regulation of q molecular traits by p candidate genetic variants

or single-nucleotide polymorphisms (SNPs) for n samples:

y t

��bt ; tt � Nn Xbt ; t
�1
t In

� �
; t ¼ 1;.; q;

bst jgst ;s
2; tt � gst N 0; s2 t�1

t

� �þ 1� gstð Þd0; s ¼ 1;.; p;

(Equation 1)

where y ¼ ðy1;.; yqÞ is an n3q matrix of centered responses (mo-

lecular traits) and X ¼ ðX1;.;XpÞ is an n3p matrix of centered

candidate predictors for them (SNPs). Here, d0 is the Dirac distribu-

tion and to each regression parameter bst corresponds a binary

latent parameter gst taking value 1 if and only if SNP s is associated

with trait t. Taking the posterior means of the latent parameters gst

then yields marginal posterior probabilities of inclusion (qtl-PPIs,

Figure 1C), prðgst ¼ 1jyÞ, from which Bayesian false discovery rate

(FDR) estimates can be obtained. Moreover, the precision parame-

ters tt and s�2 are assigned diffused Gamma priors.

The top-level hierarchy parametrizes the effects of the epige-

netic marks on the QTL probability of association via a second-

stage probit regression on the probability of effects:

gst jqs; zt ; x � Bernoulli F zt þ qs þVT
s x

� �� �
;

qs � N 0; s20s
� �

; zt � N n0; t
2
0

� �
;

xljrl � rl N 0; s2
� �þ 1� rlð Þd0;

rl � Bernoulli ulð Þ; l ¼ 1;.; r;

(Equation 2)
Th
where Fð $Þ is the standard normal cumulative distribution func-

tion and V ¼ ðV1;.;V rÞ is a p3r matrix of (centered) predictor-

level covariates (epigenetic marks). The epigenetic marks therefore

represent external annotations that directly annotate the SNPs,

rather than sample-specific annotations.

Although prior information on the relevance of the marks for

the QTL control can be accommodated if desirable, this is not

required, as the use of a sparse prior on the mark effects x allows

incorporating a large number of marks even though only a frac-

tion may be responsible for genetic activity. In particular, if

none of the marks are relevant, the QTL mapping will not suffer

any bias from modeling the candidate marks (see simulation

studies hereafter). Moreover, similarly as for the QTL effects,

mark selection is easily achieved using posterior probabilities of in-

clusion, prðrl ¼ 1jyÞ, corresponding to the posterior means of the

binary latent inclusion indicators rl (epi-PPIs, Figure 1C). This

typically yields a sparse subset of marks, whose biological interpre-

tationmay help in understanding themechanisms of action of the

SNPs involved in the QTL associations.
A parametrization tailored to the detection of hotspots
Inaddition toembedding thepredictor-level regression for the epige-

netic effects, the top-level probitmodel in Equation 2 also decouples

the contributions of the predictors (SNPs) and the responses (molec-

ular traits), namely, by involving a response-specific parameter, zt ,

which adapts to the sparsity level linked with each response yt and

a predictor-specific parameter, qs, which encodes modulations of

the probability of association according to the overall effect of each

predictorXs. Parameter qs has a central role in pleiotropic molecular

QTL settings as it represents the propensity of each predictor to be

associated with multiple responses, i.e., its propensity to be a hot-

spot. Its Gaussian prior specification ensures closed-form updates,

which is critical to the efficiency of the algorithm on large datasets.

It also conveniently permits using a local-scale representation (via

s0s) to prevent overshrinkage of large hotspot signals; see our previ-

ous work on the hierarchical modeling of hotspots, from which

this formulation is borrowed.5

Here, the value of s0s is set by empirical Bayes, and so are the

epigenetic effect hyperparameters ul and s. The values of the hy-

perparameters n0 and t0 are chosen to induce sparsity, by speci-

fying a prior expectation and a prior variance for the number of

predictors associated with each response (supplemental material

and methods).

Hence, the EPISPOT model (Equations 1 and 2) borrows infor-

mation across the three types of entities (epigenetic marks, SNPs,

and molecular traits) in a unified manner, while providing inter-

pretable posterior quantities, in particular qtl-PPIs and epi-PPIs,

for the selection of each type of variable. It leverages the epige-

nome for two complementary purposes: (1) to enhance statistical

power for QTL and hotspot mapping and (2) to shed light on the

biology underlying the genetic control, via the inspection of the

selected marks.
A modification for module-specific epigenetic

contributions
The machinery of genetic control is complex and it is unlikely that

the actionof theepigenomeonQTL regulationwill uniformlyaffect

the transcriptome. In particular, different groups ofmolecular traits

may be governed by different functional mechanisms, involving

different sets of epigeneticmarks, todifferent degrees.Whenaparti-

tion into modules of genes (proteins or metabolites for pQTL or
e American Journal of Human Genetics 108, 1–18, June 3, 2021 3
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Figure 1. Overview of EPISPOT
(A) Data input. Epigenetic annotations (predictor-level information) V, genetic variants from candidate loci (candidate predictors) X,
molecular traits (responses) y.
(B) Graphical representation for the two-level hierarchical model. The shaded nodes are observed, and the others are inferred. The top-
level regression corresponds to the top plate; the probability of association is decoupled into a trait-specific contribution, zt , a SNP-spe-
cific contribution with a ‘‘hotspot propensity parameter’’ qs and an epigenome-specific contribution, xl, whereV l is the vector gathering
the observations of predictor-level epigenetic covariate l for all candidate SNP predictors Xs, s ¼ 1;.;p. Parameter bst models the effect
between SNPXs and trait yt , and gst and rl are binary latent indicators for the QTL associations and epigeneticmark involvement, respec-
tively. Parameter s models the typical size of QTL effects and t�1

t models the residual variability of trait yt .
(C) Posterior output. Selection of epigenetic marks with a role in QTL regulation is carried out using the posterior probabilities of inclu-
sion (epi-PPIs), prðrl ¼ 1jyÞ, l ¼ 1;.; r (bottom left) and selection of associated SNP-trait pairs (aided by the marks) is carried out using
the posterior probabilities of inclusion (qtl-PPIs), prðgst ¼ 1jyÞ, s ¼ 1;.; p; t ¼ 1;.; q (bottom right). The hotspot Manhattan plot (top)
reports the number of traits associated with each SNP (‘‘hotspot size’’), after using a selection threshold on the qtl-PPIs (e.g., FDR-based).
(D) EPISPOTworkflow.Candidate loci andmolecular traits areobtained fromapreliminary screeningor fromexistingdatabases and supplied
as input to themethod along with epigenetic marks at the variants harbored by the loci. The algorithm is used with or without the module
option depending onwhether the traits are gathered intomodules or not (M-EPISPOT in gray, resp. EPISPOT in blue). The output consists of
sets of associated variants and traits, QTL hotspots, and epigenetic marks relevant to the primary QTL associations for given significance
thresholds. It is then interpreted to generate mechanistic hypotheses about the functional processes underpinning the QTL associations.
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mQTL analyses, respectively) likely to be co-regulated is available to

the analyst, it can be provided as input to the method which will

then infer theannotationeffects in amodule-specific fashion,based

on the following modification of top-level Equation 2:

gst jqm;s; zt ; xm � Bernoulli F zt þ qm;s þVT
s xm

� �� �
;

qm;s � N 0; s20m;s

� �
; zt � N n0; t

2
0

� �
;

xm;l

��rm;l � rm;l N 0; s2m
� �þ 1� rm;l

� �
d0;

rm;l � Bernoulli um;lð Þ; l ¼ 1;.; r;

(Equation 3)
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where m˛M is a module of traits, with M a partition of f1;.; qg
and mHt. Parameter xm then represents the epigenetic contribu-

tion of the r marks for the QTL associations involving the traits

from module m. The hotspot parameter qm;s also accounts for

the module structure: it represents the propensity of SNP s to be

associated with few or many traits from module m. This encodes

module-specific pleiotropic levels and also reflects the fact that a

SNP controlling a given trait in a module is more likely to be

also associated with related traits from the samemodule compared

to traits outside the module.
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The corresponding version of the algorithm—implementing

Equations 1 and 3—is hereafter called M-EPISPOT when an

explicit distinction with the base, module-free version—imple-

menting Equations 1 and 2—is needed.

