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ABSTRACT Evolutionary theory predicts that genetic constraints should be widespread, but empirical support for their existence is
surprisingly rare. Commonly applied univariate and bivariate approaches to detecting genetic constraints can underestimate their
prevalence, with important aspects potentially tractable only within a multivariate framework. However, multivariate genetic analyses
of data from natural populations are challenging because of modest sample sizes, incomplete pedigrees, and missing data. Here we
present results from a study of a comprehensive set of life history traits (juvenile survival, age at first breeding, annual fecundity, and
longevity) for both males and females in a wild, pedigreed, population of red deer (Cervus elaphus). We use factor analytic modeling of
the genetic variance–covariance matrix (G) to reduce the dimensionality of the problem and take a multivariate approach to estimating
genetic constraints. We consider a range of metrics designed to assess the effect of G on the deflection of a predicted response to
selection away from the direction of fastest adaptation and on the evolvability of the traits. We found limited support for genetic
constraint through genetic covariances between traits, both within sex and between sexes. We discuss these results with respect to
other recent findings and to the problems of estimating these parameters for natural populations.

EVOLUTIONARY theory predicts low equilibrium genetic
variation for fitness and fitness-related traits, because

alleles that have negative effects on fitness should have been
removed by selection, whereas those with positive effects
should have reached fixation (Fisher 1958; Falconer 1981;
Charlesworth 1987). The observation of strong selection on,
and yet the persistence of genetic variation in, fitness-
related traits when examined in isolation has led to the exten-
sion of this theory to multiple traits and the expectation of
multivariate genetic constraints (Walsh and Blows 2009),

where the majority of genetic variation segregating within
a population should be the result of genes that have opposing
effects on fitness through their effects on different traits (Fal-
coner 1981; Lande 1982; Houle 1991; Roff 1996). Extension
of theory to multiple traits has led to the prediction that, at
equilibrium, further evolutionary change in traits under strong
selection should be constrained or prohibited by genetic trade-
offs—effectively, a lack of genetic variation in the direction of
selection (Blows and Walsh 2009). However, despite their in-
tuitive theoretical appeal, empirical support for these concepts
is surprisingly scarce (Walsh and Blows 2009), especially for
wild populations experiencing natural environments (Kruuk
et al. 2008). Here, we use a multivariate framework to explore
the role of genetic associations between life history traits in
a wild population of red deer (Cervus elaphus) on the Isle of
Rum, Northwest Scotland, and to consider in particular the
relationship between traits expressed in either sex.

By far the most common approach to studying genetic
trade-offs and genetic constraints is to estimate the bivariate

Copyright © 2014 Walling et al.
doi: 10.1534/genetics.114.164319
Manuscript received March 19, 2014; accepted for publication September 26, 2014;
published Early Online October 2, 2014.
This is an open-access article distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original author and source are credited.
Supporting information is available online at http://www.genetics.org/lookup/suppl/
doi:10.1534/genetics.114.164319/-/DC1.
1Corresponding author: Institute of Evolutionary Biology, Ashworth Laboratories, King’s
Bldgs., Edinburgh, EH9 3JT, United Kingdom. E-mail: craig.walling@ed.ac.uk

Genetics, Vol. 198, 1735–1749 December 2014 1735

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/426871275?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.164319/-/DC1
http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.164319/-/DC1
mailto:craig.walling@ed.ac.uk


genetic correlation between two traits (Blows and Hoffmann
2005; Walsh and Blows 2009). In particular, there has been
a focus on the search for genetic correlations approaching
21 (or +1 if traits are selected in opposite directions) as
these would represent an absolute constraint to bivariate
trait evolution. However, given the inherently multivariate
nature of selection and phenotypic variation, the focus on
bivariate correlations may give a misleading impression of
the extent of genetic constraints and in particular may lead to
an underestimate of their importance (Dickerson 1955; Pease
and Bull 1988). Indeed a mixture of positive and negative
genetic correlations of intermediate magnitude can still result
in limited or no genetic variation in the direction of selection
when considering more than two traits (Walsh and Blows
2009). The focus on bivariate genetic correlations also ignores
the importance of genetic variances as a potential source of
genetic constraint (Agrawal and Stinchcombe 2009; Mcguigan
and Blows 2010). Ultimately the degree to which multiple
traits respond to selection is determined both by the distribu-
tion of genetic variances across those traits and by the genetic
covariances among them, which jointly determine the amount
of genetic variation that exists in the direction of selection
(Lande 1979; Blows 2007). As such, it has been suggested that
bivariate correlations are a poor indicator of genetic constraint
and a more multivariate approach has been advocated
(Dickerson 1955; Pease and Bull 1988; Walsh and Blows
2009; Houle et al. 2011).

As well as focusing on bivariate genetic correlations, the
majority of previous studies have also focused on genetic
correlations among traits expressed in the same sex as
a potential cause of constraint (Roff 1996; Kruuk et al. 2008;
Poissant et al. 2010). However, between-sex genetic corre-
lations may also be important. For example, it has been
hypothesized that because males and females often differ
greatly in their reproductive roles and thus selective optima
for different traits (Cox and Calsbeek 2009) and yet share
the majority of their genome, there is the potential for sex-
ually antagonistic genetic variation to exist, whereby genes
that are beneficial to one sex are detrimental to the other
(Lande 1980; Rice 1984; Bonduriansky and Chenoweth
2009). Evidence in support of sexually antagonistic genetic
variation is accumulating from both laboratory (Chippindale
et al. 2001; Fedorka and Mousseau 2004; Lewis et al. 2011)
and natural populations (Brommer et al. 2007; Foerster
et al. 2007; Mainguy et al. 2009; Cox and Calsbeek 2010).

Our aim in this study was to use multivariate techniques to
assess the potential for genetic constraints to the evolution of
four life history traits in a wild population of red deer
(C. elaphus) on the Isle of Rum, Scotland. Previous studies
in this population have shown genetic variation for numerous
traits (Kruuk et al. 2000; Wilson et al. 2007; Nussey et al.
2008; Clements et al. 2011) and also, in line with theoretical
predictions, that the heritability of traits decreases with increas-
ing association with fitness [i.e., increasing strength of selection
(Kruuk et al. 2000)]. Life history traits in the Rum red deer
population have lower heritabilities than morphological traits,

but this is largely due to an increase in environmental variance
for these traits (Kruuk et al. 2000). There is also evidence of
sexually antagonistic genetic variation in the population
(Foerster et al. 2007), with negative genetic correlations
between estimates of male and female fitness, but the
strength of this evidence differs slightly, depending on the
measure of fitness used (see Foerster et al. 2007 and the as-
sociated supplementary information). More recently, Morrissey
et al. (2012b) used a multivariate method proposed by
Agrawal and Stinchcombe (2009) to provide evidence for
genetic constraint through antagonistic correlations between
female adult survival and female reproductive traits.

Here we extend the multivariate analysis of genetic con-
straint in the Rum red deer population to include both
males and females and to study the effect of both genetic
variances and within- and between-sex genetic covariances in
generating constraint. We consider four life history traits,
which together form a comprehensive set of all life history
traits that determine individual fitness: survival to breeding
age, age at first reproduction, longevity, and annual re-
productive success. Our aims were split into two parts: (1) to
quantify the genetic variance–covariance matrix (G) for
females, males, and both sexes, with particular focus on char-
acterizing the major multivariate axes of variation; and (2) to
assess the degree of constraint imposed by the structure of G
relative to the direction of selection using, first, estimates of
the angle between the vector of selection and the vector of
the predicted response (Smith and Rausher 2008) (“deflec-
tion” of the predicted response, u) and, second, the length
that the vector of the predicted response travels in the di-
rection of selection [“evolvability,” e(b) (Hansen and Houle
2008)]. Part 2 necessarily involves characterization of the
phenotypic process of selection on the different life history
traits, which we undertake using a regression-based approach
to estimate selection gradients. Although such estimates may
not lead to robust predictions of evolutionary responses in
situations when other, excluded, traits contribute to associa-
tions between trait and fitness (Rausher 1992; Morrissey
et al. 2010), in an analysis of selection of complete life histo-
ries, all pathways by which effects of multivariate phenotype
influence fitness are represented, because life history com-
pletely determines fitness. Thus there is by definition no un-
accounted-for trait–fitness covariance in an analysis of
complete life histories (we return to this point in the Discus-
sion). Here, in particular, we assess estimates of deflection (u)
and evolvability [e(b)] when genetic covariances are fixed to
zero vs. not zero, to assess the importance of genetic variance
vs. covariances in generating any constraint.

Materials and Methods

General information

Study population: We used individual life history informa-
tion from red deer born between 1971 and 2007 in the study
population in the North Block of the Isle of Rum, Inner
Hebrides, Scotland (57� 039 N, 06� 219 W) (Clutton-Brock
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1982). Individuals are recognizable from natural markings or
artificial tags and data on life history traits are collected in
weekly censuses conducted throughout the year and more
intensive daily surveys during calving (May to July, when
�50% of females give birth to a single calf) and mating (Sep-
tember to November) seasons (for details on data collection
see Clutton-Brock 1982; Kruuk et al. 2002). Since 1982,
�70% of calves have been caught soon after birth and artifi-
cially marked and an ear punch taken for genetic analysis.
Other individuals have been sampled postmortem, from cast
antlers, or by immobilization. All sampled individuals are gen-
otyped at up to 15 microsatellite loci (Walling et al. 2010).

Pedigree determination: Maternity was assigned with
certainty based on observed associations between mothers
and calves (Pemberton et al. 1988; Walling et al. 2010).
Paternity was inferred from a combination of phenotypic
and behavioral data (male age and the length of time a male
held a female in his harem during her estrus window) and
genetic data, using the paternity inference programs Master-
Bayes (Hadfield et al. 2006) and COLONY2 (Wang 2004;
Wang and Santure 2009). Individual paternity assignments
were accepted when their individual-level confidence was
$80% (giving an average confidence in assignments of
.98%). For paternal links, “dummy” sires were created to
represent half-sibships between groups of offspring identi-
fied by COLONY to have a common (unsampled) father. For
full details on paternity inference see Walling et al. (2010).

Life history traits studied: We analyzed within- and
between-sex variances and covariances in four life history
traits that represent the major components of fitness in this
population, measured separately in each sex to give a total
of eight traits. The traits were as follows:

Survival to breeding age (SBA): Defined as 0 for all animals
known to have died before and 1 for all animals known to
have survived to May 1 in the year in which they reached
the age of 3 years. Individuals whose fate was unknown
or who died as a result of being shot outside the study
area were removed from all analyses, resulting in a sam-
ple size of 1126 females (born to 462 mothers) and 1114
males (born to 437 mothers).

