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Summary

T-cell ALL (T-ALL) is an aggressive malignancy of T-cell

progenitors. Although survival outcomes in T-ALL have

greatly improved over the past 50 years, relapsed and refrac-

tory cases remain extremely challenging to treat and those

who cannot tolerate intensive treatment continue to have

poor outcomes. Furthermore, T-ALL has proven a more

challenging immunotherapeutic target than B-ALL. In this

review we explore our expanding knowledge of the basic

biology of T-ALL and how this is paving the way for repur-

posing established treatments and the development of novel

therapeutic approaches.
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The need for new therapies in T-ALL was once driven by the

inferior survival outcomes seen in T-ALL compared to B-

ALL. Improvements in chemotherapy usage with treatment

intensification and minimal residual disease (MRD) monitor-

ing have made a major impact on this disparity.1 The intro-

duction of treatment escalation based on MRD has meant

that despite a three-fold higher rate of positive MRD at end

of induction (EOI) in T-ALL versus B-ALL,2 both subtypes

now have equivalent survival outcomes in children.3 This is

particularly relevant to early T-cell precursor T-ALL (ETP-

ALL), historically associated with a very high-risk of treat-

ment failure,4 but now with excellent outcomes on MRD

risk-directed protocols.5-7 In adults, survival in T-ALL now

surpasses B-ALL on some protocols.8 Focus has also been

directed to appropriate de-escalation of treatment in those

with low risk MRD.9

Long term survival outcomes approach 50% in adults able

to tolerate intensive treatment and exceed 90% in childhood

ALL,9-12 a remarkable prognosis that may reflect the superior

tolerance of children to chemotherapy and a difference in

the genetics of childhood leukaemia.13,14 The vast majority of

children that remain in remission 2 years from diagnosis will

be cured, with rare cases of late relapse (>5 years) likely rep-

resenting a clonally unrelated secondary T-ALL.15 However

relapsed T-ALL is highly aggressive and often resistant to

glucocorticoids and chemotherapy, with survival of around

50% in children and less in adults, with the worst outcome

in those with the shortest duration of remission.16-19 For

those adults who relapse, allogeneic transplant offers the best

chance of cure, with recently reported survival outcomes of

40%.19 Despite modern treatment protocols, durable

responses for adults unable to proceed to transplant are unli-

kely, with a median survival of only 8 months.19 In children,

allogeneic bone marrow transplantation is generally reserved

for those with high-risk relapsed disease and remains one of

the few curative options for these patients.20

Genetic markers can identify good prognostic subgroups

with potential for treatment de-escalation. Patients with both

NOTCH1 and FBXW7 mutations, or two NOTCH1 muta-

tions, have been shown to have an excellent outcome, with

100% 5 years survival in this patient subgroup treated on the

paediatric UKALL2003 trial,21 and improved survival seen in

adults.22,23 However not all findings are as clear cut, for

example PTEN aberrations have added additional prognostic

value on some trials,24-26 but not others.27 Given the rarity

of the disease, most studies are underpowered to detect small

but meaningful differences in outcome among genetic sub-

groups. As an example, outcome analyses based solely on

NOTCH pathway mutations alone are confounded by the

high frequency of these mutations in TLX+ cases (approx.

90%) and relative rarity in ETP-ALL (approx. 20%).28

The poor outcomes seen in relapsed/refractory (R/R)

T-ALL highlight a pressing need for novel treatments.

Improved understanding of the genetics of both normal and

aberrant T-cell differentiation is offering new therapeutic

avenues. T-ALL is a genetically heterogeneous disease, which

can be sub-classified based on first-hit class-defining lesions

that commonly affect master regulatory transcription factors
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(e.g. TAL1, LMO1/2, TLX1/3, HOXA). Transcription factors

have proven extremely difficult to target pharmacologically,

thus the focus of drug development has been on second hit

mutations in key signalling pathways. Herein we review some

current areas of active translational research in this field.

Nelarabine

Nelarabine is the soluble prodrug of ara-G, which is selec-

tively cytotoxic to T leukaemic cells, likely due to their low

endogenous SAMHD1 levels.29 Initial early phase trials of

nelarabine showed its efficacy as a single agent in paediatric

relapsed/refractory T-ALL, with neurotoxicity the most com-

mon dose-limiting toxicity.30,31 In adults, an alternate day

dosing schedule limited neurotoxicity whilst maintaining an

over all response rate (ORR) of 31%.32 Subsequent data

showed the efficacy of Nelarabine in combination with

chemotherapy, with NEC (Nelarabine, Etoposide and

Cyclophosphamide), with an impressive complete remission

(CR) of 71% in relapsed patients.33

More recent data supporting the upfront use of Nelara-

bine in children and young adults has led some to consider

it as standard of care in paediatric T-ALL.34,35 Data for its

upfront use in adults is awaited from the UKALL14 trial.