Different approaches, basedon someprior state of knowledge, on

specific optimizationmethods, or both,will typically yield comple-

mentary definitions of modules. In some instances, there will be

obvious biological reasons backing up the obtained grouping; in

others, no clear partitioning will emerge, in which case the analyst

may choose to use themodule-free version of themodel. As there is

no generic strategy for forming modules, it is important to under-

stand the impact of such choices on inference. In particular, from

a modeling point of view, a given module should ideally comprise

co-regulatedmolecular traits, i.e., traitswith sharedgenetic control,

triggeredby commonepigeneticmechanisms. The top-level regres-

sion (Equation 3) will then represent the possible epigenetic effects

underlying the functional mechanisms in the module, and mod-

ule-specific epi-PPIs will be useful to select the marks involved in

the regulation of each module. In particular, shared signals will

be best leveraged when the molecular traits controlled by a given

SNP belong to a same module. The simulation studies and the

eQTL analysis will provide practical recommendations as well as

analyses of sensitivity to module misspecification.

A scalable purpose-built algorithm
The hierarchical model described above couples two levels of

spike-and-slab regression, which accommodate three large spaces

of SNPs,molecular traits and epigeneticmarks, with possibly thou-

sands of variables each. Careful algorithmic strategies are therefore

critical to ensure that inference is accurate and scalable. To meet

both requirements, we implement an adaptive variational expec-

tation-maximization (VBEM) algorithm and augment it with a

simulated annealing procedure that efficiently explores the highly

multimodal variable spaces formed by data with strong depen-

dence structures.

VBEM algorithms were introduced by Blei et al.21 in the context

of Dirichlet allocation modeling. In short, they iterate between

optimizing empirical Bayes estimates (in our case for the hotspot

propensity and epigenetic effect hyperparameters) and running

a variational algorithm for the remaining parameters, given the

updated empirical Bayes estimates.

We present hereafter the algorithm in its general module-based

form (M-EPISPOT); omitting the index m and taking M ¼ 1 gives

the base version with no module partitioning (EPISPOT).

Let v ¼ ðb; t;g; s2; q; z; x; rÞ denote the parameters for Equations

1 and 3, and let h ¼ ðh1;.;hMÞ denote the second-stagemodel hy-

perparameters, with hm ¼ ðs20m; s2m;umÞ for module m ¼ 1;.;M.

We propose estimating h via an empirical Bayes procedure, by

finding

bh¼ arg max
h

[ ðh; yÞ; (Equation 4)

where [ ðh; yÞ ¼ logpðyjhÞ is the marginal log-likelihood.

Computing Equation 4 analytically for our model would require

high-dimensional integration and thus is infeasible. Our VBEM al-

gorithm circumvents this by coupling the empirical Bayes estima-

tion of the hyperparameter h with a variational inference scheme

that simultaneously infers the model parameter vector v. The pro-

cedure implements alternating optimizations of the variational

lower bound

Lðq;hÞ¼Eq log pðy; vjhÞ � Eq log qðvÞ; (Equation 5)
Th
where qðvÞ is the variational density for pðvjy; bhÞ for a current esti-
mate bh and Eqð $Þ is the expectation with respect to qðvÞ. More pre-

cisely, it initializes the parameter and hyperparameter vectors vð0Þ

and hð0Þ, and alternates between the E-step,

qðtÞ ¼ arg max
q

L�q;hðt�1Þ�;
using the variational algorithm for obtaining qðtÞ at iteration t, and

the M-step,

hðtÞ ¼ arg max
h

L�qðtÞ;h�;
until convergence of hðtÞ. In our case, the updates for the M-step

are obtained analytically by setting to zero the first derivative of

LðqðtÞ;hÞ with respect to each component of h. This only requires

computing and differentiating the joint likelihood term

Eqlogpðy; vjhÞ in Equation 5, as the entropy term �EqlogqðvÞ is a

function of hðt�1Þ and is constant with respect to h.

Variational inference is typically orders of magnitude faster than

classical Markov chain Monte Carlo inference5,6,22 for compari-

sons on GWA and molecular QTL models. Some computational

cost is added for VBEM algorithms as each E-step requires running

the variational algorithm until convergence. Moreover, the two

regression levels of our Equations 1 and 2 or Equations 1 and 3

necessitate the exploration of a very large parameter space, which

is complex and time consuming for any type of inference.

We consider two strategies to overcome this burden. First, we

substantially reduce the runtime of the within-EM variational

runs by using an adaptive stopping criterion, namely, starting

with a large tolerance and dynamically decreasing it according

to the convergence state of the overall EM algorithm. The second

strategy applies to the module version of our algorithm: the spec-

ification in Equation 3 suggests that its hyperparameters may be

estimated reasonably well by restricting the VBEM scheme to sub-

problems corresponding to each module, i.e., applying Equations

1 and 2 to the subsets of responses ym separately for obtaining the

corresponding empirical Bayes estimates hm,m ¼ 1;.;M. In addi-

tion to accelerating hyperparameter estimation for each module

(as the model is much smaller), this has the advantage of allowing

parallelization across modules. Once all module hyperparameters

are estimated, they are inserted into Equations 1and 3 and varia-

tional inference is run on the entire dataset.

Strong posterior multimodality can be induced by dense geno-

typing panels with marked LD structures, whereby the inclusion

of epigenetic information is particularly beneficial to disentangle

the genetic contributions. To robustly infer signals from problems

with strong data dependence structures, we augment all varia-

tional schemes with a simulated annealing routine.23,24 Annealing

introduces a so-called temperature parameter to index the varia-

tional distributions and control the level of separation between

their modes, thereby easing the progression to the global opti-

mum. In practice, we start with a temperature T0 to flatten the pos-

terior distribution and sweep most local modes away, and we then

lower it at each iteration, until the original multimodal distribu-

tion, called the cold distribution, is reached. Finally, to ensure sta-

ble inference, our routine excludes redundant SNPs and marks

(i.e., displaying perfect collinearity with other SNPs/marks) prior

to the run. Moreover, constant marks or marks that concern less

than a given proportion of SNPs (default 5%) are also discarded

before the analysis as insufficiently informative.

A sketch of the algorithm and the full derivation of the annealed

VBEM updates are in the supplemental material andmethods. The
e American Journal of Human Genetics 108, 1–18, June 3, 2021 5
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algorithm is implemented as a publicly available R package with

Cþþ subroutines (see Web Resources). Both the EPISPOT and M-

EPISPOT versions run within seconds to few hours depending

on the numbers of loci, molecular traits, and epigenetic marks

(see the runtime profiling in the supplemental material and

methods). We also provide simulation studies that demonstrate

the robustness of EPISPOT to different degrees of LD and the

benefit of coupling VBEM inference with simulated annealing in

case of strong LD (supplemental material and methods).
Recommended use
EPISPOT is a refining tool for the detection and interpretation of

QTL and hotspot effects. It is meant to be used for joint analysis

of preselected genomic regions (candidate loci) and transcripts

believed to be under genetic control (Figure 1D). Different ap-

proaches can be considered to obtain loci of interest. Public data-

bases can be employed to form loci of given size around previously

identified hits, provided this information is available for the con-

dition, tissue, or cell type at hand. An alternative approach is based

on a preliminary application of ATLASQTL5 or another screening

method, ideally on an independent dataset. If no independent da-

taset is available to the analyst, useful research hypotheses may

still be obtained by running the prescreening step on the same da-

taset, prior to running EPISPOT. However, results should then be

considered as exploratory, since this procedure interrogates the

same data twice, which is subject to overfitting.

The effectiveness of EPISPOT for detecting and exploiting the

relevant epigenetic marks for QTL mapping depends on multiple

conditions that have a coordinated effect on statistical power.

