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Privacy-preserving using homomorphic
encryption in Mobile IoT systems

Wang Ren, Xin Tong, Jing Du, Na Wang, Shan Cang Li, Geyong Min, Zhiwei Zhao, and Ali Kashif Bashir

Abstract—The data privacy concerns are increasingly affecting the Internet of things (IoT) and artificial intelligence (AI) applications, in
which it is very challenging to protect the privacy of the underlying data. In recent, the advancements in the performances of
homomorphic encryption (HE) make it possible to help protect sensitive and personal data in IoT applications using homomorphic
encryption based schemes. This paper proposed a practical homomorphic encryption scheme that can enable data users in IoT
systems to securely operate data over encrypted data, which can effectively protect the privacy of key data in the system. The
experimental results demonstrated the effectiveness proposed scheme.

Index Terms—Mobile Internet of Things, Data privacy, homomorphic encryption, cloud computing, artificial intelligence
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1 INTRODUCTION

THE increasing use of number of smart devices are con-
nected by the Internet of Things (IoT), which makes

data security and privacy concerns are rising. In IoT, data
privacy is a one of key security concerns in major IoT
business verticals, such as industrial IoT (IIoT), healthcare,
retail, financial industrial, smart city, etc. [?]. In the past
years, increasing number of data breaches (such as health
information, etc.) in IoT has been reported [?], [?] that cyber
criminals will steal an estimated 146 billion records by 2023
[?]. The security regulations, such as General Data Protec-
tion Regulation (GDPR) [?], Health Insurance Portability
and Accountability Act (HIPAA) [?], and state-specific regu-
lations, have emerged and evolved to address these growing
security concerns [?]. Due to the diversity of devices and
application, the IoT systems are becoming primary targets
of cyberattacks. It is clear that security regulations, GDPR,
Data Protection Act (DPA), etc., have been committed to
protect personal data and identification. It is key way to
avoid data breaches before making disclosure because the
risk and consequences of identification.

An IoT system may generates/collects sensitive data,
such as personal data, patients’ privacy data in healthcare,
businesses data, etc., which is usually transmitted and stored
on cloud server(s). In many existing solutions, data is en-
crypted before transmitting to a cloud server. However, they
often fail to deal with complicated attacks at the time of data
conversion into cipher and after the cipher transmission [?].
Cyberattacks like DDoS attacks, insider, ransomware, fraud
scam, etc., can always cause data breaches. In many cloud-

• Wang Ren is with College of Electronics and Information Engineering,
Sichuan University, Chengdu 610065, China; he is also with the China
Information Technology Security Evaluation Center, Beijing, China.

• X. Tong, J. Du, and N. Wang are with China Information Technology
Security Evaluation Center, Beijing, China.

• Prof. Li is with University of the West of England and Prof. Zhao is
with the School of Computer Science and Engineering at the University
of Electronic Science and Technology of China, Chengdu, China.

• Prof Min is with University of Exeter, Exeter EX4 4PY, UK.
• Dr Bashir is with the Manchester Metropolitan University, Manchester

M15 6BH, UK.

based IoT systems, data processing, storage, management,
and data anlytics are more and more shifted to the cloud,
in which the security and privacy increasingly relies on
the third party cloud providers. However, it is noted that
the third party cloud service providers (CSPs), such as
Amazon Web Service (AWS), Microsoft Azure, etc., may
have major security flaws [?], [?], [?]: (1) Many data breaches
were caused by misconfiguration of customers. Meanwhile,
according to McAfee 99% misconfigurations cannot be de-
tected [?]; (2) Most public CSPs cannot provide sufficient
trustworthy, specifically for public sections, such as health-
care service, Goverment, etc.; (3) In-cloud data protection,
mainly focus on the data is stored “in the cloud”, data
should not flow to unauthorised parties, including cloud-
insiders as well as cloud users [?], [?]. Even the encryption
cannot ensure protection against the provider leaking data,
due to misconfiguration, bugs, malicious insider, etc. [?].