NOTCH inhibitors

NOTCH receptors are part of a conserved protein family that

can act both as oncogenes or tumour suppressors, depending

on the cellular context.36 NOTCH1 is important for thymo-

cyte development, committing common lymphoid progeni-

tors to a T-cell fate. Activating mutations of NOTCH1 have

been found in almost two-thirds of paediatric and adult T-

ALL cases.37,38

As one of the most frequently mutated genes in T-ALL,

NOTCH1 has generated considerable interest as a therapeutic

target. Gamma secretase inhibitors (GSI), originally developed

for Alzheimer’s disease, act by preventing the cleavage and

activation of the intracellular NOTCH1 fragment (Fig 1A).

Their early promise has since been hampered by marked gas-

trointestinal (GI) toxicity.39 NOTCH1 is an important regula-

tor of intestinal goblet cells and NOTCH1 inhibition by GSIs

causes goblet cell accumulation via upregulation of the tran-

scription factor KLF4, resulting in significant diarrhoea

(Fig 1B).40 However, the use of a pulsed treatment schedule41

and the addition of glucocorticoids have reduced this toxic-

ity,42 with one reported case of a CR in a patient treated with a

GSI and dexamethasone.43 Not only do glucocorticoids

improve the side effect profile of GSIs, but also the two treat-

ments work synergistically to induce apoptosis of T-ALL cells,

possibly due to increased expression of the glucocorticoid

receptor NR3C1 in the presence of the combination.42 How-

ever, a recently reported phase 1 trial using a novel inhibitor

of the NOTCH ICD in combination with dexamethasone con-

tinued to show dose limiting GI toxicity and limited clinical

efficacy.44 A more recent approach targeting PSEN1 aims to

reduce the systemic toxicity associated with GSIs.45 This sub-

unit of the gamma-secretase complex is more highly expressed

in leukaemic cells than normal developing T cells and its inhi-

bition has been well tolerated in animal studies.

The NOTCH transcriptional co-activator MAML1 is also a

potential target. Stapled a-helical peptides derived from

MAML1 (SAHM) compete with MAML1 and inhibit

NOTCH1-driven transcription. Mice treated with SAHM show

a decrease in leukaemic cell burden and corresponding reduc-

tion in NOTCH1 target gene expression, including MYC.46

Additionally their side effect profile seems tolerable in animal

models, without the GI toxicity associated with GSIs.

Another method of modulating NOTCH involves the use

of the proteasome inhibitor bortezomib, a standard of care

treatment in myeloma. Bortezomib has activity in relapsed/

refractory T-ALL, potentially by inhibiting transcriptional

expression of NOTCH1.47 In a small cohort of children with

relapsed/refractory ALL, bortezomib appeared to have partic-

ular efficacy in T-ALL with complete response rates of over

70% when used in conjunction with chemotherapy.48

There are other considerations that have clinical relevance

for NOTCH inhibition. Firstly, NOTCH1 mutations are often

late secondary subclonal events,14,49 meaning NOTCH inhibi-

tors are highly likely to select for NOTCH1 wild-type cells.

Secondly, resistance mechanisms can emerge whereby cells

are able to maintain MYC levels in the absence of NOTCH

signalling, for example through loss of FBXW7 or use of an

alternative MYC enhancer.50,51 In the former study, enhancer

usage switches from the NOTCH-MYC enhancer to a BRD4

regulated MYC enhancer, providing a rationale for combin-

ing NOTCH and BRD4 inhibitors.50

PI3K inhibitors

The PI3K-mTOR pathway plays a key role in both normal

T cell and malignant cell development. Phosphoinositide 3

kinases (PI3K) are a family of lipid kinases that act as sec-

ond messengers and are broadly divided into three classes,

which share a common core PI3K motif (Fig 2). Almost

half of T-ALL cases have aberrant PI3K activation occur-

ring through deletion or mutation or PTEN, activating

mutations of PIK3R1 (typically N564D), PIK3CD (typically

E1021K), or loss of function mutations of USP7.28 These

mutations are particularly enriched in the TAL1

subgroup,28 with these two oncogenic pathways shown to

synergise in mouse models, possibly related to the ability

of AKT to phosphorylate and modulate TAL1 activity.52

This raises the possibility that the TAL1 subgroup could

be particularly susceptible to PI3K pathway modulation,

although this awaits further study.

Mutations in the PI3K pathway also correlate with response

to chemotherapy; homozygous deletions of PTEN appear to

confer a higher risk of early treatment failure53 and mutations

in PTEN are associated with primary glucocorticoid
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resistance.54 This is likely driven by AKT1-mediated phospho-

rylation of the glucocorticoid receptor, leading to impaired

nuclear localisation; T-ALL mouse models treated with gluco-

corticoids and an AKT inhibitor, showed an augmented anti-

leukaemic response, compared to mice treated with either

agent alone.55 Another synergistic approach looked to target

both PI3K and NOTCH when it was found that T-ALL cells

evade cell death when treated with PI3K/mTOR inhibition by

upregulating NOTCH target genes such as MYC.56

The mTOR inhibitor everolimus acts downstream of AKT

and in addition to chemotherapy, gave a 50% response rate

in a small cohort of heavily pre-treated R/R T-ALL patients57

it is currently being evaluated in a phase I trial with NEC

(NCT03228104).