The number of loci analyzed must be reasonably large to hope for

the marks to be sufficiently represented at causal loci. These loci

must also be densely genotyped or imputed to ensure that the

causal SNPs, and the epigenetic marks they may fall into, are

included in the analysis. The frequency of each relevant mark

among causal SNPs, as well as the strength of its contribution to

initiating the QTL effects and the quality of the mark annotation

also play a role, as do the degree of co-regulation of traits by the

same SNPs, the sample size of the analyzed dataset, the individual

effect sizes of QTL associations, and the correlation structures

among marks, traits, and SNPs (LD). We examine the impact of

thesedifferentparameters in a seriesof simulationstudiesdescribed

in the results and in the supplemental material and methods.

Were these conditions not sufficiently met for EPISPOT to

borrow information across the loci and learn the mark contribu-

tions, the QTLmapping would not benefit from further level of in-

formation provided by the marks (no mark selected) but it would

nonetheless benefit from the joint analysis of SNPs and traits.

Notably, the sparse modeling of the marks implies that the inclu-

sion of marks, were these insufficiently informative, has no risk of

deteriorating the QTL mapping (see the ‘‘Null scenario’’ section in

the supplemental material and methods); this is a major advan-

tage of our method.
Results

Data generation and simulation set-up

The series of simulation studies presented in the next sec-

tions have the dual purpose of (1) illustrating the effective-

ness of EPISPOT in learning from the epigenome when the

epigenetic annotations at hand are sufficiently informative
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(first simulation study), and (2) evaluating the method in

weakly informative scenarios (second simulation study)

or scenarios where the module partition supplied to M-

EPISPOT is misspecified (third simulation study).

We simulate data so as to best emulate molecular QTL

regulation and the role of the epigenome in triggering

this regulation; the general data-generation procedure is

detailed in the supplemental material and methods and

we further tailor it to each simulation experiment in their

dedicated sections. Here, for simplicity, we represent the

presence or absence of a mark at each SNP using a binary

variable. In real case scenarios, all types of continuous an-

notations can be considered without modification since

they are encoded as predictors in the second-level regres-

sion framework employed by EPISPOT, hence with no

distributional assumption.

We use the following terminology when referring to the

simulated association patterns:

d an ‘‘active SNP’’ has at least one association with a

molecular trait

d an ‘‘active locus’’ involves at least one active SNP

d an ‘‘active trait’’ has at least one association with a

SNP

d an ‘‘active module’’ contains at least one trait

involved in QTL associations

d an ‘‘active mark’’ triggers at least one SNP-trait QTL as-

sociation

d the ‘‘hotspot size’’ is the number of traits associated

with a given hotspot SNP.

We benchmark our approach against two representative

state-of-the-art methods for QTL mapping, namely, the

fully joint Bayesian QTL method ATLASQTL,5 which is

also tailored to the modeling of hotspots but does not

accommodate the epigenetic marks, and the widely used

marginal screening approach MATRIXEQTL,2 which tests

each SNP-trait pair one-by-one and does not involve any

epigenetic information.

A first illustration

We first describe the type of posterior output produced by

EPISPOT and its performance in a simple problem where

no modules are involved, i.e., the active epigenetic marks

exert their influence on all associated SNP-trait pairs.

We simulate 32 datasets with an average of 600 molecu-

lar traits, r ¼ 500 candidate epigenetic marks and 60 candi-

date loci, each comprising an average of 20 real SNPs for

413 subjects. These are initial choices are meant to reflect

plausible scenarios encountered in real applications, after

preselecting candidate loci and candidate traits likely to

be controlled by these loci. A subset of 100 SNPs are active

(between 0 and 3 per locus; see Table 1) and their QTL ef-

fects are triggered by r0 ¼ 3 active marks. This is a strong

assumption, which permits a direct illustration of our algo-

rithm in a simple setting but, since it may be unrealistic,

we will only use it as a starting point for the more complex



Table 1. Average number of simulated loci stratified by the number of active SNPs in the first simulation study

Total number of loci 60

Inactive loci 9.1 (2.7)

Loci with 1 active SNP 17.6 (3.9)

Loci with 2 active SNPs 17.6 (2.6)

Loci with 3 active SNPs 15.8 (2.2)

Standard deviations are in parentheses (32 simulated datasets).
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numerical experiments that follow. To help interpretability

in the context of the simulations, we also generate marks

with positive effects only, i.e., inducing QTL activity and

not repressing it (supplemental material and methods).

Moreover, the large number of candidate marks and the

low number of active marks are used to illustrate the ability

of EPISPOT to discriminate sparse subsets of relevantmarks

fromwhole panels of marks (most of which with no contri-

bution to the QTL effects). The QTL signals are relatively

weak: for any given trait, the cumulated QTL effects are

responsible for at most 25% of its total variance. Many

active SNPs are hotspots; across all 32 replicates, the active

SNPs are associated with a number of traits ranging from 1

(isolated QTL association) to 96 (large hotspot), with an

average of 27 active traits per active SNP.

All these choices will be varied in the subsequent simula-

tion experiments; for an extensive comparison over a grid of

scenarios, see the supplemental material and methods.

Figure 2 shows that EPISPOT could clearly discriminate

the three active marks contributing to the QTL associa-

tions from the remaining r � r0 ¼ 497 inactive marks.

The partial receiver operating characteristic (ROC) curves

also show that it outperforms ATLASQTL in terms of select-

ing associated SNP-trait pairs and hotspots. It is unsurpris-

ing given that ATLASQTL does not use any predictor-level

information, yet it nevertheless confirms that EPISPOTcan

effectively exploit the marks to enhance the estimation of

the primary QTL associations. MATRIXEQTL performs

poorly compared to the two joint approaches EPISPOT

and ATLASQTL, which is expected since, by design, it

does not exploit the shared association signals across traits.

We checked that EPISPOTand ATLASQTL display similar

performance under simulation scenarios with no active

mark: their 95% confidence intervals for the standardized

partial area under the curve (pAUC) overlap, i.e., (0.74,

0.78) and (0.76, 0.79) for ATLASQTL, resp. EPISPOT (sup-

plemental material and methods). This further supports

the observation that the improvement of EPISPOT seen

in Figure 2 is attributable to an effective use of the three

informative marks and not to other intrinsic differences

between the two models; more evidence on this is pro-

vided in the next simulation experiment.

Performance under varying degrees of epigenome

involvement

Effectiveness in QTL mapping is subject to a number of

interdependent factors pertaining to (1) the sparsity of
Th
the studied QTL network and magnitude of the QTL ef-

fects, (2) the amount of information contained in the

data at hand, and (3) the ability of the statistical approach

to interrogate the data, i.e., by both leveraging and being

robust to the dependence structures within and across ge-

netic variants and molecular traits. When it comes to ex-

ploiting the epigenome to enhance statistical power, an

additional level of complexity is introduced for deter-

mining the impact of the above factors on the analysis,

and new questions arise as to whether the signal present

in the data is sufficient to inform inference on the location

of the relevant epigenetic marks and of the QTL associa-

tions potentially triggered by these marks.

In the previous simulation experiment, we generated

data under the simplifying assumption that all QTL associ-

ations were induced by the epigenome, and to a degree to

which the relevant marks would be detectable, as evi-

denced by the high epi-PPIs for the active marks and the

power gained from leveraging this signal (Figure 2). Here,

we focus on evaluating how the level of involvement of

the epigenome in QTL activity impacts the detection of

QTL effects and of the marks responsible for these effects.

We consider a series of QTL problems, each generated by

replicates of 32, for a grid of response numbers and degrees

of involvement of the epigenome in activating QTL con-

trol. More precisely, we simulate data with a number of

traits sampled from a Poisson distribution with mean l ¼
200;400;600;800;1000, or 1,600 and 60 loci with 20

SNPs each and involving 100 active SNPs in total. We

vary the proportion of active SNPs whose activity is trig-

gered by epigenetic marks from pepi ¼ 0 (all QTL associa-

tions simulated independently of the action of the epige-

nome) to pepi ¼ 1 (all QTL associations simulated as the

result of the action of the epigenome); see the supple-

mental material and methods for the data-generation de-

tails. The typical pleiotropic pattern simulated is displayed

in Figure 3 for the different choices of pepi and problems

with an average of l ¼ 600 traits.

