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ABSTRACT 

The Role of Transfer-Appropriate Processing in the Effectiveness 

of Decision-Support Graphics. (August 2003) 

Michael E. Stiso, B.A., Purdue University; 

M.S., University of Oregon 

Chair of Advisory Committee:  Dr. Steven M. Smith 
 
 

The current project is an examination of the effectiveness of decision-support 

graphics in a simulated real-world task, and of the role those graphics should play in 

training. It is also an attempt to apply a theoretical account of memory performance—

transfer-appropriate processing—to naturalistic decision making. The task in question is 

a low-fidelity air traffic control simulation. In some conditions, that task includes 

decision-support graphics designed to explicitly represent elements of the task that 

normally must be mentally represented—namely, trajectory and relative altitude. The 

assumption is that those graphics will encourage a type of processing different from that 

used in their absence. If so, then according to the theory of transfer-appropriate 

processing (TAP), the best performance should occur in conditions in which the graphics 

are present either during both training and testing, or else not at all. For other conditions, 

the inconsistent presence or absence of the graphics should lead to mismatches in the 

type of processing used during training and testing, thus hurting performance. A sample 

of 205 undergraduate students were randomly assigned to four experimental and two 

control groups. The results showed that the support graphics provided immediate 
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performance benefits, regardless of their presence during training. However, presenting 

them during training had an apparent overshadowing effect, in that removing them 

during testing significantly hurt performance. Finally, although no support was found for 

TAP, some support was found for the similar but more general theory of identical 

elements. 
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INTRODUCTION 

The concept of “decision making aids” has been around at least since people began 

using graphs and diagrams to summarize and display complex information. The phrase 

can refer to a variety of tools. In the past couple of decades, though, as computers have 

become sophisticated enough to take an active role in decision making, “decision aid” 

has become associated with the idea of tools intended to automate and take over parts of 

that process. 

For example, in the realm of air traffic control (ATC), Manning and Broach (1992) 

describe automated decision aids that identify potential problems (e.g., conflicts between 

two or more aircraft) with the current trajectories of multiple aircraft. A more advanced 

aid would suggest solutions to the problem, based on certain criteria. Gronlund, 

Canning, Moertl, Johansson, Dougherty, and Mills (2002) describe a similar ATC tool 

that provides controllers with an initial route-sequencing plan for aircraft, which the 

controllers can then fine-tune. Such aids thus automate parts of decision making for the 

users, relieving them of some of the burden of the process and perhaps allowing more 

aircraft to be handled and better decisions to be made. 

However, automation, at least in its current state, is not without cost. Users may 

become overreliant on it, for example, which can lead to complacency and impaired 

performance (Yeh & Wickens, 2001). Similarly, operators may demonstrate reduced 
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situation awareness in the presence of decision aids, particularly if trained with such aids 

(Endsley, 1996; Endsley & Kiris, 1995). Alternatively, users may simply mistrust 

automation, especially if the tool is perceived as unreliable (Moray, Inagaki, & Itoh, 

2000; see also Muir, 1994; Yeh & Wickens, 2001). 

Some researchers, then, perhaps hoping to sidestep some of those issues, have 

adopted a focus on decision support rather than decision aiding. Morrison, Kelly, Moore, 

and Hutchins (1998) state that the goal of decision support is to leave as much of the 

decision making process as possible with the user. Their decision-support system for 

Naval tactical decision making augments information already available in the system in 

an attempt to make it more meaningful, rather than extensively filtering or processing 

information. That system consists of a number of modules. The “Basis for Assessment” 

module, for example, tabulates, categorizes, and displays the data on which the system 

based its recommendation regarding the threat level of a given target. It is designed to 

facilitate story generation by attempting to explain available and missing data. Another 

module is more graphical in nature, showing the position of a target relative to the user’s 

ship, how that target has been moving over time, and whether it or the user’s ship can 

engage the other. A particularly important function of that module is its capacity for 

graphically depicting a target’s movement history, which the designers believe reduces 

the demands on short-term memory imposed by trying to interpret the significance of a 

target. Similar “at-a-glance” features added to later versions include velocity leaders that 

indicate the relative speed of all aircraft on the screen, as well as course histories that 

indicate where a track has been relative to landmarks, air corridors, and other aircraft. 
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One function that the various modules in that system have in common is that they all 

essentially attempt to capitalize on human perceptual capabilities. The Basis for 

Assessment module, for example, organizes data in ways that allow humans to employ 

their pattern-recognition abilities. The graphical components also translate at least part 

of a generally conceptual process into a perceptual process (e.g., trying to determine the 

significance of a target by understanding where it has been and where it is going). 

However, whether such a translation is actually helpful in decision making is not 

well-tested. For example, although Morrison et al. (1998) found that their decision 

support system generally led to better performance, they were unable to test which 

aspects of which modules were responsible for the improvement. The interface they 

designed was intended to serve many functions, making it difficult to determine whether 

it was specifically its perceptual characteristics that provided the advantage or whether it 

was some other aspect of the interface. That is often the case with studies involving 

computer interfaces, possibly because the field is still relatively new, but also because 

the graphics capabilities of computers have only recently become such that researchers 

other than computer scientists can use them. As a result, many studies examining the use 

of graphics in decision support tend to be usability tests or product comparisons. In other 

words, rather than using specific theories as guides in the investigation, the studies work 

to improve decision making by determining which interfaces result in the best 

performance. 
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Reasons for the Current Study 

The current project is primarily an examination of the effectiveness of a type of 

decision-support graphics (DSGs) in a real-world task and of the role those graphics 

should play in training. It is also an attempt to apply a theoretical account of memory 

performance—transfer-appropriate processing—to naturalistic decision making (i.e., 

experienced decision making in a field setting; Zsambok, 1997). As such, the results 

should be of both applied and theoretical interest. 

Specifically, using a low-fidelity air traffic control (ATC) simulation as a testbed, I 

planned to investigate three main issues: 

1) Can the transfer-appropriate processing framework can be applied to 

naturalistic decision making? 

2) Can computer graphics effectively support decision making on a real-world 

task? 

3) Is it helpful or harmful to present those graphics during training? 

From a theoretical perspective, this study places the idea of decision-support 

graphics inside a theoretical framework, and then tests that framework. More to the 

point, it adds to the literature by attempting to apply a theoretical framework of memory 

performance to the area of decision making. 

From an applied perspective, the decision support graphics are intended to serve as 

external representations of elements that are normally mentally represented, and so this 

research should help to determine whether that kind of graphical enhancement is helpful 

or not. Put another way, as described earlier regarding Morrison et al.’s (1998) decision 
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support system, it is believed that the graphics will improve decision making by 

translating some of the conceptual processing normally required by air traffic control 

into perceptual processing, thus capitalizing on human perceptual capabilities. In 

addition, this work should indicate whether those graphics should or need to be present 

during training. 

The following sections will outline the transfer-appropriate processing account of 

memory and how it applies to this project, provide counterarguments and alternate 

predictions to that account, and describe the rationale behind the graphics involved. 

Transfer-Appropriate Processing 

Many types of mental operations are available for processing a stimulus at any given 

time—perceptually, conceptually, via different modalities, and so on. The theory of 

transfer-appropriate processing (TAP) states that memory performance depends on the 

overlap between the types of processing used during study of an item and those used 

during a later memory test of that item. Essentially, the greater the overlap, the better the 

memory. 

TAP resembles other theories that are based on the similarity between study and 

testing conditions, such as contextual reinstatement, encoding specificity, identical-

elements theory, and the like; however, it is different in that it focuses on similarity of 

the processing used in the different situations, rather than on the stimuli involved. In 

other words, the more that the mental operations used during memory testing are the 

same as those used during study, the greater the memory performance. 
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TAP and Memory 

Much of the evidence directly investigating TAP to date has come from studies 

focusing on its role in explaining dissociations in explicit vs. implicit memory 

performance (e.g., Blaxton, 1989; Graf & Ryan, 1999; Horton & Nash, 1999; Leshner & 

Coyle, 2000; Rajaram, Srinivas, & Roediger, 1998). Blaxton (1989), for example, used 

TAP to predict dissociations in memory performance on five different types of memory 

tests—free recall, semantic cued recall, general knowledge, word-fragment completion, 

and graphemic cued recall. Those tests were labeled as either conceptually driven or 

data-driven, depending on the type of processing thought to be primarily involved in 

their completion. Using methods based on Jacoby (1983, as cited in Blaxton, 1989), 

Blaxton placed the free recall, semantic cued recall, and general knowledge tests in the 

conceptually driven group; the word-fragment completion and graphemic cued recall 

tests, having been shown to be largely dependent on physical features of stimuli, were 

placed in the data-driven category. 

As would be predicted by the TAP account, memory performance was enhanced on 

tests considered to be conceptually driven when, during study, participants were 

instructed to process the target items in a meaningful way—for example, by generating 

rather than reading the items or by forming mental images of them. Those manipulations 

had little effect on the data-driven memory tests. In contrast, focusing participants on the 

physical features of the target items (including modality and typography) enhanced 

performance on the data-driven but not the conceptually driven tasks. 



 

 

7

Blaxton's explanation was that the data-driven and conceptually driven memory tasks 

require different types of processing or mental operations. The former tend to rely on the 

analysis of physical features, whereas processing of the latter tends to be more elaborate 

and based on meaning. When the type of processing required by the test overlapped with 

the type of processing participants were instructed to perform during study, memory was 

enhanced. 

 Although much of the TAP research focuses on dissociations in retrospective 

memory, it does seem to be gaining ground in other areas, as well. For example, Meier 

and Graf (2000) extended the literature from retrospective to prospective memory. They 

showed that TAP can account for performance dissociations due to concurrent 

processing between an ongoing task and a prospective memory test. 

Leshner and Coyle (2000) applied the TAP theory to research on memory for 

television news. Based on the TAP account of memory performance, they argue that 

findings in the literature suggesting poor memory for such news may actually reflect an 

inappropriate match between the mental requirements of the memory tests and the 

mental requirements of watching television. To test that idea, they borrowed methods 

used by Blaxton (1989) and by Roediger, Weldon, Stadler, and Riegler (1992). 

Specifically, they presented participants with televised news stories, but encouraged 

those participants to process the stories either conceptually or perceptually (i.e., data-

driven processing). Conceptually driven processing was encouraged by instructing 

participants to rate a given story's meaningfulness, personal relevance, importance, 

informativeness, and seriousness. Data-driven processing was encouraged by having 
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participants rate the story's pace, audio quality, picture clarity, camera work, and the 

reporter's voice. Afterward, participants received one of four memory tests: graphemic 

cued recall, semantic cued recall, word fragment completion, or general knowledge. 

Drawing on Blaxton (1989), they classified the graphemic cued recall and word 

fragment completion tests as tasks that require primarily data-driven processing; the 

semantic cued recall and general knowledge tests were classified as conceptually driven. 

According to the TAP account, participants who conceptually processed the news 

stories should demonstrate better memory on the conceptually driven memory tests; in 

turn, participants who perceptually processed the stories should do better on the data-

driven memory tests. The results largely supported those predictions, although the 

performance difference on the graphemic cued recall test in the data-driven condition 

failed to achieve significance. (The authors offer differences in modality between study 

and test as a possible factor underlying that result.) 

TAP and Physical Performance 

Transfer-appropriate processing has even found its way into the area of sports 

psychology and physical performance. Peynircioglu, Thompson, and Tanielian (2000) 

proposed that TAP could explain a number of empirical findings regarding the 

relationship between mental imagery and physical performance. In general, they 

suggested that, according to TAP, encouraging a set of cognitive activities during 

practice that is similar to that used during performance would increase the effects of 

practice on performance. Specifically, they predicted that the effects of a particular 



 

 

9

practice strategy on subsequent performance depends on the match between the actions 

and thoughts used during each. 

To investigate that idea, they designed a study involving two physical performance 

tasks: free-throw shooting and grip strength. The authors described free-throw shooting 

as a fine motor skill with high cognitive demand: Among other factors, participants have 

to concentrate on body position; distance, height, and size of the basket; wrist action; 

and required strength. In comparison, grip strength is a predominantly gross motor task 

with much less cognitive demand: Participants primarily have to concentrate only on 

gathering their strength. 

Before they performed each task, participants used one of three preparation 

strategies: nonspecific arousal (i.e., "psyching-up"); mental rehearsal (i.e., imagery); or 

nothing (i.e., control condition). The nonspecific arousal condition involved having 

participants engage in physical activity (e.g., running around or pumping fists) and 

verbal self-encouragement. The mental rehearsal condition involved guided visualization 

of the actions required for the task. 

Based on TAP, the authors hypothesized that the free-throw condition, given its 

higher cognitive demand, would benefit from the similar types of mental operations 

required by the imagery preparation, but not from the actions used during the 

nonspecific arousal preparation. The grip strength task, on the other hand, being a simple 

application of strength, should benefit less from the imagery than from the nonspecific 

arousal preparation. The results largely supported the predictions. Free-throw shooting 

improved after the imagery strategy but not after the nonspecific arousal strategy. 
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However, for grip strength, the less cognitively demanding task, improvements resulted 

from the nonspecific arousal preparation, but not from mental rehearsal. 

