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Abstract: Spectral measures arise in numerous applications such as quantum mechan-
ics, signal processing, resonance phenomena, and fluid stability analysis. Similarly,
spectral decompositions (into pure point, absolutely continuous and singular contin-
uous parts) often characterise relevant physical properties such as the long-time dy-
namics of quantum systems. Despite new results on computing spectra, there remains
no general method able to compute spectral measures or spectral decompositions of
infinite-dimensional normal operators. Previous efforts have focused on specific exam-
ples where analytical formulae are available (or perturbations thereof) or on classes
of operators that carry a lot of structure. Hence the general computational problem is
predominantly open. We solve this problem by providing the first set of general algo-
rithms that compute spectral measures and decompositions of a wide class of operators.
Given a matrix representation of a self-adjoint or unitary operator, such that each col-
umn decays at infinity at a known asymptotic rate, we show how to compute spectral
measures and decompositions. We discuss how these methods allow the computation
of objects such as the functional calculus, and how they generalise to a large class of
partial differential operators, allowing, for example, solutions to evolution PDEs such as
the linear Schrödinger equation on L2(Rd). Computational spectral problems in infinite
dimensions have led to the Solvability Complexity Index (SCI) hierarchy, which classi-
fies the difficulty of computational problems. We classify the computation of measures,
measure decompositions, types of spectra, functional calculus, and Radon–Nikodym
derivatives in the SCI hierarchy. The new algorithms are demonstrated to be efficient on
examples taken from orthogonal polynomials on the real line and the unit circle (giving,
for example, computational realisations of Favard’s theorem and Verblunsky’s theorem,
respectively), and are applied to evolution equations on a two-dimensional quasicrystal.
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1. Introduction

The analysis and computation of spectral properties of operators form core parts of many
branches of science and mathematics, arising in diverse fields such as differential and
integral equations, orthogonal polynomials, quantum mechanics, statistical mechanics,
integrable systems and optics [15,43,44,69,110,129,138]. Correspondingly, the prob-
lem of numerically computing the spectrum, σ(T ), of an operator T acting on the canon-
ical separable Hilbert space l2(N) has attracted a large amount of interest over the last
60 years or so [5–8,21,22,24,26,27,34,38,40,46,49,73,79–81,94,98,99,116,120,122–
124]. However, the richness, beauty and difficulties that are encountered in infinite di-
mensions lie not just in the set σ(T ) ⊂ C, but also in the generalisation of projections
onto eigenspaces and the possibility of different spectral types. Specifically, given a
normal operator T , there is an associated projection-valued measure (resolution of the
identity), whichwe denote by ET , whose existence is guaranteed by the spectral theorem
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and whose support is σ(T ) [86,87,113]. This allows the representation of the operator
T as an integral over σ(T ), analogous to the finite-dimensional case of diagonalisation:

T x =
[∫

σ(T )

λdET (λ)

]
x, ∀x ∈ D(T ), (1.1)

whereD(T ) denotes the domain of T . For example, if T is compact, then ET corresponds
to projections onto eigenspaces, familiar from the finite-dimensional setting. However,
in general, the situation is much richer and more complicated, with different types of
spectra (pure point, absolutely continuous and singular continuous). An excellent and
readable introduction can be found in Halmos’ article [77].

The computation of ET , along with its various decompositions and their supports, is
of great interest, both theoretically and for practical applications. For example, spectral
measures are intimately related to correlation functions in signal processing, resonance
phenomena in scattering theory, and stability analysis for fluids. Moreover, the com-
putation of ET allows one to compute many additional objects, which we provide the
first general algorithms for in this paper, such as the functional calculus (Theorem 4.1),
the Radon–Nikodym derivative of the absolutely continuous component of the measure
(Theorem 4.2), and the spectral measures and spectral set decompositions (Theorem
3.2 and Theorem 5.1). For instance, in Sect. 1.2.1 we show how our results allow the
computation of spectral measures and the functional calculus of almost arbitrary self-
adjoint partial differential operators on L2(Rd). An important class of examples is given
by solutions of evolution equations such as the Schrödinger equation on L2(Rd) with a
potential of locally bounded total variation. We prove that this is computationally possi-
ble even when an algorithm is only allowed to point sample the potential. A numerical
example of fractional diffusion for a discrete quasicrystal is also given in Sect. 6.4.

Despite its importance, there has been no general method able to compute spec-
tral measures of normal operators. Although there is a rich literature on the theory of
spectral measures, most of the efforts to develop computational tools have focused on
specific examples where analytical formulae are available (or perturbations thereof) or
on classes of operators that carry a lot of structure. Indeed, apart from the work of Webb
and Olver [151] (which deals with compact perturbations of tridiagonal Toeplitz opera-
tors) andmethods for computing spectral density functions of Sturm–Liouville problems
and other highly structured operators, there has been limited success in computing the
measure ET .1 In some sense, this is not surprising given the difficulty in rigorously
computing spectra. One can consider computing spectral measures/projections as the
infinite-dimensional analogue of computing projections onto eigenspaces.2 Thus, from a
numerical/computational point of view, the current state of affairs in infinite-dimensional
spectral computations is highly deficient, analogous in finite dimensions to being able
to compute the location of eigenvalues but not eigenvectors! It has been unknown if the
general computation of spectral measures is possible, even for simple subclasses such as
discrete Schrödinger operators. In other words, the computational problem of “diagonal-
isation” through computing spectral measures remains an important and predominantly
open problem.

In this paper, we solve this problem by providing the first set of algorithms for the
computation of spectral measures for a large class of self-adjoint and unitary opera-
tors, namely, those whose matrix columns decay at a known asymptotic rate. This is a

1 See Sect. 1.7 for connections with previous work.
2 Of course eigenvectors exist in the infinite-dimensional case, but not all of the spectrum consists of

eigenvalues. The projection-valued measure generalises the notion of projections onto eigenspaces.
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very weak assumption and covers the majority of operators, even unbounded, found in
applications. In particular, those whose representation is sparse (such as many of the
graph or lattice operators typically dealt with in physics) and also partial differential
operators, once a suitable basis has been selected (see Theorem 1.1 and Appendix B).
We also show how to compute spectral measure decompositions, the functional cal-
culus, the density of the absolutely continuous part of the measure (Radon–Nikodym
derivative) and different types of spectra (pure point, absolutely continuous and singular
continuous—these sets often characterise different physical properties in quantum me-
chanics [2,41,42,53,61,93,119,127]). A central ingredient of these new algorithms is
the computation of the resolvent operator with error control through appropriate rectan-
gular truncations (Theorem 2.1). Furthermore, we demonstrate the applicability of our
algorithms. The algorithms are efficient and parallelisable, allowing large scale compu-
tations.

1.1. The solvability complexity index and classification of problems. A surprise thrown
up by the infinite-dimensional spectral problem,which turns out to be quite generic, is the
SolvabilityComplexity Index (SCI) [81]. TheSCI provides a hierarchy for classifying the
difficulty of computational problems. In classical numerical analysis, when computing
spectra, one hopes to construct an algorithm, �n , with one limit such that for an operator
T ,

�n(T ) → σ(T ), as n → ∞, (1.2)

preferably with some form of error control or rate of convergence. However, this is not
always possible. For example, when considering the class of bounded operators, the best
possible alternative is an algorithm depending on three indices n1, n2, n3 such that

lim
n3→∞ lim

n2→∞ lim
n1→∞ �n3,n2,n1(T ) = σ(T ).

Any algorithm with fewer than three limits will fail on some bounded operator, and
neither error control nor convergence rates on any of the limits are possible since these
would reduce the required number of limits. However, for self-adjoint operators, it is
possible to reduce the number of limits to two, but not one [12,81]. With more structure
(such as sparsity or column decay) it is possible to compute the spectrum in one limit
with a certain type of error control [40]. Hence, the only way to characterise the compu-
tational spectral problem is through a hierarchy, classifying the difficulty of computing
spectral properties of different subclasses of operators. The SCI classifies difficulty by
considering the minimum number of limits that one must take to calculate the quantity
of interest (see Appendix A for a full definition). The SCI has roots in the work of
Smale [132,134], and his program on the foundations of computational mathematics
and scientific computing, though it is quite distinct. The notions of Turing computability
[145] and computability in the Blum–Shub–Smale (BSS) [17] sense become special
cases, and impossibility results that are proven in the SCI hierarchy hold in all models of
computation. The phenomenon of needing several limits also covers general numerical
analysis problems, such as Smale’s question on the existence of purely iterative algo-
rithms for polynomial root finding [133]. As demonstrated by McMullen [101,102] and
Doyle and McMullen [51], this is a case where several limits are needed in the compu-
tation, and their results become special cases of classification in the SCI hierarchy [12].
Extensions of the hierarchy to error control [33,36,37] also have potential applications
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in the growing field of computer-assisted proofs, where one must perform a computation
with absolute certainty. See, for example, the work of Fefferman and Seco on the Dirac–
Schwinger conjecture [55,56] andHales onKepler’s conjecture (Hilbert’s 18th problem)
[75], both of which implicitly provide classifications in the SCI hierarchy. As well as
spectral problems [12,33,36–40,81], the SCI hierarchy has recently been used to solve
problems related to computing resonances [13,14], computing solutions of semigroups
and evolution PDEs [10,35], and computational barriers for stable and accurate neural
networks [4].

An informal definition of the SCI hierarchy is as follows, with a detailed summary
contained in Appendix A. The SCI hierarchy is based on the concept of a computational
problem. This is described by a function

� : � → M

that we want to compute, where � is some domain, and (M, d) is a metric space. For
example, we could take �(T ) = σ(T ) (the spectrum) for some class of operators � and
M the collection of non-empty closed subsets of C equipped with the Attouch–Wets
metric. The SCI of a computational problem is the smallest number of limits needed in
order to compute the solution. For a given set of evaluation functions (the information
our algorithm is allowed to read—in our case, �1 or �2 defined in (1.18)), class of
objects (in our case, subclasses of operators acting on l2(N)) and model of computation
α (in this paper general, G, or arithmetic, A) we define:

(i) 	α
0 is the set of problems that can be computed in finite time, the SCI = 0.

(ii) 	α
1 is the set of problems that can be computed using one limit (the SCI = 1) with

control of the error, i.e.∃ a sequence of algorithms {�n} such thatd(�n(A),�(A)) ≤
2−n, ∀A ∈ �.

(iii) 	α
2 is the set of problems that can be computed using one limit (the SCI= 1)without

error control, i.e. ∃ a sequence of algorithms {�n} such that limn→∞ �n(A) =
�(A), ∀A ∈ �.

(iv) 	α
m+1, for m ∈ N, is the set of problems that can be computed by using m limits,

(the SCI ≤ m), i.e. ∃ a family of algorithms {�nm ,...,n1} such that

lim
nm→∞ . . . lim

n1→∞ �nm ,...,n1(A) = �(A), ∀A ∈ �.

The class	1 is, of course, a highly desired class; however, non-trivial spectral problems
are higher up in the hierarchy. For example, the following classifications are known
[12,81]:

(i) The general spectral problem is in 	4\	3.
(ii) The self-adjoint spectral problem is in 	3\	2.
(iii) The compact spectral problem is in 	2\	1.

Here, the notation \ indicates the standard “setminus”. Hence, the computational spectral
problem becomes an infinite classification theory to characterise the above hierarchy.
In order to do so, there will, necessarily, have to be many different types of algorithms.
Characterising the hierarchy will yield a myriad of different approaches, as different
structures on the various classes of operators will require specific algorithms.

This paper provides classifications of spectral problems associated with ET (such
as decompositions of the measure and spectrum) in the SCI hierarchy, some of which
can be computed in one limit. We provide algorithms for these problems, and one of the
main tools used is the computation of the resolvent operator R(z, T ) := (T −z I )−1 with
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error control (Theorem 2.1). This is possible through appropriate rectangular trunca-
tions of the infinite-dimensional operator. This approach differs from finite-dimensional
techniques, which typically consider square truncations.

Remark 1. (Recursivity and independence of themodel of computation)The constructive
inclusion results we provide hold for arithmetic algorithms and the impossibility results
hold for general algorithms.We refer the reader toAppendixA for a detailed explanation.
Put simply, this means that the algorithms constructed can be recursively implemented
with inexact input and restrictions to arithmetic operations over the rationals (it is also
straightforward to implement them using interval arithmetic), whereas the impossibility
results hold in any model of computation (such as the Turing or BSS models).

1.2. Summary of the main results

1.2.1. Partial differential operators For N ∈ N, consider the operator formally defined
on L2(Rd) by

Lu(x) =
∑

k∈Zd≥0,|k|≤N

ak(x)∂
ku(x), (1.3)

where throughout we use multi-index notation with |k| = max{|k1| , . . . , |kd |} and ∂k =
∂
k1
x1 ∂

k2
x2 . . . ∂

kd
xd .Wewill assume that the coefficientsak(x) are complex-valuedmeasurable

functions onRd and that L is self-adjoint. For dimension d and r > 0 consider the space

Ar = { f ∈ M([−r, r ]d) : ‖ f ‖∞ + TV[−r,r ]d ( f ) < ∞}, (1.4)

where M([−r, r ]d) denotes the set of measurable functions on the hypercube [−r, r ]d
and TV[−r,r ]d denotes the total variation norm in the sense of Hardy and Krause [103].
This space becomes a Banach algebra when equipped with the norm [18]

‖ f ‖Ar
:= ∥∥ f |[−r,r ]d

∥∥∞ + (3d + 1)TV[−r,r ]d ( f ).

Let �PDE consist of all such L such that the following assumptions hold:

(1) The set C∞
0 (Rd) of smooth, compactly supported functions forms a core of L .

(2) For each of the functions ak(x), there exists a positive constant Ak and an integer
Bk (both possibly unknown) such that

|ak(x)| ≤ Ak

(
1 + |x |2Bk

)
,

almost everywhere on R
d , that is, we have at most polynomial growth of the coef-

ficients.
(3) The restrictions ak |[−r,r ]d ∈ Ar for all r > 0.

We consider the case where our algorithms can do the following:

1. Evaluate any coefficient ak(x) to a given precision at x ∈ Q
d , where Q denotes the

field of rationals, and output an approximation in Q + iQ.
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2. For each n, evaluate a positive number bn(L) such that the sequence {bn(L)}n∈N
satisfies

sup
n∈N

max|k|≤N

‖ak‖An

bn(L)
< ∞. (1.5)

In Appendix B, we prove (and state a more precise version of) the following theorem.

Theorem 1.1 (Spectral properties of self-adjoint partial differential operators can be
computed). Given the above set-up, there exist sequences of arithmetic algorithms that
compute spectral measures, the functional calculus, and Radon–Nikodym derivatives of
the absolutely continuous part of the measure over the class�PDE. In other words, these
objects can be computed in one limit with SCI = 1.

Remark 2. As noted inAppendix B,we can extend this result to computing the decompo-
sitions into pure point, absolutely continuous and singular continuous parts of measures
and spectra (with SCI > 1).

The above properties characterising �PDE are deliberately very weak, and hence
the class �PDE is very large. For example, Schrödinger operators L = −	 + V with
polynomially bounded potentials of locally bounded total variation are a subclass of
�PDE. Hence, in this case, the theorem says that we can compute the spectral properties
(measures, functional calculus etc.) of L by point sampling the potential V , if we have
an asymptotic bound on the total variation of V over finite rectangles. In particular, we
can solve the Schrödinger equation

du

dt
= −i Lu, ut=0 = u0 (1.6)

by computing exp(−i t L)u0 with guaranteed convergence. Applications of some of our
results to semigroups (where error control can also be provided) are given in [35]. The
proof of Theorem 1.1 can also be extended to other domains such as the half-line, and
can be adapted to cope with other types of coefficients that are not of locally bounded
total variation (for instance, Coulombic potentials for Dirac or Schrödinger operators).
In order to prove Theorem 1.1, we prove theorems for operators on l2(N).

1.2.2. Operators on l2(N) We consider self-adjoint operators given as an infinite matrix
T whose columns decay at a known asymptotic rate:

‖(Pf (n) − I )T Pn‖ = O(αn) (1.7)

for a sequence αn ↓ 0 and function f : N → N, where Pn denotes the orthogonal
projection onto the linear span of the first n canonical basis vectors. This set-up is
adapted in Appendix B to prove Theorem 1.1, where we make use of the following
theorems proven for operators on l2(N).

We consider the problem of computing spectral measures. Specifically, for operators
of the form (1.7) we develop the first algorithms and SCI classifications for:

• Theorem 3.1: 	A
2 classification for the projection-valued spectral measure and,

through taking inner products, the computation of the scalar spectralmeasures defined
via

μT
x,y(U ) = 〈ET (U )x, y〉.



440 M. J. Colbrook

This is done for open setsU and can be extended to other types of sets such as closed
intervals or singletons (Theorem 5.2 shows that the problem /∈ 	G

1 in certain cases).
These scalar-valued spectral measures play an important role in, for example, quan-
tum mechanics, where they correspond to the distribution of the physical observable
modelled by a Hamiltonian T .

• Theorem 3.2:	A
3 \	G

2 classification for the decompositions of the projection-valued
and scalar-valued spectral measures into absolutely continuous, singular continuous
and pure point parts. These decompositions often characterise different physical prop-
erties in quantum mechanics [2,41,42,53,61,93,119,127]

• Theorem 4.1: 	A
2 classification for the functional calculus of operators, i.e. the

computation of F(T ) for suitable functions F . For brevity, we consider functions
that are bounded and continuous on the spectrum of T . However, the proof makes
clear that wider classes can be dealt with. In some cases,	A

1 error control is possible,
for instance, when considering the holomorphic functional calculus (see Sect. 6.4).
A key application of this result is the computation of solutions of many evolution
PDEs, such as the Schrödinger equation through the function F(z) = exp(−i zt).

• Theorem 4.2: 	A
2 classification for the Radon–Nikodym derivatives (densities) of

the absolutely continuous parts of the scalar spectral measures with convergence in
the L1 sense on an open set. This requires a certain separation condition, without
which our algorithm converges (Lebesgue) almost everywhere.

Wealso consider the computationof spectra as sets in the complexplane.Convergence
is measured using the Hausdorff metric in the bounded case and using the Attouch–Wets
metric in the unbounded case (i.e. uniform convergence on compact subsets of C).
Specifically, we provide the first algorithms computing these quantities and prove in
Theorem 5.1 that:

• The absolutely continuous spectrum σac(T ) can be computed in two limits but not
one limit (	A

3 \	G
2 classification).

• The pure point spectrum σpp(T ) can be computed in two limits but not one limit
(	A

3 \	G
2 classification).

• The singular continuous spectrum σsc(T ) can be computed in three limits (	A
4

classification). If f (n) − n ≥ √
2n + 1/2, then the computation cannot be done in

two limits (/∈ 	G
3 classification). That is, if the local asymptotic bandwidth is allowed

to grow sufficiently rapidly, three limits are needed, and this computational problem
is exceedingly difficult. We do not know whether this growth condition on f can be
dropped. However, without it, the problem still requires at least two limits (/∈ 	G

2
classification).

The main tool used to prove the above results is

• Theorem 2.1 and Corollary 2.2: The action of the resolvent x → R(z, T )x can be
computed with error control. This also opens up potential applications in computer-
assisted proofs.

We demonstrate that the “one-limit” algorithms constructed in this paper are im-
plementable and efficient. These provide the first set of algorithms addressing these
problems, and we have provided extensive numerical experiments in Sect. 6. This in-
cludes orthogonal polynomials on the real line and unit circle (where we also discuss
acceleration through extrapolation), as well as fractional diffusion for a two-dimensional
quasicrystal. Since writing the initial version of this paper, our algorithms have also been
implemented in the software package SpecSolve of [39], which uses the machinery
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of high-order rational kernels to accelerate computation of the Radon–Nikodym deriva-
tive of regular enough measures. In the current paper, we also show that in the case
where the measure is regular enough, a global collocation method and local Richardson
extrapolation for the computation of the Radon–Nikodym derivative can both accelerate
convergence.

Finally, some brief remarks are in order.

(i) The impossibility results hold in general, even when restricted to tridiagonal oper-
ators. Furthermore, many of the impossibility results hold for structured operators
such as bounded discrete Schrödinger operators. Our results (constructive algo-
rithms and impossibility results) also carry over to a large class of normal operators,
including unitary operators or skew-adjoint operators, both of which are important
in applications. For the sake of clarity, we have stuck to the self-adjoint case in the
statement of theorems and proofs. Numerical examples for unitary operators are
given in Sect. 6.3.

(ii) The difficulty encountered when computing the singular continuous spectrum is
partly due to the negative definition of the singular continuous part of a measure. It
is the “leftover” part of the measure, the part that is not continuous with respect to
Lebesgue measure and does not contain atoms. The challenge of studying σsc ana-
lytically also reflects this difficulty—singular continuous spectra were once thought
to be rather rare or exotic. However, they are quite generic; see, for example, [128]
for a precise topological statement to this effect.