Figure 3 also shows the performance for the selection of

QTL effects in terms of standardized pAUC. It provides two

separate layers of information: first, it illustrates again how

EPISPOT is able to leverage the epigeneticmarks to improve

QTLmapping, andmore sowhen thenumber of active SNPs

triggeredbythesemarks increases (top tobottomrows) since

EPISPOT is then able to effectively borrow information

across the mark-activated SNPs. This underlines the need

for the relevant epigenetic marks to be sufficiently
e American Journal of Human Genetics 108, 1–18, June 3, 2021 7
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Figure 2. Performance for selection of epigenetic marks, pairs of associated SNPs and traits, and hotspots
Left: Epi-PPIs for the marks averaged over 32 replicates. The three marks simulated as active are indicated by the triangles. Middle:
Average partial ROC curves for SNP-trait selection with 95% confidence intervals obtained from 32 replicates. EPISPOT is compared
to the joint hotspot-QTL mapping method, ATLASQTL,5 and the univariate screening method, MATRIXEQTL,2 none of which makes
use of the epigenetic marks. Right: idem for the selection of active SNPs (here, mainly hotspots).
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represented at causal variants so that the analyzed data are

informative about their involvement. It is therefore advised

to use a reasonably large number of loci thought to be active

anddense SNPpanels (e.g., imputed SNPs, see the eQTL case

study section), so the active SNPs are more likely to be

included. Second, it shows that the joint modeling of all

traits permits exploiting shared signals across these traits,

thereby also improving statistical power, as reflected by

the increased pAUCs for problems with larger numbers of

traits in Figure 3. This is particularly true in the presence of

co-regulated molecular traits, a special case of which is the

regulation of these traits by a single hotspot.

Figure 3 also indicates that, when the epigenetic signal is

moderate to large (pepi ¼ 0.4, 0.6, 0.8, or 1), EPISPOT is able

to pick the active epigenetic marks from a large number of

candidate marks, while setting the epi-PPIs of the inactive

marks to zero. However, when the signal is weak (pepi ¼
0.2), the active marks are barely detected, as expected.

Importantly, though, in the null scenario where the epige-

nome plays no role (pepi ¼ 0), modeling the r ¼ 500 inac-

tive marks does not deteriorate the performance (supple-

mental material and methods).

These experiments also suggest that annotations which

are more likely to trigger QTL associations at numerous

causal SNPs, such as cell-type-specific enhancers, could

have increased opportunities to be picked up and lever-

aged. This may imply that the QTLmapping would benefit

more from the use of general annotations than from that

of more specific types of marks, such as ChIP-seq binding

sites of transcription factors, whichmay display a lower de-

gree of sharing between hotspots. Further investigations

on real datasets would need to confirm this. However, as

there is no intrinsic limitation on the number of candidate

annotations supplied to EPISPOT, nothing prevents the

analyst from using both general and more specific annota-

tions, and letting the model select the annotations which

are sufficiently informative.
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Finally, the quality of the mark annotation will have a

similar impactonperformance.Weshow incomplementary

simulations (supplemental material and methods) that

EPISPOT will not take full advantage of the epigenome if

the supplied annotations are of poor quality: the QTLmap-

ping performance declines with the level of noise in the an-

notations, but EPISPOT remains superior to alternative ap-

proaches for which no annotation information is supplied.

We also tested the impact of other data scenarios on the

ability of EPISPOT to detect and utilize the marks for

improving QTL mapping. More precisely, we ran simula-

tions for a grid of configurations, varying: the number of

active SNPs, the average QTL effect sizes, the degree of

co-regulation of the traits and the hotspot sizes; see section

‘‘QTL mapping performance for a grid of simulated data

scenarios’’ of the supplemental material and methods.

These experiments show that (1) these parameters have a

coordinated effect on statistical power, and (2) thanks to

its flexible hierarchical representation, EPISPOT is very

effective at taking advantage of shared functional patterns,

yielding a substantial mapping performance gain.

Inferring module-specific epigenetic action

The simulation experiments presented next focus on eval-

uating M-EPISPOT, i.e., the module version of the algo-

rithm which models module-specific epigenetic effects.

They illustrate how statistical power and interpretability

are enhanced when the structure underlying epigenome-

driven QTL associations is exploited. They also evaluate

the robustness of inference whenmisspecifiedmodule par-

titions are supplied to M-EPISPOT. This is particularly

important given the uncertainty that often surrounds the

definition of modules, as reflected by fact that different

co-expression inferential tools often produce different

module specifications.

We start with a simple example involving 60 concate-

nated loci of average size 40 SNPs and two modules of 50



Figure 3. Performance of EPISPOT for a grid of numbers of traits and proportions pepi of epigenome-driven active SNPs
Left: Standardized pAUCs for the QTL selection performance with 95% confidence intervals. Middle: Simulated hotspot QTL pattern for
problems with an average of 600 traits (first replicate for each value of pepi). The crosses indicate hotspots whose activity is triggered by
the epigenome and the circles indicate hotspots whose activity is independent of the epigenome. Right: Average epi-PPIs, as inferred by
EPISPOT for the simulated scenarios with an average of 600 traits.
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Figure 4. Performance of M-EPISPOT
(A) Simulated scenario with two modules, whereby the first module m1 is contaminated by an increasing number of traits from the sec-
ond module m2. Panel A(1) shows the simulated pleiotropic pattern for one replicate. The gray levels suggest the different QTL effect
strengths of each active SNP (x axis) with the traits (y axis) from modules m1 and m2. The horizontal dotted lines mark the boundary
between m1 and m2 for the misspecified module partitions supplied to M-EPISPOT. Panel A(2) shows the partial ROC curves (with
95% confidence intervals based on 32 replicates) for the QTLmapping performance obtained when supplying the different misspecified
partitions shown in A(1) to M-EPISPOT.
(B) Simulation with five pleiotropic modules. Panel B(1) shows the simulated pattern for the active SNPs of one replicate. Panel B(2)
panel shows the dependence structure of the simulated traits for one replicate. Panel B(3) shows the module-specific average epi-PPIs
for the contribution of the epigenetic marks to the QTL effects. Panel B(4) shows the partial ROC curves for the QTL mapping, with
95% confidence intervals based on 32 replicates.
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simulated traits each. In the first module (m1), the traits are

largely co-regulated by hotspots whose activity is imput-

able to the epigenome. In the second module (m2), only

few traits are involved in isolated QTL associations, with

no implication of the epigenome. Figure 4A illustrates

the corresponding simulated QTL pattern restricted to

the active SNPs, for the first data replicate. We evaluate

the performance of M-EPISPOT with the following

settings:

1. The oracle case, where we assume the simulated

module partition M ¼ fm1;m2g to be known and

provided it as input to M-EPISPOT;

2. the module-free case, where we perform inference

with the base model EPISPOTwhich does not exploit

the module partition;
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3. a series of intermediate cases, where the module

partition supplied to M-EPISPOT is misspecified,

i.e., module m1 is contaminated with 10;20;30 or

40 traits from module m2 (Figure 4A). This mimics

a real data scenario whereby the assignment of

some traits to modules is difficult.

The ROC curves of Figure 4A show that leveraging infor-

mation about the underlying module partition can

improve significantly the detection of QTL effects. They

also confirm the intuition that the impact of misspecified

partitions on performance is a function of the degree of

misspecification: for a given specificity, the power de-

creases smoothly with the number of inactive traits from

module m2 contaminating module m1. From a modeling

point of view, leaving all traits controlled by a same
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hotspot in a single module permits maximizing the oppor-

tunities to learn the epigenetic contribution to the QTL ac-

tivity by borrowing strength across co-regulated traits. It is

advised to make use of prior information on pleiotropy

when available in order to avoid splitting hotspot-

controlled networks of traits into distinct modules.