The authors explain the results by suggesting that free-throw shooting, compared to 

grip strength, included more elements that could be successfully imaged, providing a 

greater match between the actual actions it required and those imagined during mental 

rehearsal. The actions performed during the nonspecific arousal preparation, however, 

did not match those performed during the actual task. In contrast, grip strength is either 

not as easily imaged as free-throw shooting, or the actual actions it required were 

different from those imagined during mental rehearsal. As a result, there was no benefit 

from the imagery preparation. However, it did benefit from the nonspecific arousal 

condition, presumably because the heightened arousal and physiological priming better 

matched the actual actions used in the grip strength task. 

Shanks and Cameron (2000) also brought TAP into the physical performance arena. 

They used the theory to explain the unexpected results of their study, in which mental 

practice had no effect on performance of a dot-location reaction time task. Physical 

practice, as might be expected, did enhance performance on the task. The authors 

suggest that certain fine details (such as precise timing) involved in performing the task 

were dissimilar to the underlying operations involved in mentally practicing the task. 

The operations underlying actual physical practice, on the other hand, provided a better 

match to those used during the test, and thus enhanced performance. In comparing this 

study to Peynircioglu et al. (2000), in which mental practice did have an enhancing 

effect for a cognitively demanding motor task, it may be that the dot-location reaction 
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time task was not so cognitively demanding as to benefit from practice involving 

cognitive operations. 

A New Area: Naturalistic Decision Making 

Despite the growing variety of fields in which TAP has been applied, little if any 

research has explored whether the theory can successfully predict cognitive performance 

outside of memory tests. For example, even taking the mental practice conditions used in 

Shanks and Cameron (2000) and Peynircioglu et al. (2000) into account, it has never 

been applied to long-term study situations such as skill acquisition or to testing situations 

involving high-level cognitive activities such as naturalistic decision making. Both of 

those situations presumably involve the use of a number of types of mental operations. If 

it can be shown that such situations follow the TAP account, that could have a number of 

implications for training programs. For example, if a particular decision-support tool is 

found to be unsuccessful in the workplace, it could be because its presence encourages 

the use of a type of processing different from that used during training, when the tool 

was not present. If the tool is then incorporated into the training program, it may actually 

degrade decision making performance in workplace situations that do not incorporate the 

support tool—again, because its absence would encourage a different type of mental 

operation than that used during training, when it was present. 

The focus here is on naturalistic rather than analytical decision making. Naturalistic 

decision making is essentially experienced decision making in natural or real-world 

settings, or simulations of such settings (Zsambok, 1997). Naturalistic settings have a 

number of key characteristics (Orasanu & Connolly, 1993, as cited in Zsambok, 1997): 
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ill-structured problems; uncertain, dynamic environments; shifting, ill-defined, or 

competing goals; action/feedback loops, rather than one-shot decisions; time constraints; 

high stakes; multiple players; and organizational goals and norms. 

Present Study 

Whether TAP can be applied to naturalistic decision making was tested in the current 

project. The decision-making task is this case is a low-fidelity air traffic control 

simulation, and the decision-support tool is a set of graphics intended to facilitate the 

processing of situation elements (aircraft trajectory and altitude) that must normally be 

mentally represented. As will be described, the ATC task, although a simulation, 

includes many characteristics of a naturalistic situation, such as a dynamic environment, 

feedback loops, competing goals, and time constraints. 

The ATC Task and Decision-Support Graphics 

In the ATC task, participants are responsible for guiding aircraft quickly but safely 

through a square-shaped airspace. However, a number of factors complicate the task. For 

example, the airspace contains several aircraft at any given time, each of which needs to 

be guided to a specific location. En route to those locations, the aircraft cannot fly over 

airports or get too close to the border or to other aircraft at the same altitude. Once at its 

destination, an aircraft must exit or land at a particular speed, altitude, and heading. 

Exiting is further complicated in that new planes entering the airspace tend to appear 

near the exits, potentially causing a conflict or crash with the exiting plane if participants 

are not paying attention. Landing at airports is similarly complicated in that the wind 



 

 

13

direction changes at regular intervals, requiring aircraft to change the direction in which 

they land on the runways; a lapse in attention in such a case can lead to a crash. 

Maintaining aircraft safety under such conditions likely necessitates the use of 

mental simulation to anticipate aircraft trajectories and potential conflicts in flight plans 

for a particular plane, or for the group of planes as a whole. Good performance requires 

the ability to include contingencies in those flight plans, including simply keeping an eye 

on potential problem spots—in other words, keeping some attentional resources in 

reserve. Measures such as the number of separation violations with en route vs. waiting 

aircraft, number of runway violations, and number of changes to aircraft altitude, speed, 

and heading should provide an indication of participants’ evaluation and contingency-

planning activities, with more such errors and changes corresponding to increases in 

workload. If so, then reducing workload should result in fewer such errors, which is 

where the decision-support graphics enter the picture. 

The rationale behind the DSGs used in the present experiment is based on the idea 

that experts perceive unseen relationships and processes that others cannot see (Klein & 

Hoffman, 1993). Part of mental simulation involves representing those unseen elements 

in a mental model and then manipulating them. Mental simulation, however, is both 

taxing and time-consuming, and it may be that having to imagine and account for such 

unseen factors makes up much of that burden. If so, then that burden could perhaps be 

reduced if the need for such imagining were eliminated, such as by making those 

elements explicit through graphical presentation on a computer screen. In the ATC task, 

maintaining aircraft separation requires anticipating where planes will end up and how 
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fast, as well as understanding where they are (vertically as well as horizontally) in 

relation to each other. So, visually displaying an aircraft’s trajectory and speed may 

reduce the burden of mentally simulating that information; as well, providing a visual 

indication of aircraft altitudes may facilitate mentally spatially organizing of them. Both 

are methods of visually depicting normally unseen factors in a situation, and as such are 

believed to reduce the burden of simulation. In turn, because mental simulation is an 

aspect of situation awareness (SA; see Endsley, 1995b) the graphics may alleviate the 

need to maintain SA, at least as it relates to aircraft separation and navigation. For 

example, they provide perceptual cues for impending aircraft conflicts, meaning 

participants need not devote much attention (relatively speaking) to such conflicts until 

the cues indicate such a conflict is about to happen. An alternative way to view the role 

of the graphics, as described earlier, is that they may transform some of the 

conceptually-driven or higher-level cognitive processing normally involved in the task 

into perceptual or data-driven processing, so freeing up resources and aiding learning of 

the task. However, it may also be that such a transformation simply complicates an 

already visually loaded situation, instead interfering with learning and decision making. 

In any case, choosing what factors to represent through graphics, and how to 

represent them, was a fairly arbitrary decision. However, given that maintaining aircraft 

separation would seem to necessitate the projection of aircraft trajectory and speed (i.e., 

where they will end up, and how fast), as well as an understanding of their relative 

altitudes, it seemed logical to focus on augmenting trajectory, speed, and altitude. In 

addition, research has shown that trajectory and altitude are among that top 
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considerations in air traffic controller (Mogford, 1997; Niessen, Eyferth, & Bierwagen, 

1999; Whitfield & Jackson, 1982). 

Given the scarcity of examples on which to base the design of the support graphics, 

they were designed according to the experiment’s sense of what would make their use 

most intuitive. The goal was to create graphical indicators whose purpose would be 

obvious and which also would provide at-a-glance information regarding trajectory and 

relative altitude of several aircraft. Given that, trajectory is represented by a line that 

indicates the projection of the aircraft’s position forward in time (specifically, three 

moves), adjusted for speed. Altitude is indicated by a colored circle around the aircraft, 

with the color representing a particular altitude. The rationale behind the altitude 

indicators is that ATC presumably involves maintaining something of a spatial 

organization of the aircraft in the vertical plane; using color to represent different 

altitudes alleviates that burden by allowing quick scanning and comparison of different 

aircraft. On a side note, it might also be the case that time is a factor in need of 

augmentation, given that the runways switch directions at regular intervals, and that new 

planes are introduced also at set intervals; however, no graphics were designed for that 

purpose. 

In summary, although the ATC task is a low fidelity simulation, it possesses many of 

the characteristics of a naturalistic decision making task. In particular, it is a dynamic, 

ever-changing task with action/feedback loops, because any move that participants make 

changes the situation and requires a reassessment of the environment. For example, 

altering the course of one aircraft may eventually place it in the path of several others. 
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Similarly, although there is one main goal—get the aircraft to the exits quickly and 

safely—there are conflicting ways in which they meet that goal. Because more points are 

earned the faster an aircraft is exited, for example, participants can choose to pay more 

attention to aircraft speed than to aircraft separation. On the other hand, points are lost 

for each aircraft conflict, so some participants may choose to deemphasize speed in 

favor of keeping them safely separated. Most will probably try to find a balance between 

the two. In addition, the aircraft do not stop until they reach their destination or crash, 

and new aircraft are appearing at regular intervals. As a result, the time that participants 

can spend considering moves for a given aircraft becomes increasingly limited, thus 

introducing the time constraints common to real-world tasks. As well, an attempt was 

made to introduce the stakes involved in such tasks by offering a monetary prize for 

highest score; a pilot study indicated that the amount offered was attractive to most 

students. 

Design and Predictions 

Because naturalistic decision making research is concerned with experienced rather 

than naïve decision makers, participants were trained on the ATC task. Some were 

trained with the benefit of the decision-support graphics, others without. After training, 

participants were tested on a more difficult version of the task, half with the graphics and 

half without. The addition of two control groups, which received no training on the ATC 

task, yielded the following six groups1: 

                                                 
1 The coding for the different groups consists of a two-letter label, in which the first letter indicates the 
type of training and the second indicates the type of testing; a “G” indicates the support graphics were 
present, an “N” indicates no support graphics were present, and a “C” (training only) indicates control 
groups that did not participate in any training sessions. 
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1) graphics during training + graphics during testing (GG) 

2) no graphics during training + graphics during testing (NG) 

3) graphics during training + no graphics during testing (GN) 

4) no graphics during training + no graphics during testing (NN) 

5) no training + graphics during testing (CG) 

6) no training + no graphics during testing (CN) 

If the TAP account holds, then participants whose testing condition differs from their 

training condition (NG and GN) should use a different set of mental operations in each 

situation. As a result, participants trained with the graphics should do better when tested 

with the graphics (GG) than when tested without them (GN). Similarly, and what would 

be most surprising from an applications standpoint, participants trained without the 

graphics should actually perform better when tested without the graphics (NN) than with 

them (NG). 

TAP and the theory of identical elements 

With the ATC task, as an example of how the type of processing involved may differ 

between the with-graphics and without-graphics conditions, consider a distinction 

commonly described in TAP studies: conceptually vs. data-driven processing (e.g., 

Blaxton, 1989; Leshner & Coyle, 2000). Conceptually driven processing involves 

processing a stimulus at a conceptual level—for example, processing a word according 

to its meaning. Data-driven processing, on the other hand, is a bottom-up process in 

which stimuli are encoded at a perceptual level, such as the appearance of a word. 
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 TAP experiments have found that tasks in which study and testing differ in whether 

they are conceptually or data-driven tend to lead to poor memory performance, whereas 

those with greater overlap between the type of processing involved produce better 

performance (Blaxton, 1989; Leshner & Coyle, 2000). The implication is that the mental 

operations involved in the two types of processing are different, and so study and testing 

conditions that differ in the type they require are encouraging participants to use 

different mental operations in either situation, thus hurting memory performance. 

 It may be that a similar distinction in processing requirements can be made in the 

ATC task. In particular, because the decision-support graphics are intended to facilitate 

the mental representation of certain situational elements, it may be that those graphics 

actually reduce the processing requirements of the task. Alternatively, the graphics can 

also be thought of as transforming some of the conceptually-driven processing required 

to perform the task into data-driven processing. In either case, then, compared to the use 

of the ATC simulation without graphics, the decision-support graphics may actually 

encourage the use of a different set of mental operations—specifically, those more suited 

to data-driven or perceptual processing. If so, then the processing requirements would be 

expected to be greater in the absence of such graphics. In particular, participants in those 

conditions would need expend more resources on imagining or mentally visualizing the 

trajectory of several aircraft in the airspace compared to participants for whom the 

graphics provide such information. That mental visualization is perhaps analogous to 

conceptually driven processing, in which case it likely requires the use of mental 

operations more suited to such activity. 
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 To summarize, if the TAP theory can predict performance on the ATC task, then 

participants trained with the benefit of decision-support graphics should perform better 

when tested with those same graphics than similarly trained participants tested without 

them; similarly, participants trained without those graphics should perform better when 

tested without them than with them. For the latter users, the graphics likely allow users 

to capitalize on the more-sophisticated human perceptual system. Differences in 

performance, then, may be the result of differences in the mental operations used in 

conceptually vs. data-driven processing. 

