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Abstract—The optimal quantization of the outputs of binary-
input discrete memoryless channels is considered, whereby the
optimal quantizer preserves at least a constant α-fraction of the
original mutual information, with the smallest output cardinality.
Two recursive methods with top-down and bottom-up approaches
are developed; these methods lead to a new necessary condition
for the recursive quantizer design. An efficient algorithm with
linear complexity, based on dynamic programming and the new
necessary optimality condition, is proposed.

Index Terms—Channel quantization, discrete memoryless
channel, mutual information preserving quantizer, partitioning
and clustering.

I. INTRODUCTION

Quantization has practical applications in hardware imple-
mentations of communication systems, e. g. channel-output
quantization [2]–[11], message-passing decoders [12] and po-
lar code construction [13]. In such applications, the number
of quantization levels induces a trade-off between performance
and system complexity. Therefore, it is of interest to use as few
quantization levels as possible while maintaining reliable com-
munication with a given transmission rate. Recently, the au-
thors studied channel-output quantization from an information-
theoretic mismatched-decoding perspective [14]. This study
revealed that the best mismatched decoder coincides with
maximum-likelihood decoding for the channel between the
channel input and the quantizer output. This result supports the
approach of optimizing the quantizer based on a performance
metric for the quantized channel, e. g. mutual information [2]–
[8] or error exponent [9].

Discrete channel quantization is also related to clustering
and partitioning problem in learning theory. An important
result by Burshtein et al. [15] gives conditions on the existence
of an optimal partitioning. Building on this result, Kurkoski
and Yagi studied in [2] output quantization of binary-input
discrete memoryless channels, described in more detail in
Sect. I-B, and developed a dynamic-programing algorithm to
find a maximum mutual information quantizer. In this paper,
we build on these results and study recursive methods for
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Fig. 1: A discrete memoryless channel followed by a quantizer.

designing a quantizer that preserves a constant fraction of the
mutual information, as formulated in the next section.

A. Problem Formulation

Consider a discrete memoryless channel (DMC) followed
by an output quantizer, as shown in Fig. 1. The channel
input X takes values in X = {1, . . . , J}, with probability
distribution px , PX(x), and the channel output Y takes
values in Y = {1, . . . ,M}, with channel transition proba-
bilities W (y|x). Channel output probabilities are denoted by
πy , PY (y). The channel output is quantized to ZK , which
takes values in ZK = {1, . . . ,K}, by a possibly stochastic
quantizer Q with transition probabilities PZK |Y (z|y). The
quantizer output probabilities are denoted by πz,K , PZK

(z).
Let P (x|y) , PX|Y (x|y) and PK(x|z) , PX|ZK

(x|z)
denote the conditional probability distribution of the channel
input given channel output and quantizer output, respectively.
Hence, the mutual information between X and ZK is

I(X;ZK) =
∑
z∈ZK

∑
x∈X

πz,KPK(x|z) log
PK(x|z)
px

. (1)

Let QK denote the set of all quantizers Q with K outputs,
including stochastic quantizers. In the literature, the quantizer
optimization problem is usually formulated as finding an
optimal quantizer Q∗K for fixed cardinality K that maximizes
the mutual information of the quantized channel [2]–[7], i. e.

Q∗K = arg max
Q∈QK

I(X;ZK). (2)

We formulate instead the quantizer optimization as follows: for
a given α ∈ [0, 1], find an optimal quantizer Qα that preserves
at least an α-fraction of the original mutual information with
the smallest number of quantization levels. To that order, we
define a set Sα,k for 1 ≤ k ≤M as

Sα,k ,
{
Q ∈ Qk, I(X;Zk) ≥ αI(X;Y )

}
. (3)

We notice that the set Sα,k can be empty for small values of
k, e. g. Sα,1 is empty for any positive α and I(X;Y ) > 0.
Denote with K∗ the smallest value of k for which the set Sα,k
is non empty. Then, the optimal quantizer is given by

Qα = Q∗K∗ . (4)
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B. Previous Work

A deterministic quantizer Q partitions Y into K non-
overlapping subsets {A1, . . . ,AK}, mapping each output y
to only one quantized output z,

Q : {1, . . . ,M} → {1, . . . ,K}. (5)

For such mapping, we define the pre-image of z as

Az =
{
y ∈ Y : Q(y) = z

}
, (6)

the set of channel outputs mapped to z. For any DMC and
fixed output cardinality K, Kurkoski and Yagi [2] showed that
a deterministic quantizer maximizes the mutual information
between channel input and quantized output (1); considering
only deterministic quantizers is thus sufficient to find the
optimal quantizer Qα.

For each channel output y, we define a vector vy ,

vy = [P (1|y), P (2|y), . . . , P (J − 1|y)] , (7)

with vy ∈ U = [0, 1]
J−1. We define an equivalent quantizer

Q̃ on the vectors {v1, . . . , vM} as Q̃(vy) = Q(y) = z and the
corresponding pre-images as

Ãz =
{
vy : Q̃(vy) = z

}
. (8)

Kurkoski and Yagi in [2, Lemma 2], using the results of [15],
study a condition for an optimal equivalent quantizer Q̃∗ and
show the existence of an optimal equivalent quantizer Q̃∗ for
which any two distinct preimages Ãz and Ãz′ are separated
by a hyperplane in the Euclidean space U . Unfortunately,
this condition does not offer a practical search method for
quantizer design in general; however, as suggested in [2], it
simplifies the problem for the binary-input case.

To find an optimal quantizer Qα as defined in (4), it is
not feasible to directly optimize over the output cardinality
and find K∗. Nazer et. al. in [10] showed that, for binary
input case there always exists a K-level quantizer attaining
the mutual information of Ω

(
−K·I(X;Y )
log(I(X;Y ))

)
and that there exist

pairs of X,Y for which the mutual information attained by
any K-level quantizer is O

(
−K·I(X;Y )
log(I(X;Y ))

)
. For larger finite

input alphabets it is established in [11] that an α-fraction
of the mutual information can be preserved using roughly(
log(|X |/I(X;Y ))

)α·(|X |−1)
quantizer levels. While these

results give an upper bound on or an approximate number
of levels preserving an α-fraction of the mutual information,
they do not provide a way to find the value of K∗ in (4).