(iii) One might at first expect computational results to be independent of the function
f due to tridiagonalisation. However, the infinite-dimensional case is much more
subtle than the finite-dimensional case. Using Householder transformations on a
bounded sparse self-adjoint operator T leads to a tridiagonal operator, but, in gen-
eral, this operator is T restricted to a strict subspace of l2(N). Part of the operator
may be lost in the strong operator limit. Instead, onemust consider a sum of possibly
infinitely many tridiagonal operators (see [78, Ch. 2 & 8]). Hence some spectral
problems may have different classifications for different f .

1.3. Open problems. The results of this paper form part of a program [33,34,36–40] on
determining the foundations of computation (boundaries of what is possible) for infinite-
dimensional spectral problems. As such, there remain many interesting open problems
related to this paper, such as:

• Computation of spectral measures for more general normal operators: Propo-
sition 2.4 demonstrates how the techniques of this paper can be generalised to certain
classes of normal operators whose spectrum does not necessarily lie along a curve.
However, it is not obvious how to extend the techniques to completely general nor-
mal operators. For example, the method of integrating the resolvent along a contour
cannot be easily extended to interior points of the spectrum.

• Brown measure for non-normal operators: There is an extension of spectral
measures to certain non-normal operators known as the Brown measure [25,71,72].
Computing spectra of non-normal operators is generally harder (in a sense made
precise by the SCI hierarchy) than for normal operators (issues such as numerical
stability are also present, even in the finite-dimensional case). It would be interesting
to see if this phenomenon is also present for computing the Brown measure. Some
works on approximating the Brownmeasure frommatrix elements include [7,11,81].
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1.4. A motivating example. As a motivating example, consider the case of a Jacobi
operator with matrix

J =

⎛
⎜⎜⎜⎜⎝

b1 a1
a1 b2 a2

a2 b3
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎠ ,

where a j , b j ∈ R and a j > 0. An enormous amount of work exists on the study of
these operators, and the correspondence between bounded Jacobi matrices and proba-
bility measures with compact support [45,143]. The entries in the matrix provide the
coefficients in the recurrence relation for the associated orthonormal polynomials. To
study the canonical measure μJ , one usually considers the principal resolvent function,
which is defined on C\σ(J ) via

G(z) := 〈R(z, J )e1, e1〉 =
∫
R

dμJ (λ)

λ − z
, (1.8)

and then takes z close to the real axis. The function G is also known in the differential
equations and Schrödinger communities as the Weyl m-function [64,143] and one can
develop the discrete analogue of what is known asWeyl–Titchmarsh–Kodaira theory for
Sturm–Liouville operators. Going back to the work of Stieltjes [136] (see also [1,149]),
there is a representation of G as a continued fraction:

G(z) := 1

−z + b1 − a21−z+b2−...

. (1.9)

One can also approximate G via finite truncated matrices [143].
However, there are twomajor obstacles to overcome when using (1.9) and its variants

as ameans to computemeasures. First of all, this representation of the principal resolvent
function is structurally dependent. For example, (1.9) is valid for the restricted case of
Jacobi operators and hence one is led to seeking different methods for different operators
(such as tight-binding Hamiltonians on two-dimensional lattices which have a growing
bandwidth when represented as operators on l2(N)). Second, this would seem to give
the wrong classification of the difficulty of the problem in the SCI hierarchy, giving
rise to a tower of algorithms with two limits. One first takes a truncation parameter n
to infinity to compute G(z) for Im(z) > 0, and then a second limit as z approaches
the real axis. One of the main messages of this paper is that both of these issues can
be overcome. Measures can be computed in one limit via an algorithm �n and for a
large class of operators. The only restriction is a known asymptotic decay rate of the
off-diagonal entries. As a by-product, we compute them-function of such operators with
error control. Specific cases where this can bewritten explicitly do exist, such as periodic
Jacobi matrices or perturbations of Toeplitz operators [52] (see also Sect. 1.7). However,
there has been no general method proposed to compute the resolvent with error control.
This consideration is crucial to allow the computation of measures in one limit.



Computing Spectral Measures and Spectral Types 443

To see how we might compute the measure using the resolvent, consider the Poisson
kernels for the half-plane and the unit disk, defined respectively by

PH (x, y) = 1

π

y

x2 + y2
and PD(x, y) = 1

2π

1 − (x2 + y2)

(x − 1)2 + y2

= PD(r, θ) = 1

2π

1 − r2

1 − 2r cos(θ) + r2
, (1.10)

where (r, θ) denote the usual polar coordinates. Let T be a normal operator, then for
z /∈ σ(T ), we have from the functional calculus that

R(z, T ) =
∫

σ(T )

1

λ − z
dET (λ).

For self-adjoint T , z = u + iv ∈ C\R (u, v ∈ R) and x ∈ l2(N), we define

KH (z; T, x) := 1

2π i
[R(z, T ) − R(z, T )]x

= 1

2π i

∫ ∞

−∞

(
1

λ − z
− 1

λ − z

)
dET (λ)x

=
∫ ∞

−∞
PH (u − λ, v)dET (λ)x .

(1.11)

Similarly, if T is unitary, z = r exp(iψ) ∈ C\T (with z �= 0) and x ∈ l2(N), we define

KD(z; T, x) := 1

2π i
[R(z, T ) − R(1/z, T )]x

= 1

2π i

∫
T

[
1

λ − z
− 1

λ − 1/z

]
dET (λ)x . (1.12)

We change variables λ = exp(iθ) and, with an abuse of notation, write dET (λ) =
i exp(iθ)dET (θ). A simple calculation then gives

KD(z; T, x) =
∫ 2π

0
PD(r, ψ − θ)dET (θ)x . (1.13)

Returning to our example, we see that the computation of the resolvent with error
control allows the computation ofG(z)with error control through taking inner products.
By considering G(z)−G(z), this allows the computation of the convolution of the mea-
sureμJ with the Poisson kernel PH . In other words, we can compute a smoothed version
of the measure μJ with error control. We can then take the smoothing parameter to zero
to recover the measure (one can show that these smoothed approximations converge
weakly in the sense of measures). Fig. 1 demonstrates this for a typical example.

1.5. Functional analytic setup. Weconsider the canonical3 separableHilbert spaceH =
l2(N), the set of square summable sequences with canonical basis {en}n∈N. Let C(l2(N))

be the set of closed densely defined linear operators T such that span{en : n ∈ N} forms
a core of T and T ∗. The spectrum of T ∈ C(l2(N)) will be denoted by σ(T ) and the
point spectrum (the set of eigenvalues) by σp(T ). The latter set is not always closed and

3 By a choice of basis our results extend to any separable Hilbert space.
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Fig. 1. Smoothed approximations of the Radon–Nikodym derivative for the Jacobi operator associated to
Jacobi polynomials with α = 1, β = 1/2. Here themeasure is absolutely continuous and supported on [−1, 1].
Left: Computation of convolutions for different ε using themethods of this paper. Right: The associated Poisson
kernel π−1ε/(ε2 + x2) which approaches a Dirac delta distribution as ε ↓ 0

in general the closure of a set S will be denoted by S. The resolvent operator (T − z I )−1

defined on C\σ(T ) will be denoted by R(z, T ).
This paper focusses on the subclass �N ⊂ C(l2(N)) of normal operators, that is,

operators for which D(T ) = D(T ∗) and ‖T x‖ = ‖T ∗x‖ for all x ∈ D(T ). The
subclasses ⊂ �N of self-adjoint and unitary operators will be denoted by �SA and �U
respectively. For T ∈ �SA and T ∈ �U, σ(T ) ⊂ R and σ(T ) ⊂ T respectively, where
T denotes the unit circle. Given T ∈ �N and a Borel set B, ET

B will denote the projection
ET (B). Given x, y ∈ l2(N), we can define a bounded (complex-valued) measure μT

x,y
via the formula

μT
x,y(B) = 〈ET

B x, y〉. (1.14)

Via the Lebesgue decomposition theorem [76], the spectral measureμT
x,y can be decom-

posed into three parts

μT
x,y = μT

x,y,ac + μT
x,y,sc + μT

x,y,pp, (1.15)

the absolutely continuous part of themeasure (with respect to the Lebesguemeasure), the
singular continuous part (singular with respect to the Lebesgue measure and atomless)
and the pure point part. When considering �SA, we will consider Lebesgue measure on
R and let

ρT
x,y(λ) = dμT

x,y,ac

dm
(λ), (1.16)

the Radon–Nikodym derivative of μT
x,y,ac with respect to Lebesgue measure. Of course

this canbe extended to theunitary (and,moregenerally, normal) case.This naturally gives
a decompositionof theHilbert spaceH = l2(N). ForI = ac, sc andpp,we letHI consist
of vectors x whose measureμT

x,x is absolutely continuous, singular continuous and pure
point respectively. This gives rise to the orthogonal (invariant subspace) decomposition

H = Hac ⊕ Hsc ⊕ Hpp, (1.17)

whose associated projections will be denoted by PT
ac, P

T
sc and PT

pp respectively. These
projections commute with T and the projections obtained through the projection-valued
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measure. Of particular interest is the spectrum of T restricted to eachHI , which will be
denoted by σI(T ). These different sets and subspaces often, but not always, characterise
different physical properties in quantum mechanics (such as the famous RAGE theorem
[2,53,119]), where a system is modelled by some Hamiltonian T ∈ �SA [41,42,61,93].
For example, pure point spectrum implies the absence of ballistic motion for many
Schrödinger operators [127].

1.6. Algorithmic setup. Given an operator T ∈ C(l2(N)), we can view it as an infinite
matrix

T =

⎛
⎜⎜⎝
t11 t12 t13 . . .

t21 t22 t23 . . .

t31 t32 t33 . . .
...

...
...

. . .

⎞
⎟⎟⎠

through the inner products4 ti j = 〈T e j , ei 〉. All of the algorithms constructed can also
be adapted to operators on l2(Z), either through the use of a suitable re-ordering of the
basis, or though considering truncations of matrices in two directions, which is useful
numerically since it preserves bandwidth. To be precise about the information needed
to compute spectral properties, we define two classes of evaluation functions as

�1 = {〈T e j , ei 〉 : i, j ∈ N}, �2 = {〈T e j , ei 〉, 〈T ∗e j , T ∗ei 〉 : i, j ∈ N}. (1.18)

These can be understood as different sets of information our algorithms are allowed
to access (see Appendix A for a precise meaning). All the results proven in this paper
can be easily extended to the case of inexact input. This means replacing the evaluation
functions by

f (1)
i, j,m, f (2)

i, j,m : C(l2(N)) → Q + iQ

such that | f (1)
i, j,m(T )−〈T e j , ei 〉| ≤ 2−m and | f (2)

i, j,m(T )−〈T ∗e j , T ∗ei 〉| ≤ 2−m . Hence,
the existence results carry over to algorithms that are only allowed to perform arithmetic
operations over Q. This could be useful for rigorous bounds using interval arithmetic
and computer-assisted proofs (for those familiar with the term, our algorithms are Turing
recursive), though for brevity, we stick to�1 and �2 throughout. For discrete operators,
the above information is often given to us, for example, in tight-bindingmodels in physics
or as a discretisation of a PDE, and hence it is natural to seek to compute spectral
properties from matrix values. The set �2 is motivated via variational problems. For
partial differential operators, such information is often given through inner products with
a suitable basis, and in this case, the inexact input model is needed due to approximating
the integrals (see Appendix B). For the classes considered in this paper, the evaluation
sets �1 and �2 are in general different, yet the classifications in the SCI remain the
same.

We will be concerned operators whose matrix representation has a known asymptotic
rate of column/off-diagonal decay. Namely, let f : N → N with f (n) > n and let

4 Our convention throughoutwill be that the inner product 〈·, ·〉 is linear in thefirst component and conjugate-
linear in the second.
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α = {αn}n∈N, β = {βn}n∈N be null sequences5 of non-negative real numbers. We then
define for X = SA or X = U,

�X
f,α,β = {T ∈ �X : ‖(Pf (n) − I )T Pn‖ = O(αn), as n → ∞}

× {x ∈ l2(N) : ‖Pnx − x‖ = O(βn), as n → ∞}, (1.19)

where Pn denotes the orthogonal projection onto span{e1, . . . , en}. In using the O(·)
notation, the hidden constant is allowed to depend on the operator T or the vector x . We
will also use

�X
f,α = {T ∈ �X : ‖(Pf (n) − I )T Pn‖ = O(αn), as n → ∞}. (1.20)

When discussing�SA
f,α,β and�SA

f,α we will use the notation � f,α,β and� f,α . The collec-

tion of vectors in l2(N) satisfying ‖Pnx − x‖ = O(βn) will be denoted by Vβ . Finally,
when αn ≡ 0, we will abuse notation slightly in requiring the stronger condition that

‖(Pf (n) − I )T Pn‖ = 0.

Thus� f,0 is the class of self-adjoint operatorswhosematrix sparsity structure is captured
by the function f . For example, if f (n) = n + 1, we recover the class of self-adjoint
tridiagonal matrices, the most studied class of infinite-dimensional operators. When
discussing classes that include vectors x , we extend �i to include pointwise evaluations
of the coefficients of x . Other additions are sometimes needed, such as data regarding
open sets as inputs for computations of measures, but this will always be made clear.
When considering the general case of � f,α , the function f and sequence α can also be
considered as inputs to the algorithm—in other words, the same algorithm works for
each class.

1.7. Connections with previous work. We have mentioned the literature on infinite-
dimensional spectral problems and the SCI hierarchy. Computationally, our point of
view in this paper is closest to the work of Olver, Townsend and Webb on practical
infinite-dimensional linear algebra [104–107,151]. Their work includes efficient codes,
such as the infinite-dimensional QL (IQL) algorithm [150] (see also [38] for the IQR
algorithm, which has its roots in the work of Deift, Li and Tomei [46]), as well as
theoretical results. A PDE version of the FEAST algorithm based on contour integration
of the resolvent has recently been proposed by Horning and Townsend in [84], which
computes discrete spectra. The set of algorithms we provide can be considered as a new
member within the growing family of infinite-dimensional techniques.

A similar, though different, object studied in the mathematical physics literature,
particularly when considering randomSchrödinger operators, is the density of states [29,
89,91], which we mention for completeness and also to avoid potential confusion. This
object is definedvia the “thermodynamic limit”,where instead of considering the infinite-
dimensional operator T , one considers finite truncations, say PnT Pn , and the limit n →
∞ of themeasure

∑
x j∈σ(PnT Pn) δx j /n. Thismeasure is subtly different from the spectral

measure of T (for instance, on the discrete spectrum). The density of states is an important
quantity in quantum mechanics, and there is a large literature on its computation. We
refer the reader to the excellent review article [95], which discusses the most common

5 We use the term “null sequence” for a sequence converging to zero.
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methods. The idea of using the resolvent to approximate the density of states of finite
matrices can be found in the method of [82], which approximates the imaginary part
of Trace [R(z, PnT Pn)] for Im(z) > 0. Similarly, in the random matrix literature, the
connection ismade through the Stieltjes transformation (see, for example, [9]). There are
three immediate differences between our algorithms and those that compute the density
of states. First, we seek to deal with the full, infinite-dimensional, operator directly to
compute the spectral measure (and not the limit of increasing system sizes). Second,
the object we are computing contains more refined spectral information of the operator
and does not involve an averaging procedure. The density of states does not capture
the full spectral information, such as the contribution of eigenvalues in the discrete
spectrum, whereas the projection-valued spectral measure does. Third, there is a subtlety
regarding the limits as Im(z) goes to zero and the truncation parameter goes to infinity
(a similar trade-off also occurs in random matrix literature when theoretically analysing
the density of states—see [54]). In our case, appropriate rectangular truncations of the
infinite-dimensional operator are required to compute the resolvent with error control
(see Theorem 2.1). This approach differs from finite-dimensional techniques, which
typically consider square truncations.

For the C∗-algebra viewpoint of the density of states, we refer the reader to the work
of Areveson [7] and the references therein. Estimating the spectrum of T via σ(PnT Pn)
is known as the finite section method. This has often been viewed in connection with
Toeplitz theory. See, for example, the work by Böttcher [19,20], Böttcher and Silberman
[23], Böttcher, Brunner, Iserles and Nørsett [21], Brunner, Iserles and Nørsett [27],
Hagen, Roch and Silbermann [73], Lindner [96], Marletta [98], Marletta and Scheichl
[99], and Seidel [121].

The study of spectral measures also has a rich history in the theory of orthogonal
polynomials and quadrature rules for numerical integration going back to the work of
Szegő [50,139], briefly touched upon in Sect. 1.4. In certain cases, one can recover
a distribution function for the associated measure of the Jacobi operator as a limit of
functions constructed using Gaussian quadrature [31, Ch. 2]. Our examples in Sect. 6.1
can be considered as a computational realisation of Favard’s theorem.

There are several results in the literature considering the computation of spectral den-
sity functions for Sturm–Liouville problems. In the case of Sturm–Liouville problems,
the spectral density function corresponds to the multiplicative version of the spectral
theorem. This is subtly different from the measures we compute, which arise from
the projection-valued measure version of the spectral theorem. A common approach to
approximate spectral density functions associated with Sturm–Liouville operators on
unbounded domains is to truncate the domain and use the Levitan–Levinson formula,
as implemented in the software package SLEDGE [59,60,111]. This approach can be
computationally expensive since the eigenvalues cluster as the domain size increases;
often, hundreds of thousands of eigenvalues and eigenvectors need to be computed.More
sophisticated methods avoiding domain truncation are considered for special cases in
[57,58], and an application in plasma physics can be found in [152]. These make use of
the additional structure present in Sturm–Liouville problems using results analogous to
(1.9) in the continuous case. Our results, particularly Theorem 1.1, hold for partial differ-
ential operators much more complicated than Sturm–Liouville operators (see Appendix
B).

Finally, we wish to highlight the work of Webb and Olver [151], which is of par-
ticular relevance to the present study. There the authors studied, through connection
coefficients, Jacobi operators that arise as compact perturbations of Toeplitz operators.
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Similar perturbations (where a stronger exponential decay of the perturbation is cru-
cial for analyticity properties of the resolvent) were studied in the work of Bilman and
Trogdon [16] in connection with the inverse scattering transform for the Toda lattice.
(See also the work of Trogdon, Olver and Deconinck [144] for computations of spectral
measures for inverse scattering for the KdV equation.) The results proven in [151] can
be stated in terms of the SCI hierarchy:

• If the perturbation is finite rank (and known), the computation of σpp lies in 	G
1 ,

and the computation of the μac lies in 	G
0 (note that σac is known analytically).

• If the perturbation is compact with a known rate of decay at infinity, then the com-
putation of the full spectrum σ lies in 	G

1 .

The current paper complements the work of [151] by; considering operators much more
general than tridiagonal compact perturbations of Toeplitz operators (we deal with ar-
bitrary self-adjoint operators and assume we know f such that (1.20) holds) and partial
differential operators, allowing operators to be unbounded, building algorithms that are
arithmetic and can copewith inexact input, and considering computation of awider range
of spectral information. At the price of this greater generality, the objects we study are
generally not computable with error control (unless one has local regularity assumptions
on the measure—see [33, Ch. 4]), and some lead to computational problems higher up
in the SCI hierarchy, though still computationally useful as we shall demonstrate. Our
methods are also entirely different and rely on estimating the resolvent operator with
error control (Theorem 2.1).

1.8. Organisation of the paper. The paper is organised as follows. In Sect. 2 we con-
sider the computation of the resolvent with error control and generalisations of Stone’s
formula. The computation of measures, their various decompositions and projections
are discussed in Sect. 3. We then discuss the functional calculus and density of measures
in Sect. 4. The computation of the different types of spectra as sets in the complex plane
is discussed in Sect. 5. We run extensive numerical tests in Sect. 6, where we also intro-
duce a new collocation method for the computation of the Radon–Nikodym derivative.
We find that increased rates of convergence can also be obtained through iterations of
Richardson extrapolation. A summary of the SCI hierarchy can be found in Appendix
A and a proof of Theorem 1.1 in Appendix B. Throughout, our theorems and proofs use
the notation introduced in Sect. 1.5 and Sect. 1.6.

2. Preliminary Results

The algorithms built in this paper rely on the computation of the action of the resolvent
operator R(z, T ) = (T − z)−1 for z /∈ σ(T ) with (asymptotic) error control. Given this,
one can compute the action of the projections ET

S for a wide range of sets S (Theorem
3.1 and its generalisations), and hence the measures μT

x,y . This section discusses the
computation of the resolvent with error control and generalisations of Stone’s formula,
which relate the resolvent to the projection-valued measures.

2.1. Approximating the resolvent operator. The key theorem for computing the action of
the resolvent operator is the following, where we use σ1 to denote the injection modulus
of an operator defined as

σ1(T ) := min{‖T x‖ : x ∈ D(T ), ‖x‖ = 1}.
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The proof of the following theoremboils down to a careful computation of a least-squares
solution of a rectangular linear system.