However, it is difficult to be certain that people will actually use a different type of 

processing in the presence of the graphics. One advantage of the previous studies 

investigating TAP is that they have been able to manipulate explicitly the type of 

processing that participants used to study the stimuli. For example, if studying memory 

for word lists, experimenters can have participants either generate the words themselves 

or instead read them from a list. The former method presumably involves primarily 

conceptual processing, whereas the latter involves primarily data-driven processing. 

Knowing that, experimenters can then match those study conditions to testing conditions 

that encourage similar types of processing. Being able to manipulate processing in such 

a way is essential for differentiating TAP from similar theories such as contextual 

reinstatement, encoding specificity, and the like. Basically, TAP focuses on the type of 

processing rather than the context involved, and so it is necessary to be able to say that 

the type of processing was actually different or the same between study and test. 
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 In the current project, however, participants are not made to process the same stimuli 

in different ways. Rather, the argument is that different stimuli will encourage different 

types of processing, leading to differences in performance based on whether the same 

type of processing is involved during testing. That assumption can perhaps be supported, 

though, by comparing the pattern of results to what would be predicted by the similar but 

more general theory of identical elements. 

 Identical-elements (IE) theory and TAP make the same basic predictions: similar 

conditions lead to better performance, different conditions lead to worse performance. 

However, whereas TAP theory attributes such performance differences to the type of 

processing involved, IE theory is more general: It predicts performance differences, but 

it does not explain them beyond pointing out differences in the stimulus/response 

elements making up the training and testing conditions. 

 Recent empirical evidence supporting IE theory is scarce. The concept of IE has 

been around a long time and seems to have become a generally accepted fact in 

textbooks and the like. It is based on classical conditioning theory (Goldstein & Ford, 

2002), and empirical studies under that and similar headings in the older literature have 

perhaps contributed to its acceptance. 

Goldstein and Ford (2002) describe IE predictions in terms of transfer, with the 

performance of participants in experimental conditions being compared to that of a 

baseline control group which had no training. The addition of that baseline to the current 

study may allow the conclusion that the support graphics encouraged different types of 

processing, even though processing was not explicitly manipulated. The reason is that IE 
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and TAP will make the same predictions in certain circumstances—namely, when the 

type of processing is different between study and test. If processing does not change, 

though, the theories make different predictions. 

Essentially, the elements in identical elements theory involve both stimuli and 

responses. Based on the differences in either stimulus or response between testing and 

training, Goldstein and Ford (2002) say that certain directions in transfer (positive or 

negative) would be expected (see Table 1). If everything stays the same between 

conditions, one would expect high-positive transfer from training to testing, meaning 

that performance should be better than that of an untrained control group. If just the 

stimuli change, but the type of responses required to perform the task stay the same, 

positive transfer would still be expected. 

 

Table 1    
Direction of transfer predicted by IE theory 

Stimulus Response Transfer 

Same Same High Positive 

Different Same Positive 

Same Different Negative 

Different Different Negative 

Source: Goldstein & Ford, 2002. 
 
 

The only situation in which negative transfer (performance worse than in an 

untrained control group) would be expected is when there is a change in the responses 

required to perform the task. In the current project, the physical responses that 
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participants must make remain the same across all conditions, and so IE would predict 

positive transfer in all cases, but much better transfer in cases in which the stimuli stay 

the same. However, responses can be both physical and mental. So, although the 

physical responses do not differ between the graphics and no-graphics conditions, it may 

be that the mental responses do change. In that case, negative transfer would be expected 

in mismatched training-testing conditions. 

Considering type of processing to be a mental response, then if the graphics actually 

do encourage a different type of processing, responses should differ between training 

and testing conditions when graphics are present during only one or the other. In that 

case, IE would predict negative transfer (i.e., worse performance relative to controls) for 

mismatched conditions, but positive transfer (better performance than controls) for the 

matched ones; TAP would predict the same. 

Hypothesis 1—TAP & IE:  If processing is different, both TAP and IE predict that 

mismatched groups will display negative transfer, and matched ones positive transfer, 

relative to controls. In terms of relative performance: 

• GG > CG > NG 

• NN > CN > GN 

On the other hand, if type of processing does not differ in the presence of the 

graphics, IE and TAP make different predictions. IE would predict positive transfer 

(performance better than controls) across the board. 

Hypothesis 2—IE:  If processing remains the same, IE theory predicts positive 

transfer for mismatched groups and high-positive for matched ones, relative to controls. 
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• GG > NG > CG 

• NN > GN > CN 

In the same situation, TAP predicts equal performance in all conditions (barring any 

inherent benefit in the graphics themselves), because processing is the same in every 

condition. 

Hypothesis 3—TAP:  If processing remains the same, TAP predicts equal 

performance among the experimental groups. 

• GG = NG = NN = GN 

See Table 2 for an illustration of IE, TAP, and other competing explanations. 

 
 

Table 2    
Predictions of Relative Performance of Different Groups 
Hypotheses Predictions 

1.  TAP & IE GG > CG > NG 
NN > CN > GN 

2.  IE GG > NG > CG 
NN > GN > CN 

3.  TAP GG = NG = NN = GN 
4.  Attention Reallocation GG, GN > NN, NG 
5.  Overshadowing GG, NG, NN > GN 
6.  Graphics Advantage GG, NG > GN, NN 

Note. GG: graphics during training, graphics during testing; NG: no graphics during training, 
graphics during testing; GN: graphics during training, no graphics during testing; NN: no graphics 
during training, no graphics during testing; CG: no training, graphics during testing; CN: no 
training, no graphics during testing. 
 
 

In any case, for IE theory, the prediction is that matched conditions will lead to better 

performance than mismatched conditions. However, the amount and direction of transfer 
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of those groups relative to performance of an untrained control group should shift 

depending on whether the decision support graphics encourage different types of 

processing. Hence, by looking at the pattern of results, it should be possible to determine 

whether or not any performance differences were due to differences in the type of mental 

operations used. 

Attention reallocation 

The line of reasoning used to describe the with-graphics and without-graphics 

conditions as involving data- vs. conceptually driven processing, respectively, happens 

to support a counterargument, as well. Capacity theories of attention posit a limited pool 

of attentional “resources” that an individual can spend on a task or tasks. As that pool is 

drained, performance worsens, as is often demonstrated in dual-task studies in which 

participants must divide attention between a main task and a secondary task. Divided 

attention may be necessary within a single task, as well. For example, in Kanfer and 

Ackerman’s (1989a, 1989b) model of skill acquisition, attentional resources must be 

allocated among the main task activities as well as off-task, self-regulatory, and 

metacognitive activities. 

If the decision-support graphics actually do facilitate or reduce the processing 

required to perform the ATC task, then it may be that individuals presented with those 

graphics have enough slack in the demand for their resources to be able to concentrate 

on such off-task and metacognitive activities, or on aspects of the task that are important 

but not very salient or immediately essential, such as patterns and timing in aircraft 

appearances and behavior. Without those graphics, the processing load involved may 
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leave little attention left over for learning anything about the task beyond the basics 

required to perform it. 

In that case, participants trained with the graphics should learn more about the task, 

and hence they should perform better than participants trained without them, regardless 

of whether the graphics are included during testing. See Table 2 for an illustration. 

Hypothesis 4—Attention Reallocation:  In the testing sessions, the groups trained 

with the support graphics should outperform those trained without them (i.e., a main 

effect of type of training). 

• GG, GN > NN, NG 

It may also be, though, that the graphics prove to be helpful only to the lower 

cognitive ability participants, because those with greater ability may have enough 

attentional slack that the advantage of the graphics becomes negligible. As well, the 

difference between high- and low-cognitive ability participants should be reduced in the 

presence of the decision-support graphics, relative to conditions not involving those 

graphics. 

Overshadowing 

Contrary to the idea that the graphics may ease processing and so facilitate learning, 

it may actually be that they instead overshadow important information. Overshadowing 

occurs when stimuli presented during training prevents the learning or processing of 

other stimuli. Cockrell (1979) describes that as a situation in which a very salient and 

distinctive feature on a target captures a trainee's attention, such that little attention is 

paid to remaining features. He investigated the role of overshadowing in target 
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identification training by showing participants slides of small-scale model vehicles, 

which participants were later expected to identify. The vehicles were all the same size 

and color; the primary cue dimension for identifying the vehicles was shape. The author 

manipulated the salience or usefulness of that dimension by obscuring the vehicles in 

some of the slides, thus forcing trainees to look for other means of identification. 

Specifically, some participants were trained to identify the targets by way of slides in 

which the vehicles were partially or mostly blocked from view; the rest of the trainees 

were presented with normal, full-view slides. During testing, though, all participants 

were exposed to both normal and obstructed slides. (The testing slides had different 

views of the same types of vehicles used during training.) 

As would be expected by an overshadowing account, participants trained with the 

obstructed slides more accurately identified obstructed vehicles during testing than were 

participants trained with normal, non-obstructed slides. There was little difference 

between the groups when tested on non-obstructed slides, though the participants trained 

on such slides were still the most accurate. Cockrell's (1979) findings suggest that 

participants trained in the full-visibility condition learned to rely on vehicle shape, the 

primary distinguishing cue, to identify the vehicles. When that cue was degraded or 

removed during testing, those participants had little else on which to categorize them, 

and so their performance dropped. For trainees in the obstructed-view conditions, 

however, shape was not as accessible or useful a cue, and so they learned to use other, 

not-so-salient cues to distinguish them. 
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In the present case, it could be argued that the salience of the decision support 

graphics hinders participants from learning other important but not-so-salient 

information or patterns in the task—timing and location of regular events, for example, 

such as the appearance of new aircraft on the radar. In that case, those participants may 

end up relying on the graphics and so learn less about the task than participants who did 

not have the aid. When faced with testing conditions in which the graphics cue was 

removed, participants would be expected to perform poorly compared to others or to 

demonstrate negative transfer compared to untrained controls. However, because the 

damage will have been done during training, participants for whom the graphics were 

presented only during testing or else not at all should fare relatively well. See Table 2 for 

an illustration of these predictions. 

Hypothesis 5—Overshadowing:  The group trained with the graphics should perform 

worse than the other groups when those graphics are taken away during testing. 

• GG, NG, NN > GN 

Graphics advantage 

Finally, it may be that the support graphics have inherent advantages or 

disadvantages to performance, but only in an immediate or at-the-moment sense. After 

all, they were designed to facilitate mental simulation of aircraft position and movement 

by making the process more perceptual rather than conceptual. If they work, then, they 

should result in higher scores, fewer plane conflicts, and so on. However, contrary to 

what is predicted in the other hypotheses, the graphics may have absolutely no effect 

during training. In other words, the support graphics may make the task somewhat easier 
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to perform when they are present, but they do not necessarily free up enough attention 

for participants to learn anything more about the task. 

That argument is based more on supposition than on findings in the literature, 

because concrete research on the effects of computer graphics on learning and 

performance in naturalistic tasks is scant. Though graphics are often mentioned in 

naturalistic research involving decision support, such as in Morrison et al. (1998), the 

problem is that the graphics are not really the focus of the research. As a result, their 

influence on learning and performance is difficult to disentangle from that of the rest of 

the decision-support system. Even when the graphics are the focus, the study in question 

is generally theoretical and untested rather than empirical. For example, Hollan, 

Hutchins, and Weitzman (1984) designed a simulator (STEAMER) for teaching steam 

propulsion systems on Navy ships. What was new about STEAMER is that it used visual 

cues and signals to explicitly represent such dynamic elements as flow rates in pipes and 

the rising/falling state of various gauges. In previous simulators and generally in the 

real-world (at that time), such elements were not “seen” but rather had to be calculated, 

discovered, or assumed. The creators of STEAMER believed that an explicit 

representation of such important elements would aid learning; however, the paper was a 

discussion of STEAMER rather than a test of it, and so no formal results were reported. 

In a similar treatment, Lewandowsky, Dunn, Kirsner, and Randell (1997) created a 

simulation of bushfire-spread, and introduced into it an alert that triggers in situations in 

which fire spread is likely to violate expectations—such as in conditions involving light 

wind speed and steep downhill slopes. The intention was to make explicit a normally 
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subtle and hidden relation between wind and ground slope. Because of practical 

constraints, though, the alert went untested. In the present study, however, the support 

system is sufficiently simple and contained to be able to determine its effects on 

performance. See Table 2 for an illustration. 

Hypothesis 6—Graphics Advantage:  The groups tested with the support graphics 

should outperform those tested without them (i.e., a main effect of type of testing). 

• GG, NG > GN, NN 

Asymmetric effects 

Of course, the theoretical accounts described above are not mutually exclusive. It 

could be, for example, that greater overlap between the type of processing used during 

training and testing do indeed lead to better performance on the ATC task (IE and TAP). 

However, it could also be that the DSGs reduce the processing burden of the task, 

allowing participants to allocate attention to and so learn about less salient but important 

aspects of the task, such as the timing of certain regular events (attention reallocation). 

In that case, the graphics would be expected to mitigate somewhat the negative effects of 

mismatched processing types, but only in those conditions in which the graphics were 

present during training. Or, it could be that the DSGs make the task easier to perform but 

not to learn, so that participants who encounter them only during testing do as well as or 

better than participants who do not encounter them at all (graphics advantage). 