Age at first reproduction (AFR): The age in years at which
a female first produced a calf or at which a male was first
assigned paternity (N = 519 females and 149 males;
many more males than females fail to breed). Because
first breeding at an early age necessarily has a positive
direct effect on fitness, AFR was multiplied by 21 in all
multivariate analyses so that trade-offs would be repre-
sented by negative covariances and correlations.

Adult longevity (L): For both sexes, the age in years at death for
individuals that survived to at least 3 years of age (i.e.,
SBA = 1). Individuals that emigrated from the study area
and thus for whom age at death was unknown were re-
moved from the data set, as were individuals that died as
a result of being shot outside the study area (121 females

and 172 males in total). For both sexes, data were limited to
individuals that were born before 1995 because for cohorts
born from 1995 onward,80% of individuals were dead. This
resulted in longevity values for 338 females and 245 males.

Annual breeding success (ABS): Defined as a repeated mea-
sure for all adults of breeding age. Females received a 0/1
score, with 1 representing years in which they produced
a calf and 0 for years in which they did not. Females were
included only if they were $3 years old and survived to
at least 6 years of age; for each female ABS was recorded
for each year until her death (or until 2008 if still living),
so that several possible breeding attempts were included.
This gave 3859 records from 439 individual females. For
males, ABS was defined as the number of calves to which
a male was assigned paternity for any given year in which
males were $3 years old during the mating season (rut)
and also were seen in the study area during the rut.
Males were assigned an ABS score of 0 for a given year
if they were seen in the study area during the correspond-
ing rut, but not assigned paternity of any calves born the
following year. Calves born in calendar year x are sired in
the rut of calendar year x 2 1. Thus male ABS is assigned
to the year in which the calves were born rather than
sired so that estimates of year-to-year variation in ABS
in either sex correspond to the same calves. Paternity was
assigned as described above and gave a total of 2004
records of ABS from 570 individual males.

For analyses of selection on these traits (see below), we also
required estimates of individuals’ lifetime breeding success, de-
fined as the total number of offspring produced across a lifetime,
restricted to individuals known to have died a natural death.

To prevent differences in scale causing particular life
history traits to dominate loadings in the factor analytic
models described below, all traits were standardized to unit
phenotypic variance by dividing by their standard deviation.
In addition, AFR and male ABS were square-root transformed
prior to standardization to better approximate normality.

A total of 1188 females were measured for at least one of
the four life history traits under consideration in this study.
The informative pedigree for these traits consisted of 1327
maternal links (including mothers that lacked phenotypic
information but were informative for relatedness) and 893
paternal links. For males a total of 1369 individuals were
measured for at least one trait and the informative pedigree
consisted of 1586 maternal links and 1077 paternal links (of
which 141 were dummy sires). When combining data on both
sexes, 2557 individuals were scored for at least one trait, with
the informative pedigree consisting of 2368 maternal links
and 1573 paternal links. For all analyses, the pedigree had
a maximum depth of eight generations with a mode of three
generations of information for each individual.

Part 1: Variance decomposition: Estimating G

Univariate analysis: For each trait, variance components
and appropriate random effects structures were initially
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investigated using univariate animal models of the general
form

y ¼ mþ Xbþ Zuþ e; (1)

where y is a vector of phenotypic observations, m is the
mean, b is a vector of fixed effects, u is a vector of random
effects, X and Z are design matrices linking individual
records to the appropriate fixed and random effects, and e
is a vector of residual errors.

Animal models are a form of linear mixed-effect model
that use pedigree information to decompose phenotypic
variance into components due to additive genetic and other
effects (Henderson 1976; Kruuk 2004). The random effects
fitted (and thus variance components estimated) differed
between traits: additive genetic (VA), year of birth (VBY),
and residual (VR) effects were modeled for all traits; mater-
nal effects [VM—the influence of a mother’s phenotype on
that of her offspring, independent of additive genetic effects
(Kruuk and Hadfield 2007)] were modeled for early life traits
SBA and AFR; and permanent environment [VPE—constant
environmental influences on an individual’s phenotype across
repeated measures on that individual (Kruuk and Hadfield
2007)] and year of measure (VYR) effects for ABS were mod-
eled because of its repeated measures on individuals across
multiple years. Birth year and year of measurement were in-
cluded to test for between-cohort and between-year environ-
mental variation, respectively, such as that due to population
density and climate variables (Kruuk et al. 2002). The statis-
tical significance of random effects was tested by compar-
ing full models to models excluding specific random effects,
using likelihood-ratio tests, with twice the difference in log-
likelihood being x2 distributed with 1 d.f. for every additional
parameter fitted. Nonsignificant random effects, apart from
additive genetic effects, were removed from final models.
Fixed effects previously shown to be important in this system
were also included and are detailed in Supporting Information,
File S1.

Multivariate analysis

Phenotypic covariation: To estimate within-sex phenotypic
covariances among traits, we ran multivariate equivalents of
the models represented by Equation 1, where y now repre-
sents a matrix of phenotypic observations of all traits mea-
sured within each sex and m is a vector of means for each
phenotypic trait. SBA was not included in these models be-
cause only individuals that score 1 for SBA can have a pheno-
typic value for any other trait and thus the phenotypic
covariance between SBA and other traits is undefined. These
models contained fixed effects as described in File S1, but only
a single, individual-level, random effect defining individual-
level variance (VI, equivalent to individual repeatability) for
all traits. By fixing the residual variance for single-measures
traits (AFR and L) to zero, this model structure allows the
residual (after correcting for fixed effects) variance for these
traits to be represented by the individual-level variance,
allowing estimation of the phenotypic covariance between

AFR, L, and the individual-level repeatability of ABS (Morrissey
et al. 2012a). This does not imply that we can estimate the
repeatable component of variation for traits (AFR and L) that
are measured only once; rather, the model structure allows
estimation of the biologically interesting phenotypic relation-
ship between AFR, L, and the repeatable component of ABS,
which is the phenotypic covariance between these traits
(Morrissey et al. 2012a). Between-sex phenotypic covariances
are undefined and thus set to zero, as no sex ever expresses
the phenotype of the opposite sex.

Genetic (co)variation: We estimated G matrices for females
(Gf) and males (Gm) separately and then for both sexes
together (Gbs). To do this, we again ran full multivariate
equivalents of the model represented in Equation 1 for each
sex and then both sexes combined, but this time included
the additive genetic and all significant random effects iden-
tified in the univariate models (above). Covariances were
estimated between all variance components where they
were definable. As in models of phenotypic covariances, re-
sidual variances for singly measured traits (AFR and L) were
fixed to zero, allowing estimation of the covariance between
residual and nongenetic permanent environment variances
of single- and repeated-measures traits, respectively. Nonge-
netic random effects were modeled as variance-correlation
matrices with correlations constrained to be positive definite
(i.e., bounded by 61) as these proved more stable and gave
parameter estimates that were within the realms of possibil-
ity (Gilmour et al. 2009). The significance of correlations
was assessed using likelihood-ratio tests as above, compar-
ing models where correlations were estimated to those where
the correlation was fixed at 0.

To overcome issues associated with the large number of
parameters to be estimated in a multivariate G matrix (see
File S1) we used factor analytic modeling (factor analysis,
FA) techniques (Wright 1932). We discuss these methods in
detail in File S1, but give a brief overview here. We first
constructed sex-specific models of the four life history traits
in either sex and then considered both sexes together. Spe-
cifically we modeled the genetic variance–covariance matrix
(G) as a product of a number m of independent linear com-
binations of the original (p) traits,

Ĝ¼LLT; (2)

where Ĝ is a (potentially reduced-rank) estimate of G, L is
a lower triangle matrix of constants that represent loadings
of each trait on each factor, and T is the transpose of a matrix.
FA can be performed in ASReml (Thompson et al. 2003;
Gilmour et al. 2009) and the significance of additional fac-
tors can be assessed by comparing the log-likelihoods of
models with sequentially more (or fewer) factors. Twice
the difference between the log-likelihoods of successive
models was assumed to be chi-square distributed with d.f.
equal to the change in d.f. between models in statistical
hypothesis tests. A full-rank FA model, with L representing
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a lower triangle of a matrix of dimension equal to the num-
ber of traits (for Equation 2), provides a multivariate esti-
mate of G, with identical values and associated likelihood to
an unconstrained estimate.

Although FA has been used to assess the rank of G (e.g.,
Mezey and Houle 2005; Hine and Blows 2006), doing so may
result in an underestimate of the rank of G (Hill and Thompson
1978; Meyer and Kirkpatrick 2008; see File S1 for more
details). Here, we took an alternative approach of “building
up” an FA model, adding additional factors until either G was
full rank {rank L = p [four (within-sex models) or eight
(both-sex models) in this case]} or it was not possible to
add additional factors to a model (due to failure of conver-
gence). FA modeling allows estimation of Ĝ (i.e., LLT) that
contains the maximum possible variance estimable given the
data and thus provides the best possible estimate of G with
which to subsequently assess its potential to generate evolu-
tionary constraint (see below). Because the leading factors to
be estimated are those that contain the most variance, any
unestimable factors in our analysis should explain consider-
ably less variance than those that have already been estimated
and would thus contribute much less to a predicted response
to selection than those that are included.

Part 2: Assessing the potential for genetic constraint
to evolution

The majority of methods for estimating multivariate genetic
constraint center around Lande’s (1979) formulation of the
multivariate breeders’ equation

Dz ¼ Gb; (3)

where Dz is a vector of predicted changes in trait means
over a single generation, G is the multivariate genetic vari-
ance–covariance matrix, and b is the vector of directional
selection gradients (Lande 1979; Lande and Arnold 1983).
When considering traits expressed in each sex, this becomes

Dz ¼ 1
2

�
Gf B
BT Gm

��
bf
bm

�
(4)

(Lande 1980), where Gf is the additive genetic (co)variance
matrix for females, Gm is the additive genetic (co)variance
matrix for males, B is the genetic covariance matrix between
the sexes, T is the transpose of a matrix, bm is the vector of
selection gradients for male traits, and bf is the vector of
selection gradients for female traits (Lande 1980). The fac-
tor 1/2 is required because male and female parents make
equal autosomal contributions to the offspring of both sexes.
Equation 4 demonstrates that the predicted response to se-
lection (Dz) is scaled and deflected away from the direction
of maximal adaptation (i.e., the direction in which popula-
tion mean fitness increases most rapidly as a function of
phenotype), as defined by the vector of selection gradients
(b), by G. The degree of genetic constraint can therefore be
summarized by comparing the vector of the predicted re-
sponse to selection (Dz) to the vector of selection itself

(b). Comparison of vectors can be done in two related ways
(details below); doing so first required calculation of selec-
tion gradients for the traits under study.