Theorem 2.1. Let α = {αn}n∈N and β = {βn}n∈N be null sequences, and f : N → N

with f (n) > n. Define

S f,α,β :=
{
(T, x, z) ∈ �N

f,α,β × C : z ∈ C\σ(T )
}

and for (T, x) ∈ �N
f,α,β (defined in (1.19)), let C1(T, x), C2(T, x) ∈ R≥0 be such that

1. ‖(I − Pf (n))T Pn‖ ≤ C1αn,
2. ‖Pnx − x‖ ≤ C2βn,

where, for notational convenience, we drop the (T, x) dependence in the notation for
C1 and C2. Then there exists a sequence of arithmetical algorithms

�n : S f,α,β → l2(N),

each of which use the evaluation functions in �1 (defined in (1.18)), such that each
vector �n(T, x, z) has finite support with respect to the canonical basis for each n, and

lim
n→∞ �n(T, x, z) = R(z, T )x in l2(N).

Moreover, the following error bound holds

‖�n(T, x, z) − R(z, T )x‖
≤ C2β f (n) + C1αn‖�n(T, x, z)‖ + ‖Pf (n)(T − z I )�n(T, x, z) − Pf (n)x‖

dist(z, σ (T ))
.

(2.1)

If a bound on C1 and C2 are known, this error bound can be computed to arbitrary
accuracy using finitely many arithmetic operations and comparisons.

Proof. Let (T, x, z) ∈ S f,α,β . We have that n = rank(Pn) = rank((T − z I )Pn) =
rank(Pf (n)(T −z I )Pn) for large n since σ1(T −z I ) > 0 and ‖(I−Pf (n))(T −z I )Pn‖ ≤
C1αn → 0 (recall that z /∈ σ(T )). Hence we can define

�̃n(T, x, z) :=
{
0 if σ1(Pn(T ∗ − z I )Pf (n)(T − z I )Pn) ≤ 1

n[Pn(T ∗ − z I )Pf (n)(T − z I )Pn]−1Pn(T ∗ − z I )Pf (n)x otherwise.

Suppose that n is large enough so that σ1(Pn(T ∗ − z I )Pf (n)(T − z I )Pn) > 1/n. Then
�̃n(T, x, z) is a least-squares solution of the optimisation problem argminy‖Pf (n)(T −
z I )Pn y − x‖. The linear space span{en : n ∈ N} forms a core of T and hence also
of T − z I . It follows by invertibility of T − z I that given any ε > 0, there exists an
m = m(ε) and a y = y(ε) with Pm y = y such that

‖(T − z I )y − x‖ ≤ ε.

It follows that for all n ≥ m,
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‖(T − z I )�̃n(T, x, z) − x‖ ≤ ‖Pf (n)(T − z I )�̃n(T, x, z) − x‖ + C1αn‖�̃n(T, x, z)‖
≤ ‖Pf (n)(T − z I )y − x‖ + C1αn‖�̃n(T, x, z)‖
≤ ‖Pf (n)(T − z I )y − Pf (n)x‖ + C2β f (n) + C1αn‖�̃n(T, x, z)‖
≤ ε + C2β f (n) + C1αn‖�̃n(T, x, z)‖.

This implies that

‖�̃n(T, x, z) − R(z, T )x‖ ≤ ‖R(z, T )‖‖(T − z I )�̃n(T, x, z) − x‖
≤ ‖R(z, T )‖ (ε + C2β f (n) + C1αn‖�̃n(T, x, z)‖) .

In particular, since α and β are null, this implies that ‖�̃n(T, x, z)‖ is uniformly bounded
in n. Since ε > 0 was arbitrary, we also see that �̃n(T, x, z) converges to R(z, T )x .

Define the matrices

Bn = Pn(T
∗ − z I )Pf (n)(T − z I )Pn, Cn = Pn(T

∗ − z I )Pf (n).

Given the evaluation functions in�1, we can compute the entries of thesematrices to any
given accuracy and hence also to arbitrary accuracy in the operator norm using finitely
many arithmetic operations and comparisons (using the error in the Frobenius norm to
bound the error in the operator norm). Denote approximations of Bn and Cn by B̃n and
C̃n respectively and assume that

‖Bn − B̃n‖ ≤ un, ‖Cn − C̃n‖ ≤ vn,

for null sequences {un}, {vn}. Note that B̃−1
n can be computed using finitely many arith-

metic operations and comparisons. So long as un is small enough, the resolvent identity
implies that

‖B−1
n − B̃−1

n ‖ ≤ ‖B̃−1
n ‖2un

1 − un‖B̃−1
n ‖ =: wn .

By taking un and vn smaller if necessary (so that the algorithm is adaptive and it is
straightforward to bound the norm of a finite matrix from above), we can ensure that
‖B̃−1

n ‖vn ≤ n−1 and (‖C̃n‖ + vn)wn ≤ n−1. From Proposition A.7 and a simple search
routine, we can also compute σ1(Pn(T ∗ − z I )Pf (n)(T − z I )Pn) to arbitrary accuracy
using finitely many arithmetic operations and comparisons. Suppose this is done to an
accuracy 1/n2 and denote the approximation via τn . We then define

�n(T, x, z) :=
{

0 if τn ≤ 1
n

B̃−1
n C̃n x̃n otherwise,

where x̃n = Pf (n)x . It follows that �n(T, x, z) can be computed using finitely many
arithmetic operations and, for large n,

‖�n(T, x, z) − �̃n(T, x, z)‖ ≤
(
‖B̃−1

n ‖vn + (‖C̃n‖ + vn)wn

)
‖x‖ → 0,

so that�n(T, x, z) converges to R(z, T )x . By construction,�n(T, x, z) has finite support
with respect to the canonical basis.
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Furthermore, the following error bound holds (which also holds if τn ≤ 1/n)

‖�n(T, x, z) − R(z, T )x‖ ≤ ‖R(z, T )‖‖(T − z I )�n(T, x, z) − x‖
≤ C2β f (n) + C1αn‖�n(T, x, z)‖ + ‖Pf (n)(T − z I )�n(T, x, z) − Pf (n)x‖

dist(z, σ (T ))
,

since T is normal so that ‖R(z, T )‖ = dist(z, σ (T ))−1. This bound converges to 0
as n → ∞. If the C1 and C2 are known, the bound can be approximated to arbitrary
accuracy using finitely many arithmetic operations and comparisons. ��
Remark 3. If T corresponds to a choice of basis in a space of functions (for examplewhen
using a spectral method), there is often a link between the regularity of the functions x
and the decay of the terms βn . The bound (2.1) can then often be adapted to include such
asymptotics, and hence indicate how large n needs to be to gain a given approximation.

Of course, a vast literature exists on computing R(z, T ), especially for infinite ma-
trices with structure (such as being banded) and we refer the reader to [70,96,112,121]
for a small sample. Note that if T is banded with bandwidth m, then we can take
f (n) = n +m and the above computation can be done in O(nm2) operations [66]. The
following corollary of Theorem 2.1 will be used repeatedly in the following proofs.

Corollary 2.2. There exists a sequence of arithmetic algorithms

�n : � f,α,β × C\R → l2(N)

with the following properties:

1. For all (T, x) ∈ � f,α,β and z ∈ C\R, �n(T, x, z) has finite support with respect to
the canonical basis and converges to R(z, T )x in l2(N) as n → ∞.

2. For any (T, x) ∈ � f,α,β , there exists a constant C(T, x) such that for all z ∈ C\R,

‖�n(T, x, z) − R(z, T )x‖ ≤ C(T, x)

|Im(z)| [αn + βn] .

Proof. Let �n(T, x, z) = �̂m(n,T,x,z)(T, x, z), where �̂k are the algorithms from the
statement of Theorem 2.1 and m(n, T, x, z) is a subsequence diverging to infinity as
n → ∞. Clearly statement (1) holds so we must show how to choose the sequence
m(n, T, x, z) such that (2) holds (and hence our algorithms will be adaptive). From
(2.1), it is enough to show that m = m(n, T, x, z) can be chosen such that

β f (m) + αm‖�̂m(T, x, z)‖ + ‖Pf (m)(T − z I )�̂m(T, x, z) − Pf (m)x‖ � αn + βn .

The left-hand side can be approximated to arbitrary accuracy using finitely many arith-
metic operations and comparisons. Hence by repeatedly computing approximations to
within αn + βn , we can choose the minimal m such that these approximate bounds are
at most 2(αn + βn). ��
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2.2. Stone’s formula and Poisson kernels. Here we briefly discuss Stone’s famous for-
mula [32,113,137], which relates the convolution of spectral measures with Poisson
kernels to the pointwise action of the projection-valued measures associated with an
operator T ∈ �SA as ε ↓ 0 (see Sect. 1.4). Stone’s formula can also be generalised to
unitary operators and a much larger class of normal operators (see Proposition 2.4). We
include a short (and standard) proof of Proposition 2.3 for the benefit of the reader.

Proposition 2.3 (Stone’s formula). The following boundary limits hold:

(i) Let T ∈ �SA. Then for any −∞ ≤ a < b ≤ ∞ and x ∈ l2(N),

lim
ε↓0

∫ b

a
KH (u + iε; T, x)du = ET

(a,b)x +
1

2
ET{a,b}x .

(ii) Let T ∈ �U. Then for any 0 ≤ a < b < 2π and x ∈ l2(N),

lim
ε↓0

∫ b

a
i exp(iψ)KD((1 − ε) exp(iψ); T, x)dψ = ET

(a,b)T
x +

1

2
ET

{exp(ia),exp(ib)}x,

where (a, b)T denotes the image of (a, b) under the map θ → exp(iθ).

Proof. Toprove (i), we can apply Fubini’s theorem to interchange the order of integration
and arrive at

∫ b

a
KH (u + iε; T, x)du =

[∫ ∞

−∞

∫ b

a
PH (u − λ, ε)du dET (λ)

]
x

But
∫ b

a
PH (u − λ, ε)du = 1

π

[
tan−1

(
b − λ

ε

)
− tan−1

(
a − λ

ε

)]

is bounded and converges pointwise as ε ↓ 0 toχ(a,b)(λ)+χ{a,b}(λ)/2, whereχS denotes
the indicator function of a set S. Part (i) now follows from the dominated convergence
theorem.

To prove (ii), we apply Fubini’s theorem again, now noting that

∫ b

a
i exp(iψ)PD((1 − ε), ψ − θ)dψ = i exp(iθ)

2π

∫ b−θ

a−θ

(2ε − ε2) exp(iψ)

ε2 + 2(1 − ε)(1 − cos(ψ))
dψ.

(2.2)

We can split the interval into small intervals of width ρ (where 0 < ρ < 1) around each
point where cos(ψ) = 1, and a finite union of intervals on which 1− cos(ψ) is positive,
bounded away from 0. On these later intervals, the limit vanishes as ε ↓ 0. Hence by
periodicity and considering odd and even parts, we are left with considering

I1(ρ, ε) =
∫ ρ

0

(2ε − ε2) cos(ψ)

ε2 + 2(1 − ε)(1 − cos(ψ))
dψ,

I2(ρ, ε) =
∫ ρ

0

(2ε − ε2) sin(ψ)

ε2 + 2(1 − ε)(1 − cos(ψ))
dψ.
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(a) (b)

Fig. 2. Left: Exterior cone condition for Proposition 2.4. Right: Deformed contour γε to compute fε(zi )

Explicit integration yields I2(ε, ρ) = O(ε log(ε)) and hence the contribution vanishes
in the limit. We also have

I1(ρ, ε) =
(ε2 − 2ε)ρ + 2(2 + ε2 − 2ε) tan−1

(
(2−ε) tan( ρ

2 )
ε

)
2(1 − ε)

.

This converges to π as ε ↓ 0. Considering the contributions of I1 and I2 in (2.2), we see
that (2.2) converges pointwise as ε ↓ 0 to

i exp(iθ)
{
χ(a,b)(θ) + [χ{a}(θ) + χ{b}(θ)]/2} .

Since the integral is also bounded, part (ii) now follows from the dominated convergence
theorem and change of variables. ��

This type of construction can be generalised to T ∈ �N whose spectrum lies on a
regular enough curve. However, it is much more straightforward in the general case to
use the analytic properties of the resolvent. The next proposition does this and also holds
for operators whose spectrum does not necessarily lie along a curve.

Proposition 2.4 (Generalised Stone’s formula). Let T ∈ �N and γ be a rectifiable posi-
tively oriented Jordan curve with the following properties. The spectrum σ(T ) intersects
γ at finitely many points z1, . . . , zm and in a neighbourhood of each of the zi , γ is formed
of a line segment meeting σ(T ) only at zi , at which point σ(T ) has a local exterior cone
condition with respect to γ (see Fig. 2). Let x ∈ l2(N). Then we can define the Cauchy
principal value integral of the resolvent R(z, T )x along γ and have

−1

2π i
PV

∫
γ

R(z, T )xdz = ET
σ(T ;γ )x − 1

2

⎡
⎣ m∑

j=1

ET{z j }x

⎤
⎦ , (2.3)

where σ(T ; γ ) is the closure of the intersection of σ(T ) with the interior of γ .

Proof. We will argue for the case m = 1, and the general case follows in exactly the
same manner. Let ε > 0 be small so that in a neighbourhood of the ε−ball around z1, γ
is given by a straight line. We then decompose γ into two disjoint parts

γ = γ 1
ε ∪ γ 2

ε ,



454 M. J. Colbrook

where γ 2
ε denotes the line segment of γ at most ε away from z1 (as shown in Fig. 2).

We set

Fε(x, T ) =
∫

γ 1
ε

R(z, T )xdz =
[∫

σ(T )

∫
γ 1
ε

1

λ − z
dzdET (λ)

]
x .

We then consider the inner integral

fε(λ) =
∫

γ 1
ε

1

λ − z
dz.

If λ is inside γ then limε↓0 fε(λ) = −2π i via Cauchy’s residue theorem. Similarly, if
λ is outside γ then limε↓0 fε(λ) = 0. To calculate fε(z1), consider the contour integral
along γε in Fig. 2. We see that

fε(z1) − iπ = −2iπ

and hence fε(z1) = −iπ . We would like to apply the dominated convergence theorem.
Clearly, away from z1, fε is bounded as ε ↓ 0. Now let 0 < δ < ε then

fδ(λ) − fε(λ) =
∫ ε

δ

1
λ−z1

w
− s

+
1

λ−z1
w

+ s
ds = log

(
ε + λ−z1

w

−ε + λ−z1
w

)
− log

(
δ + λ−z1

w

−δ + λ−z1
w

)

for some w ∈ T. Taking the pointwise limit δ ↓ 0, we see that fε(λ) is bounded for
λ ∈ σ(T ) in a neighbourhood of z1 as ε ↓ 0 if the same holds for

gε(λ) = log

(
ε + λ−z1

w

−ε + λ−z1
w

)
.

By rotating and translating, we can assume that w = 1 and z1 = 0 without loss of
generality. Letλ1 = Re(λ) andλ2 = Im(λ). Using the cone condition givesα |λ1| ≤ |λ2|
for some α > 0. Assume λ1 �= 0 then

∣∣∣∣ ε + λ

−ε + λ

∣∣∣∣
2

= (ε + λ1)
2 + λ22

(ε − λ1)2 + λ22
= 1 +

4x

(x − 1)2 + y2
,

where x = ε/λ1 and y = λ2/λ1. Note that y2 ≥ α2 and without loss of generality we
take y ≥ α. Define

h(x, y) = 4x

(x − 1)2 + y2

Note that h(x, y) → 0 as |x |2 + |y|2 → ∞. We must show that h(x, y) is bounded
above −1 for y ≥ α. It is enough to consider points where ∂h/∂x = 0 which occur
when x± = ±√1 + y2. We have

h(x±, y) = ±2√
1 + y2 ∓ 1

≥ −2√
1 + α2 + 1

> −1,
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and hence we have proved the required boundedness. We then define

PV
∫

γ

R(z, T )xdz = lim
ε↓0 Fε(x, T ).

The relation (2.3) now follows from the dominated convergence theorem. ��

3. Computation of Measures

For the sake of brevity, the analysis in the rest of this paper will consider the self-
adjoint case T ∈ �SA, which is the case most encountered in applications. However,
the algorithms we build are based on Theorem 2.1 (and Corollary 2.2) and the link with
Poisson kernels/Cauchy transforms. Given the relation (1.13) and Proposition 2.4, many
of the results can be straightforwardly extended to the unitary case and more general
cases where conditions similar to that of Proposition 2.4 hold. We consider examples of
unitary operators in Sect. 6.3.

3.1. Full spectral measure. We start by considering the computation of ET
U x , where

U ⊂ R is a non-trivial open set. In other words, U is not the whole of R or the empty
set. The collection of these subsets will be denoted by U . To be precise, we assume that
we have access to a finite or countable collection am(U ), bm(U ) ∈ R∪ {±∞} such that
U can be written as a disjoint union

U =
⋃
m

(am(U ), bm(U )) . (3.1)

With an abuse of notation, we add this information as evaluation functions to�i (defined
in (1.18)).

Theorem 3.1 (Computation of measures on open sets). Given the set-up in Sects. 1.5,
1.6 and the previous paragraph, consider the map

�meas : � f,α,β × U → l2(N)

(T, x,U ) → ET
U x .

Then {�meas,� f,α,β × U ,�1} ∈ 	A
2 . In other words, we can construct a convergent

sequence of arithmetic algorithms for the problem.

Remark 4. Essentially, this theorem tells us that if we can compute the action of the
resolvent operator with asymptotic error control near the real axis, then we can compute
the spectral measures of open sets in one limit. In the unitary case, this can easily be
extended to relatively open sets of T if we can evaluate the resolvent near the unit circle.
For any U ∈ U , the approximation of ET

U x has finite support, and hence we can take
inner products to compute μT

x,y(U ).

Remark 5. One may wonder whether it is possible to upgrade the convergence of the
algorithm in Theorem 3.1 from 	2 to 	1. In other words, whether it is possible to
compute the measure with error control. However, this is difficult because the measure
maybe singular. Theorem5.2 shows this is impossible even for singleton sets and discrete
Schrödinger operators acting on l2(N).
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Proof of Theorem 3.1. Let T ∈ �SA and z1, z2 ∈ C\R. By the resolvent identity and
self-adjointness of T ,

‖R(z1, T ) − R(z1, T )‖ ≤ |Im(z1)|−1 |Im(z2)|−1 |z1 − z2| .
Hence, for z = u+iεwith ε > 0, the vector-valued function KH (u+iε; T, x) (considered
with argument u) is Lipschitz continuouswith Lipschitz constant bounded by ε−2‖x‖/π .
Now consider the class � f,α,β ×U and let (T, x,U ) ∈ � f,α,β ×U . From Corollary 2.2,
we can construct a sequence of arithmetic algorithms, �̂n , such that

‖�̂n(T, u, z) − KH (u + iε; T, x)‖ ≤ C(T, x)

ε
(αn + βn)

for all (T, x) ∈ � f,α,β . It follows from standard quadrature rules and taking subse-
quences if necessary (using that {αn} and {βn} are null), that for −∞ < a < b < ∞,
the integral

∫ b

a
KH

(
u +

i

n
; T, x

)
du (3.2)

can be approximated to an accuracy Ĉ(T, x)/n using finitelymany arithmetic operations
and comparisons and the relevant set of evaluation functions �1 (the constant C now
becomes Ĉ due to not knowing the exact value of ‖x‖).

Recall that we assumed the disjoint union

U =
⋃
m

(am, bm)

where am, bm ∈ R∪{±∞} and the union is atmost countable.Without loss of generality,
we assume that the union is overm ∈ N. We then let am,n, bm,n ∈ Q be such that am,n ↓
am and bm,n ↑ bm as n → ∞ with am,n < bm,n and hence (am,n, bm,n) ⊂ (am, bm).
Let

Un =
n⋃

m=1

(am,n, bm,n),

then the proof of Stone’s formula in Proposition 2.3 (essentially an application of the
dominated convergence theorem) can be easily adapted to show that

lim
n→∞

∫
Un

KH

(
u +

i

n
; T, x

)
du = ET

U x .

