
Koo, J and Faseeh Qureshi, NM and Siddiqui, IF and Abbas, A and Bashir,
AK (2020) IoT-enabled directed acyclic graph in spark cluster. Journal of
Cloud Computing : Advances, Systems and Applications, 9 (1). ISSN 2192-
113X

Downloaded from: http://e-space.mmu.ac.uk/627620/

Version: Published Version

Publisher: Springer

DOI: https://doi.org/10.1186/s13677-020-00195-6

Usage rights: Creative Commons: Attribution 4.0

Please cite the published version

https://e-space.mmu.ac.uk

http://e-space.mmu.ac.uk/627620/
https://doi.org/10.1186/s13677-020-00195-6
https://e-space.mmu.ac.uk

Journal of Cloud Computing:
Advances, Systems and Applications

Koo et al. Journal of Cloud Computing: Advances, Systems
and Applications (2020) 9:50
https://doi.org/10.1186/s13677-020-00195-6

RESEARCH Open Access

IoT-enabled directed acyclic graph in
spark cluster
Jahwan Koo1, Nawab Muhammad Faseeh Qureshi2*, Isma Farah Siddiqui3, Asad Abbas4

and Ali Kashif Bashir5

Abstract

Real-time data streaming fetches live sensory segments of the dataset in the heterogeneous distributed computing
environment. This process assembles data chunks at a rapid encapsulation rate through a streaming technique that
bundles sensor segments into multiple micro-batches and extracts into a repository, respectively. Recently, the
acquisition process is enhanced with an additional feature of exchanging IoT devices’ dataset comprised of two
components: (i) sensory data and (ii) metadata. The body of sensory data includes record information, and the
metadata part consists of logs, heterogeneous events, and routing path tables to transmit micro-batch streams into
the repository. Real-time acquisition procedure uses the Directed Acyclic Graph (DAG) to extract live query outcomes
from in-place micro-batches through MapReduce stages and returns a result set. However, few bottlenecks affect the
performance during the execution process, such as (i) homogeneous micro-batches formation only, (ii) complexity of
dataset diversification, (iii) heterogeneous data tuples processing, and (iv) linear DAG workflow only. As a result, it
produces huge processing latency and the additional cost of extracting event-enabled IoT datasets. Thus, the Spark
cluster that processes Resilient Distributed Dataset (RDD) in a fast-pace using Random access memory (RAM) defies
expected robustness in processing IoT streams in the distributed computing environment. This paper presents an
IoT-enabled Directed Acyclic Graph (I-DAG) technique that labels micro-batches at the stage of building a stream
event and arranges stream elements with event labels. In the next step, heterogeneous stream events are processed
through the I-DAG workflow, which has non-linear DAG operation for extracting queries’ results in a Spark cluster. The
performance evaluation shows that I-DAG resolves homogeneous IoT-enabled stream event issues and provides an
effective stream event heterogeneous solution for IoT-enabled datasets in spark clusters.

Keywords: Apache spark, Internet of Things (IoT), Directed acyclic graph, MapReduce, Micro-batch stream

Introduction
Real-time streaming empowers an organization to pro-
cess live data feed generated through an on-line data
production system [1]. In the late 90s, an American sci-
entist Peter J. Denning presented a streaming idea to
save in-process bits for solving complex calculationsmuch
faster than traditional machine processing. This method
helps create, process, and observe the data-stream of
an instrument and generate a statistical result set [2].

*Correspondence: faseeh@skku.edu
2Department of Computer Education, Sungkyunkwan University, Seoul, South
Korea
Full list of author information is available at the end of the article

Nowadays, we find several enhanced forms these days
such as, live radio, streaming media, HTTP-based adap-
tive streaming, instant streaming service, HTTP-live
streaming, HD streamed video, Full HD (1080p), and
streaming 4k content [3]. On the other hand, record-
keeping also used a streaming technique to build various
data streams management systems such as STREAM,
Aurora, TelegraphCQ, and NiagaraCQ [4].
These management systems store data records using a

one-time query, long-running query, dataflow query, and
query stream; however, it becomes complex for them to
manage large-scale dataset queries in a heterogeneous
distributed computing environment [5]. Moreover, this

© The Author(s). 2020Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-020-00195-6&domain=pdf
mailto: faseeh@skku.edu
http://creativecommons.org/licenses/by/4.0/

Koo et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:50 Page 2 of 15

complexity also includes the management of an enormous
number of indices in non-tabular datasets that ultimately
raises the concept of big data management that could han-
dle large-scale datasets [6]. There are several enterprises
out in the market that offers big data management sys-
tems such as SQLstream [7], TIBCO [8], IBM [9], Striim
[10], and Apache software foundation [11]. Among these,
Apache group offers several open-source GPLv3 licensed
big data stream engines i.e. Flume [12], Spark [13], Storm
[14], NiFi [15], Apex [16], Kafka [17], Samza [18], Flink
[19], Beam [20] and Ignite [21], that includes various
streaming features as shown in Table 1.
These streaming engines are programmed to handle

several forms of data-types, such as structured data,
unstructured data, and semi-structured data [22]. These
data types are generated through sources that include sen-
sory devices and web-based intelligent portal [23]. Inter-
net of Things (IoT) is a sensory device that consists of an
intelligent processor, sensor to detect and store records
in its cache storage and an interface to exchange datasets
with global networks [24]. This device also generates a
continuous flow of data that requires persistent storage
to store, and streaming engines categorize its data into
three forms, such as unprocessed, processed, and replicas
[25]. The unprocessed data is a non-filtered collection that
holds an association of tuples with indices only, whereas,

the processed data is the extraction of query result onto
the unprocessed data. The replica is a block of processed
data ready to be exchanged with streaming engines to
perform real-time analytics in a distributed computing
environment [26], as shown in Fig. 1.
IoT devices also generate several metadata events, i.e.,

monitoring the temperature of factory devices through
smart meters, recording a credit card transaction, and
detecting an unwanted object in a surveillance cam-
era [27]. These events are a crucial part of metadata
along with logs and routing path information and direct
streaming queries to identify data tuples in the reposi-
tory [28]. By default, streaming through Apache engines
involve few steps such as (i) stream sourcing, (ii) stream
ingestion, (iii) stream storage, and (iv) stream process-
ing [29]. Stream sourcing represents an IoT device that
provides a continuous flow of datasets, and stream inges-
tion consumes the same sourcing data chunk to queue the
tasks inside a streaming engine systematically. The stream
storage then formulates a micro-batch, a collection of live
data feed having an adequate size s in time t sequentially,
and stream processing facilitates the system to execute
queries and retrieve a real-time result set [30] as shown in
Fig. 2.
The data transformation phase divides micro-batch into

four further subtypes, i.e., local generation, file system

Table 1 IoT-based application attribute feature model

Koo et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:50 Page 3 of 15

Fig. 1 IoT dataset categorization through Stream Engines

(HDFS) generation, dataset-to-dataset generation, and
cache generation [31]. This transformation process is
considered relatively lazy because of having an abstract
extraction of datasets without any real action. Thus,
stream processing requires a task route mapper, that could
redirect dataset extractions per query into the respec-
tive repository. For this, the streaming engine uses a
built-in feature of a directed acyclic graph (DAG) that
extracts micro-batches to respective column fields with-
out directed cycles [32]. DAG workflow consists of n