The problem of finding Qα can be tackled by either a
bottom-up or top-down approach. The former starts with the
trivial partition into M subsets Az , 1 ≤ z ≤ M , where
each Az contains exactly one element of Y . At each step,
we decrease the cardinality k by one and design an optimal
quantizer Q∗k with output size k. We stop when the corre-
sponding mutual information goes below the desired threshold.
The latter approach starts with the other trivial solution with
single partition containing all the elements, i. e. A1 = Y . At
each step, we increment the cardinality k by one and design
an optimal quantizer Q∗k with output size k. We stop when
the corresponding mutual information reaches (or exceeds) the

desired threshold. In both approaches, the quantizer design
at each step can be performed either recursively, namely by
starting from the result of previous step, or independently of
the previous step result.

An example of a recursive bottom-up approach is the
agglomerative information bottleneck [16] which has been
rediscovered multiple times in the literature under names
such as greedy merging or greedy combining [12], [13]. This
algorithm iteratively reduces the cardinality by merging two
outputs into a new single output. At each iteration, the greedy
algorithm evaluates all possible pairwise merges and selects
the one that minimizes the mutual information loss. Although
the algorithm finds the optimal pairwise merge at each step,
it is globally suboptimal, since it fixes all the previously
performed merges. This algorithm has complexity O(M2).

As for the independent approach, several design algorithms
from the literature can be utilized. For binary-input DMCs,
Kurkoski and Yagi developed an algorithm based on dynamic
programming that finds an optimal K-level quantizer with
complexity O(K(M − K)2) [2]. Iwata and Ozawa [3] im-
proved the complexity to O(K(M −K)) using the SMAWK
algorithm. For non-binary inputs, finding the optimal quantizer
is an NP-hard problem [17] and several suboptimal algorithms
are proposed in the literature. An example is KL-means quan-
tizer [4], [18], a variation of the K-means clustering algorithm
by replacing Euclidean distance metric with Kullback-Leibler
divergence. This algorithm has complexity O(JKMT ) where
T is the number of iterations that the algorithm is run to
converge to a local optimum. Another example is a dynamic
programming method [6] with complexity O(JK(M −K)2)
to find an optimal sequential deterministic quantizer under
a general cost function. The authors also derive a sufficient
condition for general optimality of this method and under a
condition for the DMC channel, they propose two techniques
to reduce the complexity of their algorithm. The complexity of
a top-down (or bottom-up) approach with independent design
at each step is K∗ (or M − K∗) times the complexity of a
single-step run, respectively. So using the algorithm from [3]
with independent top-down approach, one can find Qα with
complexity O(K∗2(M −K∗)). In Section IV, we propose a
recursive algorithm that finds Qα with complexity O(K∗M).

C. Restriction to Binary Inputs

For the rest of paper we restrict ourselves to binary inputs,
for which the posterior conditional probabilities vy = P (1|y)
are in one-dimensional space U = [0, 1]. We also assume that
the outputs are labeled to satisfy

v1 < v2 < · · · < vM . (9)

There is no loss of generality in assuming (9), as outputs can
always be relabeled to satisfy this condition. The inequalities
in (9) are strict since in case of equality, the corresponding
outputs can be merged without information loss, reducing the
output cardinality. Furthermore, we only consider determinis-
tic quantizers as they include the optimal quantizer [2].
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D. Contributions

In Section II, we analyze the greedy merging algorithm
and derive from the analysis a necessary condition for any
optimal quantizer. Furthermore, we characterize and prove
some properties of the greedy merging algorithm.

In Section III we propose two new recursive methods for
optimal quantizer design: a bottom-up approach inspired by
the analysis of greedy merging algorithm in Section II and a
top-down approach as dual of the first method. Using these
two recursive methods an important necessary condition for
recursive quantizer design is given and a concavity property
corresponding to the fraction of mutual information versus
cardinality plot of optimal quantizers is proven. The proofs of
results are given in the Appendix.

Section IV presents the splitting algorithm, a dynamic-
programming algorithm for recursive quantizer design. We
apply the necessary condition derived in Sect. III to the
Quantizer Design Algorithm in [2] to reduce the complexity
of recursive design. A complexity analysis for the recursive
splitting algorithm shows complexity of O(K∗M) which is
obtained by using the SMAWK algorithm [20] for performing
the matrix search.

II. ANALYSIS OF GREEDY MERGING ALGORITHM

The quantizer optimization for a fixed cardinality K for-
mulated in (2) can be rewritten as the minimization of mutual
information loss with respect to the original channel as

Q∗K = arg min
Q∈QK

I(X;Y )− I(X;ZK) (10)

as I(X;Y ) is fixed for a given input distribution and channel.
A quantizer from M channel outputs to K quantized outputs
is a combination of (M − K) pairwise merges and its cor-
responding mutual information loss I(X;Y )− I(X;ZK) can
be decomposed into M −K terms as

I(X;Y )− I(X;ZK) =

M−1∑
k=K

I(X;Zk+1)− I(X;Zk) (11)

where ZM = Y and each summation term

∆Ik = I(X;Zk+1)− I(X;Zk) (12)

is the mutual information loss for a single-step quantizer, i. e. a
pairwise merge. Let us define the partial mutual information
Ik(z) as the contribution that a quantizer output z ∈ Zk makes
to the mutual information given by

Ik(z) = πz,k
∑
x∈X

Pk(x|z) log
Pk(x|z)
px

. (13)

Then, the mutual information I(X;Zk) is given by

I(X;Zk) =
∑
z∈Zk

Ik(z). (14)

As a suboptimal approach, instead of minimizing the total
mutual information loss in (11), we can minimize each sum-
mation term ∆Ik in a recursive bottom-up manner (from M−1
to K). We start from the trivial solution with M outputs and
at each step we search for a single-step quantizer (pairwise

merge) which minimizes the mutual information loss for that
step. The optimal single-step quantizer is given by

Q̂k = arg min
Q∈Qm,k

I(X;Zk+1)− I(X;Zk), (15)

where Qm,k is set of all
(
k+1
2

)
possible pairwise merges on

Zk+1. This method is called greedy merging [12] since it
combines a greedy search over all possible pairwise merges
with the selection of the best such merge.