Calculating selection gradients (b)

We initially calculated selection differentials (S) for all traits
in this study from the covariance between the trait and rela-
tive fitness (Lande and Arnold 1983). Traits were standard-
ized as for genetic analyses and the same fixed-effects
structures were fitted to the regression models as to the an-
imal models above. Because individuals have to survive to
breeding age (i.e., score SBA = 1) to score for all other traits
(AFR, L, and ABS), we analyzed selection as a two-step pro-
cess, analyzing selection on SBA separately from selection on
AFR, L, and ABS. Relative fitness for selection on SBA was
defined as the ratio of lifetime breeding success (the total
number of offspring produced) of an individual to the sex-
specific population mean lifetime breeding success of individ-
uals with known SBA. Relative fitness for selection on all
other traits (AFR, L, and ABS) was defined as the ratio of
lifetime breeding success of an individual to the sex-specific
population mean lifetime breeding success of individuals that
survived to breeding age (i.e., had an SBA score of 1) and had
a known phenotype for at least one of AFR, L, and ABS.

To calculate S for each trait, bivariate models of the form
in Equation 1 were fitted with both relative fitness and the
trait of interest (i.e., female SBA, male SBA, female AFR,
etc.) as dependent variables. For the single-measures traits
(SBA, AFR, and L), no random effects (other than residual)
were fitted and the selection differentials were estimated as
the phenotypic covariance between the standardized trait
and relative fitness. For the repeated-measures trait ABS,
the relationship with fitness was calculated by fitting a bi-
variate model of ABS and fitness with an individual-level
term for both traits, similar to the models used above. The
residual variance for fitness was then fixed at zero, forcing
the residual variance for fitness to be represented by the
individual-level term and thus allowing the estimation of
the phenotypic covariance between relative fitness and the
individual repeatability of ABS (similar to that above; see
also Morrissey et al. 2012a). Sample sizes for these models
were 757 for female SBA, 262 for female AFR, 278 for fe-
male L, 254 individuals with 2479 observations for female
ABS, 723 for male SBA, 81 for male AFR, 121 for male L,
and 127 individuals with 849 measures of ABS.

Sex-specific selection gradients (b) were then calculated
from the equation

b ¼ P21S; (5)

where b is a vector of selection gradients, P is the pheno-
typic variance–covariance matrix for each sex (calculated as
above, Table S2), and S is a vector of selection differentials
(Lande and Arnold 1983). The phenotypic covariance be-
tween SBA and all other traits is undefined because only
individuals that score 1 for SBA can score for any other trait.
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Thus standardized selection gradients for SBA are equal to
the selection differential. Results from this approach are
similar to results removing SBA from all analyses (data
not shown), apart from the specific case of female evolv-
ability (see Discussion in File S1). We calculated three vec-
tors of selection gradients: a vector of selection gradients
on female traits (bf); a vector of selection gradients on
male traits (bm); and then, by combining bf and bm, a vec-
tor of selection gradients for both female and male traits
(bbs). Standard errors for S and P are estimated within
ASReml.

Metrics of constraint

Deflection (u), the angle between the predicted response to
selection (Dz) and the selection gradient (b): To assess the
strength of genetic constraints to evolution we calculated the
angle (u) between the vector of selection (b) and the predicted
response to selection (Dz) (Smith and Rausher 2008) as

u ¼ cos21

 
SðDzbÞffiffiffiffiffiffiffiffiffiffi
SDz

p ffiffiffiffiffiffiffi
Sb

p
!
180
p

: (6)

u provides an estimate of the degree to which G deflects
evolutionary trajectories away from the direction of selec-
tion and is thus a representation of the degree of genetic
constraint. The use of angles between vectors can be ex-
tended (Agrawal and Stinchcombe 2009) to assess the influ-
ence of genetic covariances on the response to selection by
calculating the predicted response to selection (Dznc) when
all covariances within G are set to zero (Gnc, where nc = no
covariances). Different angles can then be calculated to assess
the effect of various aspects of G on the predicted response to
selection (Dz), with larger angles suggesting an increase in
constraint. We calculated four angles for within- and both-sex
analyses: u1, the angle between b(f, m, or bs) and Dz (f, m, or bs),
the combined effect of unequal genetic variances and nonzero
covariances on deflection; u2, the angle between b(f, m, and bs)

and Dz (f, m, and bs)nc, the extent to which unequal variances
cause deflection; u3, the angle between Dz (f, m, or bs) and
Dz (f, m, and bs)nc, the effect of nonzero covariances on the
direction of the predicted response to selection; and u4, the
difference between u1 and u2 (u1 2 u2), the amount that
genetic covariances alter deflection (positive values indicate
covariances increase constraint).

For the both-sex analysis, we calculated three additional
angles: u5_bs, the angle between bbs and Dz when just the
between-sex covariances are set to zero (i.e., using Gnbs in
Equation 4 to calculate Dznbs, where nbs = no between-sex
covariances), which represents the combined effect of un-
equal genetic variances and within-sex covariances on de-
flection; u6_bs, the angle between Dzbs and Dznbs, the effect
of nonzero between-sex covariances on the direction of the
predicted response to selection; and u7_bs, the difference
between u1_bs and u5_bs (u1_bs 2 u5_bs), the amount that
between-sex covariances alter deflection (positive values in-
dicate increased constraint, see Table 2).

Evolvability e(b): Although u provides a good measure of
the degree to which Dz is deflected away from b by G, it
does not take into account any effect of G on the magnitude
of the responses. Thus another way of assessing constraint is
to calculate Hansen and Houle’s (2008) evolvability metric
[e(b)] (Figure 1) defined as

eðbÞ ¼ bTGb

jbj2 ; (7)

where b, G, and T are as defined above and || is the norm of
the vector.

Evolvability corresponds to the length of the projection of
Dz onto b and thus describes the length of the response in
the direction of selection (Figure 1) and is standardized by
the strength of selection (i.e., is given as a proportion of the
length (norm) of the vector of selection (|b|2 in Equation
7). It summarizes the effect of G on Dz in terms of both
deflecting Dz away from the direction of b and adjusting
the magnitude of the response. For comparison with evolv-
ability, a useful benchmark is the average evolvability (ē)
over random selection gradients, defined as

e ¼
P

ili
k

; (8)

where li are eigenvalues of G and the sum is over all k
eignevalues (Hansen and Houle 2008). This is equivalent
to the average additive genetic variance of the traits and
thus provides a measure of the evolutionary potential of G
independent of the strength and direction of selection (Hansen
and Houle 2008; Innocenti and Chenoweth 2013). Calculating
this average evolvability over random selection gradients for
females (ef), males (em), and both sexes (ebs) gives 0.111,
0.224, and 0.181, respectively.

As with deflection, we calculated a number of values of
evolvability. For female, male, and both-sex models, we
calculated the evolvability using G(f, m, and bs), where both
genetic variances and covariances were estimated [evolvabil-
ity e(bf), e(bm), and e(bbs)]. e(bf), e(bm), and e(bbs) provide
an estimate of the effect of both genetic variances and cova-
riances on evolvability. We also calculated evolvability fixing
genetic covariances to 0 [i.e., using G(f, m and bs)nc], providing
an estimate of the evolvability based on the genetic variances
alone [evolvability e(bf)nc, e(bm)nc, and e(bbs)nc]. e(bx) and
e(bx)nc can then be compared to provide an estimate of the
degree to which genetic covariances alter evolvability,

Re x ¼ eðbxÞ
eðbxÞnc

; (9)

where x = f, m, or bs (Morrissey et al. 2012b). Thus an Re_x
value ,1 suggests that genetic covariances reduce the pre-
dicted evolvability compared to the effect of genetic varian-
ces and increase constraint (Morrissey et al. 2012b).

For both-sex models we also calculated evolvability fixing
between sex covariances to zero [G(bs)nbs giving evolvability
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e(bbs)nbs]. e(bbs)nbs allowed calculation of two additional
values of Re: (1) Re_bs_nbs = e(bbs)/e(bbs)nbs and (2)
Re_bs_nbs.nc = e(bbs)nbs /e(bbs)nc. Re_bs_nbs compares evolv-
ability with and without between-sex genetic covariances
fixed to 0, with a value of less than one indicating that
between-sex genetic covariances reduce predicted evolvabil-
ity and thus increase the constraint. Re_bs_nbs.nc compares
evolvability with and without within-sex genetic covariances
fixed to 0, with a value of less than one indicating that
within-sex genetic covariances reduce the predicted evolv-
ability and thus increase constraint.

All models were run in ASReml version 3.0 (Gilmour
et al. 2009). The restricted maximum-likelihood procedures
used here assume that residuals are normally distributed,
having conditioned on the fixed and random effects struc-
tures, although they are likely to be fairly robust to depar-
tures from these assumptions (Lynch and Walsh 1998, p.
784). Even so, SBA and female ABS are binary traits. As
such, estimates of the heritability of these traits based on
observed data may be underestimates compared to esti-
mates based on an underlying liability scale (Lynch and
Walsh 1998; Roff 2001). However, because this underes-
timate of the variance also affects any estimate of the co-
variance, estimates of the genetic correlations should be
unbiased (Brotherstone et al. 1990; Lynch and Walsh 1998;
Roff 2001). Although methods exist that allow appropriate
error structures for each trait to be fitted (Hadfield 2010),
these methods do not currently allow FA models to be fitted
and so could not be used here. In addition, a generalized
model would generate estimates of (co)variance components
on a latent scale that would not readily be combined with
estimates of selection gradients to predict the response to
selection (Dz). As such, we present estimates from models as-
suming normally distributed residuals throughout. Simulation-
based credible intervals (see below) and the comparison of
vectors were performed in R version 2.12.0 (R Development
Core Team 2010).

Estimates of b and G have associated error and thus so do
values calculated from them [e.g., Dz, u, and e(b)]. Errors in
these estimates were approximated using an MC simulation
algorithm (see also Morrissey et al. 2012a). Briefly, we drew
100,000 multivariate random normal (MVN) values of S, P,
and G, using the maximum-likelihood estimates of these
parameters (from ASReml) as the mean and the variance
covariance matrices of these parameter estimates as the var-
iance (again these are given in ASReml). These 100,000
values were then combined as appropriate in Equations 5,
4, 6, 7, and 9 to produce 100,000 estimates of b, Dz, u, e(b),
and Re. The 95% credible interval (CI) around these values
was then calculated using the quantile function in R and used
as an estimate of the 95% credible interval around each pa-
rameter estimate. It should be noted that this method as-
sumes the sampling errors in the estimates of variances
and covariances are multivariate normal. For angles u1, u2, u3,
u5_bs, and u6_bs (which are all defined as angles between two
vectors) and for all values of evolvability, estimates cannot be
negative and thus interpreting a lack of overlap of the 95% CI
with zero as indicative of the value differing from zero is not
valid. As such, statistical hypothesis tests have limited mean-
ing and we therefore assessed statistical support for substan-
tially nonzero values by examining the distribution of MC
samples (see Figure 2, Figure 3, and Figure 4). In practice,
this involves visual inspection of the distributions of estimates
and, when the distribution is concentrated close to zero (i.e.,
is associated with left truncation and strong right skew),
drawing conclusions equivalent to those associated with fail-
ure to reject a null hypothesis.