MapReduce stages and transforms micro-batches through
a scheduler, which transports dataset through resource
allocations using stage functions. By default, a simple
DAG consists of Stage0→1 stages, whereas, multi-purpose
DAG involves Stage0→n stages to transform stream into a
dataset as shown in Fig. 2a and b.
This workflow facilitates live queries’ extraction from

a micro-batch; however, it does not recognize the type
of IoT data tuples during micro-batch formation. Thus,
when processing IoT stream events, it encounters four
problems, such as (i) homogeneous micro-batches, (ii)
dataset diversification, (iii) heterogeneous data tuples, and
(iv) linear DAG workflow issue [33].
This article proposes an IoT-enabled Directed Acyclic

Graph (I-DAG) for heterogeneous stream events that
minimize the processing discrepancy issue in data trans-
formation. The presented I-DAG enhances workflow
operation by reading labeled stream tags in heterogeneous
event stream containers and scheduling workflow task
processing in a spark cluster. Thus, I-DAG contains addi-
tional features of processing IoT tuples and managing the
existing DAG properties mentioned below.
The significant contributions of I-DAG are highlighted

as:
• A novel event stream tag manager
• A novel parser to filter heterogeneous event streams

in the stream engine
• An innovative workflow manager that bypasses the

unnecessary tasks queued in stages of MapReduce
Operation.

– Stage0→1 I-DAG workflow
– Stage0→n I-DAG workflow

The remaining paper is organized in the following
manner. “Motivation” section discusses the benefits

Fig. 2 Default Directed Acyclic Graph (DAG) workflow in Streaming Engine

Koo et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:50 Page 4 of 15

and complications; “IOT-Enabled directed acrylic graph
(I-DAG)” section addresses the motivation; “Performance
evaluation” section explains the proposed model I-DAG;
“Conclusion” section shows experimental evaluation over
the spark cluster. “Declaration” section presents the con-
clusion with future work.

Motivation
I-DAG is an enhancement in the existing workflow of exe-
cuting event streams in spark clusters. Let us discuss the
benefits and complications of a smart meter use case in a
smart grid.
Smart meters cope with on-ground streaming that

includes continuous submission of record streams for grid
analytics. A smart grid evaluates the functional and pro-
cedural performance of distribution end units through
that stream. It simultaneously observes the performance
of smart meters, i.e., stream accuracy, optimal work-
load management, and proper functioning of compo-
nents. A smart grid generates a complicated scenario in
bi-directional processing, where a system confirms the
accuracy of a stream through the functionality of a source
object. Thus, a smart grid cannot verify the accuracy of
streaming analytics through a transformed dataset only,
but also, it must monitor the error accuracy of smart
meters. Therefore, it requires a streaming event analyzer
that copes with Stage0→n transformations concurrently,
and I-DAG provides such features through label-based
stream event analytics [34, 35].
Smart meters generate heterogeneous IoT events con-

currently through bi-directional streaming that cre-
ates asynchronous problems in the smart grid, i.e.,
outnumbered of metadata than traditional processing and
overwhelmed analytical accuracy. Thus, when the I-DAG
technique applies, it acquires cache containers to jump
few MapReduce tasks that usually a developer skips to
include in the programming model [36, 37].
Nowadays, the world is moving towards an unpre-

dictable scale of managing IoT devices and their streaming
event analytics. This increment would drastically increase
with time, and the demand for resource management
would be considered a vital issue that must bemanaged on
a priority basis. At that time, a customized Direct Acyclic
Graph for IoT event stream processing would fulfill this
demand. This IoT-enabled direct acyclic graph would
address future heterogeneous workflow event stream
operations in the spark cluster [38].

IOT-Enabled directed acrylic graph (I-DAG)
From a functional perspective, we divide I-DAG into three
sub-components:

• Label-based event streaming
• Heterogeneous stream transformation

• IoT-enabled DAG workflow

Label-based event streaming
Let IoT devices events be a sequence of error, backup and
information messages with a representation as Ei, Bi and
Ii, where each of the message belongs to sensory devices
as Devicei in the distributed computing environment as
shown in Fig. 3. At each time interval t, streams gener-
ated through a function fi holds an array of event messages
G [1.. (Ei,Bi, Ii)] with G [i] = fi. Therefore, when a new
occurrence of event messages arrive, the function repre-
sentation changes to G [i + +] and the individual event
message collection at each node could be represented as,

G [i + +] = G [(Ei,Bi, Ii) + +] (1)

Where, G [i + +] is a container managing multiple event
messages arrival with x ≥ 0.
In order to approximate the inner function elements of

G [i + +], implicit vectors such as x (E [1..n]), y (B [1..n])
and z (I [1..n]) are added into the stream instruction set
with a proportion of (Ei, x) + +, (Bi, y) + + and (Ii, z) + +
and returns an output approximation as,

Eventm =
n∑

i=1
Ei ∗ Bi ∗ Ii (2)

Where, Eventm > 0 and represents the container of
processed heterogeneous event messages.