Let us assume that the single level quantizer Q̂ merges two
outputs i, j ∈ Zk+1 into z′ ∈ Zk and maps the remaining
symbols one-to-one, i. e. Zk+1 \ {i, j} 7→ Zk \ {z′}. We
can compute the mutual information loss of the (i, j) merge,
denoted by ∆Ik(i, j), as

∆Ik(i, j) =Ik+1(i) + Ik+1(j)− Ik(z′) (16)

=
∑
x∈X

(
πi,k+1Φ

(
Pk+1(x|i)

)
+ πj,k+1Φ

(
Pk+1(x|j)

)
− πz′,kΦ

(
Pk(x|z′)

))
, (17)

where Φ(p) = p log(p), πz′,k = πi,k+1 + πj,k+1 and

Pk(x|z′) =
πi,k+1Pk+1(x|i) + πj,k+1Pk+1(x|j)

πz′,k
.

According to [2, Lemma 3], there is an optimal quantizer
Q∗K with boundaries satisfying

a∗0 = 0 < a∗1 < a∗2 < · · · < a∗K−1 < a∗K = M, (18)

such that the preimages of the quantizer outputs consist of
contiguous set of integers,

A∗z = {a∗z−1 + 1, . . . , a∗z}, (19)

for z ∈ ZK . We show that this condition must hold for all
optimal quantizers.

Lemma 1. For any three channel/quantizer outputs h, i and
j satisfying vh < vi < vj at least one of the following is true,{

∆I(h, i) < ∆I(h, j) if πh

πj
≤ vj−vi

vi−vh ,

∆I(i, j) < ∆I(h, j) if πh

πj
≥ vj−vi

vi−vh .
(20)

The proof is in Appendix A. Lemma 1 shows that for any
quantizer that does not satisfy the condition in (19), there exists
another quantizer satisfying this condition that has a higher
mutual information. Hence, we have the following corollary
stating the necessary condition for an optimal quantizer.

Corollary 1. Any optimal quantizer has convex preimages,
i. e. the set A∗z is a contiguous set of integers for all z ∈ ZK .

The necessary condition in Corollary 1 implies the condition
(18) on optimal boundaries a∗z and simplifies quantizer design.
Using this necessary condition, an exhaustive search for the
optimal boundaries has complexity

(
M−1
K−1

)
, i. e. O(MK−1).

Another consequence of Lemma 1 is that greedy merging
always combines two adjacent outputs at each step, therefore,
the set Qm,k should only include (z, z + 1) merges with 1 ≤
z ≤ k which has k possibilities.

Corollary 2. The greedy merging algorithm results in quan-
tizers with convex preimages.
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Proof: We prove this corollary by induction. For the triv-
ial quantizer with K = M outputs, where the preimage of each
output contains exactly one element of Y , i. e. A(M)

z = {z},
for 1 ≤ z ≤ M , this statement clearly holds. Moreover, the
quantizer outputs are so labeled that consecutive ones contain
contiguous elements of Y , preserving the ordering in (9).

Now assume that at level k + 1 of the greedy merging
algorithm the outputs have convex preimages, i. e. each set
A(k+1)
z , 1 ≤ z ≤ k + 1 contains contiguous elements of Y ,

and the quantizer outputs are labeled such that

vk+1
1 < vk+1

2 < · · · < vk+1
k+1 , (21)

where vk+1
z = Pk+1(1|z) and the consecutive quantizer

outputs have preimages with contiguous elements of Y .
At level k, greedy merging combines two adjacent outputs

according to Lemma 1. Without loss of generality assume
that the algorithm merges z with z + 1 from Zk+1 and one-
to-one maps the rest of the outputs. Based on the previous
assumption, it is clear that each new output z′ ∈ Zk has a
preimage with contiguous elements. Also,

vk+1
z < vkz′ =

πz,k+1v
k+1
z + πz+1,k+1v

k+1
z+1

πz,k+1 + πz+1,k+1
< vk+1

z+1 , (22)

hence we have

vk1 < vk2 < · · · < vkk . (23)

Furthermore, it is clear that any two consecutive quantizer
outputs have preimages containing contiguous elements of Y .
The proof is complete by induction.

Next consider performing greedy merging algorithm for all
possible output cardinalities 1 ≤ k ≤ M in a bottom-up
manner and looking at the mutual information of the quantized
channel I(X;Zk) as a function of the output cardinality k. In
[16], the authors empirically found that I(X;Zk) is a concave
function of k, in other words, the mutual information loss ∆Ik
in (12) is increasing with decreasing k. For non-binary inputs
(J > 2) we found counter-examples for this observation,
however, in Appendix B we prove this result for binary inputs:

Theorem 1. The mutual information loss at each step of the
greedy merging algorithm can only increase.

III. RECURSIVE SEARCH FOR Qα

Corollary 1 gives a necessary condition for a mutual in-
formation maximizing quantizer. Based on this condition, the
quantizer design for a fixed output cardinality K boils down
to searching a set of optimal boundaries a∗z as in (18). It
remains to answer how to use information from previous steps
in order to recursively search for Qα as defined in Section
I-A. In this section, we obtain another necessary condition for
recursive optimal quantizer design and show that knowing the
boundary values of optimal (k+1)-level quantizers (or (k−1)-
level quantizers) simplifies the search for boundary values of
optimal k-level quantizers.