The homomorphic encryption (HE) is a promising way
that can enable computation to be performed over en-
crypted data without retrieving the plaintext. The advance-
ments in HE have make it partially practicable. The fully
homomorphic encryption (FHE) can provide privacy pro-
tection by fully supporting homomorphic operations over
encrypted data [?], [?]. The HE based privacy solutions can
keep undecrypt ciphertext while still conducting operations
over encrypted data to protect the privacy of the underlying
data [?]. Previously, the expensive computational cost of
HE is a big challenge in practice, but in the last few years,
there the advances in the performance make it is possible to
implement practical homomorphic-cryptosystems [?]. The
HE based solution in IoT that do not necessarily trust each
other for the CSPs. In IoT, the HE addresses the biggest
problems, namely, access to large, diverse datasets from dif-
ferent data owners. In HE-enabled IoT systems can securely
bring together data owners (DOs) and data users (DUs) who
need data. And very importantly, the HE can implement this
in a way that preserves security and privacy of the data,
DOs, DUs, as well as CSPs.

The main contributions in this work are summarised as
follows:
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1) We proposed a practical homomorphic encryption
based privacy-preserving scheme that can make
DUs securely operate data over third-party cloud
server without leakage any information;

2) A enhanced protocol is proposed to improve the
security and privacy of the cloud-based IoT systems;

3) Experimental results shows the effectiveness and
performance of proposed scheme and protocol.

The remain of this paper is organised as: Section 2
reviews the most recent works in homomorphic encryption
based privacy-preserving; Section 3 propose the HE-based
data anonymous solution. Section 4 provides detailed algo-
rithms using HE and Section 5 concludes this paper.

2 RELATED WORKS

The homomorphic property of homomorphic encryption
schemes allows to carry out certain operations over the
encrypted data and provide encrypted results. After decryp-
tion, the same results can be obtained with operations was
performed in plaintext. For two message m1 and m2, Eq.(1)
shows an HE scheme that supports any operation

c1 = Enc(pk,m1), c2 = Enc(pk,m2)

m1 ⊕m2 = Dec(sk, c1 ⊕ c2)
(1)

in which Enc(·) and Dec(·) are the encryption and decryp-
tion algorithms; c1 and c2 are the ciphers of m1 and m2,
respectively; and pk is the public key, sk is the private key.

As mentioned above, HE shows great promises in
privacy-preservation in the untrust cloud computing envi-
ronment due to the resource available. Specifically, in the
increasing use of artificial intelligence and machine learning,
to securely building models by utilising massive data, HE
can help maintaining security and access to large, diverse
datasets. The HE based systems can be categorised into
three groups: full homomorphic encryption (FHE) systems,
partially homomorphic encryption system (PHE), and some-
what homomorphic encryption (SHE) systems [?].

2.1 Full Homomorphic Encryption (FHE)
The FHE allows a DU to perform arbitrarily complex pro-
grams over encrypted data without the need to know the
secret key [?], [?], [?], [?]. FHE based schemes have been
extensively studied since it is proposed by Gentry [?]. How-
ever, the efficiency needs to be greatly improved to make it
practicable in IoT environment. In the past few years, many
research efforts have been conducted from the view point of
mathematical, focusing on the addition and multiplication
operations. In [?], a SHE solution was proposed for cloud
systems that can guarantee the security and privacy of data
by providing homomorphic encryption and complex math-
ematical operations. In summary, the FHE schemes includes
Gentry’s scheme and its optimisation, Bootstrapping based
FHE scheme, FHE scheme without Bootstrapping, etc. In the
past few years, the FHE based solutions have been widely
used in many applications, including

• E-voting systems [?], mainly use FHE to ensure to
maintain the privacy, accuracy, verifiability, fairness
the votes casted and the authentication before partic-
ipants casts their votes.

• Privacy information retrieval (PIR) protocol, it al-
lows an application (DU) to retrieve records from a
database without disclosing any information about
the DO that could be used to determine which
records were selected. Many research efforts have
been done on improve the speed of database lookups
without increasing the server-side storage require-
ments [?].

• Private set intersection (PSI), it allows two parties to
independently compute the intersection of their sets
without revealing anything private items except the
intersection itself [?].