Algorithm 1 Labeling the Sensory Device Stream Events
G [i + +]
1: Input Two-stream Deep Hashing [39] onto G + + :

[n] → [n]
2: Output Result over nodes No, Np and Nq
3: procedure REDIRECT
4: for i = o tom do
5: No = (−1)f (Ei)mod2 ε {1,−1}
6: Np = (−1)f (Bi)mod2 ε {1,−1}
7: Nq = (−1)f (Ii)mod2 ε {1,−1}
8: SEo,p,q ← 0
9: Update:

10: (Ei, x) + + ← Si+ = x.No
11: (Bi, y) + + ← Sj+ = y.Np
12: (Ii, z) + + ← Sk+ = z.Nq
13: Produce
14: return SEo,p,q
15: end for
16: T1 = (

SEo,p,q
) (

ε−2)

17: T2 = (
SEo,p,q

) (
lnδ−1)

18: return T1||T1.
19: end procedure

Koo et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:50 Page 5 of 15

Fig. 3 Label-based Heterogeneous Streaming Workflow

Lemma-1: SEo,p,q = ∑i=1
n

{
(ei × no) ,

(
bi × np

)
,
(
ii × nq

)}

The individual data segments of Ei, Bi and Ii arrives at
nodes No, Np and Nq through an incremental function
G [i + +] that assembles segments in formation order.
This order summarize stream segments in such a way that
G [i + +] stores SEo,p,q ≤ 0.

Lemma-2: E [s] = PP (ei, bi, ii)
Since, SEo,p,q = ∑i=1

n
{
(Ei × No) ,

(
Bi × Np

)
,
(
Ii × Nq

)}
,

but,
∑i=1

n
{
(Ei × No) × (

Bi × Np
) × (

Ii × Nq
)} �=

No,p,q ×
(∑i=1

n (Ei,Bi, Ii)
)
. Therefore, the constraints are

residing within the (Ei,Bi, Ii,). Moreover, if i = j = k
then E

[
No,p,q

] = E [1] = 1 and if o �= p �= q, then
E

[
No,p,q

]
are independent and could be retrieved as,

E
[
No,p,q

] = 1
21 + 1

2 (−1). After that, the linearity of
expectation could be represented as,

E
[
SEo,p,q

] = E
[(n∑

i=1
(Ei,Bi, Ii)

)] (n∑

i=1

(
No,Np,Nq

)
)

(3)

= E

⎡

⎣
n∑

o,p,q

(
No,Np,Nq

)
(Ei,Bi, Ii)

⎤

⎦

=
n∑

o
(No)E [Ei,Bi, Ii] +

n∑

o�=p

(
Np

)
E [Ei,Bi, Ii]

+
n∑

o�=p�=q

(
Nq

)
E [Ei,Bi, Ii]

Where E
[
SEo,p,q

]
manages the heterogeneous events with

independent expectation parameters.

Lemma-3: V
[
sEo,p,q

] ≤ 2E
[
sEo,p,q

]2

Since,

V
[
SEo,p,q

] = E
[(
SEo,p,q

)]2 − E
[
SEo,p,q

]

=
⎛

⎝
n∑

o,p
...NoNp

⎞

⎠ ×
⎛

⎝
n∑

p,q
...NpNq

⎞

⎠

=
n∑

o,p,q

(
...NoNpNq

) ≤ 2
(n∑

o
Ei,Bi, Ii

)

×
⎛

⎝
n∑

p
Ei,Bi, Ii

⎞

⎠ ×
⎛

⎝
n∑

q
Ei,Bi, Ii

⎞

⎠

= 2E
[
SEo,p,q

]2

Lemma-4: average T1 and T2 of SEo,p,q
Let A be the output of algorithm-1, so

E [S] = PP (Ei,Bi, Ii) ,V (A) ≤ 2E [A]2

and that equals to the,

σ (A) = √
V (A) ≤ √

2E [A]

Therefore, the bound of stream segment could be
obtained as,

PE [|A − E [A]| > εE [A]]

Thus,

PE [|A − E [A]| > εE [A]]

≤ PE
[
|A − E [A]| >

√
2εσ (A)

]

In order to reduce the variance, we apply Chebyshev
inequality [40] to

√
2ε > 1, we get the output as,

E [Ai] = PP (Ei,Bi, Ii) ,V (Ai) ≤ 2E [Ai]2

So if B be the average of Ai, ...,AT1T2

E [B] = PP (Ei,Bi, Ii) ,V (B) ≤ 2E [B]2

T1T2

Now, by Chebyshev’s inequality, as T1T2 ≥ 16
ε2
,

Koo et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:50 Page 6 of 15

we get,

PE [|B − E [B]| > εE [B]] ≤ V (B)

(εH [B])2

PE [|B − H [B]| > εH [B]] ≤ 2H [B]2(
T1T2ε2H [B]2

) ≤ 1
8

At this point, streaming bound δ could be obtained
but since a dependence of 1

δ
is present, therefore, we

apply lower bound inequality Hoeffding [41] on H [B] =
PP (Ei,Bi, Ii) and get,

PE [(1 − ε)H [B] ≤ B ≤ (1 + ε)H [B]] ≥ 7
8

Now execute median function Z of T1T2 onto
B,B1, ...,BT1T2 and we get,

PE [|Z − H [B]| ≥ εH [B]] ≤ δ (4)

when,

T1T2 ≥ 32
9
ln
2
δ

The stream approximation could be obtained as,

(Ei)No = O
(

1
ε2

ln
2
δ

)

HNi,i

(5)

(Bi)Np = O
(

1
ε2

ln
2
δ

)

BNo,p

(6)

(Ii)Nq = O
(

1
ε2

ln
2
δ

)

INi,k

(7)

This stream approximation defines the existence of man-
aging heterogeneous parameters in the I-DAG.

Heterogeneous stream transformation
The distributed stream elements with probability α (t) are
sampled at time t with a computing average of,

α (t) = α, contant : error 	 1√
α × t

→ 0

and,

α (t) 	 1
ε2 × t

: error 	 ε, constant over time

In order to perform encapsulation, reservoir sampling is
used because it allows adding first k stream elements to
the sample having total items t − th with probability k

t .
Thus, for every t and i ≤ t, the sample probability is
evaluated as,

Pi,t = PE
[
si in sample at time t

] = k
t

(8)

and for t + 1, the sample probability becomes,

Pt+1,t+1 = PE
[
st+1 sampled

] = k
t + 1

This is mandatory because of the inter-connected het-
erogeneous IoT tuples that are to be incorporated with
the internal of time. The processing of t + 1 with i ≤ t
eventually reduces the role of si and returns st+1 as,

Pi,t+1 = k
t

×
(
1 − k

t + 1
× 1

k

)
(9)

= k
t

×
(
1 − 1

t + 1

)

= k
t

× t
t + 1

= k
t + 1

The frequency table of stream events uses the event
arrival probability Pi,t+1 into Like space saving of count-
min sketch to bring an order between transformed het-
erogeneous stream events as shown in Fig-3. This space
saving function provides an approximation fx′ to fx for
every x and consumes memory equals to O

(1
�

)
. There-

fore, when a stream vector G [n] is processed with G [i] ≥
0 for ∀i ε t, it estimates heterogeneous stream G′ of G as,

G [i] ≤ G′ [i] ∀i
and,

G′ [i] ≤ G [i] + ε |G|1 ∀i,with probability ≥ 1 − δ

Where, |G|1 = ∑
i G [i] and |G|1 � streamlength having

O
(

1
ε2
ln 2

δ

)

HNi,i
, O

(
1
ε2
ln 2

δ

)

BNo,p
and O

(
1
ε2
ln 2

δ

)

INi,k
mem-

ory with O
(
lnn

δ

)
update time t.