A. Modified Greedy Merging

In the following, we propose a new greedy algorithm that
starts from a seed quantizer and searches over pairwise merges
and another set of single-step quantizers which we denote them
as contractions. First, let us define splits.

Definition 1 (Splitting an output). A quantizer output z with
preimage Az = {az−1 + 1, . . . , az} of size bz = |Az| =
az − az−1 ≥ 2, splits into two non-empty parts zL (left) and
zR (right) with respective preimages AzL = {az−1 + 1, . . . , s}
and AzR = {s+ 1, . . . , az}. This split can be done in bz − 1
different ways, az−1 + 1 ≤ s ≤ az − 1.

Definition 2 (Merging a split output). A split output zk with
two non-empty parts zL (left) and zR (right) is merged by two
actions: first, zL merges with z − 1 or (z − 1)R if it has been
split too; second, zR merges with z + 1 or (z + 1)L.

A contraction from (k + 1)-level to k-level is a single-step
quantizer that consists of merges and possibly splits, as defined
by the following sequence of steps:

1) Input: a (k + 1)-level quantizer with output boundaries
{a0 = 0, a1, . . . , ak, ak+1 = M}.

2) Select a set of consecutive non-boundary outputs Zs =
{i, i + 1, . . . , j} ⊂ Zk+1 with i > 1, j < k + 1 and
bz = |Az| ≥ 2 for all i ≤ z ≤ j.

3) Split each z ∈ Zs according to Definition 1. This step
can be done in

∏j
z=i(bz − 1) different ways.

4) Merge zR with (z+1)L for all i ≤ z ≤ j−1, also merge
i− 1 with iL and jR with j + 1.

5) Output: a k-level quantizer with output boundaries
{a′0, . . . , a′k} for which

a′z = az for 0 ≤ z ≤ i− 2

az < a′z < az+1 for i− 1 ≤ z ≤ j − 1

a′z = az+1 for j ≤ z ≤ k.
(24)

We denote the set of all quantizers obtained by a contraction
from all optimal (k + 1)-level quantizers by Qc,k. Modified
greedy merging is a bottom-up approach that starts from the
trivial solution with M outputs and at each step decreases the
output cardinality by one, then performs a greedy search over
all possible contractions Qc,k and all pairwise merges Qm,k,
and finally selects the ones with lowest mutual information
loss. It stores all the quantizers with highest mutual informa-
tion in each step to use them as a seed for the next step.
As proved in Appendix C, we have the following optimality
property for the modified greedy merging algorithm.

Theorem 2. Modified greedy merging finds all optimal quan-
tizers Q∗k for every output cardinality 1 ≤ k ≤M .

As an example to illustrate a contraction, consider a quan-
tizer with 3 outputs {1,2,3} with preimages A1 = {1, . . . , a1},
A2 = {a1 + 1, . . . , a2} and A3 = {a2 + 1, . . . ,M}. In the
second step of the contraction, the only possibility for a set
of consecutive non-boundary outputs is {2} if b2 = |A2| ≥ 2.
In third step, we split the second output into two parts with
preimages A2L = {a1 + 1, . . . , s} and A2R = {s+ 1, . . . , a2}
where a1 + 1 ≤ s ≤ a2 − 1. We merge 2L with 1 and
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2R with 3 according to the fourth step. The output of this
contraction is a quantizer with two outputs that has the
boundaries {a′0 = 0, a′1, a

′
2 = M} where a1 < a′1 = s < a2.

The set of all b2 − 1 possible contractions for this example
are specified by a1 + 1 ≤ s ≤ a2 − 1.

B. Modified Greedy Splitting

Modified greedy splitting is a top-down algorithm, dual to
modified greedy merging. It starts from the trivial solution
with a single output and increases the output cardinality by
one at each step, performing a greedy search over all possible
expansions, to be defined in the following paragraph. We
denote the set of all quantizers obtained by expansion from
all optimal (k − 1)-level quantizers by Qe,k. At each step, it
keeps all quantizers with the highest mutual information to use
them as seed for the next step. In analogy to Theorem 2, we
have the following result, which can be proved by showing that
an expansion is a dual of a contraction or a pairwise merge
and hence modified greedy splitting is the dual of modified
greedy merging,

Theorem 3. Modified greedy splitting finds all optimal quan-
tizers Q∗k for all output cardinalities 1 ≤ k ≤M .

An expansion consists of splits and merges, as described in
the following steps. Expansion from (k − 1)-level to k-level:

1) Input: a (k − 1)-level quantizer with boundaries {a0 =
0, a1, . . . , ak−2, ak−1 = M}

2) Select a non-empty set of consecutive outputs Zs =
{i, i + 1, . . . , j} ⊆ Zk−1 with i ≥ 1, j ≤ k − 1 and
bz = |Az| ≥ 2 for all i ≤ z ≤ j.

3) Split each z ∈ Zs according to Definition 1. This step
can be done in

∏j
z=i(bz − 1) different ways.

4) If |Zs| = 1, omit this step otherwise merge zR with
(z + 1)L for all i ≤ z ≤ j − 1.

5) Output: a k-level quantizer with output boundaries
{a′0, . . . , a′k} for which

a′z = az for 0 ≤ z ≤ i− 1

az−1 < a′z < az for i ≤ z ≤ j
a′z = az−1 for j + 1 ≤ z ≤ k.