Alternatively, the graphics could prove to be distracting, using up visual resources that 

could otherwise be applied to the task. In that case, the graphics would be expected to 

hurt performance, though similarities between training and testing may mitigate the 
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negative effects. In any of those cases, the results would be expected to be asymmetrical, 

with the decision-support graphics either helping or hurting performance during testing, 

but with the difference being reduced when the training condition matches the testing 

condition. 

Summary 

The theory underlying this study is that the transfer appropriate processing account 

of memory performance can be extended to performance on real-world tasks. The task in 

question is an air traffic control simulation, and there are two versions of it: a “normal” 

version, and a version that provided a type of decision support aid—namely, graphics 

that indicated plane trajectory and relative altitude. Participants saw one version during 

training on the task, and then either the other or the same version during testing. The 

assumption is that the graphics will encourage a type of processing different from that 

normally used when performing the task. If so, then following the TAP account, 

participants for whom the version used during testing matches that used during training 

were expected to outperform those for whom the versions mismatch. 

One problem, though, is the lack of any direct check of whether the type of 

processing used is actually different between versions. Instead, the issue will be 

examined indirectly by comparing the pattern of results to what would be predicted by 

identical-elements theory. To that end, two control groups (one for each version) will be 

introduced in which participants receive no training on the ATC task. 

The main interest here is the direction of transfer—positive or negative—of the 

performance of the experimental groups relative to the appropriate control group. For 
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example, the groups that see the graphics version of the task during testing (GG and NG) 

would be compared to the control group that sees the same version (CG). Depending on 

whether or not the type of processing actually changes between the groups, IE theory 

makes two different predictions. If processing does not change, then IE predicts that all 

of the experimental groups will outperform the appropriate control group, but the 

matched groups (GG and NN) will perform the best. In other words, in terms of 

performance: 

• GG > NG > CG 

• NN > GN > CN 

However, if processing actually does change, then so does the predicted 

performance of the experimental groups relative to the control groups. In particular, the 

matched groups should perform better than the corresponding control group, but the 

mismatched groups should perform worse, as follows: 

• GG > CG > NG 

• NN > CN > GN 

Alternative hypotheses are posited, as well. For example, the support graphics 

highlight elements of the task that normally take a large amount of attention and effort. 

That highlighting may actually serve to reduce the amount of attention that needs to be 

given to those elements, thus allowing participants to reallocate their resources to less 

salient portions of the task—the timing of regularly repeating events, for instance. If so, 

then participants trained with the support graphics should perform better than 
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participants trained without them, as would be demonstrated in a main effect of training 

graphics. 

• GG, GN > NN, NG 

On the other hand, rather than benefiting learning, it may be such highlighting 

actually interferes with it. In particular, the graphics may be so salient that they 

overshadow other important information. If so, then removing the graphics should hurt 

the performance of participants who have come to rely on them. Specifically, 

participants in the GN condition—those who were trained with the graphics but for 

whom the graphics were removed during testing—should perform worse than those in 

the other conditions. 

• GG, NG, NN > GN 

Finally, it may be that the support graphics have inherent advantages or 

disadvantages to performance, but only in an immediate or at-the-moment sense. For 

example, the graphics may make the task somewhat easier to play when they are present, 

but they may have no effect on learning the task. Such would be revealed in a main 

effect of testing graphics. 

• GG, NG > GN, NN 

Of course, not all of those hypotheses are mutually exclusive. An asymmetric pattern 

of results could be found that fits, for example, both the overshadowing and TAP 

predictions, or that shows both an IE pattern and a graphics main effect. 
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Operationalizing Performance 

 The manipulation used in this study is simple: The support graphics either are or are 

not present during training and during testing. Thus, the experiment’s two independent 

variables are type of training and type of testing. 

The dependent variables are somewhat more complicated, though, given the different 

aspects of performance that can be measured. Generally, the FAA’s use of the simulation 

involves three main variables of interest: 

• Safety:  the sum of all errors made by the participant 

• Efficiency:  the sum of the time all aircraft spend getting to their destination; 

quicker times equate to better performance 

• Workload:  the sum of the time all newly arrived aircraft spend waiting for 

acceptance; quicker times equate to better performance 

However, those variables will be altered slightly for the current study. In particular, 

Safety will be broken into three subcomponents: Plane Conflicts, Navigational Conflicts, 

and Timing Conflicts. Plane Conflicts is being singled out from the other types of errors 

because it is believed that the support graphics will have their greatest impact on this 

measure. Navigational Conflicts is being separated from the other types of errors 

because it consists primarily of procedural errors (e.g., landing at the wrong altitude, 

getting too close to the border, etc.). Similarly, Timing Conflicts is a combination of 

error types that are characterized by regular changes in the task (e.g., regular changes of 

runway direction, and regular appearances of new aircraft). In addition, the Efficiency 

measure, instead of being based on the total flight time of all aircraft, will now be based 
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on the number of planes successfully exited; as such, it is more of an “Effectiveness” 

measure.2 

The measures of interest in the current project, then, are: 

• Score:  the number of points for all aircraft successfully exited or landed, 

modified according to how quickly that is done, minus any penalties for errors; 

serves as a rough composite of the other five DVs 

• Plane Conflicts (PlnCon):  the number of times the plane-separation rule is 

violated (i.e., aircraft got too close to each other) 

• Navigational Conflicts (NavCon):  number of procedural errors (i.e., aircraft 

getting too close to the border of the airspace, violations to the exiting rules for 

gates, and airport speed and altitude landing violations) 

• Timing Conflicts (TimeCon):  number of errors dealing with task components 

that change regularly (i.e., runway violations, separation violations involving 

newly arrived aircraft). 

• Effectiveness (NumExits):  the number of aircraft successfully landed or 

exited. 

• Workload (WaitTime):  the total time newly arrived aircraft spend waiting each 

session; quicker times equate to lower workload 

Given that the support graphics were specifically designed to facilitate mental 

simulation of aircraft position and movement, it is expected that they will have their 

greatest effect on Plane Conflicts. They may also have secondary effects on 

                                                 
2 The change is being made because of a problem discovered during the course of the experiment 
regarding the measurement of aircraft flight time. 
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Effectiveness (NumExits), because the graphics may allow some greater degree of 

planning ahead, and possibly because fewer plane conflicts leads to fewer plane 

crashes—which means more planes are available to exit. Navigational Conflicts may 

indirectly benefit from the graphics, which make information that is important to exiting 

and landing (i.e., altitude and speed) more salient. The only likely way in which the 

graphics will benefit Workload (WaitTime) and Timing Conflicts, however, is if they 

free up enough attention that participants actually learn more about the task—such as the 

timing of regular events. 
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METHOD 

Participants 

Two hundred fifty-nine introductory psychology student volunteers participated for 

course credit. The data for 14 participants was dropped because it was apparent that they 

were not attempting to perform well on or even to play the task. For example, the 

computer recorded the total number of times a participant changed the direction, speed, 

and altitude of the aircraft during a given session. If the number of course corrections 

happened to be zero or even in the tens or twenties (range for the whole sample was 0-

155 for the training sessions and 0-176 for the testing sessions), it was assumed that that 

participant either did not interact with the simulation, or else tried it at first and then quit 

to let the task run on its own. For 40 other participants, data was lost because of 

computer, network, or internet difficulties. As a result, total N = 205, with 118 male and 

87 female young adults randomly assigned to the six conditions. 

The sample sizes for the six conditions were not equal. For the training sessions, 

excluding the control groups (which had no training), total n = 145 (71 participants in 

the graphics training condition, and 74 in the no-graphics condition). For the testing 

sessions, total n = 205; Table 3 shows the sizes for each cell. 
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Table 3    
Sample Sizes for Each Cell 
 TEST   
TRAIN Graphics (G) No Graphics (N) Grand Total 
Control (C) 37 23 60 
Graphics (G) 32 39 71 
No Graphics (G) 41 33 74 
Grand Total 110 95 205 
 

Task 

The main experimental task was a computer simulation called the Air Traffic 

Scenario Test (ATST). The ATST is a low-fidelity simulation of an air traffic control 

(ATC) radar screen that is updated every four seconds. The goal is to maintain, as 

efficiently as possible, separation and control of a varying number of simulated aircraft 

within the designated airspace. 

Based on FAA usage of the ATST simulation, the four training sessions were of 

increasing difficulty. Session 1 started off with two planes already in flight, with new 

planes appearing every 40 seconds. With each subsequent session, another plane was 

added to those initially in flight, and new planes appeared five seconds faster. Each of 

the two testing sessions started out with eight planes in flight, with new planes appearing 

every 20 seconds. The increased number of initial planes in flight in the testing sessions, 

as well as the increased frequency of the appearance of new aircraft, was intended to 

make those sessions somewhat more difficult than the training sessions. For either type 

of session, the number of initial aircraft and the frequency of appearance of new aircraft 

were both based on examples provided by the FAA of easy vs. difficult ATST scenarios. 

See Table 4 for specifics. 
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Table 4    
Specifications for Each Session of the Air Traffic Control Task 

 Session 
Specs Training 1 Training 2 Training 3 Training 4 Testing 1 & 2 
difficulty progressive progressive progressive progressive same 
time limit 10 min 10 min 10 min 10 min 12 min 
instructions 4 min instructions, 2 min practice 
total # planes 16 19 23 28 43 
# initial planes 2 3 4 5 8 
time b/w new 
planes 40 sec 35 sec 30 sec 25 sec 20 sec 

gate destinations 2-3 each 3 each 3-4 each 4-5 each 8 each 
airport destinations 3 each 3-4 each 4 each 4-5 each 8 each 
initial plane speed Varies varies varies varies varies 
refresh rate 4 sec 4 sec 4 sec 4 sec 4 sec 
 

 

Figure 1 shows a screenshot of the task. Each aircraft was associated with a data 

block indicating its present speed, altitude, and destination. Speed was represented by a 

letter (S = slow, M = moderate, F = fast), altitude by a number (1 = low, 2 = middle, 3 = 

high), and destination by a letter (A-D for gates, E-F for airports). The destination 

indicated either one of the four gates through which the plane must exit or one of the two 

airports at which it must land. For each session, the number of aircraft that participants 

saw was evenly split between the six possible destinations. In addition to the three 

possible speeds and three possible altitudes, each plane could travel in one of eight 

possible directions, each corresponding to one of the eight compass points. 
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Figure 1    
Screenshot of the airspace section of the ATC task. 

 
 

The participants’ job was to keep all planes a certain distance from each other and 

from the border of the airspace, to guide each one to a specific exit or airport, and to land 

or exit them at specified altitudes and speeds. Participants maintained separation and 

control over aircraft in flight by using the computer mouse to click either on the data 

block to change speed and altitude, or on the plane itself to change heading. 
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Participants were awarded 15-40 points for each plane successfully landed, 

depending on how quickly they landed it. For each error (conflict, collision, or broken 

rule), they were penalized 10 points for every plane involved. The size of the awards and 

penalties was fairly arbitrary, with the primary criterion being that participants should be 

able to compensate for a plane collision penalty by landing another plane very quickly. 

However, the score was mainly for the participants’ benefit: It was intended to give them 

something to work toward. The primary measure, as in the FAA version of the task, was 

the number of conflicts, collisions, and errors each subject made. The score was also 

intended to encourage participants to land planes quickly by sending them along a 

relatively direct route to their destinations, rather than letting them linger along the sides 

of the borders; the latter would have been an easier strategy, but it would also have 

ruined the task. Hence, the score was presented throughout each session, so that 

participants could see that landing planes quickly resulted in a higher score and could 

compensate for earlier mistakes. Scores and other data were collected by the computer 

program, which then emailed the information to the experimenter. 

 The decision-support graphics associated with the task included a trajectory indicator 

and an altitude indicator for each aircraft on the radar; see Figure 2. The altitude 

indicator was a filled circle surrounding the aircraft; its color indicated the altitude of the 

aircraft, allowing quick scanning and comparison of aircraft. The trajectory indicator 

was a white line pointing out from the nose of the aircraft icon in the direction the 

aircraft was traveling. Its length changed as a function of aircraft speed, so that the end 

farthest from the aircraft indicates where that plane would be in four moves, whatever 
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the craft’s speed. That length was set according to the following, admittedly subjective, 

criteria: It had to be long enough to provide useful information about the craft’s 

trajectory; it had to be short enough so that it was not a distraction; and it had to be long 

enough so that users had time to respond to the crossed indicators of two aircraft before 

those aircraft came into conflict. 

 
 

 
Figure 2    
Screenshot of the airspace section of the ATC task showing the support 
graphics. 
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Individual-Difference Measures 

The following variables were included as covariates to add power to the statistical 

analyses. 

1) The Wonderlic Personnel Test (1992), a measure of cognitive ability. The test 

contains 50 items, and participants are given 12 minutes to complete it. The 

Wonderlic Test Manual (1992) states that the instrument’s internal consistency 

reliabilities range from .88 to .94. 

2) Nine items from the Computer Usage Survey (CUS; see Young, Broach, & 

Farmer, 1997) that measure video game experience. These items were summed to 

produce a single score. 