2.2 Partially Homomorphic Encryption (PHE)
Unlike conventional FHE-based solutions, the PHE based
schemes are computationally practical but come with
the cost of supporting only limited mathematical oper-
ations over encrypted data [?]. A PHE solution mainly
contains two operations: additive homomorpic encryp-
tion schemes and multiplicative homomorphic encryption
schemes. Murthy et al. propose a cloud based data privacy
preserving solution based on partial homomorphic encryp-
tion that permits performing mathmatical operations over
encrypted data while not compromising the ciphertext in [?].
In PHE, Paillier cryptosystems support addition and ElGa-
mal cryptosystems support multiplication, order-preserving
encryption supports comparison, and deterministic encryp-
tion, respectively. In recent, the PHE based solutions have
been used in machine learning and artificial intelligence [?]
in which PHE shows great potentials in protecting privacy
of the source data.

2.3 Somewhat Homomorphic Encryption (SHE)
Somewhat homomorphic encryption (or SWHE) can evalu-
ate two types of gates, but only for a subset of operations.
In [?], Dijk et al. extended Gentry’s lattice-based idea that
has similar properties could improve the efficiency and
homomorphic properties. Smart and Vercauteren improved
Gentry’s FHE scheme by enabling public key and private
key by giving smaller size of ciphertext and shorter key than
Gentry’s original scheme [?]. In the past few years, more
efficient SHE solutions have been proposed, such as the
BGV11 [?], LTV12 [?], BLLN13 [?], CKKS16 [?], [?], etc. The
security of BGV11 and CKKS is based on the ring learning
with error (RLWE), while for LTV and BLLN schemes the
security relies on Number Theory Research Unit (NTRU)
problems, which is based on the shortest vector problem
in a lattice. Gentry et al. proposed a new scheme GSW for
building FHE by avoiding an expensive “relinearization”
in multiplication in 2013, which was further improved as
FHEW and TFHE.

SHE schemes are widely used in practical systems: in
[?], Busom et al. proposed a privacy mechanism by homo-
morphically aggregating the data for multiple data users to
guarantee the privacy of data aggregation while depending
on an additive homomorphic scheme. This work is based
on the ElGammal cryptosystem, in which each n member-
group has a public key pk that encrypts the readings and
private key sk is the same for each member. It requires
all members are honest and same parameters are used
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for each member. The SHE schemes are also commonly
used in image/water marking systems. In [?], a reversible
information hiding solution was developed using SHE.

The HE can well provide end-to-end privacy. In cloud-
based systems, HE allows performing powerful data ana-
lytic (such as AI and ML algorithms) in the cloud server.
This work will focus on untrust data owners and data users
in cloud-based IoT systems.

3 PROPOSED SCHEME

As shown in Fig.1, in this work we consider a simple cloud-
based IoT system with following entities participating in
the data encryption system: the IoT devices, such as smart
sensors, medical devices, etc., are able to generate and collect
data and they technically own the data; The cloud system
provides data storage, computing services, etc.; and the
applications, such as big data anlaytics, machine learning
and artificial intelligence (AI) algorithms, need the data and
act as data consumers in this system, namely, data users.

• Data owner (DO), the device or application that owns
the raw data, processes it, and stores it in the cloud
server;

• Cloud server (CS), cloud-based third party server(s)
which only store encrypted data from DO, and wait-
ing for the query from a user;

• Data user (DU), application or devices that con-
sumers the data, it has access to the CS and have
been authorised to decrypt encrypted data by DO.

The DOs might be IoT devices with limited resource,
in terms of battery, storage, and computational resources,
which can communicate each other or with IoT gate-
way/cloud server using wireless technologies, such as Low
Power WiFi, Bluetooth Low Engergy (BLE), Low Power
Wide Area Network (LPWAN), et al. In application level,
protocols such as CoAP, MQTT, etc., are widely used. In
this work, the DU can send queries to CS and retrieve
some specific encrypted data. It can also ask CS perform
homomorphic operations, like addition, multiplication, etc.
and CS is expected to learn nothing from the encrypted data.

As discussed above, the HE is a data encryption method
that allows encrypted data can be processed and manipu-
lated, which make it possible that the third party to perform
algebraic functions over encrypted data without needing to
reveal the real values of the data. This feature can be use to
protect data privacy in zero trust IoT environment. In a HE
crypto-systems, HE can enable the third party to work with
and use the the encrypted data without having access to or
knowing the contents of the decrypted data.