Results

Part 1: Variance decomposition: Estimating G

Univariate analysis: There was evidence of significant addi-
tive genetic variance for all female life history traits apart from
female longevity and for male ABS but not other male life
history traits (Table S1). Nongenetic random effects followed
expected patterns with maternal and birth year effects being
significant only for early life history traits although not all early
life history traits in males (Table S1).

Multivariate analysis: Multivariate models of phenotypic
covariance within each sex indicated positive phenotypic
correlations among all traits (Table S2), with all but one
significantly greater than zero. In addition, all but one esti-
mable nongenetic covariances among traits were positive
(Table S3). Full-rank FA models of the genetic covariance
matrix (G) converged for females, but for males and both
sexes the maximal-rank models that would converge were 2
(of a maximum of 4) and 4 (of 8), respectively (Table S4).
Although statistical comparison provided support only for
lower-rank models for all G matrices (Table S4), we used
the highest-rank model that converged in all subsequent
analyses, for the reasons described in Materials and Methods

Figure 1 Two-dimensional illustration of deflection (u) and evolvability
[e(b)], the measures of constraint. u is the angle between the vector of
selection (b) and the predicted response to selection (Dz). Evolvability e(b)
is the length of the projection of Dz onto b, as a proportion of the length
of b (Equation 7), and represents the magnitude of the predicted re-
sponse to selection in the direction of selection; adapted from Hansen
and Houle (2008).
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and File S1. Genetic covariances between traits within and
between the sexes were a mix of positive and negative values,
although within-sex genetic covariances in males were all
positive (Table S3, Table S5, and Table S6). A principal com-
ponent analysis (PCA) of Gbs revealed a major axis of genetic
variation that loaded positively on all male traits and female
L, but negatively although weakly on female SBA, AFR, and
ABS (Table S7C). A similar pattern was apparent when ex-
amining the sexes separately: negative associations between
female longevity and the other female traits compared to
positive associations among all male traits (Table S7, A and B).

Part 2: Assessing the potential for genetic constraint
to evolution

All selection differentials and gradients were positive and
strong, as life history traits must be by definition (Table 1).
Given such strong positive selection, visual inspection of the
estimated genetic parameters (Table S3, Table S5, Table S6,
and Table S8) suggested an aspect of constraint for female
traits in the general pattern of negative genetic covariance
between survival and reproductive traits (Table S5 and
Table S8). In males, an overall pattern of facilitation of adap-
tive evolution dominated as estimated genetic covariances
were all positive (Table S6); however, it is unclear from the
multiple imprecise estimates alone whether such an inter-
pretation is really justified. Similarly, interpretation of the
multiple modest between-sex genetic correlations (Table
S3) is difficult from consideration of the estimates alone,
necessitating consideration of metrics that integrate over
the implications of all aspects of G and b.

Metrics of constraint

Angle of deflection (u) for females: u1_ f was small [17.6�,
less than midway between 0� (no constraint) and 90� (an
absolute constraint)], but appeared greater than zero (the
distribution is not highly concentrated near zero, Figure
2A), suggesting that unequal genetic variances and/or non-
zero genetic covariances deflected the direction of the pre-
dicted response to selection away from the direction of the
vector of selection, but by a small amount. u2_ f, the effect of
unequal genetic variances alone, was also small (12.6�, Ta-
ble 2, Figure 2B) but in this case the simulated distribution
was highly concentrated near zero, suggesting little evi-
dence that unequal genetic variances deflect Dz from b.
u3_ f, the effect of nonzero genetic covariances on the direc-
tion of the predicted response to selection, was 11.9� (Table
2) and distinct from zero (Figure 2C), suggesting genetic
covariances have a mild effect on the predicted response
to selection. Finally, u4_ f (the difference between u1_ f and
u2_ f) was merely 5.06� (Table 2, Figure 2D) and the 95%
credible interval overlapped zero.

Evolvability for females: The evolvability of female traits
when considering genetic variances and covariances [e(bf)]
was 0.0801 (Table 3, Figure 2E). The distribution of e(bf)
(Figure 2E) suggested this value was distinct from 0, but
not from the average evolvability (ef) of 0.111. The evolv-
ability of female traits due to genetic variances alone
[e(bf)nc] was 0.0753 (Table 3) and appeared distinct from
0, but not from ef (Figure 2F). Re_f, the ratio of e(bf)/e

Figure 2 The simulated distribution of estimates of u and e(b) for females. (A) u1_f; (B) u2_f; (C) u3_f; (D) u4_f; (E) e(bf); (F) e(bf)nc; (G) Re_f produced by
carrying through the errors in the estimation of Gf and bf. Values ,0 cannot exist except for u4_f, and thus the distributions are presented to aid in
interpretation of whether the simulated distributions are distinct from zero, i.e., have a normal distribution that is not highly concentrated near (ramped
up against) zero. Dashed lines show the position of the “best estimate”, i.e., the estimate when using the maximum-likelihood estimate of the
parameters of Gf and bf; this is the value given in Table 2 and Table 3. For E and F, solid lines show the position of the average evolvability over
random selection gradients (ē f); see Materials and Methods for details.
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(bf)nc, showed no evidence of differing from 1 (Re_f =
1.06; 95% CI = 0.63–1.53, Table 3, Figure 2G), implying
little effect of genetic covariances between female traits on
evolvability.

Angle of deflection (u) for males: u1_m was intermediate in
magnitude (52.2�, Table 2, Figure 3A) and its distribution
was distinct from zero (Figure 3A). The effect of unequal
genetic variances alone was similar in magnitude (u2_m =
49.6�, Table 2) and again appeared distinct from 0 (Figure
3B), suggesting significant deflection. The effect of genetic
covariances on the direction of Dzm (u3_m) was small (17.9�,
Table 2), but the simulated distribution (Figure 3C) sug-
gested this value was distinct from zero and thus that ge-
netic covariances altered the direction of the predicted
response to selection in males. There was no evidence of
genetic covariances increasing constraint: u4_m (the differ-
ence between u1_m and u2_m) was only 2.57� (95% CI =
213.8–31.2, Table 2, Figure 3D).

Evolvability for males: The evolvability of male traits when
considering genetic variances and covariances [e(bm)] was
0.0659 (Table 3) and appeared distinct from 0 but not quite
from em [Figure 3E, em = 0.224, upper 95% CI of e(bm) =
0.235]. The evolvability of male traits when considering
only genetic variances [e(bm)nc] was 0.0274 (Table 3) and
appeared distinct from 0 and also,em (Figure 3F). Re_m, the
ratio e(bm)/e(bm)nc, was significantly .1 (2.41; 95% CI =
1.18–2.97, Table 3, Figure 3G,), suggesting that genetic
covariances between male life history traits significantly in-
creased evolvability and thus facilitated the predicted evo-
lutionary response.

Angle of deflection (u) combining both sexes: Angles for
the both-sex analysis are presented in Table 2 and Figure 4,
A–G. The general pattern was one of the vector of the pre-
dicted response to selection being deflected away from the
vector of selection by a moderate amount [e.g., u1_bs = 34.9�
(Table 2), and u1_bs appeared distinct from zero (Figure
4A)], but that within- and between-sex genetic covariances
did not increase deflection and thus constraint (u4_bs =
2.54�; 95% CI = 28.91–27.5, Table 2, Figure 4D). Unequal
genetic variances alone caused deflection of intermediate
magnitude (u2_bs = 32.3�, Table 2, Figure 4B). Although
between-sex covariances appeared to alter the direction of
the predicted response to selection (u6_bs = 14.6�, Table 2,
Figure 4F), there was little evidence that between-sex cova-
riances increased constraint in terms of u (u7_bs = 27.80�,
Table 2, Figure 4G).

Evolvability combining both sexes: Predictions of evolv-
ability are presented in Table 3 and Figure 4, H–M. In
general, evolvability was .0, but lower than the average
evolvability over random selection gradients (ebs) (Figure
4, H, I, and K). However, there was no evidence that ge-
netic covariances caused a reduction in evolvability (i.e.,
increase in constraint). Instead, evolvability was higher
when including genetic covariances than when fixing them
to zero (Figure 4, J, L, and M; Re_bs_nc = 2.15, 95% CI =
1.11–2.75; Re_bs_nbs = 1.45, 95% CI = 0.883–1.79;
Re_bs_nbs.nc = 1.48, 95% CI = 0.981–1.86, although the
95% CIs of both Re_bs_nbs and Re_bs_nbs.nc overlapped 1;
see Table 3). Thus the positive effects of covariances on
evolvability appeared to be due to both between- and
within-sex covariances.

Figure 3 The simulated distribution of estimates of u and e(b) for males. (A) u1_m; (B) u2_m; (C) u3_m; (D) u4_m; (E) e(bm); (F) e(bm)nc; (G) Re_m. Values
,0 cannot exist except for u4_m. Dashed lines show the position of the “best estimate,” Solid lines show the position of the average evolvability over
random selection gradients (ēm); see Materials and Methods for details.
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Discussion

These results provide a detailed investigation of genetic
constraints to life history evolution in a wild population of
red deer. Studies that apply multiple measures of genetic
constraint, particularly measures of evolvability, to data from
a wild animal population are extremely rare. Teplitsky et al.
(2014) assess multivariate evolvability, and also the effect of
genetic correlations on the predicted rate of adaptation, in an
analysis of morphological traits in 10 different bird popula-
tions and found general nonalignment between selection and
genetic variance (see also Simonsen and Stinchcombe 2011
for a field study in plants and Morrissey et al. 2012b, but note
Morrissey et al. do not present explicit estimates of evolv-
ability). In contrast, in our analyses, although a substantial
proportion of the estimates of individual genetic covarian-
ces were negative (11/28; Table S3), in general we found
overall genetic constraints to be relatively mild and to re-
sult mainly from genetic variances rather than from genetic
covariances among traits. In particular, we found little evidence
that genetic covariances among traits in males or between
the sexes generate constraint; rather, genetic covariances
in males and between the sexes appear to facilitate the
predicted response to selection in terms of evolvability
and any constraint occurs primarily from the pattern of
genetic variances.