(A)

(B)

Fig 1. (A) NOTCH is activated by three cleavage steps. In the golgi, NOTCH1 is first cleaved in the Heterodimerization (HD) domain by a

furin-like convertase (S1 cleavage) and held together by a non-covalent bond. On activation by ligand, the Lin-12/NOTCH repeats (LNR) domain

is pulled from the Heterodimerization (HD), exposing the S2 cleavage site to proteolytic cleavage by TNFa-converting enzyme (TACE). This trig-

gers S3 cleavage by the c-secretase complex in the transmembrane domain releasing ICN to translocate to the nucleus to bind CSL and the tran-

scriptional coactivator MAML activating a multitude of target genes, some of which are shown. (B) NOTCH1 determines intestinal cell fate.

NOTCH1 inhibition results in accumulation of mucin-producing goblet cells through a KLF4 dependent pathway, resulting in severe diarrhoea.40

[Colour figure can be viewed at wileyonlinelibrary.com]
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During normal lymphopoiesis, lymphocytes with hyperac-

tive responses undergo negative selection through over-acti-

vation of PI3K signalling.58,59 Thus, one concept gaining

traction is that TCR stimulation, such as through an activat-

ing CD3-targeting monoclonal antibody, rather than inhibi-

tion of PI3K signalling may be an exploitable route towards

initiating apoptosis in ALL cells.60 A potential concern of this

approach would be cytokine release syndrome, as occurred

previously in solid organ transplant studies using OKT3.61

IL7R-JAK-STAT inhibition

The IL7R-JAK-STAT pathway is responsible for transducing

cytokine signalling in the thymus and is required for normal

T-cell development. This pathway is frequently aberrantly

activated in the TLX1/3+ T-ALL subgroup, but very rarely in

TAL1+ T-ALL. Activating mutations occur at multiple levels

in the pathway, with recurrent mutations described in

STAT5B, IL7R, JAK1 and JAK3.62-66 Interestingly, JAK1

mutations appear to be more common in adult than paedi-

atric T-ALL, and have been associated with reduced overall

survival and a high relapse rate.67 Mice transplanted with

progenitor cells harbouring the most commonly identified

JAK3 mutation (M511I) develop an immature T-ALL

through activating JAK1.68

The majority of activating IL7R mutations described thus

far in T-ALL involve the insertion of a cysteine in the trans-

membrane domain leading to disulphide bonding and

ligand-independent IL7R homodimerization and JAK1 phos-

phorylation (Fig 3).62,64,67 Inhibition of the IL7R-JAK-STAT

pathway has shown efficacy using clinically available JAK

inhibitors in preclinical models69,70 and phase I/II clinical tri-

als of Ruxolitinib are planned. The disulphide bond and

homodimer can also be disrupted by the reducing agent N-

acetylcysteine (NAC) at doses readily achievable in patients.71

Given its affordability and widespread use in treating patients

with paracetamol overdose, such an approach would be par-

ticularly attractive in healthcare systems where targeted

agents are considered prohibitively expensive.

An additional aspect of JAK inhibition is the possibility of

restoring glucocorticoid sensitivity.72,73 This approach is par-

ticularly intriguing in ETP-ALL, since ETP-ALL tends to be

less sensitive to steroids than other T-ALL subtypes and

STAT5 is commonly activated even in the absence of clearly

identified upstream mutations.69,74

The long-term efficacy of JAK inhibition in T-ALL is

unclear. Treatment does not eradicate leukaemic cells

in vitro, leading to rapid relapse upon drug withdrawal, and

combination therapy is likely to be required.72 Moreover,

due to the specific site of JAK inhibitor binding, it is possible

that T-ALL cells will acquire resistance mutations, for exam-

ple in the ATP-binding pocket of the kinase domain, or with

mutations activating other JAK family members.75 Most clin-

ical JAK inhibitors act to competitively inhibit the ATP-bind-

ing pocket of the active JAK2 (Type 1), however there is

growing interest in Type 2 JAK inhibitors which bind the

ATP pocket of the inactive JAK, as well as a less-conserved

nearby allosteric pocket.76 This approach may provide a

route to avoid resistance. Another strategy is to target further

downstream of the IL7R-JAK pathway, such as the kinase

PIM1. PIM1 appears to be upregulated in response to

chemotherapy and steroids in a (CD127+)77 subset of T-ALL

Fig 2. The PI3K signalling pathway: PI3K is activated by several growth factor receptor tyrosine kinases or G protein-coupled receptors. Once

activated PI3K catalyses the phosphorylation of phosphatidylinositol 4,5-bisphosphate (PIP2) to generate phosphatidylinositol 3,4,5-trisphos-

phate (PIP3). This activates the serine/threonine kinase AKT, which then drives mTOR to promote cell proliferation and survival. Dashed line

indicates the negative feedback loop involving mTORC1 and PI3K. The ubiquitin specific peptidase USP7 acts to stabilise PTEN, a negative regu-

lator of the PI3K pathway.
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cells and PIM1 inhibition may be an alternative or adjunct

to JAK inhibition. Such inhibitors are already in clinical trials

for myelofibrosis.