The second simulation experiment considers a more

general setting with 5 modules of average size 50. It com-

pares ATLASQTL, EPISPOT, andM-EPISPOTwith the oracle

module partition supplied and M-EPISPOT with a contam-

inated module partition supplied, i.e., where a fifth of the

traits in the simulated modules are randomly re-assigned

to the other modules.

Figure 4B leads to a conclusion similar to that of the pre-

vious example: the idealized scenario of the oracle module

partition provided to M-EPISPOT yields the best perfor-

mance, followed, in order, by the more realistic case of

the contaminated partition, the EPISPOT run (with no

module information) and finally, the ATLASQTL run

which does not make use of any epigenetic information.

Importantly, the fact that themodule-free version EPISPOT

outperforms ATLASQTL indicates that even when the

module structure is not employed, the method is still

able to leverage the epigenome in order to improve the

QTL mapping.

Figure 4B also shows how the marks responsible for the

activation of the different modules are correctly recovered

by M-EPISPOT. An inspection of these separate sets of

marks provides a refined level of interpretability for a mod-

ule-specific understanding of the genetic control. We will

see in the eQTL analysis presented next how this can be

particularly helpful to shed light on themechanistic action

of trans hotspots, when such hotspots are thought to con-

trol gene modules in a context-specific way.

An epigenome-driven monocyte eQTL case study

In this section, we take advantage of EPISPOT in a targeted

eQTL study to refine the detection and characterization of

genetic regulation in monocytes. Specifically, we analyze

two independent datasets with transcript levels measured

in CD14þ monocytes. Our study workflow is described in

Figure 5A: we discover active loci in a prescreening step us-

ing the joint hotspot QTL mapping approach ATLASQTL5

in the first dataset (n ¼ 413 samples25), and we then

leverage the epigenome using EPISPOT in the second data-

set (CEDAR cohort, n ¼ 286 samples26) for an in-depth

analysis of the genetic activity in the preselected loci.

The epigenetic information consists of a panel of 168

annotation variables, compiling DNase-I sensitivity sites

from different tissues and cell types, Ensembl gene annota-

tions, and chromatin state data from ENCODE. These vari-

ables display strong correlation structures within annota-

tion types, as well as within tissues and cell types at a

finer granularity level (Figure 5C). Details about the pre-

screening step, as well as the epigenetic, genetic, and

expression datasets are given in the supplemental material

and methods, and the eQTL associations for the prescreen-
The
ing and subsequent analyses are listed in Tables S1, S2, S3,

and S4.

In this case study, we concentrate our attention on the

following key finding revealed by the prescreening step:

chromosome 12 is highly pleiotropic, notably around the

gene LYZ (MIM: 153450). This gene encodes lysozyme, a

highly conserved enzyme with peptidoglycan-lytic activity

that is robustly expressed in monocytes. The LYZ locus has

already been reported as pleiotropic using severalmonocyte

datasets,27–29 but its functional role remainsunclear.Wewill

therefore exploit the epigenetic annotations within EPIS-

POT to shed light on themechanisms of action of this locus

as well as of other surrounding cis- and trans-acting loci.

Importantly, while our discussion will mainly concen-

trate on a few pleiotropic loci of interest, EPISPOT will be

applied on a whole collection of loci from chromosome

12, which display QTL signal according to the ATLASQTL

prescreening at 5% FDR. By borrowing strength across all

the loci (learning from hotspot signals, as well as isolated

cis and trans signals), EPISPOTwill infer the epigenetic con-

tributions to the QTL activity of the different regions.

The LYZ-region pleiotropy defines two modules of transcripts

A total of 977 eQTL associations, involving 350 unique

SNPs on chromosome 12 and 430 unique transcripts

genome-wide, were identified at FDR 5% from the AT-

LASQTL prescreening analysis of the first dataset. When

mapped to the CEDAR dataset, the ATLASQTL eQTLs cor-

responded to 195 independent loci, expected to involve

distinct eQTL signals and comprising a total of p ¼ 1,540

SNPs (see Figure 5A and data-preparation details in the sup-

plemental material and methods). As highlighted in the

second simulation study (section ‘‘performance under

varying degrees of epigenome involvement’’), supplying

a dense panel of SNPs (here imputed SNPs) to EPISPOT is

important to ensure a sufficient representation of the rele-

vant epigenetic marks among the analyzed SNPs.

We also mapped the prescreened transcripts to the

CEDAR dataset. The LYZ-region pleiotropy defines two

natural modules of transcripts, based on whether they

are associated with SNPs in the vicinity of LYZ (<1 Mb

from it) or not, and further augmenting these modules

with highly correlated transcripts (supplemental material

and methods). This module partition is driven by the

following biological consideration: the peculiar pleiotropic

QTL activity arising from the LYZ region may be triggered

by specific epigenetic influences, which may differ from

those triggering isolated (scattered) cis or trans effects

outside the LYZ region; to reflect this, the modules are

hereafter referred to as the pleiotropic module and the scat-

tered module, respectively (Figure 5A).

The correlation structure within and across the two

modules supports this partitioning (Figure 5B). Namely, it

indicates a strong co-expression of transcripts within the

pleiotropic module, suggesting a dense network of genes

whose connections may be attributed in large part to the

shared QTL control exerted by the LYZ hotspots.

Conversely, the transcripts in the scattered module display
American Journal of Human Genetics 108, 1–18, June 3, 2021 11



A

B C

D

Figure 5. Overview of the monocyte eQTL case study
(A) Workflow for the monocyte eQTL case study. Candidate loci from chromosome 12 and transcripts are obtained from a preliminary
prescreening in the first dataset25 using the joint eQTLmapping approachATLASQTL5with a permutation-based Bayesian false discovery
rate (FDR) of 5% for selecting pairs of associated SNP-transcript. The analysis is then performed in the second dataset (CEDAR).26 EPISPOT
andM-EPISPOTselect associated SNP-transcript pairs, QTL hotspots, and epigeneticmarks relevant to the primaryQTL associations. This
output is then interpreted as a whole to generate hypotheses about the mechanisms of action underlying these associations.
(B) Correlation of the analyzed transcripts according to their module membership. The ‘‘pleiotropic module’’ displays a strong depen-
dence pattern, reflecting dense connections in the network controlled by the hotspots; the traits in the ‘‘scattered module’’ are mostly
uncorrelated, which is unsurprising given that they are mainly controlled via isolated cis mechanisms.
(C) Correlation of the epigenetic annotations supplied to the method. All variables are binary, except the distance to the closest tran-
scription start site (TSS) which is not included in the heatmap. Only the labels of the marks retained byM-EPISPOTare displayed; a heat-
map with the full labels is provided in the supplemental material and methods. The majority of the marks are DNase-I hypersensitivity
sites (DHSs) in different tissues and cell types. They tend to cluster together on the top left 4/5 of the heatmap, and DHSs in similar tis-
sues and cell types also form subgroups. The remaining marks relate to gene structures and genome segmentation annotations. The la-
bels indicated on the right are in gray and black depending on whether they were selected by M-EPISPOT as relevant for the pleiotropic,
resp. scattered module. The þ and � indicate positive, resp. negative effects of the marks, i.e., their triggering or repressive action on the
primary QTL effects. Their relevance is discussed in the main text and in the supplemental material and methods.
(D) Hotspot sizes (i.e., number of associated transcripts per SNP) as inferred byM-EPISPOT. Only the active SNPs (i.e., associatedwithR 1
transcripts) are displayed. The gray and black colors indicate the module membership of the controlled transcripts. The numbers in pa-
rentheses refer to the discussion of the main text.
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Table 2. Number of hits and replication rates

PRESCREENING CEDAR

(n ¼ 413, p ¼ 28,100, q ¼ 22,827) (n ¼ 286, p ¼ 1,540, q ¼ 474)

ATLASQTL M-EPISPOT EPISPOT ATLASQTL

Nb eQTL associations 977 514 444 337

cis replication (%) 78.2 77.9 77.9

trans replication (%) 55.8 54.9 54.9

Number of eQTL associations discovered by the ATLASQTL prescreening (chromosome 12) and by each of the three (M-EPISPOT, EPISPOT, and ATLASQTL) an-
alyses of the CEDAR data, along with the replication rates for the associations discovered at the prescreening stage. All analyses use an FDR threshold of 5%. The
numbers of samples n, SNPs p, and transcripts q are indicated for each dataset. Full lists of eQTL associations for the different methods are provided in Tables S1, S2,
S3, and S4.
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little co-expression, which is unsurprising given that they

tend to be involved in isolated QTL effects (most tran-

scripts are controlled by distinct genetic variants).