Measures of constraint

In general, the deflection of the predicted response to
selection away from the vector of selection (i.e., the direc-
tion of fastest adaptation) was small. This was particularly
true in females (u1_f and u2_f , 20�), while in the male and
both-sex models, deflection was of intermediate magnitude
(u1_m, u1_bs, u2_m, and u2_bs .30� but ,53�). In females the
small deflection and thus constraint that was evident ap-
peared to result from a combination of unequal genetic var-
iances and nonzero genetic covariances, since neither one
caused significant deflection alone. However, in males and
both-sex models, genetic covariances caused limited deflec-
tion, while unequal genetic variances caused significant
(albeit still not large) deflection and thus constraint.

Conclusions regarding the extent of constraint were
slightly different when considering evolvability. For female
and both-sex models, evolvability was similar to the average
evolvability, a baseline that indicates the evolutionary
potential of G independent of the direction of selection
relative to G (Hansen and Houle 2008; Innocenti and
Chenoweth 2013). Thus, the pattern of genetic variances and
covariances relative to the direction of selection does not
appear to greatly restrict the evolutionary potential of
females or both sexes combined in comparison to the evo-
lutionary potential of G [e(bf) was 72% of ef, e(bbs)nc was

Figure 4 The simulated distribution of estimates of u and e(b) for both-sex models. (A) u1_bs; (B) u2_bs; (C) u3_bs; (D) u4_bs; (E) u5_bs; (F) u6_bs; (G) u7_bs; (H)
e(bbs); (I) e(bbs)nc; (J) Re_bs_nc, the ratio e(bbs)/e(bbs)nc; (K) e(bbs)nbs; (L) Re_bs_nbs, the ratio e(bbs)/e(bbs)nbs; (M) Re_bs_nbs.nc, the ratio e(bbs)nbs/e(bbs)nc.
Values ,0 cannot exist except for u4_bs and u7_bs. Dashed lines show the position of the “best estimate.” Solid lines show the position of the average
evolvability over random selection gradients (ēbs); see Materials and Methods for details.
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67% of ebs]. However, for males, evolvability was low com-
pared to the average evolvability particularly when genetic
covariances were fixed to zero [e(bm) was 29% of em and
e(bm)nc was 12% of em]. This suggests constraint in the
pattern of genetic variances relative to the direction of
selection in males when compared to the evolutionary po-
tential of G. The effect of genetic covariances on the pre-
dicted evolvability differed slightly between female vs.
male and both-sex models. For females, genetic covarian-
ces had very little effect on the predicted evolvability, as
opposed to the slight increase in deflection and thus con-
straint as measured by deflection. In male and both-sex
models evolvability increased as a result of genetic cova-
riances and thus, while causing only a very slight increase
in evolvability in absolute terms [i.e., small changes in
e(b)], caused a large increase in evolvability in relative
terms (Re_m and Re_bs_nc estimates were .2). This suggests
that genetic covariances increased the predicted evolvabil-
ity when considering males and both sexes, by increasing
the magnitude of the predicted response in the direction of
maximally increasing fitness.

Comparison with other results from the Rum red
deer population

Detailed discussion of the comparison with previous results
from the Rum red deer population is given in File S1. How-
ever, it should be noted here that despite patterns of ge-
netic covariances between female traits being similar to
those of a previous study (Morrissey et al. 2012b), the
results presented in the present study provide weaker evi-
dence for genetic constraint than that in two previous studies
(Foerster et al. 2007; Morrissey et al. 2012b). These differ-
ences appear to be driven by the treatment of survival to
breeding age, pointing to parent–offspring patterns/processes
being a potential key area for future study of genetic con-
straints in this population (see File S1 for further discussion).

Comparison with results from other populations

Our results provide evidence for relatively modest genetic
constraint to evolution, particularly as a result of genetic
covariances between traits. Although rare, other estimates
of multivariate genetic constraint in the literature have
provided stronger evidence of constraint (Blows et al.
2004; Hine and Blows 2006; Smith and Rausher 2008;
Lewis et al. 2011; Simonsen and Stinchcombe 2011; Gosden
et al. 2012; Williams et al. 2012; Teplitsky et al. 2014).
The reason for the difference in the magnitude of con-
straint between our results and those of previous studies
is difficult to assess, given the multivariate nature of the
techniques. Previous studies have tended to focus on com-
binations of traits, among which one might predict strong
correlations. For example, a number of studies focus on
Drosophila cuticular hydrocarbons (Blows et al. 2004; Gosden
et al. 2012), many of which are built from the same
amino acids and thus might be expected to share biosyn-
thetic pathways (Blows et al. 2004); in their large-scale
analyses of 10 bird populations, Teplitsky et al. (2014) con-
sidered four different morphological traits, all of which were
positively correlated. Our study focuses on different compo-
nents of fitness that might not be expected to be functionally
related—at least not via immediate and simple biochemical
relationships. Having said this, Lewis et al. (2011) analyze
life history traits including development time and longevity
in the Indian meal moth and also find evidence of strong
constraint.

In addition, our results are from a wild rather than a
laboratory population. While very useful, laboratory stud-
ies necessarily deal with populations that are experienc-
ing selection pressures that are not “natural” selection
and that they may have experienced for only a limited time
period compared to wild populations; alternatively, selection
pressures may have been very consistent compared to those
experienced in wild populations. Thus differences in the
patterns of selection between laboratory and natural popu-
lations may also contribute to differences in results. For
example, a recent study of diet preferences in a population
of Drosophila melanogaster that was not laboratory adapted
found weak evidence for multivariate constraint (Reddiex
et al. 2013). Teplitsky et al.’s (2014) analysis suggests mul-
tivariate constraints to the evolution of morphological traits
in wild avian populations, but this appears to be due to
antagonistic selection on positively genetically correlated
traits. In one other study of a wild population, Coltman et al.
(2005) analyze covariation in life history traits in bighorn
sheep (Ovis canadensis) and find substantial angles between
b and the first three principal components of G: 117�, 73�,
and 103�. Applying the same technique to the results in our
study (PC1–3 in Table S7C compared to the vector of selec-
tion gradients in Table 1) gives angles of 76�, 68�, and 121�,
which would perhaps suggest a stronger genetic constraint.
However, when considering the effect of G on deflection and
evolvability, genetic constraint is less apparent. Our study

Table 1 Selection differentials (6SE) and selection gradients (95%
CI) for (standardized) male and female life history traits

Trait Selection differential (S) Selection gradient (b)

Female SBA 1.25 6 0.07 NA
Female AFR 0.186 6 0.037 0.137 (0.108, 0.167)
Female L 0.538 6 0.046 0.531 (0.505, 0.558)
Female ABS 0.140 6 0.022 0.0776 (0.0603, 0.0936)
Male SBA 1.71 6 0.13 NA
Male AFR 0.413 6 0.134 0.180 (20.042, 0.412)
Male L 0.708 6 0.134 0.498 (0.324, 0.672)
Male ABS 0.468 6 0.063 0.419 (0.306, 0.515)

Selection differentials and associated standard errors were calculated in ASReml;
selection gradients were calculated using the formula b ¼ P21S for either sex.
Because P was undefined between survival to breeding age (SBA) and all other
traits, only selection differentials for this trait could be estimated. P for age at first
reproduction (AFR), longevity (L), and annual breeding success (ABS) in both sexes is
presented in Table S2. As before, note that AFR is premultiplied by 21 such that
positive values indicate selection for earlier reproduction. Values in boldface type are
significantly greater than zero based on either log-likelihood ratio tests comparing
models with the parameter fixed to zero vs. estimated (selection differentials) or
whether or not the 95% credible interval overlaps zero (selection gradients).
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therefore illustrates the difference in conclusions that may
be drawn from alternative approaches to quantifying evolu-
tionary constraints and argues for a range of different metrics
to be explored (see, for example, Simonsen and Stinchcombe
2011). Given the overall paucity of data on this subject, and
the potential tendency for significant rather than nonsignifi-
cant evidence of constraint to be published earlier, it will be
interesting to see the patterns that emerge from future studies
in wild populations.

The results of our study suggest a lack of genetic
constraint to the evolution of life history traits in this
population and hence to the maintenance of genetic
variance in the direction of selection. As such, traits should
have the potential to respond rapidly to natural selec-
tion and yet a lack of response to natural selection is
commonly observed in wild populations (e.g., Kruuk et al.
2001; Merilä et al. 2001). Explaining the maintenance of
genetic variance for quantitative traits is a core area of
research in evolutionary biology and a number of potential
explanations, other than multivariate genetic constraint,
have been proposed (Via and Lande 1985; Gillespie and
Turelli 1989; Charlesworth and Hughes 2000; Johnson
and Barton 2005). Of particular relevance in natural pop-
ulations may be the presence of environmental variation
and thus the potential for genotype-by-environment inter-
actions and variable selection to maintain genetic varia-
tion (Gillespie and Turelli 1989; Charmantier and Garant
2005; Bell 2010; Morrissey and Hadfield 2012). Certainly
there is the potential for environmental variation both
temporally and spatially within the red deer population
studied here (Coulson et al. 1997; Stopher et al. 2012)
and thus for genotype-by-environment interactions and
variable selection to be important in the maintenance of
genetic variation for quantitative traits. Given the current

lack of data on microevolutionary parameters in natural
populations and how they vary with environment (but see,
for example, Charmantier and Garant 2005; Wilson et al.
2006; Robinson et al. 2009), further research into this area
would be of interest. However, it should be noted that
current evidence suggests patterns of directional selection
are remarkably stable across study systems, although this
pattern does not necessarily hold within any particular
population (Siepielski et al. 2009; Morrissey and Hadfield
2012).