The heterogeneous events stream
∑

i G [i] consists of
d independent hash functions h1...hd : [1..n] → [1..w]
where, each of the stream element holds memory gp (i)
that uses instruction set G [i]+ = (Ei,Bi, Ii) having
gp (i)+ = (Ei,Bi, Ii) for ∀ jε 1..d and the frequency table
of heterogeneous events stream could be retrieved as,

G′ [i] = min
{
gp (i) |j = 1..d

}
(10)

This declares that the accessibility of the heterogeneous
events stream in enlisted in the I-DAG.

Lemma-5: G′ [i] ≥ g [i]
Theminimum count of heterogeneous events streamG [i]
remains≥0 for ∀ iwith a frequency of update

(
gp (i)

)
. The

stream element having hash function Io,p,q = 1 if gp (i) =
gp (k) = 0 could be retrieved as,

H
[
Io,p,q

] ≤ 1
range

(
gp

) = 1
w

(11)

By definition Ao,p = ∑
k H

[
Io,p,q

] × G [k], the heteroge-
neous events stream can be represented as,

Koo et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:50 Page 7 of 15

Ao,p =
∑

k
H

[
Io,p,q

] × G [k] ≤ |G|1
w

(12)

Now, this stream is well connected and could not be ready
independently. Therefore, we applyMarkov inequality and
pairwise independence as,

PE
[
Ao,p ≥ ε |G|1

] ≤ H
[
Ao,p

]

ε |G|1 ≤
(|G|1

w

)

(ε |G|1) ≤ 1
2

(13)

if w = 2
ε
then,

PE
[
G′ [i] ≥ G [i] + ε |G|1

]

= PE
[∀ j : G [i] + Ao,p ≥ G [i] + ε |G|1

]

= PE
[∀ j : Ao,p ≥ ε |G|1

] ≤
(
1
2

)d
= δ (14)

if d = log
(
1
δ

)

for fixed value of i as shown in Figs. 4 and 5. Thus,
we observe that the events are synchronized to a central
container with independence of accessibility.

I-DAG workflow
The events generated through IoT devices with a sequen-
tial order of PE

[∀ j : Ao,p ≥ ε |G|1
]
are scheduled onto the

I-DAG that consists of an identifier LocatorI−DAG which
reads events labels (Ei)No = O

(
1
ε2
ln 2

δ

)

HNi,i
,

(Bi)Np = O
(

1
ε2
ln 2

δ

)

BNo,p
and (Ii)Nq = O

(
1
ε2
ln 2

δ

)

INi,k
in

the source file and shuffle the pointer between n stages as
shown in Fig. 6.
In order to perform stage predictor evaluation, the

workflow targets PE
[∀ j : Ao,p ≥ ε |G|1

]
: stage (n) →

stage (n + 1) with LocatorI−DAG : stage (n) →
stage (n + 1) keeping the error under loss function ϑ :
stage (n + 1)×stage (n + 1) → R. The predictor error can
be obtained as,

Fig. 4 Homogeneous IoT Events with Node Representation

Fig. 5 Heterogeneous Event Stream Transformation

Hstage(n)

[
ϑ

(
P

[∀ j : Ao,p ≥ ε |G|1
]

(
stage (n)

)
, LocatorI−DAG

)] (15)

This predictor error manages the discrepancies of inter-
connection in the I-DAG workflow.
The LocatorI−DAGwith an approximated finite het-

erogeneous event labels can be sampled with SI−DAG =((
stage (n)1 , stage (n + 1)1

)
, ...,

(
stage (n)n , stage (n+1)n

))

through 1
n

∑n
i=1 ϑ

(
P

[∀ j : Ao,p ≥ ε |G|1
]
, stage (n + 1)

)
.

The workflow loss function are categorized into two
types: (i) regression and (ii) classification. The regression
loss on predictor LocatorI−DAG is expressed as,

ϑ (a, b) = (a − b)2 (16)

and classification loss on predictor LocatorI−DAG is
expressed as,

ϑ (a, b) = 0 if a = b, 1 otherwise (17)

Thus, I-DAG is ready to facilitate the independent hetero-
geneous IoT entries with prediction locator.

Performance evaluation
I-DAG technique is incorporated into the Spark cluster,
having a virtualized distributed environment, as shown in
Table 2.

Table 2 Apache spark cluster

Machine Specification No. of
VMs

Intel Xeon
E5-2600 v2

8 CPUs, 64 GB
memory, 2 TB
DISK and 1 TB
SSD

3 1 Driver, 2
Workers

Intel Core i7 4 CPUs, 16 GB
memory, 1 TB
DISK and 500 GB
SSD

2 2 Workers

Apache Spark Spark-2.1.3 (Stable)

Virtual Machine
Monitor

VirtualBox-5.2

Koo et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:50 Page 8 of 15

Fig. 6 IoT-enabled Directed Acyclic Graph (I-DAG) workflow in Streaming Engine

Algorithm 2 I-DAG workflow locator LocatorI−DAG
1: Input Heterogeneous IoT events

PE
[∀ j : Ao,p ≥ ε |G|1

]

2: Output Predictor LocatorI−DAG : stage (n) →
stage (n + 1)

3: procedure REDIRECT
4: for i = o to PE

[∀ j : Ao,p ≥ ε |G|1
]
do

5: Read: O
(

1
ε2

ln
2
δ

)

HNi,i
,O

(
1
ε2

ln
2
δ

)

BNo,p
,O

(
1
ε2

ln
2
δ

)

INi,k
6: Predict:
7: 1

n
∑n

i=1 ϑ
(
P

[∀ j : Ao,p≥ε |G|1
]
, stage (n + 1)

)

8: Count
9: kID=

PE
[
1
n

∑n
i=1 ϑ

(
P

[∀ j : Ao,p ≥ ε |G|n
]
, stage (n)

)−PE
[
Aij ≥ ε |G|n

]]

1 − PE
[∀ j : Ao,p ≥ ε |G|n

]

10: end for
11: return kID.
12: end procedure

Environment
Spark cluster consists of Intel Xeon processor with a core
computation capacity of 8 CPU units, 64 GB RAM and
persistent storage media of 2 TB Disk and 1 TB SSD. The
remaining partial workers consist of the Intel Core i7 pro-
cessor having 4 Cores, 16 GB RAM, and persistent storage
media of 1 TB Disk along with 500 GB SSD. The virtual
environment consists of Virtual Box 5.2 installed at five
virtual machines, as mentioned in Table 3.