(25)

As an example of expansion, consider a quantizer with two
outputs {1,2} with preimages A1 = {1, . . . , a1}, A2 = {a1 +
1, . . . ,M}. An expansion can be obtained in two different
ways. One is simply by splitting one of the outputs which can
be performed in b1 − 1 and b2 − 1 different ways for first
and second output, respectively. Another one is by splitting
both outputs and merging 1R with 2L which can be performed
in (b1 − 1)(b2 − 1) different ways. The output of any such
expansion is a quantizer with three outputs and boundaries
{a′0 = 0, a′1, a

′
2, a
′
3 = M} with either 0 < a′1 < a1 = a′2 < M

or 0 < a′1 = a1 < a′2 < M or 0 < a′1 < a1 < a′2 < M .
Theorem 3 implies the following

Corollary 3 (Recursive Necessary Condition). Assuming that
the (k − 1)-level optimal quantizer has boundaries {az}k−1z=0 ,
any k-level optimal quantizer (with boundaries {a′z}kz=0)
should satisfy (25) for some 0 < i ≤ j < k.

The complexity of the modified greedy algorithms is
O
(
( M
k−1 )k−1

)
in the worst case. In Section IV we provide

a dynamic programming based algorithm incorporating the
necessary condition in Corollary 3 for recursive design of the
optimal quantizers.

C. Preserved Mutual Information at Level k

The fraction of mutual information preserved by a k-level
quantizer is αk = I(X,Zk)

I(X;Y ) which starts at 0 for k = 0
and approaches to 1 as k goes to M . Theorem 1 showed
that αk is concave in k for quantizers obtained by greedy
merging. In Appendix D we prove a similar property for
optimal quantizers, using modified greedy splitting, which
finds optimal quantizers recursively.

Theorem 4. The mutual information difference ∆I∗k =
I(X;Zk) − I(X;Zk−1) of the optimal quantizers decreases
by increasing k.

This theorem shows that in a top-down recursive design, the
increase in the fraction of the preserved mutual information
by the optimal quantizers, given by δαk

= I(X;Zk)−I(X;Zk−1)
I(X;Y ) ,

can only decrease with increasing k. Therefore, if at some
point δαk

becomes relatively small, it indicates reaching a
meaningful quantizer cardinality. Hence, further runs of the
recursive algorithm will not result in significant gains in
the terms of mutual information. This also suggests that the
termination condition in the recursive algorithm can be based
on δαk

as well.

IV. DYNAMIC PROGRAMMING BASED ALGORITHM

This section describes the splitting algorithm, a modified
version of the Quantizer Design Algorithm [2] that incorpo-
rates the necessary condition of Corollary 3 to reduce the
complexity of recursive design. We describe first a single-
step version, which takes the boundary values of the optimal
(k − 1)-level quantizer as input and finds optimal k-level
quantizers maximizing the mutual information and satisfying
the necessary condition of Corollary 3. Then, we provide the
recursive version of the algorithm, which finds the optimal
quantizer Qα in (4) recursively.

A. Splitting Algorithm

The algorithm, an instance of dynamic programming, has
a state value Sz(y), the maximum partial mutual information
when channel outputs 1 to y are quantized to quantizer outputs
1 to z. This value can be computed recursively by conditioning
on the state value at time index z − 1:

Sz(y) = max
y′

{
(Sz−1(y′) + I(y′ → y)

}
, (26)

where I(y′ → y) is the contribution of quantizer output z with
Az = {y′ + 1, . . . , y} to the mutual information, i. e.

I(i→ j) =
∑
x∈X

px

j∑
y=i+1

W (y|x) log

∑j
ŷ=i+1W (ŷ|x)∑j
ŷ=i+1 PY (ŷ)

.

(27)
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Algorithm 1: splitting algorithm (single step)

Input: M , k, px, P (y|x), {az}k−1z=0

Output: {a′z}kz=0

1 for y ← 1 to a1 do
2 S1(y) ← I(0→ y)
3 h1(y)← 0

4 S2(a1) ← max
y′∈{1,...,a1−1}

S1(y′) + I(y′ → a1)

5 h2(a1)← arg max
y′∈{1,...,a1−1}

S1(y′) + I(y′ → a1)

6 for z ← 2 to k − 1 do
7 for y ← az−1 + 1 to az − 1 do
8 Sz(y) ←

max
y′∈{az−2+1,...,az−1}

Sz−1(y′) + I(y′ → y)

9 hz(y)←
arg max

y′∈{az−2+1,...,az−1}
Sz−1(y′) + I(y′ → y)

10 if z < k − 1 then
11 Sz(az) ← Sz−1(az−1) + I(az−1 → az)
12 hz(az)← az−1

13 Sz+1(az) ← max
y′∈{az−1,...,az−1}

Sz(y
′) + I(y′ → az)

14 hz+1(az)← arg max
y′∈{az−1,...,az−1}

Sz(y
′) + I(y′ → az)

15 a′k ←M
16 for z ← k − 1 to 1 do
17 a′z ← hz+1(a′z+1)

Thanks to the necessary condition in Corollary 3, in single-
step splitting algorithm (Algorithm 1) the state value Sz(y)
is only calculated for y ∈ {az−1, · · · , az} and for each y the
maximization is taken over y′ ∈ {az−2, · · · , az−1}. The value
Sk(M) gives the maximum mutual information obtained by
optimal k-level quantizer with boundaries {a′z}kz=0.

The recursive splitting algorithm (Algorithm 2) is a top-
down algorithm that starts with a trivial single level quan-
tizer with boundaries {0,M} and at each step increases
the quantizer cardinality k by one and designs the optimal
quantizer conditioning on the boundary values of the pre-
vious step and stops when it reaches an α-fraction of the
original mutual information. In this algorithm, the quantizer
boundaries for k-th level is denoted by {a(k)z }kz=0. In the for
loop of line 10, the state value Sz(y) is only calculated for
y ∈ {a(k−1)z−1 , · · · , a(k−2)z−1 −1} and for each y the maximization
is taken over y′ ∈ {a(k−1)z−2 , · · · , hz(a(k−2)z−1 )}.

Algorithms 1 and 2 can be modified to obtain counterpart
algorithms for a bottom-up approach using the boundary
conditions in (24).