Procedure 

 Participants were randomly assigned to one of the six conditions: GG, NG, NN, GN, 

CG, CN. They were initially run in groups in the presence of the experimenter so that 

they could complete the Wonderlic Personnel Test, which is a timed paper-and-pencil 

test. The rest of the experiment was accessible online, and so after participants were 

finished with the Wonderlic, they were allowed to complete the CUS and the ATC task 

at their own convenience either at home or in a computer lab at the university.3 

Participants logged onto the online portion of the experiment using individual codes 

provided by the experimenter. After entering that code, the program asked them to 

                                                 
3 Note that ecological validity might be a concern here, given that participants may be performing the task 
in an uncontrolled, possibly distracting environment. However, air traffic control environments are often 
busy and distracting themselves, and so performing the task in a computer lab may actually be more 
similar to the real-world environment than would a controlled environment. Also, the focus of the present 
study is on the support graphics; air traffic control is simply medium to investigate them, and as such is 
not a primary concern. 
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indicate where they performing the task (home or computer lab), as well as the size of 

the computer monitor they were using; that information was then used to introduce two 

covariates into the data analyses in an attempt to partial out some of the variance caused 

by the different environments in which the task was performed. 

After entering that information, they began the CUS, which was then followed 

immediately by the ATC task. The ATC task had to be completed in one sitting. To 

verify that participants actually followed that restriction, the computer recorded how 

long it took each one to complete the task. 

 The ATC task contained a brief description of the simulation and instructions on how 

to use it. After the participants read that information, they were allowed to practice 

controlling a single aircraft for two minutes. Following that, all non-control participants 

completed four 10-minute training sessions, with a one-minute break between them. A 

five-minute break followed training, after which participants completed two testing 

sessions. Participants in the control conditions skipped the training sessions. 

The testing sessions were more difficult than the training sessions in terms of the 

number of initial aircraft, the rate of appearance of new planes, and so on. Each testing 

session was also 12 minutes long, with a two-minute break between them. Participants 

were given two testing sessions rather than one in order to examine whether performance 

differences attributable to the introduction or removal of the support graphics in the 

middle of the game were simply because of the novelty of the presence or absence of the 

graphics. The increased difficulty was an attempt to make the testing task different 

enough from the training task to be considered a transfer test. 
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Design 

The experiment was a 3 (training graphics) x 2 (testing graphics) between-participants 

design. A separate was performed on the training data, which was a 2 (training graphics) 

x 4 (training session) within-subjects design. 
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RESULTS 

Each of the six DVs were repeated-measures variables, recorded for each of the six 

task sessions (four training sessions followed by two testing sessions). In the following 

analyses, a number following the variable name is a reference to a particular session. For 

example, PlnCon1 refers to the number of Plane Conflicts for the first training session; 

similarly, PlnCon5 and PlnCon6 refer to the number of such conflicts in the last two 

sessions, which are the testing sessions. 

Separate analyses were performed on the training and testing sessions. In addition, 

each analysis was further broken down into separate analyses for Score and for the set of 

five remaining DVs (WaitTime, NumExits, PlnCon, NavCon, and TimeCon). Score was 

run separately because it could serve as a rough but single indicator of performance—a 

composite of the other variables, essentially. The other five DVs were entered into a 

multivariate analysis to provide more detail. 

Finally, although four covariates (cognitive ability, video game experience, gender, 

and location of experiment) were measured, only two (gender and location) were 

included in the final analyses. For the univariate analyses, given that the number of 

covariates used in ANCOVA is best kept to a minimum (Tabachnick & Fidell, 1996), 

only the two most reliable covariates—gender and location—were used. Reliability here 

is based on Tabachnick and Fidell’s (1996) definition, which refers to the degree to 

which covariates can be measured without error. For the multivariate analyses, cognitive 
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ability and video game experience had no significant effect on the DVs, so they were left 

out.4 See Appendix A for analyses of the remaining covariates. 

Training Data 

Composite measure of performance 

The training data were analyzed using a 2 (training graphics) x 4 (training session) 

mixed-design ANCOVA on Score, a composite measure of performance. Adjustment 

was made for two covariates: gender and the type of location in which the experiment 

was performed. Type of training (graphics vs. no graphics) and training session (one 

through four) served as independent variables. SPSS ANOVA with Method 1 adjustment 

for unequal cell sizes was used to analyze the data. 

Evaluation of the assumptions of normality and linearity was acceptable. The cell 

sizes were unequal, but only by a few participants, so the assumption of homogeneity of 

variances was supported, as well. Some groups had outliers on Score for the first and last 

training sessions, which was determined by examining box plots. Transforming the 

distributions generally made matters worse, so they were left unchanged, and the outliers 

were instead dealt with by changing the outlying case so that it was either one unit above 

the highest or one below the lowest non-outlying case (as suggested in Tabachnick & 

Fidell, 1996). If the outlier already happened to be just one unit away from the highest or 

lowest non-outlier, it was left unchanged. Changing the outliers in such a way did not 

                                                 
4 When included with all the covariates, cognitive ability and video game experience approached but did 
not reach significance: for cognitive ability, F(5, 191)=2.092, p = .07, etap

2 = .05, β = .69; for video game 
experience, F(5, 191)=2.092, p = .08, etap

2 = .05, β = .66. 
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influence the overall effects found; rather, effect size and power were simply improved 

by a hundredth of a point or two. 

The only significant effect found was that of training session. F(3, 139) = 6.76, p < 

.001, with a modest effect, etap
2 = .14, and high power, β = .99. The effect was quadratic, 

F(1, 141) = 18.99, p < .001, etap
2 = .13, β > .99, with performance increasing over 

sessions 1-3, but decreasing on session 4. 

Sub-scores 

The training data were analyzed using a 2 x 4 mixed-design MANCOVA on 

WaitTime, NumExits, PlnCon, NavCon, and TimeCon, as well as CourseChanges and 

AltitudeChanges. Adjustment was made for two covariates: gender and the type of 

location in which the experiment was performed. Type of training (graphics vs. no 

graphics) and training session (one through four) served as independent variables. SPSS 

MANOVA with Method 1 adjustment for unequal cell sizes was used to analyze the 

data. 

The distributions for the five DVs within the six conditions were generally somewhat 

skewed. There were no multivariate outliers detected; however, within each condition, 

several of the DVs contained univariate outliers, as determined through an examination 

of box plots. Square-root transformations were applied to the distributions in an attempt 

to normalize them and to remove the outliers. For NavCon, the transformation removed 

the skew and most of the outliers. For the other DVs, though, the transformations either 

did not help or instead worsened the situation. Hence, because multivariate analyses, 

even with unequal n, are generally robust to violations of normality when there are at 
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least 20 participants per cell (Tabachnick & Fidell, 1996), the distributions for those 

variables were unchanged. Instead, the outliers were handled as described in the 

previous section for Score. 

The between-groups IV, type of training, was significantly related to the set of DVs, 

F(5, 137) = 3.67, p = .004, etap
2 = .12, β = .92. The same was true for the within-

participants IV, training session, F(15, 127) = 9.61, p < .001, etap
2 = .53, β > .99. 

The effects of the IVs on each covariate-adjusted DV were investigated in a series of 

univariate analyses. The main effect of training session was primarily on PlnCon, 

NumExits, and TimeCon. The curves for each were quadratic. For NumExits, 

performance improved over sessions 2 and 3 but leveled off for session 4. For PlnCon, 

performance worsened over sessions 2-4, likely reflecting the progressive difficulty of 

the training sessions. For TimeCon, performance dropped sharply between sessions 1 

and 2, but improved just as sharply over the remaining sessions; it should be noted, 

though, that power was weak for TimeCon, and the effect was found only after adjusting 

for outliers. 

• NumExits: univariate F(3, 423) = 18.12, p < .001, etap
2 = .11, β > .99. 

• PlnCon: univariate F(3, 423) = 11.31, p < .001, etap
2 = .07, β > .99. 

• TimeCon: univariate F(3, 423) = 2.74, p < .043, etap
2 = .02, β = .66. 

For the sub-scores, type of training had a significant effect only on PlnCon, although 

it did approach significance for NumExits (p = .07). For PlnCon, the participants who 

had the graphics during training had fewer plane conflicts than did the other participants. 

The effect and power were both small, however; see Table 5 and Figure 3. 
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• PlnCon: univariate F(1, 141) = 6.01, p = .015, etap
2 = .04, β = .68. 

 

Table 5    
Means and Standard Deviations for Type of Training x Training Session 
Interaction on Plane Conflicts 
  Type of Training   
Session Graphics (G) No Graphics (N) Grand Total
1 4.45 (3.59) 5.74 (3.50) 5.11 (3.59)
2 4.87 (3.88) 5.73 (3.50) 5.31 (3.70)
3 6.37 (4.45) 7.95 (4.92) 7.17 (4.75)
4 8.66 (5.83) 10.32 (6.38) 9.51 (6.16)
Grand Total 6.09 (3.14) 7.44 (2.99) 6.78 (3.13)
 

Figure 3.    
Type of training main effect for plane conflicts. 
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Summing up, the support graphics seemed to produce a main effect of graphics, due 

primarily to their impact on the PlnCon measure. Participants who saw the graphics 

during training had fewer plane conflicts than those participants who did not see the 

graphics. The graphics did not appear to aid learning, though, as demonstrated by the 

lack of a training session x type of training interaction. 

Testing Data 

Composite measure of performance 

The testing data were analyzed using a 3 (training session) x 2 (testing session) 

ANCOVA on Score, a composite measure of performance. Rather than using the two 

testing sessions as a within-participants variable, Score5 and Score6 were averaged to 

produce a single score;5 see Appendix B for descriptive statistics. Adjustment was made 

for two covariates: gender and the type of location in which the experiment was 

performed. Type of training (control vs. graphics vs. no graphics) and type of testing 

(graphics vs. no graphics) served as independent variables. SPSS ANOVA with Method 

1 adjustment for unequal cell sizes was used to analyze the data. 

Evaluation of the assumptions of normality and linearity was acceptable. Although 

the cell sizes were unequal, the discrepancy between largest and smallest was less than 

2:1, and the same ratio held for the variances of the different cells, so the assumption of 

                                                 
5 Using the two testing sessions as a repeated-measures DV was considered; however, the primary reason 
for including two sessions was to factor out the element of surprise at the introduction or removal of the 
support graphics. In addition, it was possible that one testing session may have been more difficult than 
the other, potentially biasing a repeated-measures analysis. More importantly, though, two sessions do not 
provide enough information to indicate a trend. However, in the interest of thoroughness, an analysis was 
run in which testing session was included as a repeated-measures DV. Some differences between testing 
sessions were apparent, but the effect size was generally negligible, and the findings—because of the 
inability to determine trends—difficult to interpret. 
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homogeneity of variances held, as well. The distribution for Score was skewed for some 

groups, and most groups had a couple of univariate outliers, as determined through an 

examination of box plots. Transforming the distribution generally made matters worse in 

terms of outliers, so the distribution was left alone, and the outliers were instead dealt 

with as described in the composite measure section for the training data. 

Table 6 shows the correlations among the DVs and covariates. The main effects of 

type of training and type of testing, as well as the interaction between the IVs, were all 

significant, though the effect sizes were small. For type of training, F(2, 197) = 21.22, p 

< .001, with a modest effect, etap
2 = .18, and high power, β > .99; see Table 7 and Figure 

4. However, contrasts showed that the primary difference was between the control 

groups and the experimental groups, rather than between the graphics and no-graphics 

experimental groups. 

• CG vs. NG + GG: univariate F(1, 197) = 26.63, p < .001, etap
2 = .12, β > .99. 

• CN vs. NN + GN: univariate F(1, 197) = 16.407, p < .001, etap
2 = .08, β = .98. 

Because the control groups, unlike the experimental ones, were untrained, the fact 

that they performed the worst is not particularly surprising. 
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Table 6    
Correlations between DVs and Covariates 

Score WaitTime NumExits PlnCon NavCon TimeCon Gender Location 
1.000 .338** .778** -.538** -.594** -.135 -.180** .215** Score . .000 .000 .000 .000 .054 .010 .002 
.338** 1.000 .133 -.462** -.418** .370** .019 .308** WaitTime .000 . .056 .000 .000 .000 .785 .000 
.778** .133 1.000 .025 -.596** -.201** -.283** .255** NumExits .000 .056 . .724 .000 .004 .000 .000 

-.538** -.462** .025 1.000 .212** -.253** -.055 -.020 PlnCon .000 .000 .724 . .002 .000 .430 .772 
-.594** -.418** -.596** .212** 1.000 -.253** .170** -.206** NavCon .000 .000 .000 .002 . .000 .015 .003 
-.135 .370** -.201** -.253** -.253** 1.000 -.074 -.001 TimeCon .054 .000 .004 .000 .000 . .290 .983 
-.180** .019 -.283** -.055 .170* -.074 1.000 -.031 Gender .010 .785 .000 .430 .015 .290 . .659 

(top value = correlation, bottom value = significance) 
**  Correlation is significant at the 0.01 level (2-tailed). 
*  Correlation is significant at the 0.05 level (2-tailed). 
 