Experiments
The dataset used to evaluate I-DAG belongs to Amazon
Web Service (AWS) public datasets repository [42–47].

It contains a collection of 4500 files storing stream data
having a total volume of 8.6 GB.
The experiments performed on the AWS dataset con-

sists of (i) Events labeling, (ii) Labeling error factor, (iii)
Joining Heterogeneous Streams, (iv) Heterogeneous data-
frames, (v) Workflow Endurance and (vii) Cluster perfor-
mance.

Metrics of evaluation
I-DAG consists of two performance metrics, i.e., (i) Merg-
ing of disjoint streams and (ii) Stages bypass. The dis-
joint stream merging overlaps the individual element and
strengthens connectivity between heterogeneous streams.
The stages bypass reduces unnecessary consumption of
RAM and a decrease in redundant garbage values that
appear as a result of regular stage processing.

Results
This section discusses the experimental results generated
through the proposed approach I-DAG tasks processing.

Table 3 Virtual machines over spark cluster

Node CPU Memory Storage Configuration

Driver 6 32 GB DISK, SSD Intel Xeon

Worker-1 2 16 GB DISK, SSD Intel Xeon

Worker-2 2 16 GB DISK, SSD Intel Xeon

Worker-3 2 8 GB DISK, SSD Intel Core i7

Worker-4 2 8 GB DISK, SSD Intel Core i7

Koo et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:50 Page 9 of 15

Table 4 Heterogeneous events labeling (seconds)

Streams Ingest Queuing Tagger Hash Dispatcher

Error 0.32 0.3 0.15 0.2 0.22

Backup 0.87 0.3 0.14 0.7 0.22

Record 0.09 0.29 0.15 0.1 0.22

Events labeling
IoT devices generate events of errors, backup, and record
information in the form of text data that the stream
engine receives for micro-batch transformation. Event
labels mark the stream elements with an I-DAG tag
sequence having a hash function. This tagging creates an
impact of trust, and it no longer requires a pair in a prefix
or postfix, and the transformation function uses the same
hash to bundle stream elements into the core engine. This
labeling function consists of several sub-routines such
as (i) data ingest, (ii)element queuing, (iii)stream chunk
tagger, (iv) hash element, and (v) element dispatcher.
The data_ingest function fetches an enormous number
of individual stream elements from several devices and
uses Heap memory to enlist the element arrival into
stream engine. The element_queuing feature then assign
the indices to respective Heap function entries in FCFS
(First come First serve) order. The stream_chunk_tagger
method assigns a label StreamEi,Bi,Ii to each of the indexed
entry and allocates a hash_element value for identifying
any particular index in the stream and finally the dis-
patcher encapsulates the tags and transform the event
streams as shown in Table 4.
The tagged events are recognized by the stream engine

much effectively than regular heterogeneous events, as
shown in Fig. 7.

Fig. 7 Heterogeneous Events Processing

Fig. 8 Errors during Heterogeneous Event Processing

Labeling error factor
The error in an event labeling process appears due
to improper placement of tag. It occurs during the
application of events labeling relies upon several reasons
such as (i) improper ingest, (ii) queue out of bound, (iii)
abnormal tagging, (iv) inaccuracy in tag, and (v) partial
release of an element. During the tag formation process,
a stream element could lead to improper ingestion due to
concurrent in-takes at the same time. The queue respon-
sible for managing stream may lead to a buffer overflow
problem if the tagging time interval increases than the
usual timeline. Also, the stream could be released with-
out having a proper index and hash function due to
continuous inaccurate tag application. The errors in label-
based events, as well as healthy stream formation, can be
observed in Fig. 8.

Heterogeneous streams join
The tagged stream elements require a join operation
to combine like events in the stream engine. This
requirement is a must because of the live ingestion of het-
erogeneous stream feed through enormous IoT devices.
The functional aspect of a join operation consists of pars-
ing tagged stream elements adjacent to each other so that
streaming ingestion must be within the same range of
time along with a conjunctive condition that offers to join
elements with similar tagging. This conjunction function

Table 5 Heterogeneous stream join through query operator

Events Parser Range Conjunction Group-by Aggregation

Error 0.2 sec 0.15 sec 0.03 sec 0.51 sec 0.09 sec

Backup 0.8 sec 0.37 sec 0.06 sec 0.64 sec 0.13 sec

Information 0.12 sec 0.06 sec 0.01 sec 0.26 sec 0.03 sec

Koo et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:50 Page 10 of 15

Table 6 Heterogeneous stream join through Diff operator

Events Parser Range Conjunction Group-by Aggregate Diff

Error 0.4 sec 0.27 sec 0.05 sec 0.72 sec 0.14 sec 0.6 sec

Backup 0.7 sec 0.41 sec 0.08 sec 0.83 sec 0.25 sec 0.3 sec

Information 0.29 sec 0.08 sec 0.03 sec 0.38 sec 0.08 sec 0.2 sec

correlates element n to n+1 through a forward-feed chain
in the data transformation environment. The stream
element join is executed through syntax StreamEi =
join

(
parse

(
Tagn,Tagn+1

) → (∣∣Tagn,Tagn+1
∣∣)) keeping

group-by phrase as a priority along with aggregate oper-
ators. The heterogeneous streams join of error, backup,
and information record events through query operators,
as observed through Table 5.
In the same way, the heterogeneous streams join of

error, backup, and information record events through
diff operator can be observed through Table 6. The
comparative effectiveness of the tagged heterogeneous
streams joins, as observed through Fig. 9.