B. Complexity
First we analyze the complexity of the single-step algorithm.

For the case of k = 2, the splitting algorithm calculates the
maximum of the row vector

M2 =
(
S1(1) + I(1→M) S1(2) + I(2→M) · · ·

S1(M − 1) + I(M − 1→M)
)

Algorithm 2: splitting algorithm (recursive)
Input: M , px, P (y|x), α
Output: {a(k)z }kz=0 for all 2 ≤ k ≤ K∗

1 IXY ←
∑M−1
y=0 I(y → y + 1)

2 a
(1)
1 ←M , a(1)0 ← 0

3 for y ← 1 to M − 1 do
4 S1(y) ← I(0→ y), h1(y)← 0

5 S2(M) ← max
y′∈{1,...,M−1}

S1(y′) + I(y′ →M)

6 h2(M)← arg max
y′∈{1,...,M−1}

S1(y′) + I(y′ →M)

7 a
(2)
2 ←M , a(2)1 ← h2(M), a(2)0 ← 0, k ← 2

8 while Sk(M) < αIXY do
9 k ← k + 1

10 for z ← 2 to k − 1 do
11 lb← max(z − 1, a

(k−1)
z−2 )

12 ub← min(hz(a
(k−2)
z−1 ), a

(k−1)
z−1 − 1)

13 Y ′ ← {lb, . . . , ub}
14 Sz(a

(k−1)
z−1 )← max

y′∈Y′
Sz−1(y′) + I(y′ → a

(k−1)
z−1 )

15 hz(a
(k−1)
z−1 )←

arg max
y′∈Y′

Sz−1(y′) + I(y′ → a
(k−1)
z−1 )

16 for y ← a
(k−1)
z−1 + 1 to a(k−2)z−1 − 1 do

17 Y ′ ← {a(k−1)z−2 + 1, . . . , hz(a
(k−2)
z−1 )}

18 Sz(y) ← max
y′∈Y′

Sz−1(y′) + I(y′ → y)

19 hz(y)← arg max
y′∈Y′

Sz−1(y′) + I(y′ → y)

20 Sk(M) ← max
y′∈{a(k−1)

k−2 ,...,M−1}
Sz(y

′) + I(y′ →M)

21 hk(M)← arg max
y′∈{a(k−1)

k−2 ,...,M−1}
Sz(y

′) + I(y′ →M)

22 K∗ ← k, a(k)k ←M
23 for z ← k − 1 to 1 do
24 a

(k)
z ← hz+1(a

(k)
z+1)

which consists of M − 1 operations. For the case of k > 2,
for z = k the algorithm finds the maximum of the row vector

Mk =
(
Sk−1(ak−2) + I(ak−2 →M) · · ·

Sk−1(M − 1) + I(M − 1→M)
)
.

For each 2 ≤ z ≤ k − 1 the algorithm finds all the row
maxima of the matrix Mz on the top of Page 7.

Therefore, since
k−1∑
z=1

bz = M , the single-step algorithm

performs a total of bk−1 +
k−1∑
z=2

bzbz−1 ≤ (M−k+2
2 )2 + M

operations, which has a worst-case complexity of O
(
M2

4

)
.

Iwata and Ozawa in [3] showed that the partial mutual
information I(y′ → y) has the following property: for 1 ≤
i < r ≤ j < s ≤M

I(i→ j) + I(r → s) ≥ I(i→ s) + I(r → s), (28)

and therefore the matrix Mz is an inverse Monge matrix and
hence a totally monotone matrix [19]. This property allows us
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Mz =


Sz−1(az−2 + 1) + I(az−2 + 1→ az−1) · · · Sz−1(az−1 − 1) + I(az−1 − 1→ az−1) 0

Sz−1(az−2 + 1) + I(az−2 + 1→ az−1 + 1) · · · Sz−1(az−1 − 1) + I(az−1 − 1→ az−1 + 1) Sz−1(az−1) + I(az−1 → az−1 + 1)
...

...
...

Sz−1(az−2 + 1) + I(az−2 + 1→ az − 1) · · · Sz−1(az−1 − 1) + I(az−1 − 1→ az − 1) Sz−1(az−1) + I(az−1 → az − 1)



to use SMAWK algorithm to find all the row maxima of Mz

with c1bz−1 + c2bz operations for some constants c1 and c2
[20]. Therefore, using the SMAWK algorithm the number of
operations of single-step splitting algorithm reduces to bk−1 +
k−1∑
z=2

(c1bz−1 + c2bz) < (c1 + c2)M , which has complexity

O(M).
In order to analyze the complexity of the recursive splitting

algorithm let us assume that it reaches the α-fraction of the
original mutual information at k = K∗. Comparing the single-
step and the recursive splitting versions one can see that the
for loop in line 13 of the recursive algorithm runs for fewer
y values (since a

(k−2)
z−1 ≤ a

(k−1)
z ), as it avoids recalculating

the values Sz(y) obtained in previous recursions. Therefore
the number of operations done by the recursive version with
the SMAWK algorithm is less than

∑K∗

k=2(c1 + c2)M and has
complexity O(K∗M).

C. Example: Finely Quantized Continuous Output Channel

We consider a binary-input AWGN channel with equally
likely ±1 inputs and Gaussian noise variance σ2 = 0.5. We
first uniformly quantize the output of the AWGN channel y
between −2 and 2 with M = 1000 levels; the natural order
of the outputs of the resulting DMC satisfies (9). Later we
apply the recursive splitting algorithm to find a quantizer with
minimum output levels which preserves 99% (α = 0.99) of
the mutual information of the original AWGN. Fig. 2 shows
the quantization boundaries for the optimal quantizers (of
underlying DMC) with 2 to 8 outputs. The results match the
algorithm in [2]. The optimal quantizer with K∗ = 8 outputs
satisfies the mutual information constraint (Fig. 3). As the
channel and inputs are symmetric, the optimal quantizers are
symmetric around y = 0 as well.