Overall comparison of methods and replication rates

We next refined our understanding of the eQTL structure

in this region using the CEDAR dataset. To assess the

sensitivity of inference to this module partition, we

compared the results of the module-based algorithm,

M-EPISPOT, with those of the base algorithm, EPISPOT,

i.e., with no module provided as input. Moreover, to

highlight the benefits of using epigenetic information,

we also confronted these two runs with an ATLASQTL

analysis of the same data. We employed the same set-

tings for all three runs to set common grounds for com-

parison. In particular, we used a same permutation-based

Bayesian FDR threshold of 5% for declaring QTL associa-

tions (Figure 5A and supplemental material and

methods). Importantly, the simulated annealing scheme

implemented as part of the EPISPOT algorithm is specif-

ically designed to handle the strong LD structures pre-

sent in the dense SNP panel data and the block correla-

tion structures among transcript levels (Figure 5B) and

epigenetic marks (Figure 5C); an illustration for different

degrees of LD is given in the supplemental material and

methods.

In the CEDAR dataset, the M-EPISPOT analysis of the

two modules (q ¼ 283þ191 transcripts) and the 195 candi-

date loci (p¼ 1,540 SNPs) identified 514 eQTL associations,

involving a total of 267 unique transcripts and 82 unique

loci (Table S2). In terms of independent replication of the

prescreening hits, this corresponds to rates of 78.2% and

55.8% for the cis and trans QTL associations, respectively.

Using ATLASQTL instead of M-EPISPOT on the CEDAR

data yielded 262 unique active transcripts and 80 unique

active loci, with slightly lower cis and trans replication

rates, namely 77.9% and 54.9%, respectively (Table 2, Ta-

ble S4). Similar observations were obtained for EPISPOT

(Table 2, Table S3). Given the well-known difficulty to vali-

date trans effects and the relatively small sample size of the

CEDAR dataset (n ¼ 289), these appreciable independent

replication rates may result from the efficient joint

modeling of all transcripts and SNPs achieved by M-EPIS-

POT, EPISPOT, and ATLASQTL.
The
A focus on two susceptibility loci

We next discuss two examples of pleiotropic loci. First, not

only does M-EPISPOT confirm the LYZ pleiotropic activity

(Figure 5D-i), but it also uncovers associations of this locus

with four additional genes compared to the ATLASQTL

run, namely, COPZ1 (MIM: 615472), DPY30 (MIM:

612032), KLHL28, and OSTC (MIM: 619023). The EPISPOT

run (with no module partitioning) reports the exact same

list as ATLASQTL, also missing the above four genes.

The second example is a pleiotropic locus uncovered by

M-EPISPOT and for which only isolated effects were de-

tected at the prescreening stage (Figure 5D-ii). This locus is

located 32 Mb downstream to the LYZ locus and entails a

hotspot of size 52 in the gene body of GNPTAB (MIM:

607840), namely, rs10860784 (r2 ¼ 0:001with the leadhot-

spot rs10784774 of the LYZ locus). The trans network

formed by the controlled transcripts has not been previ-

ously described and neither has any trans-acting effect

involving rs10860784 (up to proxies using r2 > 0:8). How-

ever, rs10860784 is known to be cis-acting on DRAM1

(MIM: 610776) (located 98 Kb downstream) in multiple

tissues,30 an association which M-EPISPOT also confirms

usinga looser FDRof15%.Moreover, theUKBiobankPheG-

WAS also reported31 a strong association between this SNP

and height (MIM: 606255) (p ¼ 1.47 3 10�14).

The module-free version EPISPOT run also finds a trans

network for the exact same SNP, yet slightly smaller, as it

involves 31 transcripts at FDR 5%; ATLASQTL finds no

signal. This example suggests that the added value of epige-

nome-driven inference is particularly striking for the detec-

tion of weak trans signals. Indeed, a comparison of the

estimated QTL effects attributable to rs10860784 with

those attributable to LYZ pleiotropic locus (Figure 5D-i)

shows that the former are significantly smaller in magni-

tude compared to the latter (t test p < 2 3 10�16).

The selected epigenetic annotations reveal possible genetic

mechanisms of action

The above figures suggest that the M-EPISPOT and EPIS-

POT runs allow for more powerful QTLmapping compared

to ATLASQTL. This probably results from their ability to

leverage the epigenetic marks, as we next discuss.

For each module, M-EPISPOT identifies a subset of epige-

netic annotations with a potential to induce or inhibit the
American Journal of Human Genetics 108, 1–18, June 3, 2021 13
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QTL associations (depending on the sign of the posterior

mean of each annotation effect); these annotations are

highlighted in Figure 5C. For instance, DNase-I hypersen-

sitivity sites (DHS) in fibroblasts and epithelial cells of

different tissues tend to promote the QTL effects. Interest-

ingly, DHS in CD14þmonocytes are found to be enhancers

of eQTL effects in both the M-EPISPOT and EPISPOT runs,

with epi-PPI > 0.99. The two runs also estimate a negative

effect of the distance to transcription start sites (TSSs, epi-

PPI > 0.99), in line with the frequently reported decay in

abundance of eQTL signals with the distance to TSS.32

These last two observations are helpful to interpret the un-

covered QTL signals, as we next discuss.

CD14þ cell DHS: Hints to a monocyte-specific pleiotropic ac-

tivity in LYZ

We first focus on the LYZ pleiotropic region. Previous

studies have highlighted distinct lead hotspots around

LYZ,33 yet none provided a functional characterization

that would allow a clear prioritization of one variant over

another. The lead hotspots revealed by the M-EPISPOT

and EPISPOT runs are intergenic variants, rs10784774

(size 154) and rs2168029 (size 109, r2 ¼ 0:89 with

rs10784774; see Figure 5D-i). They differ from the lead hot-

spot flagged by the ATLASQTL run, namely, rs1384 (size

149, r2 ¼ 0:99 with rs10784774). We next examine the

possible biology behind these candidates, starting with

the ATLASQTL top hotspot.

The fact that rs1384 is located within the 30 UTR of LYZ

may suggest a trans action mediated by LYZ. This hypoth-

esis is plausible given that the locus associates with LYZ in

all M-EPISPOT, EPISPOT, and ATLASQTL runs and that

GTEx also reported this cis association in whole blood

and different tissues. Conversely, regressing out the effect

of LYZ on the expression matrix does not explain away

the hotspot effects (the size of the top hotspot in the LYZ

locus is only marginally reduced: 134 versus 154 in the

original M-EPISPOT analysis, supplemental material and

methods). This does not rule out LYZ expression initiating

the formation of the hotspot, but the downstream conse-

quential changes in expression are too complex to simply

regress out in a linear manner, and so only reduced medi-

ation is observed.

The monocyte-specific DHS annotation selected by M-

EPISPOT for the pleiotropic module suggests a comple-

mentary scenario. Namely, the pleiotropic activity of the

locus may be triggered by cell-type-specific enhancers in

open chromatin regions, which are known to be key

players in activating the transcription in trans.34 This hy-

pothesis of monocyte-specific pleiotropy would also

explain why no hotspot was reported so far in cell types

and tissues other than monocytes.25,35 To investigate this

further, we performed an additional enrichment analysis

using the multiple tissue- and cell-type histone modifica-

tion marks of the ENCODE catalog: we found that the

two sets of genes associated with theM-EPISPOT’s lead hot-

spots rs10784774 and rs2168029, respectively, are en-

riched in H3K27ac enhancers, again in CD14þ monocytes
14 The American Journal of Human Genetics 108, 1–18, June 3, 2021
only, which further supports cell-type-specific activation.