In a cloud-based IoT system, if a smart sensor (DU)
wants to store it generated/collected data on a cloud server,
which need to be analysed by third party application (DU),
the basic procedures are:

1) DU encrypts data, c = Enc(m) and then transmit
the ciphertext c to the cloud server (CS);

2) The third party application (DU) submits query
Q(f) to CS;

3) The CS performs Q(f) over c and sends back the
result out to DU;

4) DU decrypts m′ = Dec(out).

in which the f is a data manipulate function provided by
the data user. Currently, there two solutions for HE: (1)
FHE based solution, which means the above solution sup-
ports arbitrary function, however it is very computational
expensive and cannot be affordable in practice; (2) SHE
based solution, which supports some support functions, like
simple addition, multiply, query, etc.

To evaluate a HE solution, semantic security means that
the ciphertext does not reveal any information contained in
plaintext.

m0,m1, Encrypt (pk,m0) ≈ Encrypt (pk,m1) (2)

In an IoT system, the FHE scheme can prevent malicious
attacks on the third-party cloud server from gaining access
to the encrypted data. However, when a DU needs to alter
or update a specific record item, it often needs to transfer
the encrypted updates to the server or decrypts cipher then
alter and then re-encrypted in the trusted cloud. However,
this needs the entire system is in a trusted environment.

In this work, we propose a privacy-preserving proto-
col for cloud-based IoT systems utilising the Paillier cryp-
tosystem, which is a probabilistic asymmetric algorithm for
public-key cryptosystem that provides following features:

• Probabilistic encryption, for a given a ∈ Z , there
exist N encryption of a, as [a]pk ∈ Enc(a) ⊂ ZN2 ,
in which Enc(a) is the set of all encryption of a with
|Enc(a)| = N .

• Addition, the Paillier cryptosystem allows to add
two encrypted values, as

[a]pk ⊕ [b]pk ∈ Enc(a+ b) for any a, b ∈ ZN (3)

• Multiplication, the Paillier system allows the multi-
plication of an encrypted value with a plaintext one,
as

a⊗ [b]pk ∈ Enc(ab) for any a, b ∈ ZN (4)

In a PHE cryptosystem [?], if the RSA public key has
modulus n and encryption exponent e, then the encryption
of a messagem is given by Enc(m) = me, the homomorphic
property can be described by

Enc(m1) · Enc(m2) = me
1 ·me

2 mod n

= (m1 ·m2)e mod n

= Enc(m1 ·m2)

(5)

3.1 PHE based solution vs FHE
The FHE supports arbitrary computation on ciphertext,
which can enable the construction of programs for any
desirable function running over ciphertext. In recent, a num-
ber of libraries have been implemented for cloud systems,
include IBM HElib, Microsoft SEAL, PALISADE, etc. In
cloud-based IoT systems, the FHE is quite inefficient and
resource restrained IoT devices might be unable to afford
the computational costs of FHE. Therefore, FHE is not a
doable solution for IoT systems.

In recent, a number of FHE-based solutions have
been developed, which can provide secure and privacy-
preserving operations over data even in the untrust envi-
ronment. However, most FHE-based solutions cannot be
utilised over resource constrained devices. The PHE-based
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Fig. 1. Cloud-based IoT system (The blue arrows denote enquiries from DU, and orange arrows denote HE results.)

solution is feasible for computationally lightweight appli-
cations in IoT. Figure 1 shows an example of cloud-based
IoT system, in which both the IoT devices (DOs) and appli-
cations (DUs) can perform lightweight data encryption and
computationally heavy HE can be performed over untrusted
third-party cloud server.

3.2 PHE based Protocol

The PHE has been proved to be effective in many appli-
cations, like electronic voting, medical data analysis, gene
analysis, etc. This work focus on the application of PHE
in IoT data privacy protection. Figure 2 shows an exam-
ple of a PHE-enabled IoT system, which includes n DOs
m1,m2, . . . ,mn and one or more DUs. The blue arrows in
Figure 2 denote the data queries from DUs( such as ML or
AL applications, big data applications, etc.), and the orange
lines denote the encrypted results.