Next we consider an asymmetric Gaussian channel with −1
and +1 inputs and respective probabilities 0.6 and 0.4 and
input-dependent Gaussian noise with variances σ2

−1 = 0.1 and
σ2
+1 = 0.4 respectively. The recursive splitting algorithm is

run until δαk
= I(X;Zk)−I(X;Zk−1)

I(X;Y ) < 0.001. Fig. 4 shows the
quantization boundaries for the optimal quantizers designed
recursively. Since the channel is asymmetric, the optimal
quantizers are asymmetric as well. Interestingly, as shown in
Fig. 4, the central boundary a k

2
(for even k) moves further

away from zero as k increases. The fraction of preserved
mutual information αk by the optimal quantizers is illustrated
in Fig. 5 which shows that δαk

decreases by increasing k and
it goes below 0.001 at k = 8.

V. CONCLUSION

We have studied the problem of finding a quantizer Qα
with smallest cardinality that preserves a constant α-fraction of
the mutual information for binary-input discrete memoryless

−2 −1 0 1 2
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6

7

8

9

y
K

0

0.1

0.2

0.3

P
(y
,x

i)

Boundaries

P (y,−1)

P (y,+1)

Fig. 2: Optimal quantization of a finely quantized AWGN
channel (with uniform ±1 inputs and σ2 = 0.5) to k = 2
to k = 8 levels using the recursive splitting algorithm.

2 3 4 5 6 7 8

0.85

0.9

0.95

1

k

α
k

Fig. 3: Mutual information fraction preserved by the optimal
quantizers with k = 2 to k = 8 levels for a finely quantized
AWGN channel (with uniform ±1 inputs and σ2 = 0.5).

channels. Since direct optimization of the quantizer cardinality
is not feasible, two dual bottom-up and top-down approaches
to find Qα are proposed. Based on these approaches, a new
necessary optimality condition for the recursive quantizer
design is obtained. A recursive splitting algorithm based on
dynamic programming as a modification of quantizer design
algorithm in [2] is proposed which incorporates the new
necessary condition and finds Qα with complexity O(K∗M)
using the acceleration with the SMAWK algorithm. Our results
suggest that the recursive quantizer design not only provides
a full picture of the preserved fraction of mutual information
versus cardinality of optimal quantizers, but also it reduces the
complexity of the design process.
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Fig. 4: Optimal recursive quantization of a finely quantized
asymmetric Gaussian channel (with p(−1) = 0.6, p(+1) =
0.4, σ2

−1 = 0.1 and σ2
+1 = 0.4) to k = 2 to k = 8 levels.
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Fig. 5: Mutual information fraction preserved by the optimal
quantizers with k = 2 to k = 8 levels for a finely quantized
asymmetric Gaussian channel (with p(−1) = 0.6, p(+1) =
0.4, σ2

−1 = 0.1 and σ2
+1 = 0.4).

APPENDIX A
PROOF OF LEMMA 1

Let us denote new outputs resulting from (h, j) merge, and
(i, j) merge as y′hj and y′ij and their conditional posterior prob-
abilities as vhj and vij , respectively. We have the following

vhj =
(πhvh + πjvj)

πh + πj
→ πh

πj
=
vj − vhj
vhj − vh

, (29)

vij =
(πivi + πjvj)

πi + πj
→ πi

πj
=
vj − vij
vij − vi

. (30)

Now let us assume that

πh
πj

=
vj − vhj
vhj − vh

≥ vj − vi
vi − vh

, (31)

therefore, vhj ≤ vi. With this assumption, we will show that
the mutual information loss (17) is larger for a (h, j) merge
than for a (i, j) merge. With some algebraic manipulations,

0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0
vh vi vjvhj vij

δ1

δ2
∆1

∆2

v

Φ
(v
)
+
Φ
(v̄
)

Fig. 6: Illustration of ∆I(h, j) and ∆I(i, j).

we express the mutual information loss for a (h, j) merge as

∆I(h, j) =πh
(
Φ(vh) + Φ(v̄h)

)
+ πj

(
Φ(vj) + Φ(v̄j)

)
(32)

− (πh + πj)
(
Φ(vhj) + Φ(v̄hj)

)
> ∆I(i, j),

where v̄ = 1− v.
Fig. 6 illustrates (32) where,

δ1 =
∆I(h, j)

πh + πj
, δ2 =

∆I(i, j)

πi + πj
. (33)

We have the following relations on the triangles in Fig. 6,

δ1
∆1 + ∆2

=
vhj − vh
vj − vh

=
πj

πh + πj
, (34)

δ2
∆2

=
vij − vi
vj − vi

=
πj

πi + πj
, (35)

where the second equalities come from (29) and (30). Notice
that ∆1 > 0, since vhj ≤ vi and Φ(v) + Φ(v̄) is a strictly
convex function. Using (34) and (35) in (33) we have

∆I(h, j) = πj(∆1 + ∆2) > πj∆2 = ∆I(i, j), (36)

which proves (32).
If we assume the complementary inequality in (31), then

vhj ≥ vi and with similar steps we show that ∆I(h, j) =
πh(∆′1 + ∆′2) > πh∆′2 = ∆I(h, i) where ∆′1 and ∆′2 will be
the base of triangles at vh. This completes the proof.

APPENDIX B
PROOF OF THEOREM 1

It is sufficient to prove that the mutual information loss
(12) corresponding to the Q̂k and Q̂k−1 (15) satisfies ∆Ik ≤
∆Ik−1. There are two possibilities for the merge Q̂k−1. The
merge may combine two outputs that were not changed due
to Q̂k, for which it is clear that the corresponding mutual
information loss ∆Ik−1 can not be smaller than ∆Ik, since
otherwise that merge should be selected by greedy algorithm
for Q̂k. Alternatively, one of the outputs results from Q̂k.