Heterogeneous data frames
The label-based stream elements stored in a heteroge-
neous data frame that comprises a table having data
structured properties. This data table assigns a sequence
of indices to the stream elements that declare as equal
length vectors. The frame categorizes into several sub-
sections, such as (i) header, (ii) data row, and (iii) cell. The
header represents the top line of tabular-structure that
manages column names only. The data row depicts the
stream element having a prefixed index value, and the cell

is the stream element member of the row. The data frame
supports event labeling transformation through a prior
metadata information set of stream elements. Thus, the
tagged stream elements are retrieved in a much more effi-
cient manner than traditional stream elements, as shown
in Fig. 10.

Workflow endurance
The issues encountered through in-process heteroge-
neous data streams measures the workflow endurance
during stage processing. The IoT-enabled workflow uses
data frames to learn about tagged stream elements
already enlisted in the data table. Therefore, when a
stream joins processes on the source file, the table
allows the I-DAG workflow to skip unnecessary steps
wherever encountered. This step skipping practice is
learned very well through two case studies given as
(i) Stage0→1 and (ii) Stage0→n. The Stage0→1 con-
sist of two stages having three operations in total
that includes flatMap, Map and Reduce. If the label
stream element already processed through the Map
functionality, it can jump the control from flatMap
to Reduce operation. In the case of Stage0→n, when
the compiler parses the source file that consists of a

Fig. 9 Heterogeneous Streams Join Computing Percentile

Koo et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:50 Page 11 of 15

Fig. 10 Heterogeneous Data Frame Computing Percentile

schedule, the control bypasses unscheduled operations
in the stages. Thus, it reduces the usage of energy con-
sumption and the computing capacity of a cluster along
with skipping functional latency issues. The Stage0→1
and Stage0→n performance could be observed through
Tables 7 and 8.

Cluster performance
The parameters measuring cluster performance comprise
stage activity that includes map and reduce task process-
ing and the exchange of i/O operations. i-DAG enables
a cluster to perform switching in-between stage tasks
depending on the source file’s requirement. if the task
does not require to produce map values, it bypasses the
operation towards the next task, unlike traditional dAG

that has to go through each of the individual operation
producing i/O latency along with additional operational
cost as shown in Fig. 11.

Conclusion
This paper proposes a novel technique that identifies
different IoT devices stream events over a graph pro-
cessing layer in spark cluster. The proposed approach
provides a broad analytical perspective of how the stream
events are generated, proceeded by their convergence in
the heterogeneous form. In the end, the I-DAG work-
flow processes individual IoT devices’ stream events with
a cost-effective mechanism. It reduces graph workload
along with decreasing the I/O traffic load in the spark
cluster.