One notable gene in this group is the transcription factor

CREB1 (MIM: 123810), which has previously been sug-

gested as a putative mediator of the LYZ pleiotropic

network.25 Notably, regressing out the effect of CREB1 on

the expression matrix substantially reduces the pleiotropy

of the locus (the size of the top hotspot in the LYZ locus is

36, versus 154 in the original M-EPISPOT analysis). More-

over, the connectivity of the transcript conditional inde-

pendence network is also markedly lower (supplemental

material and methods).

It seems most plausible, however, that the trans-media-

tion effect by CREB1 may be preceded by a cis effect on

LYZ or an isoform-specific effect. This possibility is sup-

ported by a strong divergent allele-specific correlation be-

tween LYZ and CREB1, which we observed when condi-

tioning on the genotype of the lead hotspot rs10784774

(supplemental material and methods). This indicates an

indirect cis-trans-cis mediation of the trans network by

LYZ-mediated CREB1 expression differentially feeding

back onto LYZ, an observation replicated in both datasets

analyzed. Notably, scanning SNP effects on transcription

factor binding motifs identifies putative divergence in

CREB1 binding dependent upon allelic carriage at

rs10784774, in keeping with the allele-specific correlation

observation (supplemental material and methods). While

our analyses of residual values cannot completely resolve

this, such a feedback circuit might explain why the effect

of regressing for CREB1 is greater than the effect of regress-

ing for LYZ. Finally, it has previously been noted that

EP300 (MIM: 602700), a binding partner of CREB1, shows

allelic effect on LYZ expression,25 although this in an

opposing manner to that observed for CREB1 alone, and

importantly, the effect size of the EP300 association is

markedly less than that for CREB1. In total, these observa-

tions lend further weight to allele-specific regulation via

rs10784774, although, given that CREB1 and EP300 may

form components of multi-protein complexes, the fine

mechanistic details of this regulation fall outside the scope

of this publication.

We further explored whether the two sets of genes asso-

ciated with either rs10784774 and rs2168029 were en-

riched in transcription factor binding sites (TFBS) using

the ENCODE data in K562 cells. We found a profound

enrichment of a number of TBFS, including ATF3,

CREB1, and c-Myc (Table S5). The networks of transcrip-

tion factors for rs10784774 and rs2168029 are similar,

indicating conserved regulatory networks, although unlike

with rs10784774, rs2168029 does not overlap a CREB1

binding site and therefore would not be proposed to feed-

back here.

Interestingly, ATF transcription factors are CREB-bind-

ing proteins, in line with the CREB1-mediation hypothe-

sis, but the strong enrichment for many other transcrip-

tion factors suggests that the same loci can be targeted by

different processes and the co-occupancy of these loci in

primary monocytes may resolve this further, although is
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important to note that, unlike the very significant associa-

tion between LYZ and CREB1, there is no association be-

tween LYZ and ATF3 expression, so we can discount this

gene playing a role in this genomic circuit. The c-Myc tran-

scription factor is involved in cell division and has broad

transcriptional consequences,36 which is sensible given

the large pleiotropy observed at the LYZ locus, for

rs10784774 and rs2168029. Consistent with this, the UK

Biobank data further reveal strong associations of these

two SNPs with monocyte counts and other myeloid cell

counts.31

Although by no means conclusive, these observations

corroborate the context specificity of the trans effects

controlled by the LYZ locus, and indeed may be more

representative of other unresolved trans loci across the

genome that, while of potential high biological impor-

tance, lack the pleiotropic effect of the LYZ locus. They

also suggest that the epigenome-driven EPISPOT runs

found promising candidate hotspots, whose presumed

mechanisms of action on the massive LYZ gene network

would merit experimental follow up.

Distance to TSSs: Examples of cis and hotspot signals shared

across cell types

Another interesting result concerns the negative effect of

the annotation coding the distance to TSSs, this time for

transcripts belonging to the scattered module. As active

transcripts in this module are mostly involved in cis associ-

ations, the module specificity of this annotation aligns

with the previous observation that the distance to TSSs as-

sociates with an enrichment of cis eQTLs.32,37 Moreover,

an empirical assessment of this enrichment in our dataset

shows that the SNPs selected with M-EPISPOT are on

average significantly closer to TSSs compared to SNP sub-

sets of the same size randomly drawn within the analyzed

loci (p ¼ 0.017). Such an enrichment is unsurprising and

actually also present in the EPISPOT and ATLASQTL re-

sults, but the importance of the distance to TSS is neverthe-

less made explicit by the selection of the TSS variable by

both EPISPOT and M-EPISPOT.

For instance, three candidate hotspots, rs10876864,

rs11171739 (r2 ¼ 0:94 with rs10876864), and rs705699

(r2 ¼ 0:86 with rs10876864), located 13 Mb upstream of

the LYZ locus, are representative of this enrichment as

they are within a TFBS, a 50 UTR and an exon, respectively

(Figure 5D-iii). Our ATLASQTL prescreening and EPISPOT

analyses find that they control a small network of size 11

involving transcripts mapping to the cis gene RPS26

(MIM: 603701) and other distal genes, including IP6K2

(MIM: 606992) on chromosome 3.

This locus has been linked with several autoimmune dis-

eases38–41 including type 1 diabetes (MIM: 222100), where

evidence exists that RPS26 transcription does not mediate

the disease association.42 Interestingly, previous studies

have reported the RPS26 cis effect as an isolated association

in monocytes. The trans activity, in particular on IP6K2,

was unknown in monocytes, but is known in B and

T cells.25,43 This suggests that it has so far gone unnoticed
The
in monocytes using standard univariate mapping ap-

proaches, but our fully joint, annotation-driven method

has enabled its detection. Moreover, unlike the mono-

cyte-specific LYZ pleiotropic locus discussed above, this lo-

cus is an example of trans-hotspot eQTL present in several

cell types. The genomic location also aligns with the obser-

vation that eQTLs common tomultiple cell types or tissues

tend to be closer to TSSs compared to eQTLs only detect-

able in a single cell type or tissue.44

Discussion

Large panels of epigenetic marks are nowadays collected

along with genetic data and employed as part of different

modeling approaches, whether for single-trait association

studies or fine mapping.8–12 However, their use to enhance

molecular QTL mapping remains mostly heuristic. Thanks

to its hypothesis-free mark selection routine which is fully

integrated within a joint QTL mapping framework, EPIS-

POT can identify the relevant epigenetic marks from thou-

sands of candidates, while also directly refining estimation

in large molecular QTL studies.

Specifically, EPISPOT brings important modeling and

algorithmic contributions. First, it implements a flexible

hierarchical model which enables parametrizing both cis

and trans actions on thousands ofmolecular traits, whereas

existing epigenome-based approaches are limited to GWAS

or cis QTL mapping for one or a handful of traits.8–12 Sec-

ond, it is both fully joint and scalable, accounting for all

epigenetic marks, genetic variants and molecular levels,

and their shared signals, in a single modeling framework.

Third, it combines this information to perform an auto-

mated selection of the epigenetic marks relevant to the

QTL effects of the problem at hand, thereby providing

direct insight into the functional basis of the signals.

Fourth, its crafted annealed variational algorithm ensures

a robust exploration of complex parameters spaces, such

as induced by candidate SNPs in high LD, corresponding

to scenarios for which the use of epigenetic information

is particularly beneficial. Finally, EPISPOT allows for mod-

ule-specific learning of the epigenetic action.