Targeting anti-apoptotic machinery

B Cell lymphoma 2 (BCL2) is an anti-apoptotic protein that

was first discovered from cloning the t(14;18) translocation

in a case of B cell lymphoma. BCL2 forms part of a protein

family that share the BCL2 homology (BH) domain. BH3

proteins, such as BAX and BAK, are pro-apoptotic proteins

that are sequestered by BCL2, BCL-XL and MCL1.78 More

mature T-ALL cell lines have been shown to be dependent

on BCL-XL, whereas ETP-ALL cells show a greater depen-

dency on BCL2 (Fig 4).79,80 Accordingly, ETP-ALL models

have shown particular sensitivity to Venetoclax over Navito-

clax, with reversal of this pattern in more mature T-ALL

cells.79 There is considerable clinical experience with Veneto-

clax in the treatment of CLL and more recently in AML,

where the drug is generally well-tolerated. There is accumu-

lating evidence for its use in T-ALL; a recent retrospective

report of the use of Venetoclax with chemotherapy in R/R

T-ALL showed that 6/13 patients achieved a morphological

remission.81 We suggest that Venetoclax should be a priority

for incorporation in upcoming clinical trials, for instance in

patients with high risk MRD at end of induction, or those

with relapsed/refractory disease.

Navitoclax binds preferentially to BCL-XL, with less

potent activity against BCL-2.82 Its initial promise in CLL

was limited by thrombocytopaenia,83 as platelet survival

requires normal function of BCL-XL. Despite this, it war-

rants testing in relapsed/refractory cortical and post-cortical

T-ALL, where intrinsic mitochondrial chemoresistance is

often the major barrier to achieving remission, although

thrombocytopenia will need to be cautiously managed.

Recent early phase trials of combination Venetoclax and

Navitoclax are promising: In a small, heavily pre-treated

patient cohort 50% of the T-ALL patients achieved CR/CRi

(EHA 2020 S116). MCL1 is also an important target, since

it has been associated with steroid resistance and poor out-

come in T-ALL, directly upregulated by a recently discov-

ered T-ALL oncogene called JDP2.84 Direct MCL1 inhibitors

such as S63845 have shown pre-clinical efficacy in T-ALL

and are in early phase trials.85 Alternative strategies that

downregulate MCL1 expression, such as the CDK9 inhibitor

AZD4573, also offer exciting new therapeutic opportunities

across diverse haematological cancers.86

Several mechanisms of acquired resistance to Venetoclax

have been described, including mutations of the drug bind-

ing site, deletions/mutations of BIM/BAX, and upregulation

of BCL-XL and MCL1.87 There is thus considerable interest

in using Venetoclax in combination with Navitoclax, or

MCL1 inhibitors, though how such combinations will be tol-

erated in terms of toxicity will need to be carefully assessed.

Fig 3. Schematic of anti-apoptotic dependencies in T-ALL according to level of differentiation arrest. ETP-ALL arrested early in T-cell develop-

ment are highly dependent on BCL2, with increasing dependency on BCL-XL in T-ALLs that arrest Adapted from Chonghaile et al. (reference

79) in the cortical/post-cortical stages. This corresponds to vulnerability to Venetoclax and Navitoclax respectively. ETP – early T-cell progenitor;

ISP immature single progenitor; EDP early double positive; DP double positive; SP single positive T-cell.
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Tyrosine kinase inhibitors