Finally, it is worth clarifying here that multiple re-
gression-based selection analysis is expected to provide
robust inference when complete life history data are
analyzed. As we and others have discussed in the past,
multiple regression-based selection gradient estimates
may fail to represent the true direct effects of traits on
fitness when unmeasured variables cause trait–fitness co-
variance (Robertson 1966; Rausher 1992; Kruuk et al.
2003; Morrissey et al. 2010, 2012a). Two alternative strat-
egies are available to ensure that quantitative genetic pre-
dictions of evolutionary trajectories are robust. First, one
might seek to estimate the additive genetic covariances of
traits with relative fitness, which gives complete predic-
tion of evolutionary change (Robertson 1966; reviewed
in Morrissey et al. 2010). However, estimation of the ge-
netic covariance of traits with relative fitness, despite be-
ing an application of the “secondary theorem of selection”
(Robertson 1968), actually tells us very little about the
phenotypic process of selection—a trait that covaries ge-
netically with relative fitness may not itself be selected at
all (for example, the trait may not causally influence fitness
but may be genetically correlated with a trait that does;
discussed in Morrissey et al. 2010, 2012a; Morrissey 2014).
The second strategy is to include sufficient variables in

Table 2 Estimates of deflection (u) for females, males, and both sexes

Parameter Description Angle (�) 95% CI

Females
u1_f Angle between Dzf and bf, effect of unequal variances and nonzero within-sex covariances 17.6 9.46–50.8
u2_f Angle between Dzfnc and bf, effect of unequal variances 12.6 2.66–46.9
u3_f Angle between Dzf and Dzfnc, effect of within-sex covariances on the direction of the response to selection 11.9 5.36–41.6
u4_f u1 2 u2, effect of within-sex covariances on constrainta 5.06 24.36–33.2

Males
u1_m Angle between Dzm and bm, effect of unequal variances and nonzero within-sex covariances 52.2 26.2–72.9
u2_m Angle between Dzmnc and bm, effect of unequal variances 49.6 15.0–74.6
u3_m Angle between Dzm and Dzmnc, effect of within-sex covariances on the direction of the response to selection 17.9 8.17–53.0
u4_m u1 2 u2, effect of within-sex covariances on constrainta 2.57 213.8–31.2

Both sexes
u1_bs Angle between Dzbs and bbs, effect of unequal variances and nonzero within- and between-sex covariances 34.9 24.5–62.5
u2_bs Angle between Dzbsnc and bbs, effect of unequal variances 32.3 15.9–58.1
u3_bs Angle between Dzbs and Dzbsnc, effect of within- and between-sex covariances on the direction of the

response to selection
24.9 16.3–47.5

u4_bs u1 2 u2, effect of nonzero within- and between-sex covariances on constrainta 2.54 28.91–27.5
u5_bs Angle between Dznbs and bbs, effect of unequal variances and nonzero within-sex covariances 42.7 26.9–64.0
u6_bs Angle between Dzbs and Dznbs, effect of between-sex covariances on the direction of the response to

selection
14.6 8.43–33.3

u7_bs u1 – u5, effect of nonzero between-sex covariances on constrainta 27.80 213.0–9.73

Ninety-five percent credible intervals were calculated by simulation as described in Materials and Methods.
a Positive values suggest covariances increase constraint.

1746 C. A. Walling et al.



multiple-regression analyses to account for all trait–fitness co-
variance. These variables may, for example, be features of the
environment that ultimately cause trait–fitness covariance. Al-
ternatively, the included traits may not necessarily be those
that ultimately cause trait–fitness variation, but rather pheno-
typic traits by which the effects of the causal traits are medi-
ated. For example, if an environmental variable E causes
variation in survival S and reproduction R, regression of rela-
tive fitness w on S will give the wrong selection gradient for S.
However, analyses regressing either w on S and E or w on S
and R (even without the ultimate source of covariance, E) will
give correct selection gradient estimates for S and in the latter
case, the bonus of the correct selection gradient for R; in each
case correct refers to the value of the selection gradient that
provides the correct evolutionary predictions when used in the
Lande equation (this may be initially unintuitive; for a simple
demonstration, see R console procedure at end of paragraph).
Thus, while it is typically impossible to be sure that all relevant
traits are included, a comprehensive set of life history traits
(e.g., survival, age at first reproduction, annual reproduction,
in both sexes, as herein) is a special case where all pathways
mediating any effects of traits or environmental variables on
fitness are necessarily included, because life history completely
determines fitness; there are no missing traits, in the sense that
all effects of variables on fitness are mediated by life history.

Enter the following in an R console:
#simulate data according to hypothetical example in text,
true LH betas = 1
n,-10000; E,-rnorm(n,0,1); S,-1*E+rnorm(n,0,1); R,-1*E
+rnorm(n,0,1); w,-1*R+1*S+rnorm(n,1,1);
#missing variable problem
summary(lm(w�S))
#solution 1: include ultimate effects
summary(lm(w�S+E))
#solution 2: include mediating effects (complete life history)
summary(lm(w�S+R)).

Conclusions

This study attempts to quantify the multivariate genetic
constraint, considering both within- and between-sex ge-
netic (co)variation, in a wild population experiencing a
natural environment. Overall we found estimates of genetic
constraint were mild and that patterns of genetic variances
rather than genetic covariances were the main source of
genetic constraint. There was little support for the conten-
tion that between-sex genetic covariances caused constraint,
indicating that sexual antagonism may not be as strong as
previous results from this population suggested. Finally, the
degree of genetic constraint in this study was much lower
than in previous studies based predominantly on laboratory
populations. Given the lack of data on natural populations
and the difficulty of estimating these parameters in such
populations, we encourage further analysis of this type to
assess whether the apparently lower level of genetic con-
straint in natural populations is a general pattern.
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File S1 

Methods and Discussion 

Fixed effects: Fixed effects known to be important in this system were included in models 

of each of the different life history traits, as follows: 

 

For Survival to Breeding Age (SBA), we included linear and quadratic effects of the 

mother's age (Coulson et al. 2003), mother's population sub-area in the offspring's first 

two years of life (to account for variation in habitat quality between four different sub-

areas of the study site (Coulson et al. 1997)) and mother’s recent reproductive history 

(whether or not the female had given birth to a calf the previous year and whether it had 

survived its first year, five different levels; Naive (N), female had not bred previously; 

True yeld (TY), female had bred previously but did not breed in the previous year; 

Summer yeld (SY), female bred in the previous year but the calf died before 1 October; 

Winter yeld (WY), female bred in the previous year but the calf died between 1 October 

and 1 May; Milk (M), the female successfully reared a calf in the previous year, for details 

see (Clutton-Brock et al. 1983)).  

 

For Age at First Reproduction (AFR), in females we included an individual's mother's 

population sub-area in her first two years of life (to account for early life differences in 

habitat quality, four levels as for SBA). For males this fixed effect was not significant and 

was thus removed.  

 

For Longevity (L), we included a female's lifetime population sub-area as the area in 

which she spent most years of her life, whereas for males such information was not 

available for a large number of individuals and so no fixed effects were included.  
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Finally, for Annual Breeding Succcess (ABS), for females, we included the fixed effects 

of a female's age, its quadratic, and recent reproductive history as defined for SBA. For 

male ABS, age and its quadratic were fitted as fixed effects. 

  

Factor Analytic modelling: Estimating a multivariate G-matrix can be difficult because 

of the number of parameters to be estimated (Kirkpatrick and Meyer 2004; Meyer and 

Kirkpatrick 2005), a problem which may be exacerbated when using the incomplete 

pedigrees and modest sample sizes typical of data from natural populations. In an attempt 

to overcome these issues, we used factor analytic modeling techniques (FA) (Wright 1932; 

Thompson et al. 2003; Kirkpatrick and Meyer 2004; Meyer and Kirkpatrick 2005) to 

provide a (reduced rank) multivariate estimate of genetic variance-covariance matrixes, 

considering first either sex separately and then all eight traits across both sexes jointly. FA 

allows the estimation of the major independent axes of genetic variance in the traits, with 

each successive axis explaining decreasing variance in G allowing a "building-up" 

approach to modeling G: increasing numbers of genetic factors are fitted until either the 

fitting of additional factors is no longer possible or the model is "full rank" and contains as 

many genetic factors as traits (see below). By taking a FA approach we can estimate the 

maximal amount of variation in G possible given the constraints of the data. 

 

FA involves modeling the genetic variance-covariance matrix (G) as a product of a 

number m of independent linear combinations of the original (p) traits such that: 

Ψ+ΛΛ=G T
^

      (2) 

where 
^

G = a (potentially reduced-rank) estimate of G, Λ is a lower triangle matrix of 

constants that represent loadings of each trait on each factor, T is the transpose of a matrix 

and Ψ is a vector of specific variances (Meyer and Kirkpatrick 2008). Factor analysis 
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becomes similar to a principal components analysis (PCA) when Ψ are fixed to zero such 

that:  

T
^

ΛΛG        (3) 

Both forms of FA can be performed in ASReml (Thompson et al. 2003; Gilmour et al. 

2009) and the significance of additional factors can be assessed by comparing the log-

likelihoods of models with sequentially more (or fewer) factors. The number of degrees of 

freedom for each model is given by m(2p-m+1)/2 in which p and m are the number of 

traits and factors respectively. Significance is assessed from twice the difference between 

the log-likelihoods of successive models, assumed to be chi-squared distributed with 

degrees of freedom (df) equal to the change in df between models. A full rank FA model, 

with Λ representing a lower triangle of a matrix of dimension p (for equation (3)), is 

equivalent to a standard multivariate model of G. 

 

Although the majority of previous approaches using FA have focused on assessing the 

rank of G (e.g. Mezey and Houle 2005; Hine and Blows 2006; Mcguigan and Blows 2007; 

Schroderus et al. 2010), it has been demonstrated that sampling variance results in an 

underestimate of the contribution of the smallest and an overestimate of the contribution 

of the largest "factor" (or eigenvector), and thus an underestimate of the rank of G (Hill 

and Thompson 1978; Meyer and Kirkpatrick 2008); which is particularly apparent for 

traits with lower heritability (Hine and Blows 2006). We note also that the number of 

factors with statistical support will depend on the statistical power of the dataset, and thus 

that a smaller sample size is likely to result in a conclusion that G is of lower rank than 

with a larger sample size. To avoid these issues we took an alternative approach of 

"building-up" an FA model, adding additional factors until either G was full rank (rank Λ 

= p (four (within-sex models) or eight (both-sex models) in this case)) or models including 
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additional factors were not possible (due to failure of convergence). FA allows estimation 

of 
^

G  (i.e. ΛΛT) that contains the maximum possible variance estimable given the data and 

thus the best possible estimate of G to subsequently assess its potential to generate 

evolutionary constraint (see below). Because the leading factors to be estimated are those 

that contain the most variance, any unestimable factors in our analysis should explain 

considerably less variance than those that are estimable and should thus have a much 

smaller effect on the response to selection than those that are included. 

 

Standard genetic parameter estimates (variances and covariances of the traits) derived 

from FA models (using equation 3) do not have associated standard errors as the errors 

estimated are associated with the elements of the factors (i.e. elements of Λ) rather than 

the elements of the recovered 
^

G . A principal components analysis (PCA) of 
^

G  

(effectively G if analyses are full rank) allows presentation of the results of FA models in 

the more familiar format of eigenvalues and eigenvectors (Schroderus et al. 2010).  

 

To assess the informativeness of FA models, where possible we estimated the proportion 

of total genetic variation explained by different models. Assessing the proportion of 

genetic variation explained requires deciding on a "best estimate" of the total variance in 

the traits. Where full rank FA models can be estimated, this was simply the trace of the 

estimated G (i.e. the sum of the genetic variances). Where full rank FA models were not 

possible, we used the sum of the univariate estimates of the genetic variances. Thus for 

females the trace of the full rank estimate of Gf was used, whereas for males, where a full 

rank model of Gm would not converge (see below), the sum of the univariate estimates of 

the genetic variances was used. For Gbs we summed our "best estimates" of the variance in 

Gf and Gm. When covariance exists between traits, information about the variance in one 
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trait can be used to inform estimates of variance in other traits. As such, multivariate 

models may provide better estimates of the variance in a trait than univariate models and 

thus it is possible for even reduced rank FA models to explain more variance in G, and 

equally for full rank FA models to explain less variance in G, than the sum of the 

variances obtained from univariate models. 