Note that we do not have to worry about contributions from endpoints of the intervals
(am, bm) since we approximate strictly from within the open set U . To finish the proof,
we simply let �n(T, x,U ) be an approximation of the integral

∫
Un

KH

(
u +

i

n
; T, x

)
du

with accuracy Ĉ(T, x)/n. By the above remarks, such an approximation canbe computed
using finitely many arithmetic operations and comparisons from the relevant set of
evaluation functions �1. ��
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This theorem can clearly be extended to cover the more general case of Proposition
2.4 if γ is regular enough to allow approximation of

PV
∫

γ

R(z, T )xdz,

given the ability to compute R(z, T )x with asymptotic error control. Note that when it
comes to numerically computing the integrals in Propositions 2.3 and 2.4, it is advan-
tageous to deform the contour so that most of the contour lies far from the spectrum
so that the resolvent has a smaller Lipschitz constant. The proof can also be adapted to
compute EI x , where I = [a, b] is a closed interval, by considering intervals shrinking
to [a, b] (a, b finite). A special case of this is the computation of the spectral measure
of singleton sets. However, for these it much easier to directly use the formulae

ET{u}x = lim
ε↓0 επKH (u + iε; T, x),

ET
{exp(iθ)}x = lim

ε↓0 επ i exp(iθ)KD((1 − ε) exp(iθ); T, x),

for T ∈ �SA and T ∈ �U respectively.

3.2. Measure decompositions and projections. Recall fromSect. 1.5 that PT
I denotes the

orthogonal projection onto the space HT
I , where I denotes a generic type (ac, sc, pp, c

or s). We have included the continuous and singular parts denoted by c or s which
correspond to Hac ⊕ Hsc and Hsc ⊕ Hpp respectively. These are often encountered in
mathematical physics. As in Sect. 3.1, we assume the decomposition in (3.1) and add
the {am, bm} as evaluation functions to �i (defined in (1.18)). In this section, we prove
the following theorem.

Theorem 3.2. Given the set-up in Sects. 1.5, 1.6 and 3.1, consider the map

�I : � f,α,β × Vβ × U → C

(T, x, y,U ) → 〈PT
I ET

U x, y〉 = μT
x,y,I(U ),

for I = ac, sc, pp, c or s. Then for i = 1, 2

	G
2 �� {�I ,� f,α,β × Vβ × U ,�i } ∈ 	A

3 .

To prove this theorem, it is enough, by the polarisation identity, to consider x = y
(note that all the projections commute). We will split the proof into two parts: the 	A

3
inclusion, for which it is enough to consider �1, and the 	G

2 exclusion, for which it is
enough to consider �2.

3.2.1. Proof of inclusion in Theorem 3.2

Proof of inclusion in Theorem 3.2. Since PT
pp = I − PT

c , PT
ac = I − PT

s and PT
sc =

PT
s − PT

pp, it is enough, by Theorem 3.1 and Remark 4, to consider only I = c and
I = s.

Step 1:We first deal with I = c, where we shall use a similar argument to the proof of
Theorem 4.1 (which is more general than what we need). We recall the RAGE theorem
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[2,53,119] as follows. Let Qn denote the orthogonal projection onto vectors in l2(N)

with support outside the subset {1, . . . , n} ⊂ N. Then for any x ∈ l2(N),

〈PT
c ET

U x, x〉 = ‖PT
c ET

U x‖2 = lim
n→∞ lim

t→∞
1

t

∫ t

0

∥∥∥Qne
−iT s ET

U x
∥∥∥2 ds

= lim
n→∞ lim

t→∞
1

t

∫ t

0

∥∥∥Qne
−iT sχU (T )x

∥∥∥2 ds.
(3.3)

The proof of Theorem4.1 is easily adapted to show that there exists arithmetic algorithms
�̃n,m using �1 such that

‖Qne
−iT sχU (T )x − �̃n,m(T, x,U, s)‖ ≤ C(T, x,U )

m

for all (T, x,U, s) ∈ � f,α,β × U × R. Note that this bound can be made indepen-
dent of s (as we have written above) by sufficiently approximating the function λ →
exp(−iλs)χU (λ) (it has known total variation for a given s and uniform bound). We
now define

�n,m(T, x,U ) = 1

m2

m2∑
j=1

‖�̃m,n(T, x,U, j/m)‖2.

Using the fact that for a, b ∈ l2(N),

|〈a, a〉 − 〈b, b〉| ≤ ‖a − b‖ (2‖a‖ + ‖a − b‖) , (3.4)

it follows that∣∣∣‖Qne
−iT sχU (T )x‖2 − ‖�̃n,m(T, x,U, s)‖2

∣∣∣ ≤ C(T, x,U )

m

(
2‖x‖ +

C(T, x,U )

m

)
.

Hence ∣∣∣∣�n,m(T, x,U ) − 1

m

∫ m

0

∥∥∥Qne
−iT sχU (T )x

∥∥∥2 ds
∣∣∣∣

≤ 1

m2

m2∑
j=1

C(T, x,U )

m

(
2‖x‖ +

C(T, x,U )

m

)

+
1

m2

m2∑
j=1

∣∣∣∣∣gn( j/m) − m
∫ j

m

j−1
m

gn(s)ds

∣∣∣∣∣ ,

where gn(s) = ‖Qne−iT sχU (T )x‖2. Clearly the first term converges to 0 as m → ∞,
so we only need to consider the second. Using (3.4), it follows that for any ε > 0

|gn(s) − gn(s + ε)| ≤ 4‖Qne
−iT s(e−iT ε − I )χU (T )x‖‖x‖

≤ 4‖x‖‖(e−iT ε − I )χU (T )x‖.
But e−iT ε − I converges strongly to 0 as ε ↓ 0 and hence the quantity∣∣∣∣∣gn( j/m) − m

∫ j
m

j−1
m

gn(s)ds

∣∣∣∣∣ → 0
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uniformly in j as m → ∞. It follows that

lim
m→∞ �n,m(T, x,U ) = lim

t→∞
1

t

∫ t

0

∥∥∥Qne
−iT s ET

U x
∥∥∥2 ds

and hence

lim
n→∞ lim

m→∞ �n,m(T, x,U ) = 〈PT
c ET

U x, x〉.
Step 2: Next we deal with the case I = s. Note that for z ∈ C\R, 〈R(z, T )x, x〉 is

simply the Stieltjes transform (also called the Borel transform) of the positive measure
μT
x,x

〈R(z, T )x, x〉 =
∫
R

1

λ − z
dμT

x,x (λ).

The Hilbert transform of μT
x,x is given by the limit

HμT
x,x

(t) = 1

π
lim
ε↓0 Re (〈R(t + iε, T )x, x〉) ,

with the limit existing (Lebesgue) almost everywhere. This object was studied in [108,
109], where we shall use the result (since the measure is positive) that for any bounded
continuous function f ,6

lim
θ→∞

πθ

2

∫
R

f (t)χ{w:|H
μT
x,x

(w)|≥θ}(t)dt =
∫
R

f (t)dμT
x,x,s(t). (3.5)

Now let (T, x,U ) ∈ � f,α,β × U with

U =
⋃
m

(am, bm),

where am, bm ∈ R∪{±∞} and the disjoint union is atmost countable as in (3.1).Without
loss of generality, we assume that the union is over m ∈ N. Due to the possibility of
point spectra at the endpoints am, bm , we cannot simply replace f by χU in the above
limit (3.5). However, this can be overcome in the following manner.

Let ∂U denote the boundary of U defined by U\U and let ν denote the measure
μT
x,x |∂U . Let { fl}l∈N denote a pointwise increasing sequence of continuous functions,

converging everywhere up to χU , such that the support of each fl is contained in

[−l, l]
⋂(

l⋃
m=1

(
am + 1/

√
l, bm − 1/

√
l
))

.

Such a sequence exists (and can easily be explicitly constructed) precisely becauseU is
open. We first claim that

lim
l→∞

πl

2

∫
R

fl(t)χ{w:|H
μT
x,x

(w)|≥l}(t)dt = μT
x,x,s(U ). (3.6)

6 Note that this is stronger than weak∗ convergence which in this case means restricting to continuous
functions vanishing at infinity. That the result holds for arbitrary bounded continuous functions is due to the
tightness condition that the result holds for the function identically equal to 1.
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To see this note that for any k ∈ N, the following inequalities hold

lim inf
l→∞

πl

2

∫
R

fl(t)χ{w:|H
μT
x,x

(w)|≥l}(t)dt ≥ lim inf
l→∞

πl

2

∫
R

fk(t)χ{w:|H
μT
x,x

(w)|≥l}(t)dt

=
∫
R

fk(t)dμT
x,x,s(t),

where the last equality is due to (3.5). Taking k → ∞ yields

lim inf
l→∞

πl

2

∫
R

fl(t)χ{w:|H
μT
x,x

(w)|≥l}(t)dt ≥ μT
x,x,s(U ), (3.7)

so we are left with proving a similar bound for the limit supremum. Note that any point
in the support of fl is of distance at least 1/

√
l from ∂U . It follows that there exists a

constant C independent of t such that for any t ∈ supp( fl),

|Hν(t)| ≤ C
√
l

Now let ε ∈ (0, 1). Then, for large l, l − C
√
l ≥ (1 − ε)l and hence

supp( fl) ∩ {w : |HμT
x,x

(w)| ≥ l} ⊂ supp( fl) ∩ {w : |HμT
x,x−ν(w)| ≥ (1 − ε)l}.(3.8)

Now let f be any bounded continuous function such that f ≥ χU . Then using (3.8),

lim sup
l→∞

πl

2

∫
R

fl(t)χ{w:|H
μT
x,x

(w)|≥l}(t)dt

≤ lim sup
l→∞

1

1 − ε

π(1 − ε)l

2

∫
R

fl(t)χ{w:|H
μT
x,x−ν

(w)|≥(1−ε)l}(t)dt

≤ lim sup
l→∞

1

1 − ε

π(1 − ε)l

2

∫
R

f (t)χ{w:|H
μT
x,x−ν

(w)|≥(1−ε)l}(t)dt

= 1

1 − ε

∫
R

f (t)d([μT
x,x − ν]s)(t).

Now we let f ↓ χU , with pointwise convergence everywhere. This is possible since
the complement of U is open. By the dominated convergence theorem, and since ε was
arbitrary, this yields

lim sup
l→∞

πl

2

∫
R

fl(t)χ{w:|H
μT
x,x

(w)|≥l}(t)dt ≤ [μT
x,x − ν]s(U ) = μT

x,x,s(U ),

where the last equality follows from the definition of ν. The claim (3.6) now follows.
Let χn be a sequence of non-negative continuous piecewise affine functions on R,

bounded by 1 and such that χn(t) = 0 if t ≤ n − 1 and χn(t) = 1 if t ≥ n + 1. Consider
the integrals

I (n,m) = πn

2

∫
R

fn(t)χn(|Fm(t)|)dt,

where Fm(t) is an approximation of

1

π
Re

(〈
R

(
t +

i

m
, T

)
x, x

〉)
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to pointwise accuracy O(m−1) over t ∈ [−n, n]. Note that a suitable piecewise affine
function fn can be constructed using�1, as can suitableχn , and a suitable approximation
function Fm can be pointwise evaluated using �1 (again by Corollary 2.2). To see this,
recall the definition of�1 in (1.18) and thatwe added {am, bm} from (3.1) to�1. To define
fn , we can define the function by suitable piecewise affine functions on each interval
[−n, n] ∩ (

am + 1/
√
n, bm − 1/

√
n
)
. It follows that there exists arithmetic algorithms

�n,m(T, x,U ) using �1 such that

∣∣I (n,m) − �n,m(T, x,U )
∣∣ ≤ C(T, x,U )

m
.

The dominated convergence theorem implies that

lim
m→∞ �n,m(T, x,U ) = lim

m→∞ I (n,m) = πn

2

∫
R

fn(t)χn(|HμT
x,x

(t)|)dt.

Note that continuity of χn is needed to gain convergence almost everywhere and prevent
possible oscillations about the level set {HμT

x,x
(t) = n}. We also have

χ{w:|H
μT
x,x

(w)|≥n+1}(t) ≤ χn(|HμT
x,x

(t)|) ≤ χ{w:|H
μT
x,x

(w)|≥n−1}(t)

The same arguments used to prove (3.6), therefore show that

lim
n→∞

πn

2

∫
R

fn(t)χn(|HμT
x,x

(t)|)dt = μT
x,x,s(U ).

Hence,

lim
n→∞ lim

m→∞ �n,m(T, x,U ) = μT
x,x,s(U ),

completing the proof of inclusion in Theorem 3.2. ��

3.2.2. Proof of exclusion in Theorem 3.2 To prove the exclusion, we need two results
which will also be used in Sect. 5. First, we consider a result connected to Anderson
localisation (Theorem3.3) and, second,we consider a result concerning sparse potentials
of discrete Schrödinger operators (Theorem 3.4). The free Hamiltonian H0 acts on l2(N)

via the tridiagonal matrix representation

H0 =

⎛
⎜⎜⎜⎜⎝

2 − 1
−1 2 − 1

− 1 2
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎠ .

We define a Schrödinger operator acting on l2(N) to be an operator of the form

Hv = H0 + v,

where v is a bounded (real-valued) multiplication operator with matrix diag(v(1),
v(2), . . .).

Since Anderson’s introduction of his famous model 60 years ago [3], there has been
a considerable amount of work by both physicists and mathematicians aiming to un-
derstand the suppression of electron transport due to disorder (Anderson localisation).
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A full discussion of Anderson localisation is beyond the scope of this paper, and we
refer the reader to [29,42,90] for broader surveys. When considering Anderson local-
isation, we will assume that v = vω = {v(1), v(2), . . .} is a collection of independent
identically distributed random variables. Following [67], we assume that the single-site
probability distribution has a density ρ ∈ L1(R) ∩ L∞(R) with ‖ρ‖1 = 1 (with respect
to the standard Lebesgue measure). For such a potential, a measure of disorder is given
by the quantity ‖ρ‖−1∞ . The first result we need is the following theorem which follows
straightforwardly from the technique of [67], and hence we have not provided a proof
which would be almost verbatim to [67].

Theorem 3.3 (Anderson Localisation for Perturbed Operator [67]). There exists a con-
stantC > 0 such that if ‖ρ‖∞ ≤ C andρ has compact support, then the operator Hvω+A
has only pure point spectrum with probability 1 for any fixed self-adjoint operator A of
the form

A =
M∑
j=1

α j
∣∣xm j

〉 〈
xn j

∣∣ . (3.9)

In other words, the operator A’s matrix with respect to the canonical basis has only
finitely many non-zeros.

The second result we need is the following from [92].

Theorem 3.4 (Krutikov and Remling [92]). Consider discrete Schrödinger operators
acting on l2(N). Let v be a (real-valued and bounded) potential of the following form:

v(n) =
∞∑
j=1

g jδn,m j , m j−1/m j → 0.

Then [0, 4] ⊂ σess(Hv) and the following dichotomy holds:

(a) If
∑

j∈N g2j < ∞ then Hv is purely absolutely continuous on (0, 4).

(b) If
∑

j∈N g2j = ∞ then Hv is purely singular continuous on (0, 4).

Proof of exclusion in Theorem 3.2. Since PT
pp = I − PT

c , PT
ac = I − PT

s and PT
sc =

PT
s − PT

pp, it is enough, by Theorem 3.1 and Remark 4, to consider I = pp, ac and sc.

We restrict the proof to considering bounded Schrödinger operators Hv acting on l2(N),
which are clearly a subclass of � f,0 for f (n) = n + 1. Note that since the evaluation
functions in �2 can be recovered from those in �1 in this special case, we can assume
that we are dealing with �1. We also set x = e1, with the crucial properties that this
vector is cyclic and hence μ

Hv
e1,e1 has the same support as σ(Hv), and that x ∈ V0.

Throughout, we also take U = (0, 4).
Step 1:Webeginwith PT

pp. Suppose for a contradiction that there does exist a sequence
of general algorithms �n such that

lim
n→∞ �n(Hv) = 〈PHv

pp EHv

(0,4)e1, e1〉.

We take a general algorithm, denoted �̂n , from Theorem 3.1 which has

lim
n→∞ �̂n(Hv) = μHv

e1,e1((0, 4)).
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Since e1 is cyclic, this limit is non-zero if (0, 4) ∩ σ(Hv) �= ∅. We therefore define

�̃n(Hv) =
{
0 if �̂n(Hv) = 0
�n(Hv)

�̂n(Hv)
otherwise.

We will use Theorem 3.3 and the following well-known facts:

1. If for any l ∈ N there existsml such that v(ml + 1) = v(ml + 2) = · · · = v(ml + l) =
0, then (0, 4) ⊂ σ(Hv).

2. If there exists N ∈ N such that v(n) is 0 for n ≥ N , then σpp(Hv)∩ (0, 4) = ∅ [114],
but [0, 4] ⊂ σ(Hv) (the potential acts as a compact perturbation so the essential
spectrum is [0, 4]).

3. If we are in the setting of Theorem 3.3, then the spectrum of Hvω + A is pure point
almost surely. Moreover, if ρ = χ[−c,c]/(2c) for some constant c, then [−c, 4 + c] ⊂
σpp(Hvω + A) almost surely.

The strategy will be to construct a potential v such that (0, 4) ⊂ σ(Hv), yet �̃n(Hv)

does not converge. This is a contradiction since by our assumptions, for such a v we
must have

�̃n(Hv) → 〈PHv
pp EHv

(0,4)e1, e1〉
μ
Hv
e1,e1((0, 4))

.

To do this, choose ρ = χ[−c,c]/(2c) for some constant c such that the conditions of
Theorem 3.3 hold and define the potential v inductively as follows.

Let v1 be a potential of the form vω (with the density ρ) such that σ(Hv1) is pure

point. Such a v1 exists by Theorem 3.3 and we have 〈PHv1
pp E

Hv1
(0,4)e1, e1〉 = μ

Hv1
e1,e1((0, 4)).

Hence for large enough n it must hold that �̃n(Hv1) > 3/4. Fix n = n1 such that this
holds. Then �n1(Hv1) only depends on {v1( j) : j ≤ N1} for some integer N1 by (i) of
Definition A.2. Define the potential v2 by v2( j) = v1( j) for all j ≤ N1 and v2( j) = 0

otherwise. Then by fact (2) above, 〈PHv2
pp E

Hv2
(0,4)e1, e1〉 = 0 but μ

Hv2
e1,e1((0, 4)) �= 0, and

hence �̃n(Hv2) < 1/4 for large n, say for n = n2 > n1. But then �n2(Hv2) only depends
on {v2( j) : j ≤ N2} for some integer N2.

We repeat this process inductively switching between potentials which induce
�̃nk (Hvk ) < 1/4 for k even and potentials which induce �̃nk (Hvk ) > 3/4 for k odd.
Explicitly, if k is even then define a potential vk+1 by vk+1( j) = vk( j) for all j ≤ Nk
and vk+1( j) = vω( j) (with the density ρ) otherwise such that the spectrum of Hvk is pure
point. Such a ω exists from Theorem 3.3 applied with the perturbation A to match the
potential for j ≤ Nk . If k is odd then we define vk+1 by vk+1( j) = vk( j) for all j ≤ Nk
and vk+1( j) = 0 otherwise. We can then choose nk+1 such that the above inequalities
hold and Nk+1 such that �nk+1(Hvk+1) only depends on {vk+1( j) : j ≤ Nk+1}. We also
ensure that Nk+1 ≥ Nk + k.

Finally set v( j) = vk( j) for j ≤ Nk . It is clear from (iii) of Definition A.2, that
�̃nk (Hv) = �̃nk (Hvk ) and this implies that �̃nk (Hv) cannot converge. However, since
Nk+1 ≥ Nk + k, for any k odd we have v(Nk + 1) = v(Nk + 2) = · · · = v(Nk + k) = 0.
Fact (1) implies that (0, 4) ⊂ σ(Hv), hence μ

Hv
e1,e1((0, 4)) �= 0 and therefore �̃n(Hv)

converges. This provides the required contradiction.
Step 2: Next we deal with I = ac. To prove that one limit will not suffice, our strategy

will be to reduce a certain decision problem to the computation of �ac. Let (M′, d ′)
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be the discrete space {0, 1}, let �′ denote the collection of all infinite sequence {a j } j∈N
with entries a j ∈ {0, 1} and consider the problem function

�′({a j }) : ‘Does {a j } have infinitely many non-zero entries?’,

which maps to (M′, d ′). In Appendix A, it is shown that SCI(�′,�′)G = 2 (where the
evaluation functions consist of component-wise evaluation of the array {a j }). Suppose
for a contradiction that �n is a height one tower of general algorithms such that

lim
n→∞ �n(Hv) = 〈PHv

ac EHv

(0,4)e1, e1〉.

We will gain a contradiction by using the supposed tower to solve {�′,�′}.
Given {a j } ∈ �′, consider the operator Hv , where the potential is of the following

form:

v(m) =
∞∑
k=1

akδm,k!. (3.10)

Then by Theorem 3.4, 〈PHv
ac EHv

(0,4)e1, e1〉 = μ
Hv
e1,e1((0, 4)) if

∑
k ak < ∞ (that is, if

�′({a j }) = 0) and 〈PHv
ac EHv

(0,4)e1, e1〉 = 0 otherwise. Note that in either case we have

μ
Hv
e1,e1((0, 4)) �= 0. We follow Step 1 and take a general algorithm, denoted �̂n , from

Theorem 3.1 which has

lim
n→∞ �̂n(Hv) = μHv

e1,e1((0, 4)).