Aberrant tyrosine kinase activation in T-ALL occurs when

chromosomal translocations involving the ABL1 oncogene

result in ligand independent activation of the ABL1 kinase.88

However, unlike chronic myeloid leukaemia (CML), the

Philadelphia chromosome has only occasionally been

reported in T-ALL. Instead the ABL1 oncogene is fused with

other partners, typically NUP214 leading to constitutively

active kinases.89 These fusion products are still amenable to

inhibition with tyrosine kinase inhibitors (TKIs), a class of

drug that has transformed the outcomes of CML and

Ph+ALL. NUP214-ABL1 T-ALL cells, found in the TLX1/3

subgroups, respond to treatment with Imatinib, Nilotinib

and Dasatinib.90 These results have been recapitulated in vivo

in a NUP214-ABL1 T-ALL xenograft when imatinib treat-

ment resulted in a reduction of leukaemic cell burden, where

the addition of Venetoclax further improved the response.91

Whilst ABL translocations only account for approximately

5% of T-ALL cases, functional drug testing has unexpectedly

revealed that up to 30% of T-ALL cases are susceptible to

the ABL/SRC family kinase inhibitor Dasatinib.92 No correla-

tion was noted between responsiveness and established

genetic lesions, including ABL translocations, leading the

authors to propose that Dasatinib was targeting SRC, rather

than ABL. This hypothesis was consistent with the lack of

activity shown by other canonical ABL family kinase inhibi-

tors, such as Imatinib, that do not affect SRC signalling. The

in vitro activity of Dasatinib was confirmed by in vivo testing

and supported by case reports of T-ALL responders to Dasa-

tinib.93 These findings are strengthened by those of another

group who used in silico drug screening to identify up-regu-

lation of the SRC family kinase LCK as a possible therapeutic

target in T-ALL and demonstrated preclinical efficacy of

Dasatinib.94 Recently published data suggests synergy

between Dasatinib and dexamethasone mediated via LCK.95

Overall, it is likely that TKIs will have significant clinical

activity in T-ALL, but their clinical use will remain limited

until the identification of validated biomarkers.

Cyclin dependent kinase inhibitors

Cyclin dependent kinases (CDKs) are a large family of

kinases with diverse roles, including acting as transcriptional

co-factors and controlling cell cycle progression. Clinically

meaningful inhibition of CDKs has proved technically chal-

lenging due to their integral role in normal cell survival and

difficulties in targeting specific kinase isoforms. However, a

Fig 4. Schematic of anti-apoptotic dependencies in T-ALL according to level of differentiation arrest. ETP-ALL arrested early in T-cell develop-

ment are highly dependent on BCL2, with increasing dependency on BCL-XL in T-ALLs that arrest Adapted from Chonghaile et. al. (reference

79) in the cortical/post-cortical stages. This corresponds to vulnerability to Venetoclax and Navitoclax respectively. ETP – early T-cell progenitor;

ISP immature single progenitor; EDP early double positive; DP double positive; SP single positive T-cell.

Review

6 ª 2021 The Authors. British Journal of Haematology published by British Society for Haematology and John Wiley & Sons Ltd.



series of more specific small molecule inhibitors have recently

emerged.

D cyclins are key cell cycle regulators that bind and activate

CDK4 and 6, leading to activation of the E2F transcription fac-

tors that facilitate cell-cycle progression. Cyclin D3 is dysregu-

lated in T-ALL and has been shown to be integral to NOTCH

driven leukaemogenesis;28 mice lacking cyclin D3 are resistant

to NOTCH-driven transformation to T-ALL.96 Furthermore,

in a mouse model of T-ALL driven by activating mutations of

NOTCH1, conditional ablation of cyclin D3 resulted in

marked disease regression, findings that were phenocopied by

exposure to the Cyclin D-CDK4/6 kinase inhibitor.97 Efficacy

of CDK4/6 inhibition has also been demonstrated in NOTCH1

wildtype T-ALL cell lines where an in vivo model showed syn-

ergism with steroids and mTOR inhibitors.98 Several CDK4/6

inhibitors are now in clinical trials and the challenge remains

to identify targetable interdependencies between specific CDK

isoforms and different mutational drivers in order to synergise

their anti-leukaemic properties. In this regard, it will be impor-

tant to assess whether the recently discovered recurrent muta-

tions of CCND3 are a biomarker for sensitivity to CDK4/6

inhibition.28

CDK7 is a key constituent of the cyclin-activating kinase

(CAK) complex, which acts to modulate the cell cycle by

interacting with the general transcription factor, TFIIH. The

CAK complex promotes transcription by activating RNA

polymerase II (RNAPII) via CDK7-dependent phosphoryla-

tion. The novel agent THZ1 can specifically and irreversibly

inhibit CDK7 by covalently binding to an amino acid located

outside its kinase domain,99 resulting in cell death in T-ALL

cell lines (Fig 5). Interestingly, the activity of this agent may

be associated with its preferential inhibition of super-en-

hancer driven oncogenes, such as the non-coding mutations

that drive TAL1, providing a potential in vivo therapeutic

window.99,100

CDK9 regulates transcriptional elongation and is of inter-

est as an anti-cancer target in a range of malignancies, partic-

ularly those dependent on MCL1 (Fig 5). Targeted inhibition

had initially been challenging due to homology of its ATP-

binding site with other CDKs, until the development of the

specific inhibitor AZD4573.86 An alternative PROteolysis

Targeting Chimeras (PROTAC) approach was recently devel-

oped where THAL-SNS-032 targeted CDK9 protein for pro-

teosomal degradation, inducing apoptosis in T-ALL cell lines

in vitro.101

Drugs in development

In this section we briefly explore further potential therapies

that may emerge from encouraging preclinical data.