In a typical IoT system, the data owner, such as smart
sensors, mobile, devices, et al., collects/generates data and
then transmit to a cloud server, and data users, such as
researchers, applications, et al. can access these data. The
problem here is three folds: (1) to guarantee the secret of
the data, the DO will encrypt data before transmitting to
cloud server, and a DU can send queries to cloud server
for asking specific data; (2) for the server, it should learn
nothing from both DO and DU; (3) for DU, it can only access
the data authorised by DO which is defined in the queries.
To address these questions, we propose following protocols.

In IoT systems, DOs are continuously generating or
collecting data. In this work, each DO divides the original
data with size of n1 into non-overlapping data blocks with
size of nb.

3.3 Procedure

In this works, we use single google cloud server (S) to store
the data created and encrypted by sensors DOs, applications
can retrieved data from the cloud server S. The procedures
includes three stages:

(1) Initialisation. Crypto module at the DO and DU in-
dependently generate the key pairs (pk, sk) for the Paillier
crypto HE system.

(2) Extract, Transformation and Loading (ETL). In this
stage, each DO uses its pk is used to encrypt the gener-
ated data, which then be uploaded to the cloud server. If
specific aggregation model is needed, the data needs to be
transformed to match the requirements of the aggregation
model. Encryption using the shared key ensures that as long
as an adversary does not obtain the sk of both DO and DU,
the confidentiality of the data is preserved. By doing this,
we can avoid a single point of failure in the system.

(3) Data Query. A DU can ask to send a query to the S by
specifying a specific operations (this work supports addition
and integer multiplication). The server can conduct the
paillier homomorphic encryption using the shared keypairs
depends the query. Once done, the server will return the
encrypted result to DU that can be decrypted using its secret
key.

As shown in above scenario in Fig.1, the server S can
conduct the Paillier homomorphic encryption but cannot
retrieve the query result. In some case, the S can then
homomorphically add random Laplacian noise to obfuscate
the query result and achieve differential privacy.

Table 1 shows an example that data created by sensors
stored in a google cloud server (in which only part of
encrypted data are presented).

TABLE 1
Encrypted data stored on a google cloud server

Sensor ID readings cipher
1 0x02 0x3fd2. . .a876
2 0x04 0x386e. . .3f7b
3 0x06 0x722c. . .d887
4 0x08 0x4aad. . .5e7c

. . . . . . . . .

3.4 PHE-based Privacy-preserving scheme for IoT

Inspired by BGH13 [?], this subsection will detail the design
and implementation of PHE based IoT privacy-preserving
solution that allows a DU to query a remote database held
by a cloud server, with the guarantees that the server does
not learn anything from the query.

In a cloud-based IoT system, a DU cannot retrieve
more information than what it queries for, in which the



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

m1 c1Enc(pk, m1)
pk

m1 c1Enc(pk, m1)
pk

m2 c2Enc(pk, m2)
pk

m2 c2Enc(pk, m2)
pk

mn cnEnc(pk, mn)
pk

mn cnEnc(pk, mn)
pk

.

.

.

.

.

.

.

.

.

.

.

.

m1 c1Enc(pk, m1)
pk

m2 c2Enc(pk, m2)
pk

mn cnEnc(pk, mn)
pk

.

.

.

.

.

.

.

.

.

.

.

.

DO Cloud Server DU

Q(ft)m1 c1Enc(pk, m1)
pk

m2 c2Enc(pk, m2)
pk

mn cnEnc(pk, mn)
pk

.

.

.

.

.

.

.

.

.

.

.

.

DO Cloud Server DU

Q(ft)

ct mtDec(sk,ct)
sk 

ct mtDec(sk,ct)
sk 

m1 c1Enc(pk, m1)
pk

m2 c2Enc(pk, m2)
pk

mn cnEnc(pk, mn)
pk

.

.

.

.

.

.

.

.

.

.

.

.