Let us consider three outputs z, z + 1, z + 2 ∈ Zk+1 with
vz < vz+1 < vz+2. Without loss of generality, we can assume
that the greedy merging performs (z, z + 1) merge as Q̂k
and later merges the resulting output z′ with z + 2 as Q̂k−1.
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∆1

∆2

v

Φ
(v
)
+
Φ
(v̄
)

Fig. 7: Illustration of ∆I(z′, z + 2) and ∆I(z + 1, z + 2).

Equivalently, we know that ∆I(z, z + 1) ≤ ∆I(z + 1, z + 2)
and we want to show that ∆I(z, z+1) < ∆I(z′, z+2). Hence,
it is sufficient to show that ∆I(z+ 1, z+ 2) < ∆I(z′, z+ 2).

Let us denote the new outputs resulting from the (z′, z+ 2)
and (z + 1, z + 2) merges as z′′ and zd respectively and their
conditional posterior probabilities as v′′ and vd, respectively.
We have the following implications:

v′′ =
(πz′v

′ + πz+2vz+2)

πz′ + πz+2
→ πz′

πz+2
=
vz+2 − v′′
v′′ − v′ , (37)

vd =
(πz+1vz+1 + πz+2vz+2)

πz+1 + πz+2
→ πz+1

πz+2
=
vz+2 − vd
vd − vz+1

.

(38)
Using (37) and (38) and since πz′ = πz + πz+1 > πz+1 and
v′ = (πzvz+πz+1vz+1)

πz+πz+1
< vz+1, we have the following strict

inequality

vz+2 − v′′ =
πz′

πz′ + πz+2
(vz+2 − v′) (39)

>
πz+1

πz+1 + πz+2
(vz+2 − vz+1) = vz+2 − vd,

and therefore v′′ < vd.
Fig. 7 illustrates ∆I(z′, z+ 2) and ∆I(z+ 1, z+ 2), where

δ1 =
∆I(z′, z + 2)

πz′ + πz+2
, δ2 =

∆I(z + 1, z + 2)

πz+1 + πz+2
. (40)

We have the following relations on the triangles on Fig. 7

δ1
∆1 + ∆2

=
v′′ − v′
vz+2 − v′

=
πz+2

πz′ + πz+2
, (41)

δ2
∆2

=
vd − vz+1

vz+2 − vz+1
=

πz+2

πz+1 + πz+2
. (42)

where the second equalities come from (37) and (38). Notice
that ∆1 > 0, since Φ(v) + Φ(v̄) is strictly convex. Therefore,
using (40), (41) and (42) we have

∆I(z′, z+2) = πz+2(∆1+∆2) > πz+2∆2 = ∆I(z+1, z+2).
(43)

This completes the proof.

APPENDIX C
PROOF OF THEOREM 2

Assume that the claim is not true and there is at least one
k, 1 < k ≤ M for which the modified greedy merging
algorithm does not find all the optimal k-level quantizers,
despite using all the optimal (k + 1)-level quantizers as a
seed. Therefore, there is an optimal k-level quantizer Q̃ such
that Q̃ /∈ {Qc,k ∪ Qm,k}. Since Q̃ can not be generated by
contraction or pairwise merge from any optimal (k+ 1)-level
quantizer, it is generated by a different single-step quantizer
which includes at least one of the following operations:

1. Splitting a boundary output into two parts and merging it
from one side: It is clear that merging it from both sides is not
possible since it is a boundary output. This operation keeps the
same number of quantizer outputs while reducing its mutual
information, hence it generates a non-optimal (k + 1)-level
quantizer and does not create new split and merge possibilities
for the rest of outputs with lower mutual information loss.

Assume splitting z1 to two parts, z1L = {1, . . . , s} and
z1R = {s+ 1, . . . , a1} for 1 ≤ s ≤ a1 − 1, and merging z1R
with z2 resulting in z′2. This new (k + 1)-level quantizer is
suboptimal and has lower mutual information than the original
one. Furthermore, the only new possibilities of split and merge
to reduce it to a k-level quantizer are those of splitting z′2 such
that z′2L ⊂ z1R, and merging z′2L with z1L and z′2R with z3
which indeed has higher mutual information loss than simply
merging z2 with z3 from the original k-level quantizer since
z2 ⊂ z′2R. Therefore, the boundary outputs should not split
during the reduction to the k-th level.

2. Splitting a non-boundary output into two parts and
merging it only from one side: As the previous item, this
operation also keeps the same number of quantizer outputs
while reducing its mutual information, hence it generates a
non-optimal (k + 1)-level quantizer and does not create new
split and merge possibilities for the rest of outputs with lower
mutual information loss. This can be shown with similar
arguments as for the previous statement. Therefore, after
splitting a non-boundary output, both parts should be merged
to their corresponding neighbor outputs (or part of it).

3. Splitting a non-boundary output to three or more than
three parts and merging the left part with the left output and
right part with the right output only decreases the mutual
information of the quantizer keeping same number of outputs
and does not create new split and merge possibilities for the
rest of outputs with lower mutual information loss. Again, this
can be shown with similar arguments as for the first statement.
Therefore, a non-boundary output should not be split to more
than two parts.

Including at least one of above three operations contradicts
the optimality of Q̃ and concludes the proof.

APPENDIX D
PROOF OF THEOREM 4

It is sufficient to show that ∆I∗k ≥ ∆I∗k+1. Assume that
Q∗k, Q∗k+1 and Q∗k+2 are optimal quantizers and that the latter
can be obtained from the former with an expansion. Since
these optimal quantizers should have convex preimages, we
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can find two distinct expansion that applying both of them on
the outputs of Q∗k would result in Q∗k+2 and applying each
one of them on the outputs of would result in a (k + 1)-level
quantizer (given by Q1,k+1 and Q2,k+1). Now assume that
∆I∗k < ∆I∗k+1, hence, at least one of the Q1,k+1 or Q2,k+1

should have a higher mutual information than Q∗k+1 which
contradicts the optimality of Q∗k+1. Hence, the assumption is
not true and ∆I∗k ≥ ∆I∗k+1.
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