The Hedgehog pathway is an evolutionarily conserved sig-

nalling cascade, however its aberrant activation also drives

tumour growth and chemoresistance. This pathway is acti-

vated in up to a fifth of T-ALL and is associated with induc-

tion of chemotherapy resistance.102 Inhibition of GLI1, a

Hedgehog pathway transcription factor, resulted in improved

survival in T-ALL PDX models and could offer a novel target

for high-risk T-ALL.103

Fig 5. CDK7 and CDK9 regulate oncogenes and are therapeutic targets in T-ALL. Green box: super-enhancers driving oncogenes can be desta-

bilised by inhibition of chromatin interacting proteins such as BRD4. Yellow box: The initiation of RNA polymerase II (RNApolII) mediated

oncogene transcription is facilitated by phosphorylation of the C terminal tail on serine 5 and 7 by CDK7 as part of the TFIIH complex, which

occurs both at enhancers and gene start sites. CDK7 can be inhibited by small molecules such as THZ1. Red box: Transcriptional elongation by

RNApolII is facilitated by phosphorylation of RNApolII on serine 2 by CDK9 as part of the PTEFb complex. CDK9 can be targeted for degrada-

tion by the novel agent THAL-SNS-032 or inhibited by CDK9 inhibitors such as AZD4573. CDK9 inhibition has been associated with marked

downregulation of MCL1 expression.
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Histone deacetylases (HDAC) play a role in the regulation

of chromatin structure and the HDAC inhibitors (HDACi)

Panobinostat, Vorinostat and Romidepsin are already in clin-

ical use in myeloma and lymphoma. The broad-acting

HDACi panobinostat shows particular efficacy in vivo T-ALL

models with improved survival seen in combination with

chemotherapy.104 Interestingly, there is a suggestion that the

efficacy of panobinostat over other HDACi relates to its epi-

genetic inhibition of the oncogene MYC.105

Exportin 1 (XPO1) (also known as CRM1) is a nuclear-

cytoplasmic exporter protein involved in the transport of

several proteins involved in cell cycle regulation. It is the

only transporter of key tumour suppressors including TP53

and is upregulated in several malignancies, including T-ALL.

Selinexor, a selective inhibitor of nuclear export (SINE)

compound, is a small molecule XPO1 antagonist and is

FDA-approved for myeloma. It has shown preclinical efficacy

in T-ALL, although toxicity reported from clinical trials may

prove problematic.106

Heat shock proteins act as molecular chaperones for a

variety of proteins with key roles in oncogenesis, including

the JAK pathway and another, closely related kinase pathway,

TYK2. TYK2 acts to upregulate BCL2 via STAT1107 and its

inhibition by the drug Luminespib/AUY922 triggers apopto-

sis in T-ALL in vitro. It appears that this effect is mediated

via a reduction in TYK2 and subsequent downregulation of

BCL2.108 Early clinical trials of Luminespib in a range of

malignancies have been undertaken and this could yet be an

additional therapy in T-ALL.

Approximately 75% of proteins currently have no tar-

getable domain. PROteolysis Targeting Chimeras (PROTACs)

circumvents this problem by degrading proteins instead of

inhibiting them, thus broadening the number of potential

targets. This approach may be particularly relevant to dis-

eases such as T-ALL where the majority of driver transloca-

tions involve oncogenic transcription factors.

Another technique looks to change the method of drug

delivery, using nanoparticles, enabling optimized drug dosing

and potentially combining chemotherapy with a targeted

ligand. This remains a broadly experimental area of leukaemic

treatment, however the success of CPX-351 (a liposomal for-

mulation of cytarabine and daunorubicin) in AML demon-

strates the potential of this expanding therapeutic area.

Immunotherapy

Immunotherapies are a group of therapeutics that harness

the immune system to specifically attack malignant cells.

Broadly they can be divided into treatments that: (i) amplify

a natural anti-tumour immune response (e.g. immune check-

point blockade); or (ii) synthetic immunotherapies (e.g.

monoclonal antibodies or chimeric antigen receptor T or NK

cells). There have been limited studies of immune checkpoint

blockade in ALL and the relatively low mutational burden

seen, particularly in paediatric ALL may limit the expression

of tumour specific neo-antigens, on which this strategy is

thought to rely. By contrast, synthetic immunotherapies are

having a major impact in the treatment of B-ALL with recent

clinical advances including the use of Rituximab, Ino-

tuzumab, Blinatumomab and durable responses to anti-

CD19 chimeric antigen receptor (CAR)-T cell therapy.109

All of these successful synthetic immunotherapies rely on

the presence of an antigen that is strongly expressed on all

leukaemic blasts, but with limited expression on normal tis-

sues. In the case of B cells, strong expression of specific B cell

markers such as CD19, CD20 and CD22 have provided good

immune targets. Furthermore, whilst normal B cells are also

attacked, B cell aplasia is clinically manageable and therefore

precision targeting of leukaemic B cells is not an absolute

requirement. By contrast, immunotargeting T-ALL has a

number of technical hurdles Fig 6. Firstly, antigen expression

is variable at different stages of T cell differentiation, and

thus there is not a single antigenic target that is likely to be

applicable to all T cell malignancies. Secondly, immune

destruction of normal T cells would result in a life-threaten-

ing immune deficiency disorder. Thirdly, harvesting of autol-

ogous T cells for CAR T cell generation risks contamination

by T-ALL blasts. Lastly, CAR T cells expressing the same

antigen they are targeting would lead to fratricide and T-cell

exhaustion. There is therefore limited clinical experience of

synthetic immunotherapies in T-ALL, but a number of

promising approaches are emerging.