Since e1 is cyclic, this limit is non-zero for Hv , where v is of the form (3.10).We therefore
define

�̃n(Hv) =
{
0 if �̂n(Hv) = 0
�n(Hv)

�̂n(Hv)
otherwise.

It follows that

lim
n→∞ �̃n(Hv) =

{
1 if �′({a j }) = 0
0 otherwise.

Given N , we can evaluate any matrix value of H using only finitely many evaluations
of {a j } and hence the evaluation functions �1 can be computed using component-wise
evaluations of the sequence {a j }. We now set

�n({a j }) =
{
0 if �n(Hv) > 1

2
1 otherwise.

The above comments show that each of these is a general algorithm and it is clear that
it converges to �′({a j }) as n → ∞, the required contradiction.

Step 3: Finally, we must deal with I = sc. The argument is the same as Step
2, replacing 〈PHv

ac EHv

(0,4)e1, e1〉 with 〈PHv
sc EHv

(0,4)e1, e1〉 and the resulting �̃n(Hv) with

1 − �̃n(Hv). ��
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4. Two Important Applications

Two important applications of our techniques are the computation of the functional
calculus and of the Radon-Nikodym derivative of μT

x,y,ac with respect to Lebesgue
measure, denoted by ρT

x,y . Both of these have applications throughout mathematics and
the physical sciences, some of which are explored numerically in Sect. 6. For example,
suppose that we wish to solve the Schrödinger equation

du

dt
= −i Hu, ut=0 = u0,

where H is some self-adjoint Hamiltonian. We can express the solution at time t as

u(t) = exp(−i Ht)u0 =
[∫

R

exp(−iλt)dEH (λ)

]
u0.

For example, the quantity

L(t) = 〈u(t), u0〉 =
∫
R

exp(−iλt)dμH
u0,u0(λ),

known as the autocorrelation function [141], is simply the Fourier transform of the spec-
tral measure dμH

u0,u0 . In particular, if dμH
u0,u0 is absolutely continuous, then ρH

u0,u0 and
L form a Fourier transform pair. The computation of evolution generated by an operator
is in some sense dual to the computation of the spectral measure. This interpretation of a
time evolution can be adapted to describe many signals generated by PDEs [48,85,126]
and stochastic processes [65,88] [118, Ch. 7]. In this section, we show how to compute
the functional calculus and ρT

x,y .

4.1. Computation of the functional calculus. Recall that given a possibly unbounded
complex-valued Borel function F , defined on σ(T ), and T ∈ �N, F(T ) is defined by

F(T ) =
∫

σ(T )

F(λ)dET (λ).

F(T ) is a densely defined closed normal operator with dense domain given by

D(F(T )) =
{
x ∈ l2(N) :

∫
σ(T )

|F(λ)|2 dμT
x,x (λ) < ∞

}
.

For simplicity, we will only deal with the case that F is a bounded continuous function
on R, that is, F ∈ Cb(R). In this case D(F(T )) is the whole of l2(N) (the variations
|μT

x,y | are finite) and we can use standard properties of the Poisson kernel. We assume
that given F ∈ Cb(R), we have access to piecewise constant functions Fn supported in
[−n, n] such that ‖F − Fn‖L∞([−n,n]) ≤ n−1. Clearly other suitable data also suffices
and, as usual, we abuse notation slightly by adding this information to the evaluation
sets �i (recall that �i are defined in (1.18)).

Theorem 4.1 (Computation of the functional calculus). Given the set-up in Sects. 1.5
and 1.6, consider the map

�fun : � f,α,β × Cb(R) → l2(N)

(T, x, F) → F(T )x .

Then {�fun,� f,α,β × Cb(R),�1} ∈ 	A
2 .
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Proof. Let (T, x, F) ∈ � f,α,β × Cb(R) then by Fubini’s theorem,
∫ n

−n
KH (u + i/n; T, x)Fn(u)du =

[∫ ∞

−∞

∫ n

−n
PH (u − λ, 1/n)Fn(u)du dET (λ)

]
x .

The inner integral is bounded since F is bounded and the Poisson kernel integrates to
1 along the real line. It also converges to F(λ) everywhere. Hence by the dominated
convergence theorem

lim
n→∞

∫ n

−n
KH (u + i/n; T, x)Fn(u)du = F(T )x .

Wenowuse the samearguments used to proveTheorem3.1.UsingCorollary 2.2, together
with ‖KH (u + i/n; T, x)‖L∞(R) ≤ nC1 and the fact that KH (u + i/n; T, x) is Lipschitz
continuous with Lipschitz constant n2C2 for some (possibly unknown) constantsC1 and
C2, we can approximate this integral with an error that vanishes in the limit n → ∞.
��

If σ(T ) is bounded, then, with slightly more information available to our algorithms,
a simpler proof holds using the Stone–Weierstrass theorem. Suppose that given x , the
vectors T nx can be computed to arbitrary precision. There exists a sequence of polyno-
mials pm(z) converging uniformly to F(z) on σ(T ). Assuming such a sequence can be
explicitly constructed (for example using Bernstein or Chebyshev polynomials), we can
take pm(T )x as approximations of F(T )x . If we can bound ‖pm(z) − F(z)‖σ(T ) ≤ εm
with εm null, then the vector F(T )x can be computed with error control. However,
computing T nx for large n (even if x = e1) may be computationally expensive as was
found in the example in Sect. 6.4. We will also see in Sect. 6.4 that if σ(T ) is bounded
and F is analytic in an open neighbourhood of σ(T ), then F(T )x can be computed
with error control by deforming the integration contour away from the spectrum. Such
a deformation is useful since the resolvent does not blow up along such a contour, and
we can bound its Lipschitz constant.

4.2. Computation of the Radon–Nikodymderivative. Recall the definition of theRadon–
Nikodym derivative in (1.16) and note that ρT

x,y ∈ L1(R) for T ∈ �SA. We consider
its computation in the L1 sense in the following theorem, where, as before, we assume
(3.1), adding the approximations ofU to our evaluation set�1 (defined in (1.18)), along
with component-wise evaluations of a given vector y. However, we must consider the
computation away from the singular part of the spectrum.

Theorem 4.2 (Computation of the Radon–Nikodym derivative). Given the set-up in
Sects. 1.5 and 1.6, consider the map

�RN : � f,α,β × l2(N) × U → L1(R)

(T, x, y,U ) → ρT
x,y |U .

We restrict this map to the quadruples (T, x, y,U ) such that U is strictly separated from
supp(μT

x,y,sc)∪supp(μT
x,y,pp)anddenote this subclass by �̃ f,α,β . Then {�RN, �̃ f,α,β ,�1} ∈

	A
2 . Furthermore, each output �n(T, x, y,U ) of the algorithms constructed in the proof

consists of a piecewise affine function, supported in U with rational knots and taking
(complex) rational values at these knots.
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Remark 6. Essentially, this theorem tells us that if we can compute the action of the
resolvent operator with asymptotic error control, then we can compute the Radon–
Nikodym derivative of the absolutely continuous part of themeasures on open sets which
are a positive distance away from the singular support of the measure. The assumption
thatU is separated from supp(μT

x,y,sc)∪supp(μT
x,y,pp)may seem unnatural but is needed

to gain L1 convergence of the approximation. However, without it, the proof still gives
almost everywhere pointwise convergence.

Proof. Let (T, x, y,U ) ∈ �̃ f,α,β . For u ∈ U we decompose as follows

〈KH (u + iε; T, x), y〉 = 1

π

∫
R

ε

(λ − u)2 + ε2
ρT
x,y(λ)dλ

+
1

π

∫
R\U

ε

(λ − u)2 + ε2

{
dμT

x,y,sc(λ) + dμT
x,y,pp(λ)

}
.

(4.1)

The first term converges to ρT
x,y |U in L1(U ) as ε ↓ 0 since ρT

x,y |U ∈ L1(U ). Since
we assumed that U is separated from supp(μT

x,y,sc) ∪ supp(μT
x,y,pp), it follows that the

second term of (4.1) converges to 0 in L1(U ) as ε ↓ 0. Hence we are done if we
can approximate 〈KH (u + i/n; T, x), y〉 in L1(U ) with an error converging to zero as
n → ∞.

Recall that KH (u + i/n; T, x) is Lipschitz continuous with Lipschitz constant at
most n2‖x‖/π . By assumption, and using Corollary 2.2, we can approximate KH (u +
i/n; T, x) to asymptotic precisionwith vectors of finite support. Hence the inner product

fn(u) := 〈KH (u + i/n; T, x), y〉

can be approximated to asymptotic precision (now with a possibly unknown constant
also depending on ‖y‖) and fn is Lipschitz continuous with Lipshitz constant at most
n2‖x‖‖y‖/π .

Recall that U can be written as the disjoint union

U =
⋃
m

(am, bm),

where am, bm ∈ R ∪ {±∞} and the union is at most countable. Without loss of gen-
erality, we assume that the union is over m ∈ N. Given an interval (am, bm), let am <

zm,1,n < zm,2,n < · · · < zm,rm ,n < bm such that zm, j,n ∈ Q and
∣∣zm, j,n − zm, j+1,n

∣∣ ≤
(bm −am)−1n−3m−2 and

∣∣am − zm,1,n
∣∣ , ∣∣bm − zm,rm ,n

∣∣ ≤ n−1. Let fm,n be a piecewise
affine interpolant with knots zm,1,n, . . . , zm,rm ,n supported on (zm,1,n, zm,rm ,n) with the
property that

∣∣ fm,n(zm, j,n) − fn(zm, j,n)
∣∣ < C(bm − am)−1n−1m−2. Here C is some

unknown constant which occurs from the asymptotic approximation of fn that arises
from Corollary 2.2 and we can always compute such fm,n in finitely many arithmetic
operations and comparisons.

Let �n(T, x, y,U ) be the function that agrees with fm,n on (am, bm) for m ≤ n and
is zero elsewhere. Clearly the nodes of �n(T, x, y,U ) can be computed using finitely
many arithmetic operations and comparisons and the relevant set of evaluation functions
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�1. A simple application of the triangle inequality implies that∫
U

∣∣∣�n(T,U, x, y)(u) − ρT
x,y(u)

∣∣∣ du
≤
∑
m>n

∫
(am ,bm )

∣∣∣ρT
x,y(u)

∣∣∣ du +
∑
m≤n

∫
(am ,bm )\(zm,1,n ,zm,rm ,n)

∣∣∣ρT
x,y(u)

∣∣∣ du

+
∑
m≤n

∫
(zm,1,n ,zm,rm ,n)

∣∣∣ρT
x,y(u) − fn(u)

∣∣∣ du +
C̃(x, y, T )

n

∑
m≤n

1

m2 ,

where the last term arises due to the piecewise affine interpolant. The bound clearly
converges to zero as required. ��

5. Computing Spectra as Sets

We now turn to computing the different types of spectra as sets in the complex plane.
Specifically, define the problem functions �C

I (T ) = σI(T ) for I = ac, sc or pp. Note
also that σpp(T ) = σp(T ), the closure of the set of eigenvalues. Recalling the definition
of a computational problem in Appendix A, we compute these quantities in a metric
space M with metric dM. Since we wish to include unbounded operators, we use the
Attouch–Wets metric defined by

dAW(C1,C2) =
∞∑
n=1

2−n min

{
1, sup

|x |≤n
|dist(x,C1) − dist(x,C2)|

}
, (5.1)

for C1,C2 ∈ Cl(C), where Cl(C) denotes the set of closed non-empty subsets of C.
When considering bounded T , whose spectrum is necessarily a compact subset of C,
we let (M, dM) be the set of all non-empty compact subsets of C provided with the
Hausdorff metric dM = dH:

dH(X,Y ) = max

{
sup
x∈X

inf
y∈Y d(x, y), sup

y∈Y
inf
x∈X d(x, y)

}
, (5.2)

where d(x, y) = |x − y| is the usual Euclidean distance. Note that for compact sets
(and hence for bounded operators), the topological notions of convergence according to
dH and dAW coincide. To allow the possibility that the different spectral sets σI(T ) are
empty, we add the empty set to our metric space as an isolated point (the space remains
metrisable).7

The main theorem of this section is the following:

Theorem 5.1. Given the above setup and that in Sects. 1.5 and 1.6, for i = 1, 2 it holds
that

	G
2 �� {�C

ac,� f,α,�i } ∈ 	A
3 , 	G

2 �� {�C

sc,� f,α,�i } ∈ 	A
4 ,

	G
2 �� {�C

pp,� f,α,�i } ∈ 	A
3 .

If f (n) − n ≥ √
2n + 1

2 , then {�C
sc,� f,0,�i } �∈ 	G

3 also holds.

7 This simply means that Fn → ∅ if and only if Fn = ∅ eventually.
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In order to prove Theorem 5.1, we only need to prove the lower bounds for �2 and
the upper bounds for �1 (recall that �i are defined in (1.18)). These results show that
despite the results of Sects. 2–4, in general it is very hard to compute the decomposition
of the spectrum in the sense of (1.17). We also answer the question posed in Sect. 2.2
and prove that the spectral measures, while computable in one limit, cannot, in general,
be computed with error control (see Theorem 5.2), unless one has additional regularity
assumptions such as in [39] (computation with error control is made precise in [33, Ch.
4]).

5.1. Proof for point spectra. Proof that {�C
pp,� f,α,�2} /∈ 	G

2 . To prove this, it is

enough to consider boundedSchrödinger operators actingon l2(N) (defined inSect. 3.2.2),
which are clearly a subclass of � f,0 for f (n) = n + 1. Note that since the evaluation
functions in �2 can be recovered from those in �1 in this special case, we can assume
that we are dealing with�1. Suppose for a contradiction that there does exist a sequence
of general algorithms, �n , with

lim
n→∞ �n(Hv) = �C

pp(Hv).

We will construct a potential v such that �n(Hv) does not converge. To do this, choose
ρ = χ[−c,c]/(2c) for some constant c such that the conditions of Theorem 3.3 hold. We
will use Theorem 3.3 and the following well-known facts:

1. If there exists N ∈ N such that v(n) is 0 for n ≥ N , then σpp(Hv)∩ (0, 4) = ∅ [114],
but [0, 4] ⊂ σ(Hv) (the potential acts as a compact perturbation so the essential
spectrum is [0, 4]).

2. If we are in the setting of Theorem 3.3, then the spectrum of Hvω + A is pure point
almost surely. Moreover, if ρ = χ[−c,c]/(2c) for some constant c, then [−c, 4 + c] ⊂
σpp(Hvω + A) almost surely.

We will define the potential v inductively as follows. Let v1 be a potential of the
form vω (with density ρ) such that [−c, 4 + c] ⊂ σ(Hv1) and σ(Hv1) is pure point.
Such a v1 exists by Theorem 3.3 and fact (2) above. Then for large enough n there exists
zn ∈ �n(Hv1) such that |zn − 2| ≤ 1. Fix n = n1 such that this holds. Then �n1(Hv1)

only depends on {v1( j) : j ≤ N1} for some integer N1 by (i) of Definition A.2. Define
the potential v2 by v2( j) = v1( j) for all j ≤ N1 and v2( j) = 0 otherwise. Then by fact
(1) above, �n(Hv2) ∩ [1/2, 7/2] = ∅ for large n, say for n2. But then �n2(Hv2) only
depends on {v2( j) : j ≤ N2} for some integer N2.

We repeat this process inductively switching between potentials which induce
�nk (Hvk )∩[1/2, 7/2] = ∅ for k even and potentials which induce�nk (Hvk )∩[1, 3] �= ∅
for k odd. Explicitly, if k is even then define a potential vk+1 by vk+1( j) = vk( j) for all
j ≤ Nk and vk+1( j) = vω( j) (with the density ρ) otherwise such that [−c, 4 + c] ⊂
σ(Hvk+1) and σ(Hvk+1) is pure point. Such a ω exists from Theorem 3.3 and fact (2)
above applied with the perturbation A to match the potential for j ≤ Nk . If k is odd then
we define vk+1 by vk+1( j) = vk( j) for all j ≤ Nk and vk+1( j) = 0 otherwise. We can
then choose nk+1 such that the above intersections hold and Nk+1 such that �nk+1(Hvk+1)

only depends on {vk+1( j) : j ≤ Nk+1}. Finally set v( j) = vk( j) for j ≤ Nk . It is
clear from (iii) of Definition A.2, that �nk (Hv) = �nk (Hvk ). But then this implies that
�nk (Hv) cannot converge, the required contradiction. ��

A similar argument gives the following theorem, whereV is used to denote the set of
bounded real-valued potentials on N and �3 denotes the pointwise evaluations of such
potentials.
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Theorem 5.2 (Impossibility of computing spectral measures with error control). Con-
sider the problem function

�̂ : V × N → R≥0

(v, j) → 〈EHv{1}e j , e j 〉
.

Then {�̂,V × N,�3} ∈ 	A
2 but {�̂,V × N,�3} /∈ 	G

1 . In other words, �̂ can be
computed in one limit, but it cannot be computed with error control.

Proof. The result {�̂,V×N,�3} ∈ 	A
2 follows directly from the remarks after Theorem

3.1 and Theorem 2.1. Suppose for a contradiction that {�̂,V × N,�3} ∈ 	G
1 and that

�n is a sequence of general algorithms solving the problem with error control. It follows
that for each j ∈ N, there exists a sequence of general algorithms �

j
n such that

lim
n→∞ �

j
n (v) =

{
1, if �̂(v, j) > 0
0, otherwise

.

Informally, these are described as follows. Fix j and consider the lower bound on �̂(v, j)
computed by {�m(v, j) : m ≤ n}. If this is greater than 0 then set � j

n (v) = 1, otherwise
set � j

n (v) = 0. It follows that � j
n (v) also converges from below. It holds that 1 ∈ σp(Hv)

if and only if �̂(v, j) > 0 for some j ∈ N. Now define

�̂n(v) = sup
j≤n

�
j
n (v).

It is clear that this is a general algorithm using �3. Furthermore,

lim
n→∞ �̂n(v) =

{
1, if 1 ∈ σp(Hv)

0, otherwise
,

with convergence from below.
Now we may choose a v such that 1 ∈ σp(Hv) (this can be achieved for example by

taking a potential which induces pure point spectrum and shifting the operator accord-
ingly). It follows that for large n, we have �̂n(v) = 1. But the computation of �̂n(v) is
only dependent on v( j) for j < N for some N ∈ N. Define v0 ∈ V by v0( j) = v( j) if
j < N and v0( j) = 0 otherwise. It follows that �̂n(v0) = 1. But since the potential has
compact support, 1 /∈ σp(Hv0) and hence �̂n(v0) = 0, the required contradiction. ��

We now prove that �C
pp can be computed using a height two arithmetical tower. The

first step is the following technical lemma, whose proof will also be used later when
considering �C

ac.

Lemma 5.3. Let a < b with a, b ∈ R and consider the decision problem

�a,b,pp : � f,α → {0, 1}

T →
{
1 if σpp(T ) ∩ [a, b] �= ∅
0 otherwise.

Then there exists a height two arithmetical tower �n2,n1 (with evaluation functions �1)
for �a,b,pp. Furthermore, the final limit is from below in the sense that �n2(T ) :=
limn1→∞ �n2,n1(T ) ≤ �a,b,pp(T ).
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Proof. Step 1 of the proof of Theorem 3.2 yields a height two arithmetical tower
�̂

j
n2,n1(T ) for the computation of μT

e j ,e j ,c((a, b)). Note that the final limit is from

above and using the fact that μT
e j ,e j ,c({a, b}) = 0, we obtain a height two tower for

μT
e j ,e j ,c([a, b]). We can then use the height one tower for μT

e j ,e j ([a, b]) constructed in

Sect. 2.2, denoted by �̃
j
n1(T ), and define

a j,n2,n1(T ) = �̃
j
n1(T ) − �̂

j
n2,n1(T ).

This provides a height two arithmetical tower for μT
e j ,e j ,pp([a, b]) with the final limit

from below. Without loss of generality (by taking successive maxima), we can assume
that these towers are non-decreasing in n2. Now set

ϒn2,n1(T ) = max
1≤ j≤n2

a j,n2,n1(T ).

Then it is clear that the limit limn1→∞ ϒn2,n1(T ) = ϒn2(T ) exists. Furthermore, the
monotonicity of a j,n2,n1(T ) in n2 implies that

lim
n2→∞ ϒn2(T ) = sup

n∈N
μT
en ,en ,pp([a, b]),

with monotonic convergence from below. This limiting value is zero if �a,b,pp(T ) = 0,
otherwise it is a positive finite number.