Table 7 Heterogeneous stream I-DAG workflow Stage0→1

Event Query type Source file Flat map Map Reduce Core% DISK (GB) I-DAG

Error Simple 2.3 sec 20 sec Bypassed 29 sec 21.2% 0.0002% 2-node

Backup Simple 3.8 sec 28 sec 25 sec 31 sec 22.9% 0.0008% 3-node

Informaton Simple 1.9 sec 15 sec Bypassed 21 sec 19.3% 0.0003% 2-node

Error Compound 18 sec 41 sec 10 sec 49 sec 23.3% 0.0004% 3-node

Backup Compound 22 sec 39 sec Bypassed 41 sec 18.71% 0.0003% 2-node

Information Compound 16 sec 37 sec Bypassed 39 sec 20.66% 0.0008% 2-node

Error Range 35 sec 12 sec 19 sec 37 sec 21.97% 0.0008% 3-node

Backup Range 42 sec 29 sec Bypassed 43 sec 19.38% 0.0009% 2-node

Information Range 28 sec 11 sec 22 sec 41 sec 21.26% 0.0007% 3-node

Error String 17 sec 15 sec Bypassed 29 sec 22.3% 0.0009% 2-node

Backup String 16 sec 18 sec 31 sec 38 sec 20.61% 0.0004% 3-node

Information String 18 sec 13 sec 43 sec 39 sec 19.52% 0.0003% 3-node

Koo et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:50 Page 12 of 15

Ta
b
le

8
H
et
er
og

en
eo

us
st
re
am

I-D
A
G
w
or
kf
lo
w
St
ag

e 0
→

n

Ev
en

t
Q
u
er
y

So
u
rc
e

M
ap

P
ar
ti
ti
o
n

V
al
u
e

G
ro
u
p
B
y

Jo
in

Eq
u
al

R
ed

u
ce

C
o
re
%

D
IS
K
-G

B
I-
D
A
G

Er
ro
r

Si
m
pl
e

4.
9
se
c

25
se
c

38
se
c

62
se
c

By
pa

ss
ed

22
se
c

Ye
s

63
se
c

30
.5
%

0.
00
09
%

5-
no

de

Ba
ck
up

Si
m
pl
e

8.
3
se
c

32
se
c

By
pa

ss
ed

87
se
c

58
se
c

By
pa

ss
ed

Ye
s

58
se
c

29
.7
%

0.
00
9%

4-
no

de

In
fo
rm

at
on

Si
m
pl
e

7.
6
se
c

26
se
c

47
se
c

By
pa

ss
ed

43
se
c

12
se
c

Ye
s

46
se
c

28
.6
4%

0.
00
06
%

4-
no

de

Er
ro
r

C
om

po
un

d
63

se
c

68
se
c

By
pa

ss
ed

49
se
c

38
se
c

By
pa

ss
ed

Ye
s

86
se
c

31
.7
5%

0.
00
09
%

4-
no

de

Ba
ck
up

C
om

po
un

d
48

se
c

75
se
c

48
se
c

By
pa

ss
ed

59
se
c

18
se
c

Ye
s

63
se
c

32
.4
1%

0.
00
09
%

5-
no

de

In
fo
rm

at
io
n

C
om

po
un

d
71

se
c

81
se
c

52
se
c

46
se
c

By
pa

ss
ed

31
se
c

Ye
s

75
se
c

29
.6
3%

0.
00
08
%

5-
no

de

Er
ro
r

Ra
ng

e
85

se
c

49
se
c

By
pa

ss
ed

71
se
c

51
se
c

By
pa

ss
ed

Ye
s

67
se
c

30
.7
6%

0.
00
08
%

4-
no

de

Ba
ck
up

Ra
ng

e
76

se
c

57
se
c

63
se
c

By
pa

ss
ed

78
se
c

37
se
c

Ye
s

82
se
c

29
.6
6%

0.
00
09
%

5-
no

de

In
fo
rm

at
io
n

Ra
ng

e
84

se
c

64
se
c

By
pa

ss
ed

69
se
c

83
se
c

By
pa

ss
ed

Ye
s

59
se
c

31
.6
9%

0.
00
06
%

4-
no

de

Er
ro
r

St
rin

g
74

se
c

46
se
c

59
se
c

By
pa

ss
ed

48
se
c

18
se
c

Ye
s

71
se
c

29
.4
8%

0.
00
08
%

5-
no

de

Ba
ck
up

St
rin

g
69

se
c

39
se
c

By
pa

ss
ed

41
se
c

88
se
c

34
se
c

Ye
s

68
se
c

30
.5
3%

0.
00
07
%

5-
no

de

In
fo
rm

at
io
n

St
rin

g
82

se
c

51
se
c

61
se
c

By
pa

ss
ed

49
se
c

71
se
c

Ye
s

84
se
c

29
.8
3%

0.
00
07
%

5-
no

de

Koo et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:50 Page 13 of 15

Fig. 11 Heterogeneous Event Processing on Spark Cluster

Acknowledgments
This paper was produced with support from the Ministry of Science and ICT’s
Broadcasting and Communication Development Fund and may differ from
the official opinion of the Ministry of Science and ICT.

About the authors
JAHWAN KOO received the B.S. and M.S. degrees in information engineering
from Sungkyunkwan University (SKKU), South Korea, in 1994 and 1996,
respectively. He also received the Ph.D. degree in information communication
engineering at the School of Information and Communication Engineering,
SKKU, in 2005. For more than five years, he was a system engineer and
infrastructure architect at Korea Information Systems and LG CNS Co., Ltd.
(initially LG-EDS), Seoul, Korea. He joined the School of Information and
Communication Engineering, SKKU, as a Research Professor in 2006. He
received Post-Doctoral Fellowship in the Computer Science Department,
University of Wisconsin-Madison, USA, from 2007 to 2010. He worked for
CHAHOO as a Director, from 2010 to 2012 and for Geasoft Co., Ltd as a Head of
Research Center, from 2015 to 2016. He joined Consumer & Family Sciences,
SKKU, as a Research Professor, from 2016 to 2019. He is currently a Visiting
Professor in the College of Software, SKKU. His research interests include big
data platform, data mining, natural language processing, computer
networking, and cloud computing.
NAWABMUHAMMAD FASEEH QURESHI is an Assistant Professor at
Sungkyunkwan University, Seoul, South Korea. He received Ph. D. in Computer
Engineering from Sungkyunkwan University, South Korea, through SAMSUNG
scholarship. He was awarded the 1st Superior Research Award from the
College of Information and Communication Engineering on account of his
research contributions and performance during studies. Currently, he is
serving 4 guest editorials as, Lead Guest Editor of Multimedia Systems,
Springer. “Role of Deep Learning Models & Analytics in an Industrial
Multimedia Environment”, Guest Editor of Computers, Materials & Continua
Special Issue “Artificial Intelligence and Big Data in Entrepreneurship”, Guest
Editor of Future Internet Journal Special Issue “Special Issue on Cyber Physical
Systems: Prospects, Challenges, and Role in Software Defined Networking and
Blockchain” and Guest Editor of Internet Technology Letters “Special Issue on
Deep Learning for Future Smart Cities”. Also he has served as General Chair
Workshop NexGenRAN (Open-RAN: Open Road to Next Generation Mobile
Networks) in IEEE Wireless Communications and Networking Conference
(WCNC2020) 25th May, Seoul, South Korea and serving as Proceedings Chair in
Global Conference on Wireless & Optical Technologies 2020 (GCWOT’20) and
General Chair Workshop Open-RAN: Open Road to Next Generation Mobile
Networks in IEEE Globecom 2020, Taiwan. He is a reviewer of various
prestigious journals such as Future Generation Computer Systems,
Transactions on Emerging Telecommunications Technologies (ETT), Wireless
Personal Communications (Springer), KSII Transactions on Internet and
Information Systems, Journal of Supercomputing (Springer), IEEE

Communications Magazine, IEEE Transactions on Industrial Informatics, IEEE
Transactions on Industrial Electronics, IEEE Transactions on Industry
Applications, IEEE Access, Mathematical Problems in Engineering (Hindawi
Publishers), MDPI series of Journals including Symmetry, Electronics, Applied
Sciences, Information, and Energies, Journal of Real-Time Image Processing
(Springer). He has been a reviewer of various top-tier conferences such as IEEE
Globecom2018, IEEE PIMRC 2017, IEEE ICACT 2019, AIIPCC2020, and IEEE ICACT
2020. He has been a TCP in IWWCN2017, CSA2017, IMTIC18, and WCSN2017
conferences and performed as session chairs with ICGCET Denmark, RTCSE19
USA, ICACT 2019 South Korea and RTCSE 2020. He has evaluated several
theses as external Ph.D. thesis evaluators. He has facilitated several institutes
with Webinars on Big data analysis and Modern Technology convergence and
served sessions with keynote talks on convergence with modern
technologies. He is an active Senior Member of IEEE, ACM, KSII (Korean Society
for Internet Information), and IEICE (Institute of Electronics, Information and
Communication Engineers). His research interests include big data analytics,
context-aware data processing of the Internet of Things, and cloud computing.
ISMA FARAH SIDDIQUI is an Associate Professor in the Department of
Software Engineering, Mehran University of Engineering and Technology,
Pakistan. She received her Ph. D. degree in Computer Engineering with
distinction from Hanyang University, ERICA, South Korea with the financial
support of Higher Education Commission, Pakistan. She received “Best Ph.D.
Graduate” Award from the college of Computing, ERICA, Hanyang University.
She is reviewer of various renowned SCIE journals such as Wireless Personal
Communications, IEEE Access, Future Generation Computer Systems, KSII
Transactions on Internet and Information Systems and Journal of
Supercomputing. She conducted various technical workshops and technical
talks including IMTIC 2018 and 16th Annual symposium at MMC, Pakistan.
She’s been TPC of various national and international conferences including
IMTIC’18 and FIIT’18. Her research interests include Smart Environment,
Semantic Web, IoT and Big Data.
ASAD ABBAS is currently serving as Assistant Professor at Faculty of
Information Technology, at University of Central Punjab Lahore, Pakistan. He
has served as Assistant Professor at Department of Software Engineering at
University of Lahore, Lahore Pakistan. He received his BS (Information
Technology) degree from “University of the Punjab” Pakistan in 2011. He
Joined MS-leading to PhD program in Department of Computer Science and
Engineering in Hanyang University ERICA campus at Ansan, South Korea,
funded by Higher Education Commission of Pakistan in 2014. He received his
Ph.D. degree in Computer Science and Engineering from Hanyang University
South Korea in August 2018. His research interests include Software Product
Line, Software Requirement Traceability and IoT Applications.
ALI KASHIF BASHIR is a Senior Lecturer/Associate Professor and Course
Leader of BSc (H) Computer Forensics and Security at the Department of
Computing and Mathematics, Manchester Metropolitan University, United
Kingdom. He is also holding Adjunct Professor Position at National University