 

DISCUSSION 

Comparison with other results from the Rum red deer population 

Three other studies have considered the role of genetic covariances between traits and the 

prevalence of evolutionary constraints in the Rum red deer study population (Foerster et 

al. 2007; Morrissey et al. 2012; Kruuk et al. 2014). The overall pattern of negative genetic 

covariances between female survival and reproductive traits is very similar to that of a 

previous study on the same population (Morrissey et al. 2012). However, there is a 

difference in the evolvability ratios of female traits between these two studies (Re = 0.63 

in (Morrissey et al. 2012) versus 1.06 here). Furthermore, the current study provides little 

evidence for genetic constraint acting through between sex genetic covariances, whilst a 

previous study (Foerster et al. 2007) reported a strong negative genetic correlation 

between an estimate of male and female fitness. One major difference between these two 

previous studies and the current study is in the treatment of early life survival. Here, early 

life survival is modelled as a trait of the individual and describes survival to three years of 

age, whereas both previous studies (Foerster et al. 2007; Morrissey et al. 2012) modelled 

early life survival only to one year of age and considered it as a trait of the mother. If this 

trait is removed from the current study, female Re values are remarkably similar to those 

of (Morrissey et al. 2012) (Re_f = 0.68 in this study (data not shown) vs. 0.63 in 

(Morrissey et al. 2012)) – an observation that illustrates the changes in conclusions that 
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may arise dependent on exactly which traits are included in an analysis, and exactly how 

those traits are defined. Ideally, early life survival would be modelled as a trait of the 

individual with maternal and maternal genetic effects included to allow the estimation of 

maternal and direct genetic effects and their genetic covariance. However, in the current 

multivariate analysis this was not possible due to the complexity of the models that would 

be required. The differences between these studies points to parent-offspring 

patterns/processes being a potential key area for future study of genetic constraints in this 

population. 

 

Finally, a multivariate study of sexual selection in relation to antler trait morphology in 

this population (Kruuk et al. 2014) found evidence of genetic variance underlying antler 

traits and also (as here) male annual breeding success, but – in a test of the potential for 

antler traits to respond to selection (Morrissey et al. 2010) – no evidence of genetic 

covariances between antler size or shape and the fitness measure. There was also a 

moderate discrepancy between the direction of maximum genetic variance (gmax) and that 

of the selection gradients, β, with a posterior mode of the angle between the two vectors of 

37.62° (95%CI 6.43,  62.34). Thus in relation to male fecundity selection for antler 

morphology, evolutionary constraints appear to be shaped by patterns of genetic 

covariances, rather than by the genetic variance of individual traits, but a similar pattern 

emerges of moderate rather than strong constraints.  
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Table S1  Estimates of variance components for female and male life history traits from univariate models. N = sample sizes (Obs = 
number of observations, indiv = number of individuals), SBA = survival to breeding age, AFR = age at first reproduction, ABS = annual 
breeding success and L = adult longevity. VA = additive genetic variation, VM = maternal variation, VPE = permanent environment variation, VBY 
= birth year variation, VYR = year of measurement variation and VR = residual variation. min - results from models with non-significant random 
effects removed. m2 and pe2 are the proportion of phenotypic variance explained by maternal and permanent environment effects respectively. 
All analyses are based on standard deviation standardised data (i.e. have a variance of 1), but models include fixed effects and so VA is not 
identical to heritability (h2). Heritabilities are presented as narrow sense heritabilities, the ratio of the additive genetic variance (VA) to 

phenotypic variance (VP). Coefficients of variance are presented for all components (except year components) as 
X

V
CV X

X 100 , where x = 

trait of interest and X is the mean. 
 

 N (Obs, 
indiv) 

mean* SD* VA±SE VM±SE VPE±SE VBY±SE VYR±SE VR±SE h2±SE m2 or pe2 
±SE 

CVA CVM/
CVPE 

CVR 

FEM               
SBA 1126 1.07 1 0.16±0.06 0.069±0.033 NA 0.064±0.023 NA 0.67±0.06 0.17±0.06 0.072±0.035 37.1 24.6 76.2 
AFR 519 11.2 1 0.17±0.09 0.14±0.06 NA 0.069±0.033 NA 0.57±0.09 0.18±0.09 0.15±0.06 3.72 3.38 5.05 
L 338 2.51 1 0.15±0.12 NA NA 0.036±0.031 NA 0.77±0.12 0.16±0.12 NA 15.3 NA 34.9 
min L  2.51 1 0.099±0.11 NA NA NA NA 0.84±0.12 0.11±0.12 NA 12.6 NA 36.6 
ABS 3859, 439 1.27 1 0.044±0.016 NA 0.028±0.014 0B 0.033±0.01 0.73±0.02 0.053±0.019 0.033±0.017 16.6 13.1 67.0 
min ABS  1.27 1 0.044±0.016 NA 0.029±0.015 NA 0.033±0.010 0.73±0.02 0.053±0.018 0.035±0.017 16.6 13.3 67.0 
MALES               
SBA 1114 0.85 1 0.053±0.046 0.060±0.030 NA 0.080±0.027 NA 0.72±0.05 0.059±0.051 0.066±0.032 27.2 28.7 99.6 
AFR 149 10.8 1 0.40±0.27 0.11±0.15 NA 0.054±0.062 NA 0.46±0.24 0.39±0.25 0.11±0.15 5.84 3.06 6.27 
min AFR  10.8 1 0.48±0.27 NA NA NA NA 0.55±0.23 0.46±0.24 NA 6.39 NA 6.85 
L 245 3.69 1 0.086±0.153 NA NA 0.049±0.042 NA 0.86±0.17 0.086±0.15 NA 7.93 NA 25.2 
min L  3.69 1 0.17±0.17 NA NA NA NA 0.83±0.18 0.17±0.17 NA 11.2 NA 24.7 
ABS 2004, 570 0.58 1 0.070±0.032 NA 0.12±0.03 0.0085±0.0085 0.0045±0.0042 0.65±0.023 0.082±0.038 0.14±0.04 45.7 59.5 139 
min ABS  0.58 1 0.079±0.033 NA 0.12±0.03 NA NA 0.65±0.023 0.093±0.038 0.14±0.04 48.6 59.2 140 

* NB all phenotypic data were standardised to unit variance before analyses and ABS was square root transformed before analysis. 0B indicates 
that the parameter estimate is bound at 0. Bold values are significant different from 0 (P < 0.05). NA = term not applicable. The significance of 
the heritability and the proportion of phenotypic variance explained by maternal and permanent environment effects is based on the significance 
of the corresponding variance term in the model. 



10 SI  C. A. Walling et al. 

 

Table S2  Phenotypic variance-covariance matrix for (standardized) male and female life history traits. Variances are on the diagonal, covariances 
below the diagonal and correlations above the diagonal (±1SE). These models include all fixed effects detailed in the methods and so the phenotypic variances 
are conditional on these fixed effects and do not equal one. Phenotypic variances for annual breeding success (ABS) are the sum of residual and permanent 
environment variances. Phenotypic covariances between survival to breeding age (SBA) and all other traits (which are necessarily expressed only in 
individuals with SBA=1) are not estimable. These parameters estimates are the values used to estimate selection gradients from selection differentials for each 
sex separately. Age at first reproduction (AFR) is multiplied by -1 to make any trade-offs negative in sign. L = Longevity. 
 AFR L ABS 
Females    
AFR 0.876±0.077 0.103±0.062* 0.231±0.032 
L 0.0954±0.0582* 0.974±0.080 0.105±0.039 
ABS 0.195±0.032 0.0939±0.0356 0.817±0.029 
Males AFR L ABS 
AFR 0.915±0.151 0.347±0.113 0.181±0.047 
L 0.361±0.135 1.177±0.150 0.133±0.044
ABS 0.163±0.049 0.136±0.048 0.886±0.043 
Bold values are significantly different from 0 (P < 0.05) based on log-likelihood ratio tests of models with the parameter estimated versus fixed to zero in 
ASReml. *P = 0.07 
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Table S3   Model showing variances (diagonal), covariances (below diagonal) and correlations (above diagonal) (±1SE) for the minimal models of life history traits 
in both sexes. Genetic parameters do not have associated significances or standard errors as they are calculated from a fourth order FA model (see Methods). Underlined 
values highlight between-sex covariances and correlations. Non-genetic matrices were estimated as variance-correlation matrices and thus there are no standard errors on 
covariances. The permanent environment/residual section of the table presents permanent environment (PE) variances in the upper row and residual variances in the lower 
row. AFR is multiplied by -1 to make any trade-offs negative in sign. 
 

Genetic Female SBA Female AFR Female L Female ABS Male SBA Male AFR Male L Male ABS  
Female SBA 0.187 0.294 0.00844 -0.221 0.516 -0.138 -0.0639 0.0927  
Female AFR 0.0521 0.167 -0.368 0.829 0.408 -0.0658 -0.350 -0.0668  
Female L 0.00108 -0.0443 0.0868 -0.510 0.419 0.844 0.622 0.925  
Female ABS -0.0206 0.0730 -0.0323 0.0464 0.180 -0.226 -0.220 -0.21  
Male SBA 0.0572 0.0426 0.0316 0.00993 0.0655 0.197 0.625 0.703  
Male AFR -0.0482 -0.0216 0.200 -0.0392 0.0405 0.648 0.190 0.765  
Male L -0.0118 -0.0608 0.0781 -0.0202 0.0682 0.0650 0.181 0.722  
Male ABS 0.0101 -0.00684 0.0683 -0.0113 0.0451 0.154 0.0772 0.0629  
          
Permanent env/ 
Residual Female SBA Female AFR Female L Female ABS  Male SBA Male AFR Male L Male ABS 
Female SBA X 

0.637±0.009 
NA 
NA 

NA 
NA 

NA 
NA 

Male SBA 
 

X 
0.707±0.047

NA 
NA 

NA 
NA 

NA 
NA 

Female AFR NA 
NA 

0.625±0.080 
X 

0.188±0.099* 
NA 

0.999NE* 
NA 

Male AFR NA 
NA 

0.456±0.208
X 

0.315±0.235* 
NA 

0.287±0.212* 
NA 

Female L NA 
NA 

0.137 
NA 

0.849±0.089 
X 

0.484±0.172* 
NA 

Male L NA 
NA 

0.19 
NA 

0.804±0.145 
X 

0.192±0.147* 
NA 

Female ABS NA 
NA 

0.164 
NA 

0.0924 
NA 

0.0429±0.0115
0.721±0.017 

Male ABS NA 
NA 

0.0723 
NA 

0.0647 
NA 

0.140±0.030 
0.648±0.023 

          
Maternal Female SBA Female AFR Male SBA       
Female SBA 0.0740±0.0330 -0.0359±0.326 0.835±0.362       
Female AFR -0.00313 0.103±0.042 0.285±0.328       
Male SBA 0.0542 0.0218 0.0570±0.0282       
          