Monoclonal antibodies

One of the most promising candidates in the short term is the

anti-CD30 drug immunoconjugate Brentuximab Vedotin,

which is licensed for use in classical Hodgkin lymphoma and

anaplastic large cell lymphoma. Preclinical studies have shown

that CD30 is expressed in 13/34 of T-ALL cases tested by flow

cytometry, but pre-clinical evidence for functional efficacy is

lacking.110 As some T-ALL cases, typically of the ETP sub-

group, express CD33, there is also the potential to use Gem-

tuzumab Ozogamicin in such cases, but clinical data for this

approach in T-ALL has not been reported. Another potential

surface target in T-ALL is the activation marker CD38, which

is highly expressed on T-ALL blasts and targetable by the

monoclonal antibody daratumumab. Pre-clinical efficacy of

Daratumumab in T-ALL has translated into clinical responses

in four post-allogeneic relapsed/refractory cases who achieved

MRD negativity, an encouraging set of results for such aggres-

sive disease111-113 and the Delphinus phase II clinical trial is

currently recruiting in the UK (NCT03384654).

The early lymphoid cytokine receptor and T-ALL onco-

gene IL7R is a potentially attractive immunotherapy target.

Recent work has preclinically explored a novel human mono-

clonal antibody targeting IL7R, showing evidence that bind-

ing inhibits signalling, functionally sensitises cells to

glucocorticoids and elicits natural killer (NK) cell mediated

cellular cytotoxicity in vitro, and potentially in vivo.

Review
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Furthermore, the antibody is internalised on binding, giving

a potential utility in chemo-immunotherapy.114 Whilst pro-

viding a platform for a number of promising approaches, the

potential for on- and off-target toxicities remain to be seen.

Chimeric antigen receptor cells

A number of CAR T or NK cell approaches have shown ben-

efit in pre-clinical studies, but there is no single antigenic

target that is expressed in all T-ALL cases. An anti-CD4 CAR

T cell has shown activity against a CD4+ T-ALL cell line in a

xenograft model and this approach circumvents CAR T cell

fratricide by sparing cytotoxic CD8+ effector cells.115 How-

ever, only a minority of T-ALL cases express CD4 and pro-

longed CD4 aplasia is likely to lead to life-threatening

infection.

An anti-CD3 CAR-NK cell line has shown activity against

a T-ALL cell line in a xenograft model.116 The use of a CD3

(A)

(B)

(A)

(B)

Fig 6. Potential immunotherapy approaches for T-ALL. (A) T-ALL specific neo-epitopes can be targeted by monoclonal antibodies (with or with-

out conjugated cytotoxic payloads) or used to target cellular cytotoxicity via T cell engagers (e.g. bi-specific T cell engagers (BiTE) or dual affinity

retargeting (DART)) or chimeric antigen T cells (CAR T); (B) targeting TRBC1 on TRBC1-expressing monoclonal T-ALL overcomes CAR T frat-

ricide and T cell immunodeficiency by affording the retention of a polyclonal T cell repertoire of TRBC2-expressing normal and CAR T cells.
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negative NK effector cell avoids any problem with CAR frat-

ricide. However, surface CD3 is a relatively mature T cell

marker that would not be expressed in all T-ALL cases and

this approach would again result in fatal T cell aplasia, albeit

depending on the persistence of NK activity. Similarly an

anti-CD5 CAR NK cell has been reported to show activity in

a xenograft model.117

Intriguing results have been presented from an anti-CD5

CAR T cell.118 CD5 is expressed on most normal T cells and

IgM secreting innate B1 B cells. In response to the anti-CD5

CAR T cell both normal and malignant T cells down-regulate

CD5, but normal T cells additionally up-regulate anti-apop-

totic proteins including BCL2 and PI-9 protecting themselves

from cell death. The result is ongoing anti-tumour activity,

with minimal CAR T fratricide. Importantly, these results

show that CAR T efficacy is not just limited to choice of

antigenic target, but also the susceptibility of the target cells

to the effector mechanisms of the CAR T cells. A potential

problem with this approach, however, is that chronic expo-

sure to the CD5 antigen may result in CAR T exhaustion.