We showed in a series of simulation experiments

emulating epigenome-driven QTL problems that EPISPOT

effectively scales to large datasets, while retaining the accu-

racy necessary for a powerful QTL mapping. We demon-

strated that our method was not only able to pinpoint

the correct marks with high posterior probability, but

that it could also leverage these marks to improve the

detection of weak QTL signals. In particular, we saw that

the spike-and-slab representation of the epigenome contri-

bution ensures that the irrelevant epigenetic marks are

effectively discarded as ‘‘noise,’’ so panels with hundreds

of candidate marks can be considered without the risk of

worsening inferences. This allows skipping the delicate

process of pre-filtering marks, whose practical grounds

are often blurry and disconnected from the QTL dataset

under consideration. Moreover, although in a strict sense
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epigenetic marks represent a subset of functional annota-

tions, it is possible to interpret this terminology more

loosely and supply other types of annotations or scores

that may carry information about the involvement of

SNPs in QTL regulation.

Our work attaches special importance to acknowledging

the complexity of the learning task (selection of hotspots,

pairwise QTL associations between variants and molecular

traits, selection of epigenetic marks relevant to these QTL

associations) and possible biological scenarios (pattern of

regulation, importance of the epigenome in this regula-

tion, dependence structures among variants, marks and

molecular traits, and between them). Our simulations

examined under what conditions inference is well pow-

ered to leverage the epigenetic information and evaluated

the sensitivity to different input choices, in particular

when gene modules are provided. Importantly, our

method is not meant to be used as a black box to fish ge-

netic variants involved in trans regulation and their epige-

netic roots, but rather is predicated on a careful analysis

design that takes into account the dataset, the biological

question of interest, and the expected statistical power.

Further assessments for specific problem settings (sparsity

levels, association patterns, and epigenetic control) can

be made using the code provided online (see EPISPOT

and ECHOSEQ in web resources).

Finally, we showed how our simulation studies prefig-

ured the efficiency of EPISPOT in a large monocyte

eQTL study (high replication in an independent sample,

previously unreported pleiotropic loci, refined list of

candidate lead hotspots). We further illustrated how the

EPISPOT posterior output can be used to both select inter-

pretable annotations underlying the QTL activity and

reduce the range of hypotheses about the functional

mechanisms involved, particularly for hotspots. We also

showed how the localized nature of QTL activity could

be accounted for when inferring annotations in a mod-

ule-specific fashion using M-EPISPOT (the monocyte-spe-

cific enhancer activity affecting the pleiotropic module,

the enrichment of QTL hits closer to TSSs affecting the

scattered module). Altogether, this thorough case study

demonstrates that QTL analyses may largely benefit

from the use of rich complementary data sources anno-

tating the primary genotyping data, provided principled

joint approaches are used to capture shared association

patterns.

EPISPOT offers perspectives for robust and interpretable

molecular QTL mapping, toward a better understanding of

the functional basis of genetic regulation. Thanks to its

efficient annealed VBEM algorithm with adaptive and par-

allel schemes, it enables information sharing across epige-

netic marks, genetic variants, and molecular traits gov-

erned by complex regulatory mechanisms, at scale. In

particular, its use of selection indicators in a spike-and-

slab framework allows for a systematic identification of

sparse sets of epigenetic annotations which are directly

relevant for the QTL regulation of the problem at hand.
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We envision holistic approaches such as EPISPOT to be

increasingly adopted in an age where large molecular data-

sets and annotation information become widely available.

EPISPOT is applicable to any type of molecular QTL prob-

lem, involving genomic, proteomic, lipidomic, or metabo-

lomic levels, but also to genome-wide association with

several clinical endpoints. In particular, exploiting the epi-

genome to build finer maps of hotspots across the genome

holds great promises, as these master regulators are likely

to be triggered by tissue- and cell-type-specific epigenetic

functions.
Data and code availability

Fairfax et al.25,28 provide gene expression in CD14þ monocytes

and genotyping data from individuals with European ancestry.

The raw expression data were generated with Illumina Hu-

manHT-12 v4 arrays and downloaded from ArrayExpress45 (acces-

sion E-MTAB-2232), while the raw genotyping data were gener-

ated by Illumina HumanOmniExpress-12 arrays and have been

deposited at the European Genome-Phenome Archive (acces-

sions: EGAD00010000144 and EGAD00010000520). The expres-

sion data are freely available, but the genotyping data require a

data access agreement, as detailed in Fairfax et al.25,28 and

https://www.well.ox.ac.uk/research/research-groups/julian-knight-

group/research-projects/data-access.

The CEDAR dataset26 consists of gene expression data fromCD14þ

monocytes and genotyping data from individuals with European

ancestry. The raw expression data were generated with Illumina

HumanHT-12 v4 arrays and downloaded from ArrayExpress45

(accession: E-MTAB-6667), while the raw genotyping data were

generated by Illumina HumanOmniExpress-12 v1_A arrays and

downloaded from ArrayExpress (accession: E-MTAB-6666). Both

the expression and genotyping data are freely available.

Both studies were approved by the local human research ethic

committees, namely, the Oxfordshire Research Ethics Committee

(COREC reference 06/Q1605/55)28 and the University of Liège Ac-

ademic Hospital Ethics Committee.26 Participants provided

informed written consent, and all procedures were conducted in

accordance with the Declaration of Helsinki.

All statistical analyses were performed using the R environment

(v.3.6.1)46 and the synthetic datasets were generated using the

freely available R package ECHOSEQ (v.0.3.0). The R package EPIS-

POT implements the method.
Supplemental information

Supplemental information can be found online at https://doi.org/

10.1016/j.ajhg.2021.04.010.
Acknowledgments

We are grateful to the editor and the two anonymous referees for

their helpful comments. We thank Verena Zuber for her help in

setting up the epigenetic annotation panel and Colin Starr for

managing computational resources.

This research was funded by the UK Medical Research Council

program MRC MC UU 00002/10 (H.R., S.R.), MC UU 00002/4

(E.V., C.W.), andMRM0 13138/1, MR S0 2638X/1 (L.B.); the Engi-

neering and Physical Sciences Research Council EP/R018561/1

(S.R.); the BHF-Turing Cardiovascular Data Science Awards 2017

https://www.well.ox.ac.uk/research/research-groups/julian-knight-group/research-projects/data-access
https://www.well.ox.ac.uk/research/research-groups/julian-knight-group/research-projects/data-access
https://doi.org/10.1016/j.ajhg.2021.04.010
https://doi.org/10.1016/j.ajhg.2021.04.010


Please cite this article in press as: Ruffieux et al., EPISPOT: An epigenome-driven approach for detecting and interpreting hotspots in mo-
lecular QTL studies, The American Journal of Human Genetics (2021), https://doi.org/10.1016/j.ajhg.2021.04.010
& the Alan Turing Institute under the Engineering and Physical

Sciences Research Council grant EP/N510129/1 (L.B.); the Alan Tu-

ring Institute Fellowship number TU/B/000092 (S.R.), and the

Wellcome Trust WT107881 (E.V., C.W.). This work was also sup-

ported by the NIHR Cambridge BRC. The views expressed are

those of the author(s) and not necessarily those of the NHS, the

NIHR, or the Department of Health and Social Care. B.P.F. and

I.N. are funded by a Wellcome Intermediate Clinical Fellowship

to B.P.F. (no. 201488/Z/16/Z).
Declaration of interests
The authors declare no competing interests.

Received: November 13, 2020

Accepted: April 8, 2021

Published: April 27, 2021
Web Resources

ATLASQTL (v.0.1.4), https://github.com/hruffieux/atlasqtl

ECHOSEQ (v.0.3.0), https://github.com/hruffieux/echoseq

EnrichR (v.2.1), https://amp.pharm.mssm.edu/Enrichr

Ensembl, http://grch37.ensembl.org/index.html

EPISPOT, implemented as an R package with Cþþ subroutines and

publicly available under the GNU General Public License

version 3 (GPL3), https://github.com/hruffieux/epispot

GTEx, https://gtexportal.org/home

GWAS Catalog, https://www.ebi.ac.uk/gwas

MATRIXEQTL (v.2.3), http://www.bios.unc.edu/research/genom

ic_software/Matrix_eQTL

OMIM, https://www.omim.org

PhenoScanner, http://www.phenoscanner.medschl.cam.ac.uk

PLINK (v.v1.90b5.3), http://zzz.bwh.harvard.edu/plink

R (v.3.6.1), https://www.r-project.org
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