DO Cloud Server DU

Q(ft)

ct mtDec(sk,ct)
sk 

Fig. 2. Homomorphic encryption decryption time in cloud-based IoT systems

cloud server S holds a database with records (all en-
crypted) c1, c2, . . . , cn and a DU DUi may want to learn
ci, i ∈ {1 . . . n} but another DU DUj may want to retrieve
cji ∈ {1 . . . n}. Actually, with proposed solution, a DU may
retrieve the result of homomorphic operations of encrypted
records, as

cr = ci ⊕ cj , i ∈ {1 . . . n} (6)

or
cr = Impz ⊕ ci, i ∈ {1 . . . n} (7)

in which Impz is an arbitrary magnitude integer. In this
work, we present a protocol that allows a DU to retrieve a
record from server without revealing which record has been
queried. The DU learns only the record corresponds to its
query. Actually, a DU can submit multiple queries to learn
more than one record.

For simplicity, we consider an IoT system with three key
actors: one DO, one cloud Server (S), and one DU. The S
holds database and each record is composed of {uID, feature
#1, . . . feature #u}, each feature corresponds to a specific
feature.

1) The system first generate parameters, including
prime numbers p, q, n = pq, and security parameter
λ = lcm(p−1, q−1), which can be used to generate
(pk, sk) for each DO, S, and DU; For a trusted DU,
DO(s) will share key information like sk, search token,
encryption key via secure channel.

2) The DO generates a inverted table for the data
generated, in which each record associates to all the
features. Then, DO encrypts the inverted table using
its sk, each feature is converted into a search token
using a pseudo-random function, e.g.,

Pko(”uID = 0xf3ad”),Encko(I)) (8)

in which I is the set of indices in the database of
the individuals for which the uI is equal to 0xf3ad,
encrypted with a key DO encryption key ko only
known to DU;

3) Records query: Simple query, homomorphic operation
query; For simple query, a DU can check whether
there is a match for its query in the inverted
database using the search token Θ. If yes, DO sends
relevant information to the trusted party DU a

(Q,Θ); For homomorphic operation query, the server
will first verify whether there are related match(s)
and then conduct required homomorphic opera-
tions (addition, multiplication);

4) DU decrypts the results received from the S.

Steps 1) and 2) will be performed at the Initialisation stage
when the database needs to be updated. After the setup, DU
can interact with other S and DU to obtain an answer to a
certain query. Step 3) is for simple query and homomorphic
operation query. In practice the data is batched, and each
DO may split as many data values as available slots in the
ciphtertext. Protocol 3.4 shows the details.

4 EXPERIMENTAL RESULTS AND ANALYSIS

In this work, we tested the performance of proposed scheme
in a real cloud-based environment. To evaluate the perfor-
mance of proposed scheme, we excluded the time consumed
over communication channel since it significantly relies on
the network traffic. The experimental setting only focuses
on the performance tests of time used for encryption, ho-
momorphic operations, and decryption. Both the DO and DU
instances were running over a Mac OS X on Intel i7 2.6GHz
machine with 16GB ram. Google API services were used to
act as cloud server, and the system is implemented using
Python 2.7.

In this cloud-based IoT scenario, the DO generates data
and then encrypts to a remote cloud service, which can
simply run homomorphic operations, addition and integer
multiplication. A DU is able to retrieve the data from cloud
server and by send a query to the server. Once receives the
result, the DU can decrypt the result.

We first tested the performance of data encryption and
decryption without homomorphic operations as shown in
Figure 3 encryption with 128-bit keysize. In this test, 26
sensors instances create data, and each sensor then using
paillier-encrypt(·) to encrypt the data, and cipertext were sent
to the remote cloud server S using Drive Activity API [?]. To
test the data query, we use a DU to send a query Q(f,mt), in
which f is the homomorphic operation, and xt is the token
for a specific data x which is shared from DO in a secure
channel. In this test, we set f as 0 that means no operation
needs but only retrieve the encrypted data. The the DU can
use the shared keys to decrypt the ciphertexts. It can be seen
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Protocol 1 Homomorphic encryption based privacy preserv-
ing for IoT system

System Initialisation. Each DO creates keypair Ki
D(pk, sk)←

Keygen(1λ) , and each DU creates keypair Ki
U (pk, sk) ←

Keygen(1λ), in which λ is security parameter. All keys
exchange will be made on secure communication channel.

Goal. Parties jointly compute a random shuffle of their
inputs.