To convert this to a height two tower for the decision problem�a,b,pp, that maps to the
discrete space {0, 1}, we use the following trick. Consider the intervals Jn21 = [0, 1/n2],
and Jn22 = [2/n2,∞). Let k(n2, n1) ≤ n1 be maximal such that ϒn2,n1(T ) ∈ Jn21 ∪
Jn22 . If no such k exists or ϒn2,k(T ) ∈ Jn21 then set �n2,n1(T ) = 0. Otherwise set
�n2,n1(T ) = 1. These can be computed using finitely many arithmetic operations and
comparisons using �1. The point of the intervals Jn21 and Jn22 is that we can show
limn1→∞ �n2,n1(T ) = �n2(T ) exists. This is because limn1→∞ ϒn2,n1(T ) = ϒn2(T )

exists and hence we cannot oscillate infinitely often between the separated intervals Jn21
and Jn22 . Now suppose that �a,b,pp(T ) = 0, then limn1→∞ �̂n2,n1(T ) = 0 and hence
limn1→∞ �n2,n1(T ) = 0 for all n2. Now suppose that �a,b,pp(T ) = 1, then for large
enough n2 we must have that ϒn2(T ) > 2/n2 and hence �n2(T ) = 1. Together, these
prove the convergence and that �n2(T ) ≤ �a,b,pp(T ). ��

Proof that {�C
pp,� f,α,�1} ∈ 	A

3 . To construct a height two arithmetical tower for

�C
pp, we will use Lemma 5.3 repeatedly. Let �̂n2,n1(·, I ) denote the height two tower

constructed in the proof of Lemma 5.3 for the closed interval I (I = [a, b]), where
without loss of generality by taking successive maxima in n2, we can assume that this
tower is non-decreasing in n2 (this is where we use convergence from below in the final
limit in the statement of the lemma). For a given n1 and n2, we construct �n2,n1(T ) as
follows (we will use some basic terminology from graph theory).

Define the intervals I 0n2,n1, j = [ j, j +1] for j = −n2, . . . , n2 − 1 so that these cover

the interval [−n2, n2].Nowsuppose that I kn2,n1, j are defined for j = 1, . . . , rk(n2, n1, T ).

Compute each �̂n2,n1(T, I kn2,n1, j ) and if this is 1, bisect I
k
n2,n1, j

via its midpoint into two
equal halves consisting of closed intervals. We then take all these bisected intervals and
label them as I k+1n2,n1, j

for j = 1, . . . , rk+1(n2, n1, k, T ). This is repeated until we have
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no further bisections or the intervals I n2n2,n1, j have been computed. By adding the inter-

val [−n2, n2] as a root with children I 0n2,n1, j , this creates a finite tree structure where a
non-root interval I is a parent of two intervals precisely if those two intervals are formed
from its bisection and �̂n2,n1(T, I ) = 1. We then prune this tree by discarding all leaves
I which have �̂n2,n1(T, I ) = 0 to form the tree Tn2,n1(T ). Finally, we let �n2,n1(T ) be
the union of all the leaves of Tn2,n1(T ). Clearly this can be computed using finitely many
arithmetic operations and comparisons using �1. The construction is shown visually in
Fig. 3.

In the above construction, the number of intervals considered (including those not
in the tree Tn2,n1(T )) for a fixed n2 is n22n2+1 + 1 and hence independent of n1. It
follows that Tn2,n1(T ) and �n2,n1(T ) are constant for large n1 (due to the convergence
of the �̂n2,n1(T, I ) in {0, 1}). We denote these limiting values by Tn2(T ) and �n2(T )

respectively and also denote the corresponding intervals in the construction at them−th
level of this limit by Imn2, j . Note also that if �C

pp(T ) = ∅ then �n2(T ) = ∅.
Now suppose that z ∈ �C

pp(T ), then there exists a sequence of nested intervals
Im = Imn2,am,n2

containing z for m = 0, . . . , n2, where these intervals are independent

of n2. Fix m, then for large n2 we must have that �̂n2(T, I j ) = 1 for j = 1, . . . ,m. It
follows that Im has a descendent interval In2,m contained in �n2(T ) and hence we must
have

dist(z, �n2(T )) ≤ 2−m .

Since m was arbitrary it follows that dist(z, �n2(T )) converges to 0 as n2 → ∞.
Conversely, suppose that zm j ∈ �m j (T ) with m j → ∞, then we must show that all

limit points of {zm j } lie in�C
pp(T ). Suppose this were false, then by taking a subsequence

if necessary, we can assume that zm j → z and dist(zm j , �
C
pp(T )) ≥ δ for some δ > 0.

We claim that it is sufficient to prove that the maximum length of the leaves of Tn2(T )

intersecting a fixed compact subset of R, converges to zero as n2 → ∞. Suppose
this has been shown, then zm j ∈ Im j for some leaf Im j of Tm j (T ). It follows that
Im j ∩ �C

pp(T ) �= ∅ and
∣∣Im j

∣∣ → 0. But this contradicts zm j being positively separated

from �C
pp(T ).

We are thus left with proving the claim regarding the lengths of leaves. Suppose
this were false, then there exists a compact set K ⊂ R and leaves I j in Tb j (T ) such
that the lengths of I j do not converge to zero and I j intersect K . By taking subse-
quences if necessary, we can assume that the lengths of each I j are constant. Then by
the compactness of K and taking subsequences if necessary again, we can assume that
each of the I j are equal to a common interval I . It follows that �̂b j (T, I ) = 1 but that
�̂b j (T, I1) = �̂b j (T, I2) = 0 since I is a leaf, where I1 and I2 form the bisection of I .
Taking b j → ∞, this implies that I ∩�C

pp(T ) �= ∅ but I1 ∩�C
pp(T ) = I2 ∩�C

pp(T ) = ∅
which is absurd. Hence we have shown the required contradiction, and we have finished
the proof. ��

5.2. Proof for absolutely continuous spectra. To prove the lower bound (that one limit
will not suffice), our strategy will be to reduce a certain decision problem to the compu-
tation of�C

ac. Let (M′, d ′) be the discrete space {0, 1}, let�′ denote the collection of all
infinite sequences {a j } j∈N with entries a j ∈ {0, 1} and consider the problem function

�′({a j }) : ‘Does {a j } have infinitely many non-zero entries?’,
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Fig. 3. Example of tree structure used to compute the point spectrum for n2 = 3. Each tested interval is shown
in green (�̂n2,n1 (T, I ) = 1) or red (�̂n2,n1 (T, I ) = 0). The arrows show the bisections and the final output
is shown in blue

that maps to (M′, d ′). In Appendix A, it is shown that SCI(�′,�′)G = 2 (where the
evaluation functions consist of component-wise evaluations of the array {a j }).

Proof that {�C
ac,� f,α,�2} /∈ 	G

2 .We are done if we prove the result for f (n) = n+1
and α = 0. In this case �1 and �2 are equivalent so we can restrict the argument to
�1. Suppose for a contradiction that �n is a height one tower of general algorithms
solving {�C

ac,� f,0,�2}. We will gain a contradiction by using the supposed tower to
solve {�′,�′}.

Given {a j } ∈ �′, consider the operator H = H0 + v, where the potential is of the
following form:

v(m) =
∞∑
k=1

akδm,k!.

Then by Theorem 3.4, [0, 4] ⊂ σac(H) if
∑

k ak < ∞ (that is, if �′({a j }) = 0) and
σac(H) ∩ (0, 4) = ∅ otherwise. Given N we can evaluate any matrix value of H using
only finitely many evaluations of {a j } and hence the evaluation functions �1 can be
computed using component-wise evaluations of the sequence {a j }. We now set

�̂n({a j }) =
{
0 if dist(2, �n(H)) < 1
1 otherwise.

The above comments show that each of these is a general algorithm, and it is clear that
it converges to �′({a j }) as n → ∞, the required contradiction. ��

To construct the height two (arithmetical) tower for �C
ac, we require the following

lemma.

Lemma 5.4. Let a < b with a, b ∈ R and consider the decision problem

�a,b,ac : � f,α → {0, 1}

T →
{
1 if σac(T ) ∩ [a, b] �= ∅
0 otherwise.

Then there exists a height two arithmetical tower �n2,n1 (with evaluation functions �1)
for�a,b,ac. Furthermore, the final limit is frombelowwith�n2(T ) := limn1→∞ �n2,n1(T ) ≤
�a,b,ac(T ).
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Proof. Fix such an a and b and let χn be a sequence of non-negative, continuous piece-
wise affine functions on R, bounded by 1 and of compact support such that χn converge
pointwise monotonically up to the constant function 1. Define the function

υm,n(u, T ) = 〈KH (u + i/n, T, em), em〉
and set

am,n2,n1(T ) =
∫ b

a
υm,n1(u, T )χn2(

∣∣υm,n1(u, T )
∣∣)du.

Since each χn is continuous and has compact support (which implies that the integrand is
bounded for fixed n2), and since υm,n(u, T ) converges almost everywhere to ρT

em ,em (u)

(theRadon–Nikodymderivative of the absolutely continuous part of themeasureμT
em ,em ),

it follows by the dominated convergence theorem that

lim
n1→∞ am,n2,n1(T ) =: am,n2(T ) =

∫ b

a
ρT
em ,em (u)χn2(ρ

T
em ,em (u))du.

We now use the fact that the χn are increasing and the dominated convergence theorem
again (with bounding integrable function ρT

em ,em ) to deduce that

lim
n2→∞ am,n2(T ) = μT

em ,em ,ac([a, b]),

with monotonic convergence from below.
Using Corollary 2.2 (and the now standard argument of Lipschitz continuity of the

resolvent), we can compute approximations of am,n2,n1(T ) to accuracy 1/n1 in finitely
many arithmetic operations and comparisons. Call these approximations ãm,n2,n1(T )

and set

ϒn2,n1(T ) = max
1≤ j≤n2

ã j,n2,n1(T ).

The proof now follows that of Lemma 5.3 exactly. ��
Proof that {�C

ac,� f,α,�1} ∈ 	A
3 . This is exactly the same construction as in the

above proof of the inclusion {�C
pp,� f,α,�1} ∈ 	A

3 . We simply replace the tower con-
structed in the proof of Lemma 5.3 by the tower constructed in the proof of
Lemma 5.4. ��

5.3. Proof for singular continuous spectra. We first prove the lower bound for the sin-
gular continuous spectrum via Theorem 3.4. Note that the impossibility result {�C

sc,

� f,α,�2} /∈ 	G
2 follows from the sameargument thatwasused to show {�C

ac,� f,α,�2} /∈
	G

2 . To show that two limits will not suffice for f (n)−n ≥ √
2n+1/2, our strategy will

be to again reduce a certain decision problem to the computation of�C
sc. Let (M′, d ′) be

the discrete space {0, 1}, let �′ denote the collection of all infinite matrices {ai, j }i, j∈N
with entries ai, j ∈ {0, 1} and consider the problem function

�′({ai, j }) : ‘Does {ai, j } have a column containing infinitely many non-zero entries?’,
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that maps to (M′, d ′). In [12], a Baire category argument was used to prove that
SCI(�′,�′)G = 3 (where the evaluation functions consist of component-wise eval-
uations of the array {ai, j }).
Proof that {�C

sc,� f,α,�2} /∈ 	G
3 if f (n) − n ≥ √

2n + 1/2. Assume that the function
f satisfies f (n) − n ≥ √

2n + 1/2. The proof will use a direct sum construction. Given
{ai, j } ∈ �′, consider the operators Hj = H0+v( j), where the potential is of the following
form:

v( j)(n) =
∞∑
k=1

ak, jδn,k!.

Using Theorem 3.4, [0, 4] ⊂ σsc(Hj ) if
∑

k ak, j = ∞ (that is, if the j-th column has
infinitely many 1s) and σsc(Hj ) ∩ (0, 4) = ∅ otherwise. Now consider an effective
bijection (with effective inverse) between the canonical bases of l2(N) and ⊕∞

j=1l
2(N):

φ : {en : n ∈ N} → {ek : k ∈ N
N, ‖k‖0 = 1}.

Set H({ai, j }) = ⊕∞
j=1 Hj . Then through φ, we view H = H({ai, j }) as a self-adjoint

operator acting on l2(N). Explicitly, we consider the matrix

Hm,n = 〈Heφ(n), eφ(m)〉.
We choose the following bijection (where m lists the canonical basis in each Hilbert
space):

j = 1 j = 2 j = 3 · · ·
m = 1 φ(1) φ(3) φ(6) · · ·
m = 2 φ(2) φ(5)

m = 3 φ(4)

· · · · · ·
A straightforward computation shows that H ∈ � f,0. We also observe that if

�′({ai, j }) = 1 then [0, 4] ⊂ σsc(H), otherwise σsc(H) ∩ (0, 4) = ∅.
Suppose for a contradiction that �n2,n1 is a height two tower of general algorithms

that solves {�C
sc,� f,0,�1}. We will gain a contradiction by using the supposed height

two tower to solve {�′,�′}. We now set

�̂n2,n1({ai, j }) = 1 − min{1, dist(3, �n2,n1(H({ai, j })))},
where we use the convention dist(3,∅) = 1. The comments above show that each of
these is a general algorithm. Furthermore, the convergence of �n2,n1 implies that

lim
n2→∞ lim

n1→∞ �̂n2,n1({ai, j }) = 1 − min{1, dist(3, σsc(H({ai, j })))} = �′({ai, j }).

We are not quite done since the convergence here takes place on the interval [0, 1] with
the usual metric as opposed to {0, 1} with the discrete metric. To get round this, we use
the following, now familiar, trick.

Consider the intervals J1 = [0, 1/2], and J2 = [3/4, 1]. Let k(n2, n1) ≤ n1 be
maximal such that �̂n2,k({ai, j }) ∈ J1 ∪ J2. If no such k exists or �̂n2,k({ai, j }) ∈ J1 then
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set �′
n2,n1({ai, j }) = 0. Otherwise set �′

n2,n1({ai, j }) = 1. As in the proof of Lemma 5.3,
we can show limn1→∞ �′

n2,n1({ai, j }) = �′
n2({ai, j }) exists. If �′({ai, j }) = 0, then for

large n2, limn1→∞ �̂n2,k({ai, j }) < 1/2 and hence limn2→∞ �′
n2({ai, j }) = 0. Similarly,

if�′({ai, j }) = 1, then for large n2 wemust have limn1→∞ �̂n2,k({ai, j }) > 3/4 and hence
limn2→∞ �′

n2({ai, j }) = 1. Hence �′
n2,n1 is a height two tower of general algorithms

solving {�′,�′}, a contradiction. ��
Finally, we will use the following lemma to prove that the singular continuous spec-

trum can be computed in three limits.

Lemma 5.5. Let a < b with a, b ∈ R and consider the decision problem

�a,b,sc : � f,α → {0, 1}

T →
{
1 if σsc(T ) ∩ [a, b] �= ∅
0 otherwise.

Then there exists a height three arithmetical tower �n3,n2,n1 (with evaluation functions
�1) for �a,b,sc. Furthermore, the final limit is from below with �n3(T ) := limn2→∞
limn1→∞ �n3,n2,n1(T ) ≤ �a,b,sc(T ).

Once this is proven, we can use the same construction that was used to prove
{�C

pp,� f,α,�1} ∈ 	A
3 and {�C

ac,� f,α,�1} ∈ 	A
3 to show that {�C

sc,� f,α,�1} ∈ 	A
4 ,

but with an additional limit. Namely, we replace (n2, n1) by (n3, n2) in the proof and use
the tower constructed in the proof of Lemma 5.4 instead of �̂n2,n1(T, I ) for an interval
I . We still gain the required convergence, since the only change is an additional limit in
the finite number of decision problems that decide the appropriate tree.

Proof of Lemma 5.5. Note that we can write

μT
em ,em ,sc([a, b]) = μT

em ,em ([a, b]) − μT
em ,em ,pp([a, b]) − μT

em ,em ,ac([a, b]).
From this and the proofs of Lemmas 5.3 and 5.4, it is clear that we can construct a height
two arithmetical tower, am,n2,n1(T ), for μT

em ,em ,sc([a, b]), where the final limit is from
above. Now set

ϒn3,n2,n1(T ) = max
1≤ j≤n3

a j,n2,n1 .

We see that each successive limit converges, with the second from above and the fi-
nal from below. By taking successive maxima, minima of our base algorithms, we
can assume that the second and final limits are monotonic and that ϒn3,n2,n1(T ) is
monotonic in both n2 and n3. Define ϒn3,n2(T ) = limn1→∞ ϒn3,n2,n1(T ), ϒn3(T ) =
limn2→∞ ϒn3,n2(T ) and ϒ(T ) = limn3→∞ ϒn3(T ). Then ϒ(T ) is zero if �a,b,sc(T ) =
0, otherwise it is a positive finite number.

With a slight change to the previous argument (the monotonicity in n2 and n3 is
crucial for this to work), consider the intervals Jm1 = [0, 1/m], and Jm2 = [2/m,∞).

Let k(m, n, n1) ≤ n1 be maximal such that ϒm,n,n1(T ) ∈ Jm1 ∪ Jm2 . If no such k exists
or ϒm,n,k(T ) ∈ Jm1 then set �̂m,n,n1(T ) = 0. Otherwise set �̂m,n,n1(T ) = 1. We then
define

�n3,n2,n1 = max
1≤m≤n3

min
1≤n≤n2

�̂m,n,n1(T ).
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These can be computed using finitelymany arithmetic operations and comparisons using
�1, and, as before, the first limit exists with

�n3,n2(T ) = lim
n1→∞ �n3,n2,n1(T ) = max

1≤m≤n3
min

1≤n≤n2
�̂m,n(T ).

Note also that the second and third sequential limits exist through the use of maxima
and minima.

Now suppose that �a,b,sc(T ) = 0 and fix n3. Then for large n2, we must have that
ϒm,n2(T ) < 1/(2n3) for allm ≤ n3 due to themonotonic convergence ofϒp as p → ∞.
It follows in this case that

lim
n2→∞ �n3,n2(T ) = 0, for all n3.

Now suppose that �a,b,sc(T ) = 1. It follows in this case that there exists M ∈ N

such that if m ≥ M then ϒm(T ) > 3/m. Due to the monotonic convergence of ϒm,p
as p → ∞ it follows that for all p we must have ϒm,p > 3/m and hence there exists
N (m, p) ∈ N such that if n1 ≥ N (m, p) then we must have ϒm,p,n1 ≥ 2/m. It follows
that if n3 ≥ M then we must have �̂n3,p(T ) = 1 for all p and hence that

lim
n3→∞ �n3(T ) = 1.

The conclusion of the lemma now follows. ��

6. Numerical Examples

We now demonstrate the applicability of the new algorithms. In particular, these are the
first algorithms that compute their respective spectral properties for thewhole class� f,α ,
and even for the restricted case of tridiagonal self-adjoint matrices. The algorithms are
also implicitly parallelisable, allowing large scale computations. We focus on discrete
operators and the numerical implementation of the algorithms for ODEs, PDEs and
integral operators will be the focus of a future software package.8

6.1. Jacobi matrices and orthogonal polynomials. For our first set of examples, we con-
sider the natural link between the spectral measures of Jacobi operators and orthogonal
polynomials on R. Let J be a Jacobi matrix

J =

⎛
⎜⎜⎜⎜⎝

b1 a1
a1 b2 a2

a2 b3
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎠

with a j , b j ∈ R and a j > 0. In this case, under suitable conditions, the probabil-
ity measure μJ := μJ

e1,e1 is the probability measure associated with the orthonormal
polynomials defined by

x Pk(x) = ak+1Pk+1(x) + bk+1Pk(x) + ak Pk−1(x),

P−1(x) = 0, P0(x) = 1,

8 Since writing the initial version of this paper, our algorithms have been implemented in the software
package SpecSolve of [39], which treats general discrete, differential and integral operators.
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Fig. 4. Results for Jacobi polynomials with α = 0.7 and β = 0.3. Left: Convergence in L1 and at the points
±1 and 0. The rates O(ε), O(ε0.7) and O(ε0.3) are also shown as dashed lines. Right: Convergence with
Richardson extrapolation. The rates O(ε2), O(ε1.3), O(ε0.7) and O(ε0.3) are also shown. As discussed in
the text, the rates reflect the local smoothness properties of the density fα,β

and the spectralmeasure that appears in themultiplicative version of the spectral theorem
(see, for example, [45,137,143]). Classically, one usually first considers themeasure and
then constructs the orthogonal polynomials and the corresponding J . In some sense,
the algorithms constructed in this paper, and in particular Sect. 4, compute the inverse
problem (note that J ∈ �n→n+1,0). In other words, we compute the measure μJ given
the recurrence coefficients defining the orthogonal polynomials. This is a very difficult
problem to study theoretically, and, until now, there has been no numerical method able
to tackle the problem in this generality (see Sect. 1.7 for comments onmethods that tackle
compact perturbations of Toeplitz operators). To verify our method, we will consider
problems where the measure μJ is known analytically.