 
 
Table 7    
Means and Standard Deviations for Type of Training and Type of Testing Main 
Effects and Interaction on Score 
 Type of Testing   
Type of Training Graphics (G) No Graphics (N) Grand Total
Control (C) 567.73 (134.64) 470.24 (168.46) 530.36 (154.69)
Graphics (G) 779.63 (164.28) 608.96 (217.03) 685.88 (211.74)
No Graphics (N) 750.06 (199.06) 731.95 (151.38) 741.99 (178.44)
Grand Total 697.33 (192.20) 618.10 (208.37) 660.61 (203.26)
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Figure 4.   
Type of training main effect for Score. The trained groups outperformed the 
untrained groups. 
 
 
 

Type of testing was also significant, F(1, 197) = 17.088, p < .001, with a small 

effect, etap
2 = .08, and high power, β = .98. The advantage was for the groups that 

received the support graphics during testing; see Figure 5. 
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Figure 5.   
Type of testing main effect for Score. The graphics conditions outperformed the 
no-graphics conditions. 
 
 
 

The training x testing interaction was significant, F(2, 197) = 3.83, p = .023, with a 

very small effect, etap
2 = .04, which was evident despite low power, β = .69. Though the 

effect was small, the interaction was evident regardless of the covariates and throughout 

the changes made during data screening. The difference was primarily between the GN 

group and the other groups; F(1,197) = 22.75, p < .001, etap
2 = .10, β > .99; see Figure 6. 

The GN group (the group that saw the graphics during training but not during testing) 
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Figure 6.   
Type of training x type of testing interaction for Score. The GN group performed 
worse than the other experimental groups. 
 
 
 

Summing up, presenting the support graphics during training had no effect on 

performance during the testing sessions, as determined by participants’ overall Score. 

However, presenting them during training did provide a performance advantage on the 
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Sub-scores 

The testing data were analyzed using a 3 (training sessions) x 2 (testing session) 

between-participants MANCOVA on WaitTime6, NumExits, PlnCon, NavCon, and 

TimeCon, as well as CourseChanges and AltitudeChanges. (As with Score, each DV was 

averaged across the two sessions to produce a single measure; see Appendix B for 

descriptive statistics.) Adjustment was made for two covariates: gender and the type of 

location in which the experiment was performed. Type of testing (graphics vs. no 

graphics) and type of training (control vs. graphics vs. no graphics), entered in that 

order, served as independent variables. SPSS MANOVA with Method 1 adjustment for 

unequal cell sizes was used to analyze the data. 

The distributions for the five averaged DVs within the six conditions were generally 

skewed. There were no multivariate outliers detected; however, within each condition, 

several of the DVs contained univariate outliers, as determined via box plots. NavCon 

was generally the most problematic in this regard, as was NumExits. Given the problems 

with skewness and outliers, square-root and logarithmic transformations were applied to 

the distributions in an attempt to normalize them and to remove the outliers. For 

NavCon, a logarithmic transformation removed the skew and all but three of the outliers. 

For the other DVs, though, the transformations either did not help or instead worsened 

                                                 
6 Two months into the experiment, a problem was discovered with the measurement of the WaitTime 
variable. The problem was fixed and so did not affect any of the experimental groups, just the control 
groups. To salvage the data, the score for each participant in each of the two control groups was set to the 
mean of the two corresponding experimental groups (i.e., CN = mean of NN + GN, CG = mean of GG + 
NG). Doing so would of course make it impossible to determine support for TAP, because such support 
depends on the relative performance of the control groups to the experimental groups, but it was better 
than the alternative of losing the data altogether. At any rate, the analyses were performed both with and 
without the changed data, and the change simply changed some of the significance levels and effect sizes 
by a hundredth of a point or two. 
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the situation, and so they were handled as described in the sub-scores section for the 

training data. 

Robustness to violations of the homogeneity of variance-covariance matrices was a 

concern, however, given the unequal sample sizes and because Box’s M test was 

significant at p < .001. An inspection of the DVs within each cell showed that the larger 

cells often but not always had larger variances than the smaller cells, which could make 

the significance tests too liberal. Hence, Pillai’s criterion was used in the following 

analyses because of its greater robustness to unequal cell sizes and to violations of the 

homogeneity of variance-covariance matrices. 

Each of the IVs and the interaction between them had a significant multivariate 

effect on the set of DVs. For type of training (control vs. graphics vs. no graphics), F(14, 

384) = 11.96, p < .001, with a large effect, etap
2 = .30; power was high at β > .99. For 

type of testing (graphics vs. no graphics), F(7, 191) = 4.35, p < .001, with a modest 

effect, etap
2 = .14; β = .99. For the testing x training interaction, F(14, 384) = 2.15, p = 

.009, with a small effect, etap
2 = .07; β = .97. 

Type of training significantly affected all DVs except for Plane Conflicts (PlnCon);7 

see Table 8 and Figures 7-9. In all cases, however, contrasts showed that the difference 

was between the control groups and the experimental groups, rather than between the 

graphics and no-graphics experimental groups. Because the control groups, unlike the 

                                                 
7 WaitTime also did not contribute to the main effect for type of training. However, the adjustments made 
to the WaitTime scores for the control groups (see earlier footnote) eliminated any differences between 
them and the experimental groups, and such differences were the primary reason for the training main 
effect. 
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experimental ones, were untrained, the fact that they performed the worst is not 

particularly surprising. 

• NumExits: univariate F(2, 197) = 34.21, p < .001, etap
2 = .26, β > .99. 

• NavCon: univariate F(2, 197) = 7.27, p = .001, etap
2 = .07, β = .93. 

• TimeCon: univariate F(2, 197) = 10.18, p < .001, etap
2 = .09, β = .99. 

 

Table 8    
Means and Standard Deviations of NumExits, NavCon, and TimeCon by Type of 
Training 
  Type of Training 
 Control No Graphics Graphics 
NumExits 4.65 (3.17) 10.55 (4.16) 9.86 (5.25) 
NavCon 8.03 (4.88) 5.11 (3.55) 6.65 (5.91) 
TimeCon 16.18 (5.62) 12.47 (4.03) 13.22 (4.76) 
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Figure 7.    
Type of Training Main Effect for NumExits 
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Figure 8.    
Type of Training Main Effect for NavCon 
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Figure 9.    
Type of Training Main Effect for TimeCon 
 
 
 

Type of testing affected primarily PlnCon, NumExits, and Navcon—essentially, any 

DV not directly involving timing issues; see Table 9 and Figures 10-12. In all cases, the 
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• PlnCon: univariate F(1, 197) = 9.36, p = .003, etap
2 = .05, β = .86. 

• NavCon: univariate F(1, 197) = 12.35, p = .001, etap
2 = .06, β = .94. 
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Table 9    
Means and Standard Deviations for NumExits, PlnCon, and NavCon by Type of 
Testing 
  Type of Testing 
 Graphics No Graphics 
NumExits 9.16 (4.92) 7.93 (5.05) 
PlnCon 24.92 (10.72) 29.85 (12.66) 
NavCon 5.66 (3.75) 7.46 (5.98) 
 
 
 

Figure 10.    
Type of training main effect for NumExits. 
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Figure 11.    
Type of training main effect for PlnCon. 
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Figure 12.    
Type of training main effect for NavCon. 
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saw the graphics during training but not during testing) performing significantly worse 

than the other experimental groups—particularly, the GG group, which saw the graphics 
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during both training and testing. The contrasts between GN and the other non-control 

groups for each significant DV were as follows: 

• NumExits: univariate F(1, 197) = 17.89, p < .001, etap
2 = .08, β = .99. 

• NavCon: univariate F(1, 197) = 23.22, p < .001, etap
2 = .10, β > .99. 

 

Table 10    
Means and Standard Deviations for NumExits by Type of Training x Type of 
Testing 
 Type of Testing   
Type of Training Graphics No Graphics Grand Total
Control 5.32 (2.92) 3.57 (3.33) 4.65 (3.17)
Graphics 11.91 (3.83) 8.18 (5.69) 9.86 (5.25)
No Graphics 10.46 (5.06) 10.67 (2.74) 10.55 (4.16)
Grand Total 9.15 (4.92) 7.93 (5.05) 8.59 (5.01)
 
 
 
Table 11    
Means and Standard Deviations for NavCon by Type of Training x Type of 
Testing 
 Type of Testing   
Type of Training Graphics No Graphics Grand Total
Control 6.86 (4.02) 9.89 (5.63) 8.03 (4.88)
Graphics 4.48 (2.70) 8.42 (7.16) 6.65 (5.91)
No Graphics 5.49 (3.96) 4.64 (2.97) 5.11 (3.55)
Grand Total 5.66 (3.75) 7.46 (5.98) 6.50 (4.98)
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Figure 13.    
Type of training x type of testing interaction for NumExits. 
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Figure 14.    
Type of training x type of testing interaction for NavCon. 
 
 
 

Summing up, presenting the support graphics during training had no effect on 

performance during the testing sessions. However, presenting them during training did 

provide a performance advantage during the training sessions, primarily because of 

improvements in Effectiveness (NumExits), PlnCon, and NavCon. Finally, a significant, 

though weak, training x testing interaction was evident, mostly because of the effect of 

the graphics on Effectiveness (NumExits) and NavCon. Contrasts show that the 

interaction was primarily between GN and the other experimental groups; in other 

words, the group that had the graphics during training but not during testing performed 

worse than the other groups, not including the controls. 
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CONCLUSION 

The Graphics Advantage 

This study found an overall beneficial effect of the decision-support graphics on 

performance. Whenever they were present, regardless of training, overall performance 

improved (hypothesis 6). The effect was small but consistent, appearing regardless of the 

changes made during data screening. In much human-factors research, even small effects 

are desirable, given that human lives are often at stake. In this case, the support graphics 

helped the participants get a few more aircraft safely to their destinations. 

That finding is important for several reasons. First, it helps fill the gap in the 

literature regarding empirical studies of the use of graphics to improve training and 

decision making in complex tasks. Research in the area of decision support generally 

focuses on more-complex tools than the graphics used here, and because of the 

complexity of those tools, it is difficult to say what role the graphics (or a particular 

graphic) played in any performance improvements. In the current study, though, the 

support tool was simple enough that conclusions concerning the causes of any 

performance changes could be limited to the set of graphics involved. As a result, the 

research provides support for the implementation of such tools in complex systems. 

More importantly, although the graphics used were relatively simple, the research also 

provides a starting point for further investigating why such tools are helpful and which 

aspects of them are particularly beneficial—which can lead to a refinement and perhaps 

elaboration of decision-support systems. 
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Second, the research already suggests reasons why the graphics might have 

improved performance. In particular, the graphics were specifically designed to 

represent explicitly information that normally is represented mentally in air traffic 

control and similar tasks. It was believed that in doing so, the graphics would facilitate at 

least part of the mental simulation required to anticipate the trajectories of several 

aircraft. More specifically, it was argued that they would transform some of the 

conceptual processing of mental simulation into perceptual processing, thus capitalizing 

on human perceptual capabilities and improving performance in high-workload 

situations—in this case, situations characterized by numerous aircraft. The graphics 

actually did seem to improve performance, which supports the conclusion that using 

external simulations or representations to facilitate the formation and use of mental ones 

is a successful strategy. That conclusion also points out directions for future research on 

the role, use, and elaboration of such external simulations, as well as on the possible 

consequences of using them. It is possible that users could become overreliant on them, 

for example, or that they could impair situation awareness. A more theoretical direction 

in which to extend this research would be to examine the assumption that such external 

simulations work through the transformation of conceptual into perceptual processing. 

The use of multiple performance measures also helped to pinpoint the effects of the 

support graphics. In other words, measuring several aspects of performance, rather than 

a single composite measure, made it possible to trace the effects of the support graphics 

more precisely. In particular, performance only improved on the elements of the task that 

were primarily spatial or perceptual in nature: Plane Conflicts, Navigational Conflicts, 
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and Effectiveness (NumExits). The graphics did not affect Workload (WaitTime) or 

Timing Conflicts at all, both of which involved regularly occurring changes to the task. 

As mentioned earlier, given that the graphics were specifically designed to facilitate 

mental simulation of aircraft position and movement, it was expected that they would 

have the greatest effect on Plane Conflicts; Effectiveness (NumExits) and Navigational 

Conflicts were also expected to benefit at least indirectly from the graphics because of 

the relatively greater salience of relevant information. However, the only way in which 

Workload (WaitTime) and Timing Conflicts were expected to benefit was if the graphics 

freed up enough attention that participants could actually learn more about the task—

specifically, the timing of regular events. Because the graphics had no effect on either of 

those measures, it would seem that they were not successful in creating any sort of 

attentional slack—at least, not enough. 

Combining that conclusion with the finding that providing the graphics during 

training did not result in any overall performance improvement during testing, and it 

would seem that decision-support graphics benefit performance only in an immediate 

sense—as predicted in hypothesis 6. More specifically, they provided immediate 

performance benefits on the task by highlighting imminent plane conflicts and 

procedural errors. The high number of planes successfully exited by participants viewing 

the testing graphics may also be an indication that those participants were better able to 

plan ahead to a small degree. However, in doing so, the graphics did not free up enough 

extra attention for participants to learn less-salient elements of the tasks, such as timing. 
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Using performance as a crude indicator of learning, then, it appears that the support 

graphics did not help learning at all; rather, they were useful only when present. 