Recent positive pre-clinical results have been achieved tar-

geting the CD1a antigen expressed in cortical T-ALL.119

However, CD1a+ T-ALL has a good prognosis, meaning

relapsed/refractory CD1a+ T-ALL is rare.120

One approach to avoid CAR T cell fratricide is to delete

the targeted antigen in the CAR T cells during CAR T cell

production. This has been successfully achieved in an anti-

CD7 CAR T cell that has its own CD7 loci disrupted by

CRISPR/Cas9 genome editing.121 Importantly, these CAR T

cells demonstrated both effective anti-tumour responses, but

also the ability to respond to viral peptides indicating that

some broader cellular immunity may be re-established from

the CAR T population itself. Another recently reported

strategy targeting CD7 involves a CD7 expression blocker

which results in the intracellular retention of CD7. Eight

patients treated with this approach had limited cytokine

release syndrome (CRS) (including no reported neurotoxic-

ity) and 50% remain cytokine release syndrome (CRS) MRD

negative (Zhang M et al, ASH 05/12/20).

An elegant approach has sought to exploit the mutual exclu-

sive expression of TRBC1 and TRBC2 at the TCRb b-constant
region, a process with similarities to B cell kappa/lambda

restriction.122 TRBC1 and TRBC2 differ by just four amino

acids. Normal T cells express one or other, but not both, while

clonal disorders such as T-ALL will express only one of the

antigens Fig 6. Generating a CAR T cell against TRBC1 cir-

cumvents both CAR T cell fratricide and T cell aplasia (killing

only 50% of polyclonal T-cells), while showing activity against

TRBC1+ T-ALL cell lines in a xenograft model. Early phase

clinical trials of this CAR T cell in T cell lymphoma are cur-

rently recruiting. It should be noted that high-risk ETP-ALL

cases that have arrested prior to TCRb rearrangement will not

express either isoform, with only approximately 25% of T-ALL

cases amenable to TRBC1 directed therapy.122

Considerations in multiply relapsed and
refractory patients ineligible for clinical trials

If possible, all relapsed/refractory patients should be entered

onto clinical trials (Table I). For refractory patients fit for

intensive therapy, our standard practice has been to attempt

re-induction with either Fludarabine-Cytarabine-Idarubicin

(FLA-Ida) or a Nelarabine containing regimen. However, for

patients ineligible for clinical trials who are fit for active treat-

ment, we would recommend considering the following possi-

bilities, although this assumes the ability to access the various

Table II. Potential drug treatments for consideration in relapsed/refractory T-ALL.

Drug Adjuvant treatment Appropriate patient cohort

Nelarabine Can be used as single agent

Combination with etoposide &

cyclophosphamide (NEC protocol)

Caution in patients with neuropathy

Venetoclax Vincristine/steroids/daunorubicin

azacytidine/decitabine

ETP-ALL

Navitoclax Vincristine/steroids/daunorubicin

Azacytidine/decitabine in combination with venetoclax

Non-ETP-ALL

Monitor for thrombocytopenia

Bortezomib Vincristine/steroids/daunorubicin/asparaginase Caution in patients with neuropathy

Patients fit for re-induction

FLT3 inhibitor Can be used as single agent FLT3 mutated (approx. 5% T-ALL)

Associated with ETP-ALL and CD117+

Ruxolitinib (or

other JAKi)

Dexamethasone (pre-clinical data suggesting synergy) IL7R or JAK activating mutations

Dasatinib Either as single agent or with chemotherapy combination No current validated biomarkers for patient selection.

LCK phosphorylation or in vitro drug

sensitivity testing may be of value

Daratumumab Vincristine/steroids/daunorubicin/asparaginase Appropriate antigen expression.

Clinical use currently unproven for brentuximab

and gemtuzumab
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agents on compassionate access schemes or through local/per-

sonal funding streams, accepting use of many of these agents is

outside licence, and usage should be assessed by a specialist

team on a case-by-case basis (Table II). Genetic and drug pro-

filing is likely to assist the best treatment approach.

Conclusion

Instigating novel therapies for T-ALL is challenging due to the

rarity of the disease, genetic heterogeneity and the toxicity

associated with ablating the T cell repertoire. Immunotherapy

has an increasing role in haematological cancers, with CAR T

cell trials beginning in T-lineage malignancies. However, CAR

T therapy requires expensive infrastructural support, both in

terms of production and delivery, and is unlikely to be avail-

able outside of select institutes in high-income countries.

Advances in our understanding of the genetics and epigenetics

of this disease have contributed to the novel uses of previously

well-described therapies, as well as the advent of new drugs.

Targeting synthetic lethal pathways, such as recently described

for CHK1 inhibition in EZH2 deficient T-ALL, offers the

opportunity to spare normal tissues and reduce toxicity.123

Personalised medicine has already been demonstrated to iden-

tify new therapeutic targets in cancer, including T-ALL, and

we strongly believe that this approach will transform the out-

look for this disease.124 We propose a combination of geno-

mics and drug profiling may enable the most appropriate

treatment to be selected. However, such an approach is not

without its difficulties, given the cost and requirement for

rapid results, especially in a disease as aggressive as T-ALL.

The paucity of validated biomarkers means there is no quick

answer for the best treatment for an individual and for the

moment such approaches are only feasibly delivered by large

research centres. Lastly, given the rarity of the disease, multi-

national collaborative trials will be required to make meaning-

ful progress in the relapsed/refractory setting.
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