The protocol:

1) DO.

a) A DO generates and encrypts a message m
using c = Enc(pk,m);

b) transmits c to the CS in a communication
channel;

2) Server.

a) S waits the queries from DU
b) Once receives a query Q(f,mtoken), take

homomorphic operations as Enc(m) =
Enc(m1) + Enc(m2);

c) perform f , for addition c =
Add(pk, c1, · · · , ct); and for multiplication,
c = Mul(pk, c, a); then return the result out
to DU;

d) return m;

3) DU

a) build a query Q(f,mtoken), in which f could
be addition or multiplication;

b) send Q(f,mtoken) to server and wait for
response;

c) once receives cnew, in which cx is the HE
encryption of the input data x

d) decrypts the result using m′ = Dec(sk, out).

return;

return;

from Figure 3 that the time consumed by different sensors
are very similar and the average time consume is about
0.3s, and the time consumed for decryption is pretty low
and average time for decryption is 0.0017s. Actually, the
operations write, read cost the main time, average 0.4s and
0.5s, respectively, which significantly relies on the design
of database. Table 4 shows the performance of HE data
privacy encryption with key size of 256 bits. The average
times for Enc at DO, Write, Read at S, and Dec at DU, are
0.4307, 0.6211, 0.4084, and 0.0016 respectively. Compare the
Enc, Write, Read, the Dec spends only about 3.2%, which
means it is possible that even resource-constrained IoT
devices are able to support data query as DU.

Table 4 shows the performance of HE data privacy
encryption with key size of 128 bits. The average times
for Enc at DO, Write, Read at S, and Dec at DU, are
0.0745, 0.4257, 0.3716, and 0.0004 respectively. It can be
seen the performance is slightly better than the case with
key size of 256 bits.

TABLE 2
Cloud system HE data privacy encryption (key size 256 bits)

Sensor ID Enc(s) Write(s) Read(s) Dec(s)
1 0.3956 0.6391 0.7290 0.0017
2 0.3951 0.5001 0.2544 0.0018
3 0.4179 0.6490 0.5029 0.0017
4 0.3898 0.6532 0.5997 0.0018
5 0.4626 0.8488 0.3774 0.0015
6 0.4147 1.5889 0.5129 0.0018
7 0.4161 0.8151 0.4076 0.0018
8 0.4082 0.5887 0.3010 0.0018
9 0.3857 0.3151 0.4318 0.0017
10 0.4057 0.3360 0.4927 0.0018
11 0.3825 0.6218 0.2240 0.0010
12 0.4279 0.8381 0.3038 0.0011
13 0.4075 0.8569 0.3083 0.0017
14 0.3961 0.5515 0.2249 0.0018
15 0.3798 0.5851 0.6957 0.0018
16 0.3952 0.5677 0.7749 0.0014
17 0.3562 0.3115 0.3173 0.0018
18 0.3988 0.5414 0.2536 0.0018
19 0.3873 0.3375 0.3050 0.0014
20 0.3997 0.3963 0.2962 0.0018
21 0.4333 0.8013 0.3926 0.0015
22 0.3923 0.4738 0.5388 0.0014
23 0.3784 0.7143 0.4357 0.0017
23 0.3864 0.6644 0.3229 0.0018
25 0.4361 0.6470 0.3746 0.0018
26 0.4463 0.3072 0.2415 0.0017

Average: 0.4037 0.6211 0.4084 0.0016

TABLE 3
Cloud system HE data privacy encryption (key size 128 bits)