Evidence of Overshadowing 

Although the graphics did not have an overall effect on testing performance when 

collapsed across testing conditions, when training condition was considered, the results 

indicated they were both an asset and a liability during training. As mentioned, they 

served as a performance aid when performing the task, and participants who saw them 

throughout training and testing generally had the best scores. However, as was predicted 

in hypothesis 5, that aid evidently became a crutch, because when the graphics were 

taken away during testing from participants who were trained on them (the GN group), 

performance dropped significantly below all other groups (except the controls). That was 

the case for NavCon and NumExits, as well as for the composite variable, Score. Those 

variables demonstrated an interaction in which presenting the graphics during training 

improved performance when the graphics were retained during testing, but worsened 

performance when the graphics were removed during testing. In contrast, participants 

who did not see the support graphics during training performed fairly equivalently 

during testing, regardless of whether they saw the graphics at that time. The suggestion 

is that, for NavCon and NumExits, at least, the support graphics apparently improved 

performance, as demonstrated in the high scores of the GG group; however, that 

improvement came at the cost of learning, as demonstrated by the low scores of the GN 

group. 
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Given that the graphics seemed to provide immediate performance benefits in terms 

of maintaining plane separation and following navigational rules, but that they 

apparently provided no learning benefits, a few explanations are possible for the 

performance drop in the GN group. First, it may be that participants trained without the 

graphics learned certain strategies for handling the aircraft, such as flying them close to 

the border rather than straight through the middle of the airspace. As demonstrated by 

the poor scores overall, such strategies, if used, were not very effective, and the 

performance advantage provided by the graphics more than made up for the absence of 

such strategies in graphically trained participants—until the graphics were removed. 

Alternatively, in the absence of the graphics, participants may have been forced to 

develop a better situation awareness of the tasks—in other words, to maintain a general 

idea of where the aircraft were, which ones were near each other and near exits, whether 

the ones near exits were at the right altitude and speed, and so on. Their improved 

situation awareness may have led to a better ability to anticipate potential aircraft 

conflicts, as well as better prospective memory for such things as remembering to 

change aircraft altitude to accommodate the exit rules. The graphics, however, somewhat 

alleviate the need to maintain situation awareness, at least as it relates to aircraft 

separation and navigation; for example, they provide perceptual cues for impending 

aircraft conflicts, meaning participants need not devote much attention (relatively 

speaking) to such conflicts until the cues indicate such a conflict is about to happen. In 

other words, the graphics were actually designed to reduce the need for mental 

simulation, an aspect of situation awareness. They perhaps succeeded in that respect, but 
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in doing so, they kept participants from developing that ability naturally—which was not 

an issue until the aid was removed. Future research could examine that possibility in 

more detail by using Endsley’s (1995a) Situation Awareness Global Assessment 

Technique (SAGAT). The basic procedure in SAGAT involves freezing or blanking the 

computer screen at intervals, and then testing participants’ memory for the state of 

various elements in the task immediately preceding the freeze. If participants using the 

graphics demonstrated worse memory than those not using them, that would be evidence 

that the graphics aid performance at the cost of situation awareness. 

However, given that number of exits and number of navigational errors (violations of 

exiting rules and so on) were the only measures showing an overshadowing effect, a 

simpler explanation may be more likely. It is possible that reading and understanding the 

alphanumeric symbols indicating speed and altitude takes some experience. The 

participants trained with the graphics never needed to use those symbols, so when the 

graphics were removed, their performance suffered as they tried to get used to the 

alphanumerics. Or, similarly but more likely, it may be that participants trained with the 

graphics learned to associate colors and length of trajectory lines with exits—blue and 

long for gates, green and short for airports; participants trained without the graphics, 

though, learned the associations in terms of altitude and speed—high and fast (or, 

alphanumerically, 3 and F) for gates, low and slow (1 and S) for airports. When the 

colors and trajectory lines were removed, then, the graphically trained participants were 

forced to learn new associations. That process likely would have resulted in several 

exiting violations (the NavCon measure). In turn, because such violations result in 
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crashed planes, they reduce the number of aircraft that can be successfully exited (the 

NumExits measure). If so, then the overshadowing effect found for NavCon and 

NumExits was primarily the result of the graphically trained participants having to 

relearn the exiting rules. 

At any rate, in the area of decision support, the results indicate that support graphics 

may be beneficial to include during training if those graphics will always be present on 

the job: Participants who had access to the support graphics throughout the experiment 

performed the best, though the difference was not significant. If there are times when the 

graphics might not be available, though, it would seem prudent not to present them 

during training because of potential overshadowing effects. However, it is quite likely 

that the overshadowing effect would disappear over time. Hence, it would be worthwhile 

in future projects to have more than two testing sessions to see if that is actually the case 

and how long it takes for the effect to disappear. Four sessions would likely be enough to 

see the overshadowing effect at least begin to dissipate. Another issue to examine is 

whether it would be beneficial to present the graphics only during part of training—just 

the second half, for example. It may be that partially exposing trainees to the graphics 

can both eliminate the overshadowing effect and preserve the performance advantage 

demonstrated by the participants who saw the support graphics throughout the 

experiment. 

Some Support for IE 

 The trained experimental groups performed better during testing than the untrained 

control groups, which unfortunately means that hypothesis 1, transfer-appropriate 
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processing, was not supported. Such support would have taken the form of some trained 

groups (GN and NG) performing worse than—or at least equal to—the corresponding 

untrained group (CN and CG, respectively). At least two conclusions are possible here. 

First, it may be that TAP cannot be extended to naturalistic cognitive tasks. TAP is 

generally used to explain differences in performance on implicit vs. explicit memory 

tests. However, it has been successfully applied to somewhat more-real-world tasks such 

as memory for television news, as well as areas outside of memory performance—

namely, physical performance. Given that, one of the purposes of the current study was 

to see if the theory can predict performance on skilled cognitive tasks. Perhaps it can, but 

the results described here do not support such an extension of the theory. 

On the other hand, though, it may be that, contrary to expectations, the support 

graphics simply did not change the type of processing that the participants used—at 

least, not to a sufficient degree. If so, then the task was not an adequate test of TAP, and 

in the future more direct means should be taken to ensure that different versions of the 

task actually do require participants to use different types of processing. For example, in 

previous tests of TAP, experimenters have been able to manipulate explicitly the type of 

processing participants used to encode a particular stimulus. When testing memory for 

lists of words, say, some participants may be asked to generate the words themselves, 

whereas others are asked to read the words from a list. And in the area of physical 

performance, participants can be encouraged to prepare for a task visually by asking 

them to rehearse it mentally. Finding an analogous method of explicitly manipulating the 
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type of processing participants use to interact with the ATC simulation would be the 

most important improvement to the current study. 

 Although no evidence was found to support the extension of TAP to naturalistic 

cognitive tasks, some very weak support was found for the more general identical-

elements theory, hypothesis 2. Even weak support is important here, though, given the 

apparent scarcity of empirical research on a theory generally assumed to be fact. In 

particular, participants’ scores on Effectiveness (NumExits) and Procedural Errors 

(NavCon), as well as their overall Score, appeared to conform to what would be 

predicted by IE. However, they conformed only somewhat, because not all the 

differences were significant. In other words, the following pattern was observed, as can 

be seen in Figures 6 and 9: 

1) GG > NG > CG 

2) NN > GN > CN 

Statistically speaking, though, the only real difference was between the GN and NN 

groups; the NG and GG groups did not differ. However, that the pattern of results for 

Score, NumExits, and Navcon matched, albeit nonsignificantly, what would be predicted 

by IE suggests that perhaps the asymmetric argument is the best fit here. As mentioned, 

some of the various hypotheses under consideration were not mutually exclusive with 

either TAP or IE, meaning the pattern of results could be asymmetric if more than one of 

them happened to be at work. For example, if the manipulations produced both IE and 

overshadowing effects, then the difference between the GN and NN groups would be 

expected to increase compared to IE alone. Similarly, if there was also a graphics main 
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effect, the gap between the GG and NG groups would be expected to decrease compared 

to IE alone, potentially eliminating any statistical differences between them. Both of 

those effects were actually found, suggesting that an IE effect was present but was 

modified by the nature of the graphics. 

 The results are interesting because they suggest how IE effects are influenced by the 

role of the identical elements in question. Because IE is a general theory of performance 

and transfer, discussions concerning it tend also to be general, meaning that particulars 

on what comprises an “element” are hard to come by. Goldstein and Ford (2002) provide 

one of the more-detailed discussions, differentiating between stimulus elements and 

response elements. However, they do not explicitly discuss how differences in the 

importance of the elements might impact IE effects. In other words, how might IE 

effects be influenced by stimulus elements that are central to the particular task, rather 

than simply environmental or peripheral to it? 

 The current study suggests that IE theory is susceptible to the role of the elements in 

question. In this case, the elements were stimuli (computer graphics) that either were or 

were not present during the task. However, the stimuli were central to the task in that 

they represented important factors required to perform it—namely, an aircraft’s 

trajectory and relative altitude. Moreover, they were specifically designed to aid 

performance on the task. That the results generally conformed to IE predictions but were 

asymmetric suggests that the importance of the elements to the task can influence how 

well IE can predict transfer. 



 

 

78

 For further clarification of the interaction between stimulus type and IE predicability, 

it is important to mention that of the five separate DVs, only NumExits and NavCon 

showed any sort of IE-related pattern of results. NumExits (perhaps somewhat 

arbitrarily) corresponds to effectiveness, and NavCon to procedural or navigational 

errors—getting too close to the border or an airport, or exiting at the wrong altitude or 

speed. None of the other measures—Plane Conflicts (PlnCon), Timing Conflicts 

(TimeCon), or Workload (WaitTime)—showed any IE patterns. 

 Why would only the number of planes successfully exited/landed and the number of 

procedural/navigational errors made show any correspondence to IE predictions? Again, 

the answer likely has to do with the role of the “elements” (the graphics) in question 

here. The support graphics were designed to indicate both an aircraft’s trajectory and its 

relative altitude. Both of those factors are important in landing or exiting a plane 

correctly. In addition, the graphics likely had the side effect of making the aircraft more 

salient, perhaps making it easier to spot when one was too close to the border or to an 

airport. Thus, the graphics were central to those particular measures (NumExits and 

NavCon). However, because they had nothing to do with the timing elements of the task, 

the graphics at best only indirectly supported performance on the TimeCon and 

WaitTime measures. Because the graphics were central to NumExits and NavCon 

(which showed IE effects) but peripheral to TimeCon and WaitTime (which did not), the 

suggestion is that stimulus elements need to be important to the particular task in order 

for IE theory to have any predictability. However, that predictability will be influenced 
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by the role of those elements—in other words, whether they support or hinder 

performance.8 

Why the results did not support TAP, though, is still a question. Although originally 

a theory of memory performance, TAP has been successfully applied both to real-world 

memory situations and to physical tasks. What do those tasks have in common that a 

naturalistic cognitive activity such as air traffic control does not share? Likely, that 

common element lies in the research methods used in the previous TAP studies. 

Whereas those studies explicitly manipulated the type of processing used by participants, 

the current study instead attempted an indirect approach. Unfortunately, with the absence 

of positive findings supporting TAP, the question is open regarding whether that absence 

is because TAP cannot be applied to such situations, or because the task did not actually 

change the type of processing that participants used. 

Training 

 Examining the data from the four training sessions, the composite measure, Score, 

showed no effect of training graphics, nor even of training session. The latter finding 

could indicate that little learning took place over the four sessions, but it is more likely a 

result of the progressive difficulty of each session. Gender, one of the covariates used in 

the analysis, did have an effect, though, with males scoring higher. 

                                                 
8 It should be noted, though, that the graphics should have been most central to performance on the Plane 
Conflicts measure, yet no IE pattern was observed for PlnCon. However, PlnCon is an unusual variable in 
that whether or not training was provided seemed to make no difference. In other words, the only 
differences between the groups (both control and experimental) was between those that had the graphics 
during testing and those that did not. Collapsing across testing, the untrained control groups performed just 
as well (or as poorly) as the trained groups. That issue is dealt with later. 
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 The analysis of the separate DVs was somewhat more interesting. A main effect of 

training graphics was found, due primarily to the effect of the graphics on the Plane 

Conflicts (PlnCon) measure, indicating that participants using the support graphics had 

fewer plane conflicts. Interestingly, though, when looking at the testing data, PlnCon 

was the only DV to show no effect of training; rather, the untrained control groups were 

not much different from their trained counterparts in their ability to maintain aircraft 

separation. In other words, during training, the graphics made it easier for subjects to 

avoid imminent aircraft conflicts. Despite that, those subjects did not perform any better 

than the untrained or the no-graphics groups. One possibility is that the testing sessions 

were so difficult that some sort of performance ceiling was reached; however, the testing 

graphics still resulted in better performance compared to the no-graphics groups, 

indicating that there was room for improvement. It is also possible that avoiding plane 

conflicts is simply a task that cannot be learned; however, performance improved over 

the testing sessions, so that explanation is unlikely. The finding is difficult to explain, 

but because keeping planes separated was the most salient and seemingly important 

component of the ATC task, the result may be related to participants focusing most of 

their attention on that activity. 