Year of birth Female SBA Female AFR Male SBA       
Female SBA 0.0729±0.0252 0.353±0.250 0.956±0.083       
Female AFR 0.0263 0.0765±0.0312 0.386±0.235       
Male SBA 0.0808 0.0334 0.0980±0.0314       
          
Year of measurement Female SBA         
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Female SBA 0.0291         
Bold values are significantly different from 0 (P < 0.05), X term not fitted: see methods for details. NA covariance or correlation not applicable. NEStandard errors not 
estimable. *covariance is between PE for ABS and residual for other traits (see Methods). 
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Table S4   FA models of a) female, b) male and c) both-sex G-matrices. The base 
model contains all fixed effects detailed in the methods, any significant non-genetic 
random effects (see Table S1) and their associated covariances. Subsequent models 
describe the log-likelihood of sequential addition of genetic factors (i.e. increasing 
numbers of elements of Λ, with Ψ fixed at zero; see Methods). Significance of 
additional factors is assessed by comparing the change in log-likelihood between 
models, assuming twice the difference in log-likelihood is χ2 distributed with the 
number of degrees of freedom equal to the difference in the number of parameters 
between the models (Δdf). Models highlighted in italics are the statistically best 
supported models. % variance is the total genetic variance in any given model divided 
by the best estimate of the total variance in the G-matrix under consideration: for Gf, 
this is the total variance in the fourth order FA model; for Gm, this is the sum of the 
univariate estimates of additive genetic variance for each trait; and for the both-sex 
model, this is the sum of these two values. 
a) FA models of Gf  
Number of factors Log likelihood Δdf P-value % variance
Base -2365.75    
1 -2352.07 4 <0.001 47% 
2 -2348.14 3 0.0490 90% 
3 -2348.03 2 0.896 93% 
4 -2348.01 1 0.841 100% 
     
b) FA models of Gm  
Base -1462.10    
1 -1449.49 4 <0.001 50% 
2 -1446.25 3 0.090 114% 
3 no convergence    
     
c) FA models of Gbs  
Base -3813.39    
1 -3790.77 8 <0.001 43% 
2 -3782.36 7 0.0186 55% 
3 -3776.89 6 0.090 85% 
4 -3773.51 5 0.239 118% 
5 no convergence    
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Table S5   Female (co)variance components. Within-sex variances (diagonal) covariances 
(lower off diagonal) and correlations (upper off diagonal) between female life history traits 
(±1SE) from a multivariate model of all female traits simultaneously. Genetic parameters do 
not have associated significances or standard errors as they are calculated from a fourth order 
FA model where significance values and errors are given on factor estimates, not on the 

subsequently recovered 
^

G  (see Table S8 for the non-FA estimate of Gf with associated 
errors on each element). Non-genetic matrices were estimated as variance-correlation 
matrices as these models proved more stable than unstructured variance-covariance models 
(Gilmour et al. 2009) and thus there are no standard errors on covariances. The permanent 
env/residual section of the table presents permanent environment (PE) variances in the upper 
row and residual variances in the lower row. AFR is multiplied by -1 to make any trade-offs 
negative in sign. Variances are presented for comparison with univariate models. 
 SBA AFR L ABS 
Genetic     
SBA 0.165 0.220 0.147 -0.300 
AFR 0.0360 0.163 -0.574 0.787 
L 0.0161 -0.0624 0.0727 -0.696 
ABS -0.0257 0.0669 -0.0396 0.0444 
Permanent env/ 
Residual 

    

SBA X 
0.660±0.057 

NA 
NA 

NA 
NA 

NA 
NA 

AFR NA 
NA 

0.624±0.083 
X 

0.206±.0110* 
NA 

0.999NE* 
NA 

L NA 
NA 

0.152 
NA 

0.867±0.121 
X 

0.504±0.172* 
NA 

ABS NA 
NA 

0.168 
NA 

0.0997 
NA 

0.0452±0.0123 
0.720±0.0171 

Birth year     
SBA 0.0634±0.0228 0.381±0.249 NA NA 
AFR 0.0270 0.0792±0.0322 NA NA 
L NA NA X NA 
ABS NA NA NA X 
Maternal     
SBA 0.0689±0.0333 0.0145±0.360 NA NA 
AFR 0.0123 0.105±0.043 NA NA 
L NA NA X NA 
ABS NA NA NA X 
Year of measurement    
SBA X NA NA NA 
AFR NA X NA NA 
L NA NA X NA 
ABS NA NA NA 0.0293±0.0090 

Bold values are significantly different from 0 (P < 0.05). X term not fit, see methods for 
details. NA covariance or correlation not applicable. *covariance is between PE for ABS and 
residual for other traits, estimated by forcing residual variance into permanent environment 
variance as detailed in the methods. NEStandard errors not estimable. 
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Table S6   Male (co)variance components. Within-sex variances (diagonal), covariances 
(lower off diagonal) and correlations (upper off diagonal) between male life history traits 
(±1SE) from a multivariate model of all male traits simultaneously. Genetic parameters do 
not have associated significances or standard errors as they are calculated from a second 
order FA model where significance values and errors are given on factor estimates not on the 
subsequently recovered G-matrix. Non-genetic matrices were estimated as variance-
correlation matrices as these models proved more stable than unstructured variance-
covariance models (Gilmour et al. 2009) and thus there are no standard errors on covariances. 
The permanent env/residual section of the table presents permanent environment (PE) 
variances in the upper row and residual variances in the lower row. AFR is multiplied by -1 
to make any trade-offs negative in sign. Variances are presented for comparison with 
estimates from univariate models, but year of measurement variance was not significant for 
any trait and was thus not fit in the multivariate model of male traits. 
 SBA AFR L ABS 
Genetic     
SBA 0.0386 0.110 1.00 0.708 
AFR 0.0172 0.626 0.104 0.781 
L 0.0774 0.0323 0.155 0.703 
ABS 0.0380 0.167 0.0756 0.0746 
Permanent env/ 
Residual 

    

SBA X 
0.727±0.045 

NA 
NA 

NA 
NA 

NA 
NA 

AFR NA 
NA 

0.471±0.212 
X 

0.339±0.232* 
NA 

0.238±0.225* 
NA 

L NA 
NA 

0.221 
NA 

0.829±0.135 
X 

0.204±0.156* 
NA 

ABS NA 
NA 

0.0508 
NA 

0.0490 
NA 

0.129±0.032 
0.649±0.023 

Birth year     
SBA 0.0846±0.0279 NA NA NA 
AFR NA X NA NA 
L NA NA X NA 
ABS NA NA NA X 
Maternal     
SBA 0.0624±0.0282 NA NA NA 
AFR NA X NA NA 
L NA NA X NA 
ABS NA NA NA X 

Bold values are significantly different from 0 (P < 0.05), X term not fit see methods for 
detials. NA covariance or correlation not applicable. *covariance is between PE for ABS and 
residual for other traits, estimated by forcing residual variance into permanent environment 
variance as detailed in the methods. 
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Table S7   Principal components  analysis (PCA) of 
^

G  estimated from the maximal FA 
model possible for a) female and b) male and c) both-sex genetic variance-covariance 
matrices. Eigenvalues indicate the variance explained by each eigenvector and the 
eigenvectors indicate the loadings of each trait onto each eigenvalue. The number of axes of 

variation (non-zero eigenvalues) is limited by the number of factors describing 
^

G   (i.e. four 
for females and both-sexes and two for males (SI Table S4, above)). PC decomposition of 

reduced rank G was achieved by converting the elements of Λ into 
^

G   using equation (3) and 

then running a PC analysis on 
^

G . fSBA refers to female SBA, mSBA to male SBA etc.. 
a) PCA of fourth order FA estimate of Gf 
 PC1 PC2 PC3 PC4 
Eigenvalues 0.230 0.176 0.0338 0.00446 
% variance 51.8 39.6 7.6 1.0 
Eigenvectors     
fSBA 0.220 0.930 -0.202 0.216 
fAFR 0.823 -0.0150 0.423 -0.379 
fL -0.391 0.255 0.876 0.119 
fABS 0.349 -0.265 0.112 0.892 
b) PCA of second order FA estimate of Gm 
 PC1 PC2   
Eigenvalues 0.680 0.214   
% variance 76.1 23.9   
Eigenvectors     
mSBA 0.0551 -0.413   
mAFR 0.952 0.209   
mL 0.107 -0.830   
mABS 0.281 -0.310   
c) PCA of fourth order FA estimate of Gbs 

 PC1 PC2 PC3 PC4 
Eigenvalues 0.787 0.267 0.248 0.143 
% variance 54.5 18.5 17.1 9.9 
Eigenvectors     
fSBA -0.0668 0.483 -0.531 0.601 
fAFR  -0.0826 0.705 0.0376 -0.445 
fL 0.310 -0.0988 -0.178 0.0718 
fABS  -0.0744 0.207 0.0988 -0.444 
mSBA 0.0851 0.203 -0.412 -0.217 
mAFR  0.886 0.206 0.269 0.0828 
mL 0.188 -0.367 0.614 -0.411 
mABS 0.244 0.0188 -0.235 -0.121 
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Table S8  Female genetic (co)variance components from a non-factor analytic 
multivariate model of all female traits simultaneously. Genetic variances are presented on 
the diagonal, covariances on the lower off diagonal and correlations on the upper off diagonal 
(±1SE). Non-genetic matrices were identical to those presented in Table S5 and so are not 
presented here. The parameter estimates for this G-matrix are identical to those from the 
factor analytic model presented in the main manuscript (as expected) and this model is 
presented to provide estimates of errors for the elements of Gf. Equivalent non-factor analytic 
multivariate models would not run for Gm or Gbs. 
 SBA  AFR L ABS 
Genetic     
SBA 0.165±0.062 0.220±0.269 0.147±0.493 -0.300±0.222 
AFR 0.0360±0.0450 0.163±0.083 -0.574±0.842 0.787±0.170 
L 0.0161±0.0519 -0.0624±0.0734 0.0727±0.107 -0.696±0.783 
ABS -0.0257±0.0195 0.0669±0.0294 -0.0396±0.0311 0.0444±0.0141 
 

 
 
 
 