We begin with the well-known class of Jacobi polynomials defined for α, β > −1
which have

ak = 2
√

k(k+α)(k+β)(k+α+β)

(2k+α+β−1)(2k+α+β)2(2k+α+β+1)
,

bk = β2−α2

(2k+α+β)(2k−2+α+β)
,

and measure on the interval [−1, 1] given by

dμJ = (1 − x)α(1 + x)β

N (α, β)
dx = fα,β(x)dx, (6.1)

where N (α, β) is a normalising constant, ensuring the measure is a probability measure.
To assess the convergence of the algorithm in Sect. 4.2 that approximates the Radon–
Nikodym derivative fα,β , in this section we will plot various errors as a function of ε,
the distance from the points at which we compute the resolvents to the real axis.

Figure 4 (left) shows a typical error plot for α = 0.7 and β = 0.3. We plot both
the L1 error (computed using a large number of discrete points), and the pointwise
errors at −1, 0 and 1. The procedure of Theorem 2.1 is used to determine adaptively
how large our (rectangular) matrix truncations should be for a given ε. We see that both
the L1 error and error at 0 appear to decrease as O(ε),9 whereas the errors at −1 and

9 This can be proven, though there is an additional log(ε−1) factor. We shall omit such terms in the ensuing
discussion.
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Fig. 5. Results for Laguerre polynomials with α = 0.5. Left: Convergence in L1 and at the points 0 and 1. The
rates O(ε) and O(ε0.5) are also shown as dashed lines. Right: Convergence with Richardson extrapolation.
The rates O(ε2), O(ε1.5) and O(ε0.5) are also shown

+1 decrease as O(εβ) and O(εα) respectively, shown in the plot. This suggests using
Richardson extrapolation to accelerate convergence [115]. This is shown in the right
of Fig. 4, where the extrapolation was computed at distances ε and ε/2 from the real
axis. Now the error at 0 decreases as O(ε2), whereas the L1 error appears to decrease
as O(ε1.3). We found similar results for different α and β. In general, interior points
decrease at the rate O(ε) and then O(ε2) after extrapolation. The left end point error
decreases as O(εmin{1,β}) and then O(εmin{2,β}) after extrapolation. The right end point
error decreases as O(εmin{1,α}) and then O(εmin{2,α}) after extrapolation. Finally, the
L1 error decreases as O(εmin{1,1+α,1+β}) and then O(εmin{2,1+α,1+β}) after extrapolation.
These rates for pointwise and L1 errors reflect the localHölder exponent and integrability
of the density and its first derivative respectively, and can be proven using a Taylor
series argument for general measures.10 Moreover, we found that increased rates of
convergence could be obtained (and again proven) locally near smoother parts of the
measure by using further iterates of extrapolation. Note also that we took a uniform
value ε over the whole interval. However, ε could just have easily been a function of
the position x , allowing it to be smaller for points where the resolvent is estimated more
accurately for a given matrix size.

To demonstrate the algorithm on unbounded operators, we next consider the class of
generalised Laguerre polynomials for α > −1 which have

ak = √
k(k + α), bk = 2k + α − 1,

and measure on the interval [0,∞) given by

dμJ = xαe−x

�(α + 1)
dx . (6.2)

Results are shown in Fig. 5 for α = 0.5, where we have plotted the (relative) L1 error
over the interval [0, 1], as well as pointwise errors at 0 and 1. Similar conclusions can
be drawn as before. Pointwise errors are also shown for this example and the Jacobi
operator, but now using the 10th iterate of Richardson extrapolation, in Fig. 6. The
errors decay at the expected rates (also shown), with O(ε10) convergence at smooth

10 These results can be proven using the theory of high-order rational kernels developed in [39].
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Fig. 6. Left: Pointwise errors for the Jacobi example (α = 0.7 and β = 0.3) and (10th) iterated Richardson
extrapolation. Right: Same but for the Laguerre example (α = 0.5). The dotted lines show the expected rates
of convergence, with O(ε10) convergence at smooth parts of the measure

Fig. 7. Left: Computation of επ〈KH (x + iε; T, e1), e1〉 (denoted επ〈KH ) for ε = 10−7 and α = 5. Right:
Same but for α = 0.5. The blues crosses represent the weights of the atoms of the measure, corresponding to
projections onto eigenspaces

parts of the measure. Near singular points (namely at x = −0.99 and x = 0.01 for the
Jacobi and Laguerre cases, respectively), the prefactor in front of the O(ε10) term is
larger, and smaller ε is needed before the expected rate kicks in.

Finally, we demonstrate the computation of measures for a Jacobi operator with
non-empty discrete spectrum. The Charlier polynomials are generated by

ak = √
αk, bk = k + α − 1,

for α > 0, and have measure

dμJ = exp(−α)

∞∑
m=0

αm

m! δm, (6.3)

where δm denotes a Dirac measure located at the point m. Figure 7 shows plots of
επ〈KH (x + iε; T, e1), e1〉 for ε = 10−7, computed using an (n + 1) × n matrix with
n = 1000. The peaks clearly coincide with the atoms of the measure. The difference
between the peak values and the weight exp(−α)αm/m!was of the order 10−13 for both
examples. This demonstrates that an effective way to compute eigenvalues (particularly
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the challenging case of those in gaps of the essential spectrum, where spectral pollu-
tion occurs, or even those embedded in the essential spectrum) and projections onto
eigenspaces may be to find local maxima or spikes of επ〈KH (x + iε; T, e1), e1〉. Such a
routine would only require the solution of shifted linear systems (the resolvent), without
diagonalisation, and could be executed rapidly in parallel.

6.2. A global collocation approach. Typically, the size of the linear system needed to
approximate the resolvent accurately (Theorem 2.1) grows as ε ↓ 0 and we approach the
spectrum. It is therefore beneficial to increase the rate of convergence of approximating
themeasures as ε ↓ 0.One local (in terms of x ∈ R) approach, Richardson extrapolation,
was used in Sect. 6.1. Here we briefly outline a different, more global approach.

Suppose that we know the spectral measure of an operator T has support included
in I ⊂ R and is absolutely continuous. Alternatively, we may analytically know, or be
able to estimate, the singular part of the measure and subtract this from what follows.
In this case, a natural way to approximate the Radon–Nikodym derivative is through a
formal basis expansion

ρT
x,y(λ) =

∞∑
m=1

amφm(λ),

where φm are functions with support I whose Cauchy’s transforms are easy to compute.
To approximate the coefficients am , we collocate in the complex plane as follows. Let C
be a finite collection of complex points in the upper half-plane and truncate the approx-
imation of ρT

x,y to M terms. To generate a linear system for {am}Mm=1, we evaluate the
Cauchy transform at points z ∈ C. The Cauchy transform satisfies

∫
R

ρT
x,y(λ)

λ − z
dλ = 〈R(z, T )x, y〉,

which can be computed with error control using the results of Sect. 2.1. Call this ap-
proximation bx,y(z) and define

φ̂m(z) =
∫
I

φm(λ)

λ − z
dλ.

Then for each z ∈ C, an approximate linear relation can be written as

M∑
m=1

am φ̂m(z) = bx,y(z).

Evaluating this relation at ≥ M points in C gives rise to a linear system, which can be
inverted in the least-squares sense for the approximation of the coefficients {am}Mm=1.
If x = y, and the basis functions are real, then the coefficients are real. Hence, in this
case, taking real and imaginary parts of the linear system gives further linear relations
without having to compute further resolvents.

If our basis functions satisfy recursion relations of the form

φm+1(λ) = αmλφm(λ) + βmφm(λ) + γmφm−1(λ),
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Fig. 8. Left: Convergence of collocation method using Chebyshev polynomials. Right: Convergence of col-
location method using Laguerre functions on [0,∞)

then

φ̂m+1(z) = αm

∫
I

λφm(λ)

λ − z
dλ + βm φ̂m(z) + γm φ̂m−1(z)

= αm

∫
I
φm(λ)dλ + zαm φ̂m(z) + βm φ̂m(z) + γm φ̂m−1(z).

Hence, given the values of the integrals

∫
I
φm(λ)dλ, φ̂1(z), (6.4)

we can compute φ̂m(z) for all m ∈ N. The integrals in (6.4) have simple forms for all
the bases used in this paper. This method of computation of φ̂m is fast, meaning that the
most expensive part of the collocation method is the computation of the right hand side
of the linear system, that is, computing the resolvent.

Figure 8 (left) revisits the Jacobi polynomials example in Sect. 6.1 and shows the
collocation method in the case of using Chebyshev polynomials as the basis functions
φm (taking the first 1500). For collocation points, we took M Chebyshev nodes offset
by an additional εi to lie just above the interval [−1, 1] in the complex plane. Note that
the rate of convergence is faster than O(εmin{2,1+α,1+β}) achieved with the methods of
Sect. 4 after extrapolation. There are at least two prices to pay, though. First, there is no
current proof that collocation converges and, second, global regularity of the measure
is needed. At the very least, we need to be able to subtract off the singular part of the
measure. In practice, even if the measure is absolutely continuous, a large number of
basis functions may be needed to capture the Radon–Nikodym derivative. Examples
are given in Sect. 6.3, where collocation performs worse than the techniques of Sect. 4
due to either of these regularity conditions. Figure 8 (right) revisits the (generalised)
Laguerre polynomials example in Sect. 6.1 and shows the collocation method in the
case of using Laguerre functions (the polynomials multiplied by the square root of the
weight function) as the basis functions with M = 1000. The collocation points were
{12/M2, 22/M2, . . . , 1} + εi . Again, this method converges with faster rates than that
in Sect. 6.1.
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6.3. CMV matrices and extensions to unitary operators. We now demonstrate that the
algorithms extend to the unitary case through use of the functions KD , namely, the
convolution with the Poisson kernel of the unit disk. We will consider the class of
CMVmatrices (named after Cantero, Moral and Velázquez [28]) linked with orthogonal
polynomials on the unit circle. A full discussion of this subject is beyond the scope of
this paper, and we refer the reader to the monographs of Simon [130,131]. However,
the background for this example is as follows. Given a probability measure μ on the
unit circle T, whose support is not a finite set, we can define a system of orthogonal
polynomials {�n}∞n=0 by applying the Gram–Schmidt process to {1, z, z2, . . .}. Given a
polynomial Qn(z) of degree n, we define the reversed polynomial Q∗

n(z) via Q∗
n(z) =

znQn(1/z). Szegő’s recurrence relation [139] is given by

�n+1(z) = z�n(z) − αn�
∗
n(z), (6.5)

where the αn are known as Verblunsky coefficients [148] and satisfy
∣∣α j

∣∣ < 1. Verblun-
sky’s theorem [147] sets up a one-to-one correspondence betweenμ and the coefficients
{α j }∞j=0. Define also

ρ j =
√
1 − ∣∣α j

∣∣2 > 0.

The CMV matrix associated with {α j }∞j=0 is

C =

⎛
⎜⎜⎜⎜⎜⎝

α0 α1ρ0 ρ1ρ0 0 0 · · ·
ρ0 −α1α0 −ρ1α0 0 0 · · ·
0 α2ρ1 −α2α1 α3ρ2 ρ3ρ2 · · ·
0 ρ2ρ1 −ρ2α1 −α3α2 −ρ3α2 · · ·
0 0 0 α4ρ3 −α4α3 · · ·
· · · · · · · · · · · · · · · · · ·

⎞
⎟⎟⎟⎟⎟⎠

. (6.6)

Thismatrix is unitary and banded (and lies in�U
n→n+2,0). This last property does not hold

for the so-called GGT representation [62,68,142], which has infinitely many non-zero
entries in each row. The GGT representation uses the basis {�n}∞n=0, whereas the CMV
representation obtains a basis via applying Gram–Schmidt to {1, z, z−1, z2, z2, . . .}. The
key result is that μC := μC

e1,e1 is precisely the measure μ on the unit circle. Hence our
new algorithms can be considered as a computational tool for the correspondence

{α j }∞j=0 → μ,

in much the same way as for orthogonal polynomials on the real line in Sect. 6.1.
The first example we consider are the Rogers–Szegő polynomials [117] given by

α j = (−1) j q( j+1)/2,

where q ∈ (0, 1). In this case,

dμC = 1√
2π log(q−1)

∑
m∈Z

exp

(
− (θ − 2πm)2

2 log(q−1)

)
dθ,

which can be expressed in terms of the theta function. Figure 9 (left) shows the conver-
gence of the new algorithm for various q and we see algebraic convergence as before,
with rates O(ε) and O(ε2) before and after extrapolation respectively (here ε is such
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Fig. 9. Left: Convergence of algorithm for Rogers–Szegő polynomials. Right: Corresponding Radon–
Nikodym derivatives (densities of the measure)

that we evaluate the convolutions with the Poisson kernel at radius r = (1 + ε)−1).
Radon–Nikodym derivatives for larger values of q (shown in the right of Fig. 9) have
larger derivatives and hence larger pre-factor in front of these rates. We can use a similar
collocation method as in Sect. 6.2, using the standard Fourier basis {eimθ }m∈Z. Note that
the relevant Cauchy transforms can be computed explicitly using Cauchy’s residue the-
orem. Collocation points inside and outside the unit disk are needed (collocating inside
the unit disk causes the Cauchy transforms of the basis functions with negative m to
vanish). This achieved machine precision using just 41 basis functions and collocating
at distance ε = 0.1 from T.

The next example we consider are the Geronimus polynomials [63], which have
α j = a with |a| < 1. In this case, for |a + 1/2| ≤ 1/2,

dμC = χ|θ |>θa

√
cos2(θa/2) − cos2(θ/2)

2π |1 + a| |sin((θ − b)/2)|dθ,

where θ ∈ [−π, π ], b = 2arg(1 + a) and θa = 2 sin−1(|a|). Figure 10 (right) shows
some typical examples, and note that these density functions are not smooth. When
|a + 1/2| > 1/2, there is also a singular part of the measure (see [130] for the exact
formula).

In the cases shown in Fig. 10, the collocation method struggles to gain an accuracy
beyond 10−4 owing to discontinuity in the derivative of the Radon–Nikodym derivative
and the algorithm based on convolutions is able to gain much more accurate results.
Finally, a typical example is shown in Fig. 11 (left) for a = 0.8 (there is now a singular
part located at θ = 0), where we have shown the output of the algorithm and the
exact convolution with the Poisson kernel for r = 1/1.01, as well as the collocation
method using 21 basis functions and collocation points {(1± 0.1)2π/21, (1± 0.1)2π ·
2/21, . . . , (1 ± 0.1)2π}. Here, we see an exact agreement between the algorithm and
convolution. Unsurprisingly in the presence of point spectra, the collocation method
is unstable. Consistent with Theorem 4.2, the algorithm in Sect. 4.2 converges to the
density over the portion of the spectrum, which is purely absolutely continuous. This is
shown in the right of Fig. 11.

6.4. Fractional diffusion on a 2D quasicrystal. In this example, we demonstrate compu-
tation of the functional calculus and consider operators acting on the graph of a Penrose
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Fig. 10. Left: Convergence of algorithm for Geronimus polynomials. In this case the algorithm can obtain
much more accurate results than collocation owing to the non-smoothness of the density functions. Right:
Example density functions for the cases considered

Fig. 11. Left: The smooth part of the density function (black) for the case of an additional point mass at θ = 0.
Note that the algorithm’s output agrees almost perfectly with the exact convolution of the measure. We have
also shown the output of the collocation method, which is unstable in the presence of the point mass. Right:
Convergence of the algorithm from Theorem 4.2 over the portion of the spectrum which is purely absolutely
continuous

tile—the canonical model of a two-dimensional quasicrystal [47,140,146] (aperiodic
crystals which typically have anomalous spectra/transport properties). Quasicrystals
were discovered in 1982 by Shechtman [125] who was awarded the 2011 Nobel Prize
in Chemistry for his discovery. Since then, quasicrystals have generated considerable
interest due to their often exotic physical properties [135], with a vast literature on the
physics and spectral properties of such aperiodic systems.11 Unlike the one-dimensional
case, little is known about the spectral properties of two-dimensional quasicrystals. A
finite portion of the infinite tile is shown in Fig. 12, and we consider the natural graph
whose vertices are the vertices of the tiling and edges correspond to the edges of the
rhombi. Such a graph posses no periodic structure, and it is generically impossible to
study its spectral properties analytically with current methods. The free Hamiltonian H0

11 Recently, there has been renewed interest in aperiodic systems connected to graphene in the field of
twistronics [30,97].
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Fig. 12. Left: Finite portion of Penrose tile showing the fivefold rotational symmetry.We labelled vertices from
the centre in a spiral outwards in increasing distance from the origin. Right: Contours used for the fractional
diffusion on the Penrose tile (α ∈ N top, α /∈ N bottom). The red line represents the interval containing the
spectrum of −H0, the branch cut for zα is taken to be R≤0

Fig. 13. Left: Convergence for α = 1/2. Right: Convergence for α = 1. We have plotted the errors as a
function of the matrix size (number of matrix columns in the rectangular truncations) used

(Laplacian) is given by

(H0ψ)i =
∑
i∼ j

(
ψ j − ψi

)
, (6.7)

with summation over nearest neighbour sites (vertices). The first rigorous computation
of the spectrum of H0 (also with additional error control) was performed in [40]. We
chose a natural ordering of the vertices as in Fig. 12, which leads to an operator H0 acting
on l2(N). The local bandwidth grows for this operator (our ordering is asymptotically
optimal) and hence computation of powers Hm

0 is infeasible for m � 50, rendering
polynomial approximations of the functional calculus intractable. In the above notation,
H0 ∈ � f,0 with f (n) − n = O(

√
n), and so this example provides a demonstration of

the algorithm for a non-banded matrix. Throughout, we take u0 = e1, though different
initial conditions are handled in the same manner.

The ability to compute the functional calculus allows the solution of linear evolution
equations. Given A ∈ �N, a function F (continuous and bounded on σ(A)) and u0 ∈
l2(N), consider the evolution equation

du

dt
= F(A)u, ut=0 = u0. (6.8)
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Fig. 14. Evolution of initial wavepacket under fractional diffusion

The solution of this equation is

u(t) = exp(F(A)t)u0

and can be computed via the algorithm outlined in Sect. 4.1.
We consider fractional diffusion governed by

du

dt
= −(−H0)

αu, ut=0 = u0,

for α > 0. If α is an integer, then the solution can be represented via contour deformation
as

u(t) = 1

2π i

∫
γ

exp(−zαt)R(z,−H0)u0dz, (6.9)

where γ is a closed contour looping once around the spectrum. Typically we took
the rectangular contour shown in Fig. 12 and approximated the integral via Gaussian
quadrature. This allows us to compute the solution with error control (we known the
minimal distance between γ and σ(−H0) so can bound the Lipschitz constant of the
resolvent) and clearly, this holds for other functions F , holomorphic on a neighbourhood
of σ(−H0). Note that other methods, such as direct diagonalisation of finite square
truncations or discrete time stepping (which is difficult if α /∈ N), do not give error
control and are slower. In fact, for this example, direct diagonalisation was impractical.



488 M. J. Colbrook

When α /∈ N, we can still deform the contour, but not at 0 since 0 ∈ σ(−H0). Hence
we deform the contour to that shown in Fig. 12. For a discussion of contour methods
applied to finite matrices (in the case that the spectrum is strictly positive), we refer the
reader to [74]. Unfortunately, such methods cannot be applied here since 0 ∈ σ(−H0).
Moreover, 0 appears to not be an isolated point of the spectrum, meaning that dealing
with this point separately is also impossible.

Figure 13 shows the convergence of the algorithm for α = 1/2 and α = 1. For
α = 1/2, error control is not given by our algorithm, so we computed an error by
comparing to a “converged” solution using larger n. The l2 error refers to the error in
l2(N). The method converges algebraically for α = 1/2 (owing to the contour touching
the spectrum at 0) but converges exponentially for α = 1 with similar convergence
observed over a large range of times t . Figure 14 shows the magnitude (log scale) of
the computed solution for various times. Note that the techniques presented here can be
applied to any evolution equation of the form (6.8) on infinite-dimensionalHilbert spaces.
Theymay also be useful for splittingmethods/exponential integrators, which require fast
computation of matrix/operator exponentials (see [83,100] and the references therein)
and more generally in the field of infinite-dimensional ODE/PDE systems. For methods
that compute general semigroups on infinite-dimensional separable Hilbert spaces with
error control, see [35].
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A. The SCI Hierarchy: A Framework for Computation

Cornerstones in the SCI hierarchy are the definitions of a computational problem, a
general algorithmand towers of algorithms.Thebasic objects in a computational problem
are as follows:

(i) � is some set, called the domain.
(ii) � is a set of complex-valued functions on � called the evaluation set.
(iii) M is a metric space with metric dM.
(iv) � : � → M is called the problem function.

The set� is the set of objects that give rise to our computational problems. The problem
function � : � → M is what we are interested in computing. Moreover, the set � is
the collection of functions that provide us with the information we are allowed to read.