A main effect of training session was also present, meaning that despite the 

progressive difficulty of the sessions, overall performance did improve. Learning was 

evident mainly just for NumExits and PlnCon, though. There was again a gender effect, 

but primarily for the NumExits measure; males exited more aircraft than did females 

during training. The lack of a training type x training session interaction indicates that 
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the graphics did not help learning at all, at least as measured by performance. Rather, the 

indication is that they served as a perceptual cue that signaled potential aircraft conflicts, 

but they did not necessarily free up enough extra attention to help participants better 

learn how to perform the task. 

Summary 

The support graphics seemed generally to facilitate performance but not training. 

They provided immediate performance benefits on the task by highlighting imminent 

plane conflicts and procedural errors. However, they did not free up enough attentional 

resources for participants to learn less-salient elements of the tasks. An example of such 

an element is timing: New aircraft appeared at regular intervals in front of the gates, and 

the runways also switched directions at regular intervals. It is possible that such elements 

were simply very difficult to learn, though, so whether the support graphics did not 

create any attentional slack, or just not enough, is uncertain. 

Though the graphics did not facilitate training overall, they did seem to have both 

positive and negative effects on training when type of testing was taken into account. 

Namely, participants who saw the graphics throughout the experiment performed the 

best, though not significantly. In contrast, participants who saw them only during 

training performed the worst, which suggests that the graphics overshadowed important 

information when participants were learning the task. Given the particular measures 

(NavCon and NumExits) that showed such effects, that overshadowed information likely 

involved the associations between the alphanumeric stimuli (which were redundant 

when the graphics were present) for each aircraft and the exits. 
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Finally, the results did not support the main hypothesis (hypothesis 1), which stated 

that performance on the ATC task would follow the transfer-appropriate processing 

account. Two possibilities are likely here: 1) TAP can’t be applied to naturalistic 

settings, or 2) this study was not an adequate test of TAP; the two explanations aren’t 

mutually exclusive. On the other hand, the findings did appear to conform to the similar 

but more general theory of identical elements, hypothesis 2. Support for IE theory was 

weak, though, because of the apparent overshadowing effects the support graphics have 

on training (hypothesis 5), and because of the performance advantage those graphics 

provide (hypothesis 6). In other words, although matched training/testing groups 

generally outperformed mismatched ones, the differences were not always significant. In 

particular, although the overshadowing effects of the training graphics amplified the 

differences between the GN and NN groups, the performance benefits of the graphics 

mitigated the differences between the GG and NG groups, thus producing an asymmetric 

pattern of results. 
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APPENDIX A 

Results for Covariates—Training Data 

Composite measure of performance 

One of the covariates, gender, was significantly associated with score, F(1, 141) = 16.42, 

p < .001, etap
2 = .10, β = .98, with males outperforming females. 

Sub-scores 

The interaction between training session and the gender covariate was significant, F(15, 

127) = 2.01, p = .020, etap
2 = .19, β = .95.  The gender covariate also accounted for a 

significant amount of the variance in the set of DVs, F(5, 137) = 7.82, p < .001, etap
2 = 

.22, β > .99. Location of experiment was not significant. 

The gender covariate also had a significant effect on NumExits, WaitTime, and 

TimeCon, though the effect was weak for the latter two. In all cases, males demonstrated 

better performance; see Table 12. 

• NumExits: univariate F(1, 141) = 21.97, p < .001, etap
2 = .14, β > .99. 

• WaitTime: univariate F(1, 141) = 4.98, p = .027, etap
2 = .03, β = .60. 

• TimeCon: univariate F(1, 141) = 6.33, p = .013, etap
2 = .04, β = .70. 

 

Table 12    
Means and Standard Deviations for Gender Effect on NumExits, WaitTime, and 
TimeCon 
  Gender 
 Male Female 
NumExits 8.41 (3.01) 6.12 (2.60) 
WaitTime 925.24 (831.18) 1256.84 (1015.78) 
TimeCon 3.31 (1.24) 3.86 (1.41) 
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For TimeCon, the male advantage was demonstrated primarily during the second half 

of training; hence, the significant training session x gender interaction, to which 

TimeCon was the only contributing DV; see Table 13. 

• TimeCon: univariate F(3, 423) = 4.61, p = .003, etap
2 = .03, β = .89. 

 

Table 13    
Means and Standard Deviations for TimeCon x Gender over Four Training 
Sessions 
 Gender   
 Male Female Grand Total
TimeCon1 3.83 (1.80) 3.92 (2.00) 3.87 (1.88)
TimeCon2 2.49 (1.41) 2.52 (1.82) 2.50 (1.59)
TimeCon3 2.94 (1.82) 3.54 (2.03) 3.19 (1.92)
TimeCon4 3.96 (2.68) 5.44 (3.08) 4.59 (2.94)
Grand Total 3.31 (1.24) 3.86 (1.41) 3.54 (1.34)
 
 

Results for Covariates—Testing Data 

Composite measure of performance 

One of the covariates, gender, was significantly associated with Score, F(1, 197) = 

9.66, p = .002, with a small effect, etap
2 = .05, and high power, β = .87. The advantage 

was for males, who generally scored higher than females. Location barely approached 

significance, β = .10. 

Sub-scores 

Gender had a modest effect on the combined DVs, F(5, 193) = 6.08, p < .001, etap
2 = 

.14, β > .99. The advantage was for males, and only for the more spatial measures of 

performance: NumExits, F(1,197) = 27.14, p < .001, etap
2 = .12, β > .99, and NavCon, 

F(1,197) = 7.31, p = .007, etap
2 = .04, β = .77; see Table 14. 



 

 

90

 

Table 14    
Means and Standard Deviations of NumExits and NavCon by Gender 
  Gender 
 Male Female 
NumExits 9.80 (5.14) 6.94 (4.34) 
NavCon 5.69 (4.52) 7.59 (5.37) 
 
 
 

Location of experiment was also significant, F(5, 193) = 2.76, p = .020, etap
2 = .07, β 

= .82, primarily for the WaitTime, F(1, 191) = 7.54, p = .007, etap
2 = .04, β = .78, and 

NavCon, F(1, 191) = 6.06, p = .015, etap
2 = .03, β = .69 measures; see Table 15. For 

NavCon, the participants who completed the experiment in the student computing center 

made more such errors than did those completing it in smaller computer labs or at home, 

likely reflecting the computer center’s more distracting environment. However, those 

participants were also somewhat quicker on the WaitTime measure, possibly because of 

increased arousal due to the busier setting. 

 

Table 15    
Means and Standard Deviations of NavCon and WaitTime for Each Location 

 Location 
 Computing Center Computer Lab Dorm Off Campus 
NavCon 7.16 (5.41) 5.71 (5.08) 5.20 (3.61) 4.96 (3.16) 
WaitTime 3465.50 (2494.37) 4573.43 (2687.16) 4445.69 (2818.34) 4628.73 (2878.81)
 



 

 

91

APPENDIX B 

Descriptive Statistics for Each Testing Session 

 
Table 16    
Means and Standard Deviations for Score5 and Score6 
  Dependent Variable 
Type of Training Type of Testing Score5 Score6 
Control (C) Graphics (G) 526.62 (206.50) 629.86 (183.45) 
 No Graphics (N) 443.70 (222.13) 483.91 (207.75) 
     Control Total  494.83 (214.64) 573.92 (204.33) 
Graphics (G) Graphics (G) 779.69 (251.74) 760.31 (270.62) 
 No Graphics (N) 592.05 (254.17) 635.51 (240.38) 
     Graphics Total  676.62 (268.28) 691.76 (260.21) 
No Graphics (N) Graphics (G) 766.46 (232.85) 733.66 (258.05) 
 No Graphics (N) 717.27 (218.46) 725.91 (192.34) 
     No Graphics Total  744.53 (226.35) 730.20 (229.61) 
Grand Total  647.93 (258.69) 671.15 (241.59) 
 
 
 
Table 17    
Means and Standard Deviations for PlnCon5 and PlnCon6 
  Dependent Variable 
Type of Training Type of Testing PlnCon5 PlnCon6 
Control (C) Graphics (G) 26.22 (12.30) 22.89 (9.96) 
 No Graphics (N) 34.30 (13.13) 29.61 (14.47) 
     Control Total  29.32 (13.13) 25.47 (12.23) 
Graphics (G) Graphics (G) 26.25 (13.52) 24.06 (12.16) 
 No Graphics (N) 30.79 (16.22) 28.90 (16.53) 
     Graphics Total  28.75 (15.13) 26.72 (14.82) 
No Graphics (N) Graphics (G) 25.07 (12.53) 25.56 (15.09) 
 No Graphics (N) 31.94 (13.20) 25.64 (12.18) 
     No Graphics Total  28.14 (13.20) 25.59 (13.78) 
Grand Total  28.69 (13.82) 25.95 (13.67) 
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Table 18    
Means and Standard Deviations for NumExits5 and NumExits6 
  Dependent Variable 
Type of Training Type of Testing NumExits5 NumExits6 
Control (C) Graphics (G) 4.65 (4.44) 6.43 (4.04) 
 No Graphics (N) 4.35 (5.91) 4.26 (4.21) 
     Control Total  4.53 (5.01) 5.60 (4.21) 
Graphics (G) Graphics (G) 12.00 (4.49) 11.00 (5.38) 
 No Graphics (N) 7.62 (6.41) 8.74 (5.47) 
     Graphics Total  9.59 (6.00) 9.76 (5.51) 
No Graphics (N) Graphics (G) 10.46 (5.51) 10.46 (5.71) 
 No Graphics (N) 11.24 (4.51) 10.39 (4.15) 
     No Graphics Total  10.81 (5.07) 10.43 (5.04) 
Grand Total  8.55 (5.98) 8.79 (5.38) 
 
 
 
Table 19    
Means and Standard Deviations for NavCon5 and NavCon6 
  Dependent Variable 
Type of Training Type of Testing NavCon5 NavCon6 
Control (C) Graphics (G) 7.24 (4.58) 6.49 (4.56) 
 No Graphics (N) 10.39 (6.67) 9.39 (5.86) 
     Control Total  8.45 (5.64) 7.60 (5.25) 
Graphics (G) Graphics (G) 4.75 (3.54) 4.22 (3.26) 
 No Graphics (N) 9.38 (7.17) 7.46 (7.59) 
     Graphics Total  7.30 (6.23) 6.00 (6.22) 
No Graphics (N) Graphics (G) 5.32 (4.14) 5.66 (4.95) 
 No Graphics (N) 4.12 (2.99) 5.15 (3.95) 
     No Graphics Total  4.78 (3.70) 5.43 (4.51) 
Grand Total  6.73 (5.46) 6.26 (5.41) 
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Table 20    
Means and Standard Deviations for TimeCon5 and TimeCon6 
  Dependent Variable 
Type of Training Type of Testing TimeCon5 TimeCon6 
Control (C) Graphics (G) 17.49 (7.40) 17.19 (8.02) 
 No Graphics (N) 13.91 (5.32) 15.52 (5.45) 
     Control Total  16.12 (6.86) 16.55 (7.14) 
Graphics (G) Graphics (G) 13.22 (5.42) 13.47 (7.25) 
 No Graphics (N) 12.67 (5.11) 13.69 (5.69) 
     Graphics Total  12.92 (5.22) 13.59 (6.39) 
No Graphics (N) Graphics (G) 11.05 (5.07) 12.98 (6.12) 
 No Graphics (N) 11.91 (5.36) 14.45 (4.60) 
     No Graphics Total  11.43 (5.19) 13.64 (5.51) 
Grand Total  13.32 (6.02) 14.47 (6.44) 
 
 
 
Table 21    
Means and Standard Deviations for WaitTime5 and WaitTime6 
  Dependent Variable 
Type of Training Type of Testing WaitTime5 WaitTime6 
Control (C) Graphics (G) 1931.80 (1409.25) 1746.79 (1372.14) 
 No Graphics (N) 1826.00 (1066.16) 1328.47 (966.40) 
     Control Total  1891.24 (1279.97) 1586.43 (1240.61) 
Graphics (G) Graphics (G) 4547.47 (2575.78) 4079.18 (2742.08) 
 No Graphics (N) 3607.94 (2602.04) 3883.19 (2665.40) 
     Graphics Total  4031.39 (2614.44) 3971.52 (2682.56) 
No Graphics (N) Graphics (G) 3794.21 (3188.93) 3709.12 (3085.99) 
 No Graphics (N) 3954.28 (2960.42) 4320.47 (2618.91) 
     No Graphics Total  3865.60 (3069.27) 3981.75 (2884.17) 
Grand Total  3345.16 (2659.73) 3277.14 (2660.78) 
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