Sensor ID Enc(s) Write(s) Read(s) Dec(s)
1 0.0659 0.4023 0.6231 0.0003
2 0.0729 0.3081 0.2828 0.0004
3 0.0712 0.2267 0.3449 0.0005
4 0.0725 0.3792 0.2071 0.0004
5 0.0685 0.4576 0.3224 0.0004
6 0.0732 0.5304 0.3465 0.0004
7 0.0736 0.7114 0.5157 0.0002
8 0.0683 0.6830 0.2451 0.0002
9 0.0772 0.5163 0.3079 0.0004
10 0.0804 0.3295 0.3051 0.0004
11 0.0745 0.5615 0.3015 0.0002
12 0.0749 0.3822 0.6154 0.0002
13 0.0768 0.2322 0.3070 0.0002
14 0.0748 0.2358 0.3092 0.0003
15 0.0728 0.2254 0.2336 0.0004
16 0.0730 0.3391 0.2869 0.0002
17 0.0702 0.3085 0.9293 0.0002
18 0.0749 0.3075 0.2406 0.0002
19 0.0717 0.5159 0.5504 0.0004
20 0.0728 0.3112 0.2159 0.0004
21 0.0741 0.3898 0.3650 0.0004
22 0.0728 0.3132 0.2171 0.0003
23 0.0751 0.3325 0.3064 0.0003
23 0.0725 0.3208 0.2437 0.0002
25 0.0735 0.5362 0.4091 0.0003
26 0.0735 0.3229 0.2210 0.0002

Average: 0.0745 0.4527 0.3716 0.0004
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To test the homomorphic encryption operations, we
evaluated the performance of a HE systems, in which 26
sensors encrypt and upload data to cloud server (google
cloud server); the data user sends query of sum of two
data and then download the ciphertext. This can make data
user conduct add operations over encrypted data without
leak any information. In this work, the cloud server will
conduct the addition operation of ciphertext, and the DU
only download the Enc(x1, x2) and then decrypt the sum.
with Dec(Enc(x1, x2)). Table 4 shows the performance only
with homomorphic addition (with key size of 256 bits), the
average time for queries (addition) and decryption are 0.3821s
and 0.0016s, respectively.

Fig. 3. Performance of data encryption/decryption without HE operations
in cloud-based IoT systems (key size = 256)

TABLE 4
DU conduct HE addition over encrypted data (key size 256 bits)

Sensor ID Request(s) Dec(s)
1 0.3826 0.0016
2 0.3473 0.0017
3 0.2818 0.0017
4 0.3897 0.0017
5 0.4089 0.0013
6 0.3028 0.0017
7 0.4069 0.0017
8 0.3192 0.0016
9 0.4978 0.0016
10 0.2924 0.0016
11 0.3198 0.0019
12 0.5277 0.0017
13 0.3982 0.0017
14 0.4018 0.0013
15 0.3096 0.0017
16 0.4194 0.0017
17 0.3971 0.0017
18 0.4742 0.0017

Average: 0.3821 0.0016

To further evaluate the performance of homomorphic addi-
tion, homomorphic multiplication, we tested 18 DUs querying

Fig. 4. Homomorphic encryption decryption performance in cloud-based
IoT systems (key size = 128)

with both homomorphic addition and multiplication from the
server, Table 4 shows the performances, in which the av-
erage request time is about 0.3623s, the average time for
a single homomorphic addition is 0.002954, and for a single
homomorphic multiplication is 0.007908.

TABLE 5
DU conduct HE addition and multiplication over encrypted data (key

size 128 bits)

Sensor ID Request(s) Add-Dec(ms) Mul-Dec(ms)
1 0.3287 0.003099 0.009060
2 0.3079 0.003099 0.008821
3 0.5045 0.002861 0.007868
4 0.3209 0.002861 0.007868
5 0.3553 0.002861 0.007868
6 0.3435 0.001907 0.006914
7 0.3266 0.003099 0.008106
8 0.4200 0.002146 0.006914
9 0.3317 0.002861 0.006914
10 0.3058 0.002861 0.007868
11 0.6458 0.003099 0.008106
12 0.2412 0.003099 0.007868
13 0.3520 0.004053 0.008106
14 0.5780 0.002861 0.008106
15 0.3230 0.003099 0.007868
16 0.2349 0.003099 0.008106
17 0.2556 0.003099 0.008106
18 0.3463 0.003099 0.007868

Average: 0.3623 0.002954 0.007908

5 CONCLUSION AND DISCUSSION

The emerging HE can effectively protect data privacy in
IoT environments. This paper propose a privacy preserving
solution to help protect the privacy of data owner, cloud
server, and data user in complicated IoT environments. The
experimental results demonstrated the effectiveness of pro-
posed solution. Actually, this work can be further extended
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to privacy preserving for machine learning applications,
which are increasingly applied in new IoT apps, products
and services.
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