Remark 7. Throughout the paper we have relaxed the condition that λ ∈ � maps into C
by considering evaluation functions consisting of intervals exhausting a set, piecewise

http://creativecommons.org/licenses/by/4.0/
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constant functions of compact support etc. These seemingly more complicated objects
can be effectively encoded by functions that map intoC. For example, when considering
the decomposition (3.1):

U =
⋃
m

(am(U ), bm(U ))

of an open set U , we consider λ1,m, λ2,m with λ1,m(U ) = am and λ2,m(U ) = bm .
For the sake of clarity of presentation of the proofs, such encodings are used implicitly
throughout the paper.

This leads to the following definition.

Definition A.1 (Computational problem). Given a primary set �, an evaluation set
�, a metric space M and a problem function � : � → M we call the collection
{�,�,M,�} a computational problem.

The goal is to find algorithms that approximate the function �. More generally, we
need the concept of a tower of algorithms,which is needed to describe problems that need
several limits in the computation. However, first one needs the definition of a general
algorithm.

Definition A.2 (General algorithm). Given a computational problem {�,�,M,�}, a
general algorithm is a mapping � : � → M such that for each A ∈ �

(i) There exists a finite non-empty subset of evaluations ��(A) ⊂ �,
(ii) The action of � on A only depends on {A f } f ∈��(A) where A f := f (A),

(iii) For every B ∈ � such that B f = A f for every f ∈ ��(A), it holds that ��(B) =
��(A).

Note that the definition of a general algorithm is more general than the definition of
a Turing machine or a Blum–Shub–Smale (BSS) machine. A general algorithm has no
restrictions on the operations allowed. The only restriction is that it can only take a finite
amount of information, though it is allowed to adaptively choose the finite amount of
information it reads depending on the input. Condition (iii) assures that the algorithm
consistently reads the information. Note that the purpose of such a general definition is
to get strong lower bounds. In particular, the more general the definition is, the stronger
a lower bound will be.

With a definition of a general algorithm, we can define the concept of towers of
algorithms.

Definition A.3 (Tower of algorithms). Given a computational problem {�,�,M,�}, a
tower of algorithms of height k for {�,�,M,�} is a family of sequences of functions

�nk : � → M, �nk ,nk−1 : � → M, . . . , �nk ,...,n1 : � → M,

where nk, . . . , n1 ∈ N and the functions �nk ,...,n1 at the “lowest level” of the tower are
general algorithms in the sense of Definition A.2. Moreover, for every A ∈ �,

�(A) = lim
nk→∞ �nk (A), �nk ,...,n j+1(A) = lim

n j→∞ �nk ,...,n j (A) j = k − 1, . . . , 1.

In addition to a general tower of algorithms (defined above), we will focus on arith-
metic towers. The definition of a general algorithm allows for strong lower bounds;
however, to produce upper bounds we must add structure to the algorithm and towers of
algorithms. An arithmetic tower allows for arithmetic operations and comparisons.
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Definition A.4 (Arithmetic towers). Given a computational problem {�,�,M,�},
where � is countable, we define the following: An arithmetic tower of algorithms
of height k for {�,�,M,�} is a tower of algorithms where the lowest functions
� = �nk ,...,n1 : � → M satisfy the following: For each A ∈ � the mapping
(nk, . . . , n1) �→ �nk ,...,n1(A) = �nk ,...,n1({A f } f ∈�) is recursive, the action of � on A
consists of only finitely many arithmetic operations and comparisons on {A f } f ∈��(A),
and �nk ,...,n1(A) is a finite string of complex numbers that can be identified with an
element inM.

Remark 8 (Recursiveness). By recursive we mean the following. If f (A) ∈ Q for all
f ∈ �, A ∈ �, and� is countable, then�nk ,...,n1({A f } f ∈�) can be executed by a Turing
machine [145], that takes (nk, . . . , n1) as input, and that has an oracle tape consisting of
{A f } f ∈�. If f (A) ∈ R (or C) for all f ∈ �, then �nk ,...,n1({A f } f ∈�) can be executed
by a Blum–Shub–Smale machine [17] that takes (nk, . . . , n1), as input, and that has an
oracle that can access any A f for f ∈ �.

Given the above definitions, we can now define the Solvability Complexity Index:

Definition A.5 (Solvability complexity index). A computational problem {�,�,M,�}
is said to have Solvability Complexity Index SCI(�,�,M,�)α = k, with respect to a
tower of algorithms of type α, if k is the smallest integer for which there exists a tower of
algorithms of type α of height k. If no such tower exists then SCI(�,�,M,�)α = ∞.

If there exists a tower {�n}n∈N of type α and height one such that � = �n1 for some
n1 < ∞, thenwe define SCI(�,�,M,�)α = 0.Wemay sometimeswrite SCI(�,�)α
to simplify notation when M and � are obvious.

The definition of the SCI immediately induces the SCI hierarchy:

Definition A.6 (The solvability complexity index hierarchy). Consider a collection C of
computational problems and let T be the collection of all towers of algorithms of type
α for the computational problems in C. Define

	α
0 := {{�,�} ∈ C | SCI(�,�)α = 0}

	α
m+1 := {{�,�} ∈ C | SCI(�,�)α ≤ m}, m ∈ N,

as well as

	α
1 := {{�,�} ∈ C | ∃ {�n}n∈N ∈ T s.t. ∀A d(�n(A),�(A)) ≤ 2−n}.

In certain cases, the SCI hierarchy can also be refined with notions of error control—
see [12,33,36,37]. We also need the following result.

Proposition A.7. Given a matrix B ∈ C
m×n and a number ε > 0 one can test with

finitely many arithmetic operations on the entries of B whether the smallest singular
value σ1(B) of B is greater than ε.

Proof. The matrix B∗B is self-adjoint and positive semidefinite, hence has its eigenval-
ues in [0,∞). The singular values of B are the square roots of these eigenvalues of B∗B.
The smallest singular value is greater than ε if and only if the smallest eigenvalue of B∗B
is greater than ε2, which is the case if and only if C := B∗B − ε2 I is positive definite.
The matrix C is positive definite if and only if the pivots left after Gaussian elimination
(without row exchange) are all positive. Thus, if C is positive definite, Gaussian elim-
ination leads to pivots that are all positive, and this requires finitely many arithmetic
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operations. If C is not positive definite, then at some point a pivot is zero or negative, at
this point the algorithm aborts. An alternative is the Cholesky decomposition. Although
forming the lower triangular L ∈ C

n×n (if it exists) such that C = LL∗ requires the
use of radicals, the existence of L can be determined using finitely many arithmetic
operations. This follows from the standard Cholesky algorithm, and we omit the details.

��
Finally, we also need the following result.

Proposition A.8. Let (M′, d ′) be the discrete space {0, 1}, let �′ denote the collection
of all infinite sequences {a j } j∈N with entries a j ∈ {0, 1}, let �′ consist of pointwise
evaluations of the {a j } and consider the problem function

�′({a j }) : ‘Does {a j } have infinitely many non-zero entries?’

Then 	G
2 �� {�′,�′,�′} ∈ 	A

3

Proof. Consider the arithmetic tower of algorithms defined by

�m,n({a j }) =
{
1 if

∑n
j=1 a j > m,

0 otherwise.

This provides a height two arithmetic tower for �′ and hence {�′,�′,�′} ∈ 	A
3 .

To prove the lower bound, suppose for a contradiction that {�n} is a sequence of
general algorithms, using �′, such that

lim
n→∞ �n({a j }) = �′({a j }).

We will construct a sequence {a j } such that �n({a j }) does not converge, providing the
required contradiction.

Set {a1j } j∈N = {0, 0, . . .}, then there exists n1 ∈ N such that �n1({a1j }) = 0.

Moreover, ��n1
({a1j }) ⊂ {{a j } j∈N → am : m ≤ N1} for some integer N1 by (i)

of Definition A.2. We choose {a2j } j∈N such that a2j = a1j for j ≤ N1 and a2j = 1

otherwise. Then there exists n2 ∈ N such that n2 > n1 and �n2({a2j }) = 1. Moreover,

��n2
({a2j }) ⊂ {{a j } j∈N → am : m ≤ N2} for some integer N2 > N1 by (i) of Definition

A.2. We now repeat this inductively. Explicitly, given the construction up to the kth step,
we define {ak+1j } j∈N by ak+1j = akj for all j ≤ Nk and ak+1j = (1+(−1)k+1)/2 otherwise.

Then there exists nk+1 ∈ N such that nk+1 > nk and �nk+1({ak+1j }) = (1 + (−1)k+1)/2.

Moreover, ��nk+1
({ak+1j }) ⊂ {{a j } j∈N → am : m ≤ Nk+1} for some integer Nk+1 > Nk

by (i) of Definition A.2.
Finally seta j = akj for j ≤ Nk . It is clear from (iii) ofDefinitionA.2, that�nk ({a j }) =

�nk ({akj }) = (1+ (−1)k)/2 and this implies that �n({a j }) cannot converge, the required
contradiction. ��
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B. Partial Differential Operators: Proof of Theorem 1.1

Before stating and proving a more mathematically precise version of Theorem 1.1, we
need to be precise about the computational problems involved. Recall that we consider
L formally defined on L2(Rd) by

Lu(x) =
∑

k∈Zd≥0,|k|≤N

ak(x)∂
ku(x)

with the class �PDE consisting of self-adjoint L satisfying certain conditions given in
Sect. 1.2.1. We take �PDE to consist of

Sk,q,m : �PDE → Q + iQ,

where |Sk,q,m(L) − ak(q)| ≤ 2−m for all q ∈ Q, together with

bn : �PDE → Q>0

such that

sup
n∈N

max|k|≤N

‖ak‖An

bn(L)
< ∞.

Wealso implicitly assume that for any given L , the dimension d and integer N (order) are
known. As well as this, we need to consider the pairs of vectors (members of L2(Rd))
with which we compute the spectral properties. By the polarisation identity, we can
consider equal functions of norm 1. We let VPDE consist of all f ∈ L2(Rd) of norm 1
such that

(1) There exists a positive constant C and an integer D (both possibly unknown) such
that

| f (x)| ≤ C
(
1 + |x |2D

)
,

almost everywhere on R
d , that is, f is polynomially bounded.

(2) The restrictions f |[−r,r ]d ∈ Ar for all r > 0.

We then add to �PDE the evaluation functions

Sq,m : VPDE → Q + iQ,

where |Sq,m( f ) − f (q)| ≤ 2−m for all q ∈ Q, together with

cn : VPDE → Q>0

such that

sup
n∈N

‖ f ‖An

cn( f )
< ∞.

With an abuse of notation, we can consider the computational problem fromTheorem
3.1

�meas : �PDE × VPDE × U → L2(Rd)

(L , f,U ) → EL
U f.
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Recall that U is the collection of non-trivial open sets and we have access to a finite or
countable collection am(U ), bm(U ) ∈ R ∪ {±∞} such that U ∈ U can be written as a
disjoint union

U =
⋃
m

(am(U ), bm(U )) .

Similarly, from Theorem 4.1 we consider

�fun : �PDE × VPDE × Cb(R) → L2(Rd)

(L , f, F) → F(L) f.

We assume that given F ∈ Cb(R), we have access to piecewise constant functions Fn
supported in [−n, n] such that ‖F − Fn‖L∞([−n,n]) ≤ n−1. Finally, from Theorem 4.2
we consider

�RN : �PDE × VPDE × U → L1(R)

(L , f,U ) → ρL
f, f |U .

We restrict this map to the quadruples (L , f,U ) such that U is strictly separated from
supp(μL

f, f,sc) ∪ supp(μL
f, f,pp) and denote this subclass by �̃PDE.

We can now state the precise form of Theorem 1.1.

Theorem B.1 (Precise form of Theorem 1.1). Given the above set-up,

{�meas,�PDE × VPDE × U ,�PDE} ∈ 	A
2 ,

{�fun,�PDE × VPDE × Cb(R),�PDE} ∈ 	A
2 ,

{�RN, �̃PDE,�PDE} ∈ 	A
2 .

In other words, we can construct a convergent sequence of arithmetic algorithms for
each problem.

Remark 9. The proof will make clear that we can assume different conditions on the
operator L and function f . We simply choose an appropriate basis so that we can apply
Theorem B.2. We can also extend this to scalar measures (through inner products) and
also to the towers of algorithms (of height ≥ 2) used to compute the decompositions
into pure point, absolutely continuous and singular continuous parts of measures and
spectra.

To prove Theorem B.1, we need the following theorem, which is similar to the results
of Sect. 2.1.

Theorem B.2. Consider the class �SA × Sl2(N), where Sl2(N) denotes the unit sphere
(vectors of norm 1). Assume that for each (T, x) ∈ �SA × Sl2(N) we have access to

evaluation functions �̂ = { f (1)
i, j,m, f (2)

i, j,m, f (3)
i,m : i, j,m ∈ N} with∣∣∣ f (1)

i, j,m(T ) − 〈T e j , ei 〉
∣∣∣ ,
∣∣∣ f (2)

i, j,m(T ) − 〈T e j , T ei 〉
∣∣∣ ,
∣∣∣ f (3)

i,m (x) − 〈x, ei 〉
∣∣∣

= O(2−m), ∀i, j ∈ N,

where the hidden constant depends only on T and x. Then there exists a sequence of
arithmetic algorithms using �̂

�N : �SA × Sl2(N) × C\R → l2(N)

with the following properties:
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1. For all (T, x, z) ∈ �SA × Sl2(N) ×C\R, �N (T, x, z) has finite support with respect
to the canonical basis and converges to R(z, T )x in l2(N) as N → ∞.

2. For any (T, x) ∈ �SA × Sl2(N), there exists a constant C(T, x) such that for all
z ∈ C\R,

‖�N (T, x, z) − R(z, T )x‖ ≤ C(T, x)

N |Im(z)| . (B.1)

Proof. The proof is similar to that of Theorem 2.1. Let (T, x, z) ∈ �SA × Sl2(N) ×C\R.
We have that n = rank(Pn) = rank((T − z I )Pn) for large n since σ1(T − z I ) > 0
(recall that z /∈ σ(T )). Hence we can define

�̃n(T, x, z) :=
{
0 if σ1(Pn(T ∗ − z I )(T − z I )Pn) ≤ 1

n[Pn(T ∗ − z I )(T − z I )Pn]−1Pn(T ∗ − z I )x otherwise.

Suppose that n is large enough so that σ1(Pn(T ∗ − z I )(T − z I )Pn) > 1/n. Then
�̃n(T, x, z) is a least-squares solutionof theoptimisationproblemargminy‖(T−z I )Pn y−
x‖. The linear space span{en : n ∈ N} forms a core of T and hence also of T − z I . It
follows by invertibility of T − z I that given any ε > 0, there exists an m = m(ε) and a
y = y(ε) with Pm y = y such that

‖(T − z I )y − x‖ ≤ ε.

It follows that for all n ≥ m, ‖(T − z I )�̃n(T, x, z) − x‖ ≤ ‖(T − z I )y − x‖ ≤ ε and
hence that

‖�̃n(T, x, z) − R(z, T )x‖ ≤ ε

|Im(z)| .

Since ε > 0 was arbitrary, we see that �̃n(T, x, z) converges to R(z, T )x .
For n,m ∈ N, define the finite matrices

Bn = Pn(T
∗ − z I )(T − z I )Pn, Cm,n = Pn(T

∗ − z I )Pm .

Given the evaluation functions in �̂, we have access to the entries of these matrices to
asymptotic accuracy (i.e. for a given diverging subsequence an , to precision O(2−an )).
It follows that we have access to approximations of Bn and Cm,n denoted B̃n and C̃m,n
respectively with

‖Bn − B̃n‖ = O(n−1), ‖Cm,n − C̃m,n‖ = O(n−1).

Recall that the O(·) notation alsomeans independently of z and other parameters (though
itmay depend on T and x). Note that B̃−1

n can be computed using finitelymany arithmetic
operations and comparisons and the resolvent identity implies that

‖B−1
n − B̃−1

n ‖ = O(n−1).

From the proof of Proposition A.7 and a simple search routine, we can also compute
σ1(B̃n) to accuracy n−2 using finitely many arithmetic operations and comparisons.
Denote the approximation via τn . We then define

�m,n(T, x, z) :=
{

0 if τn ≤ 1
n

B̃−1
n C̃m,nx(m) otherwise,
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where x(m) = Pmx(m) is an approximation of Pmx to accuracy O(m−1). It follows that
�m,n(T, x, z) can be computed using finitely many arithmetic operations. We also have
that

‖�m,n(T, x, z) − �̃n(T, x(m), z)‖ ≤ ‖B−1
n − B̃−1

n ‖‖Cm,n‖‖x(m)‖ + ‖B̃−1
n ‖‖Cm,n − C̃m,n‖‖x(m)‖,

so that�m,n(T, x, z) converges to R(z, T )x(m) asn → ∞. By construction,�m,n(T, x, z)
has finite support with respect to the canonical basis. Furthermore, since Pmx(m) = x(m),
the following error bound holds for any l ≥ m

‖�m,n(T, x, z) − R(z, T )x(m)‖
≤ ‖R(z, T )‖‖(T − z I )�m,n(T, x, z) − x(m)‖
≤ ‖(I − Pl)(T − z I )Pn‖‖�m,n(T, x, z)‖ + ‖Pl(T − z I )�m,n(T, x, z) − x(m)‖

|Im(z)| .

Since we have access to both 〈T e j , T e j 〉 (norms of the columns of T ) and 〈T ei , e j 〉,
we can estimate ‖(I − Pl)(T − z I )Pn‖ to asymptotic accuracy O(n−1). It follows that
we can can compute, in finitely many arithmetic operations and comparisons, l(n) ≥ n
such that

‖(I − Pl(n))(T − z I )Pn‖ = O(n−1).

Similarly, we can estimate ‖Pl(n)(T − z I )�m,l(n)(T, x, z) − x(m)‖ to accuracy O(n−1)

and call this approximation vm,n , and estimate ‖�m,l(n)(T, x, z)‖ to accuracy O(n−1)

and call this approximation wm,n . It follows that we have

‖�m,n(T, x, z) − R(z, T )x(m)‖ ≤ (wm,n + O(n−1))O(n−1) + vm,n + O(n−1)

|Im(z)| .

It follows that

‖�m,n(T, x, z) − R(z, T )x‖ ≤ ‖x(m) − x‖ + (wm,n + O(n−1))O(n−1) + vm,n + O(n−1)

|Im(z)| .

For a fixed m, vm,n → 0 and wm,n → ‖R(z, T )x(m)‖ as n → ∞. It follows that we can
compute n(m) (again in finitely many arithmetic operations and comparisons) such that

‖�m,n(m)(T, x, z) − R(z, T )x‖ ≤ ‖x(m) − x‖ + O(m−1)

|Im(z)| . (B.2)

We know that ‖x‖ has norm 1 and hence we must have

‖x(m) − x‖2 ≤
∞∑

j=m+1

|x j |2 + O(m−2) = 1 −
m∑
j=1

|x(m)|2 + O(m−2).

However, we can compute 1 −∑m
j=1 |x(m)|2, which converges to zero as m → ∞. For

a given N , it follows that we can compute m(N ) ≥ N such that

1 −
m∑
j=1

|x(m)|2 ≤ N−2.
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This implies that ‖x(m) − x‖ = O(N−1) and hence by setting

�N (T, x, z) = �m(N ),n(m(N ))(T, x, z)

we see that (B.2) implies (B.1). ��
Proof of Theorem B.1. We choose an orthonormal basis of L2(Rd) so that we can carry
over the results for l2(N) proven in this paper. In [37] it was shown that (the orthonormal
basis of) tensor products of Hermite functions form a core for any L ∈ �PDE. Namely
for d = 1 we choose the Hermite functions

ψm(x) = (2mm!√π)−1/2e−x2/2Hm(x),m ∈ Z≥0,

where

Hn(x) = (−1)n exp(x2)
dn

dxn
exp(−x2).

For d > 1 we abuse notation and write ψm = ψm1 ⊗ · · · ⊗ ψmd . The point of this is
that by a suitable ordering of {ψm}m∈Nd = {ψm(1), ψm(2), . . .}, any L ∈ �PDE can be
represented by T ∈ �SA and f ∈ VPDE by f̂ ∈ l2(N) with the inner products

〈T e j , T ei 〉 =
∫
Rd

(Lψm( j)(x))(Lψm(i)(x))dx (B.3)

〈T e j , ei 〉 =
∫
Rd

(Lψm( j)(x))ψm(i)dx (B.4)

〈 f̂ , ei 〉 =
∫
Rd

f (x)ψm(i)(x)dx . (B.5)

In [37] it was shown, using the theory of quasi-Monte Carlo numerical integration,
that the inner products in (B.3)–(B.5) can be computed using �PDE to asymptotic error
control. In other words, that we can compute any of the evaluation functions in �̂ in the
statement of Theorem B.2 in finitely many arithmetic operations and comparisons. The
result now follows by using Theorem B.2 instead of Corollary 2.2 in simple adaptations
of the proofs of Theorems 3.1, 4.1 and 4.2. ��
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