Koo et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:50 Page 14 of 15

of Science and Technology, Pakistan. He is a senior member of IEEE, invited
member of IEEE Industrial Electronic Society, member of ACM, and
Distinguished Speaker of ACM. His past assignments include HYPERLINK
“https://www.setur.fo/fo/setrid/tidindi/nyggjur-lektari/” Associate Professor of
ICT, University of the Faroe Islands, Denmark; HYPERLINK “http://www.ist.
osaka-u.ac.jp/english/index.html” Osaka University, Japan; HYPERLINK “https://
www.nara-k.ac.jp/english/” Nara National College of Technology, Japan; the
HYPERLINK “https://www.nfri.re.kr/eng/index” National Fusion Research
Institute, South Korea; HYPERLINK “https://www.kospo.co.kr/english/”
Southern Power Company Ltd., South Korea, and the HYPERLINK “http://
english.seoul.go.kr/” Seoul Metropolitan Government, South Korea. He has
worked on several research and industrial projects of South Korean, Japanese
and European agencies and Government Ministries. He received his Ph.D. in
computer science and engineering from HYPERLINK “https://www.korea.edu/”
Korea University South Korea. He has authored over 150 research articles;
received funding as PI and Co-PI from research bodies of South Korea, Japan,
EU, UK and Middle East; supervising/co-supervising several graduate (MS and
PhD) students. His research interests include internet of things, wireless
networks, distributed systems, network/cyber security, network function
virtualization, machine learning, etc. He is serving as the Editor-in-chief of the
HYPERLINK “https://cmte.ieee.org/futuredirections/tech-policy-ethics/” IEEE
FUTURE DIRECTIONS NEWSLETTER. He is also serving as area editor of KSII
Transactions on Internet and Information Systems; associate editor of IEEE
Access, IET Quantum Computing. He is leading many conferences as a chair
(program, publicity, and track) and had organized workshops in flagship
conferences like IEEE Infocom, IEEE Globecom, IEEE Mobicom, etc.

Declaration
I would like to thank the editorial desk for offering this opportunity to express
the declarations requested by the editorial desk. Please consider following
sub-title declarations as part of the submission process.

Authors’ contributions
The authors have contributed in such a manner as: 1st author: He has
performed major portions of experiments and have written the manuscript
2nd author: He is responsible to answer the corresponding author queries as
well as have performed directed acyclic graph experimentation 3rd author:
She is responsible for debugging evaluations in the simulations. 4th author:
He is responsible to evaluate the modeling values extracted by the execution
of ecosystem. 5th author: He is managing the editing of manuscript in terms
of technical as well as written English.

Funding
This paper was produced with support from the Ministry of Science and ICT’s
Broadcasting and Communication Development Fund and may differ from
the official opinion of the Ministry of Science and ICT.

Availability of data andmaterials
The data related to the manuscript is available with the authors and could be
produced if required.

Competing interests
There is not any conflict of interest among the authors related to the content
disclosed at the disposal of manuscript and the authors have a mutual
consent on all concerned points related to the manuscript.

Author details
1College of Software, Sungkyunkwan University, Seoul, South Korea.
2Department of Computer Education, Sungkyunkwan University, Seoul, South
Korea. 3Department of Software Engineering, Mehran University of
Engineering & Technology, Jamshoro, Pakistan. 4Faculty of Information
Technology, University of Central Punjab, Lahore, Pakistan. 5Department of
Computing and Mathematics, Manchester Metropolitan
University,Manchester, UK.

Received: 21 January 2020 Accepted: 10 August 2020

References
1. Gaber M, Zaslavsky A, Krishnaswamy S (2005) Mining data streams: a

review. ACM Sigmod Rec 34(2):18–26

2. Denning PJ (1990) The science of computing: Saving all the bits.
American Sci 78(5):402–405

3. Vega M, Perra C, De Turck F, Liotta A (2018) A review of predictive quality
of experience management in video streaming services. IEEE Trans
Broadcast 64(2):432–445

4. de Assuncao M, da Silva Veith A, Buyya R (2018) Distributed data stream
processing and edge computing: A survey on resource elasticity and
future directions. J Netw Comput Appl 103:1–17

5. Krempl G, Žliobaite I, Brzeziński D, Hüllermeier E, Last M, Lemaire V, Noack
T, Shaker A, Sievi S, Spiliopoulou M, et al. (2014) Open challenges for data
stream mining research. ACM SIGKDD explor newsl 16(1):1–10

6. Wu X, Zhu X, Wu G-Q, Ding W (2013) Data mining with big data. IEEE
Trans Knowl Data Eng 26(1):97–107

7. Streaming SQL Analytics for Kafka & Kinesis. https://sqlstream.com.
Accessed 11 Dec 2019

8. Software Inc. T Global Leader in Integration and Analytics Software.
https://www.tibco.com/. Accessed 11 Dec 2019

9. Inc. I Computer hardware company. http://www.ibm.com. Accessed 11
Dec 2019

10. striim stream with two i’s for integration and intelligence. https://www.
striim.com/. Accessed 11 Dec 2019

11. Apache Org Welcome to The Apache Software Foundation!. https://
www.apache.org/. Accessed 11 Dec 2019

12. Hoffman S (2013) Apache Flume: Distributed Log Collection for Hadoop.
Packt Publishing Ltd, USA

13. Zaharia M, Xin R, Wendell P, Das T, Armbrust M, Dave A, Meng X, Rosen J,
Venkataraman S, Franklin M, et al. (2016) Apache spark: a unified engine
for big data processing. Commun ACM 59(11):56–65

14. Jain A, Nalya A (2014) Learning Storm. Packt Publishing Ltd, USA
15. Apache nifi Welcome to The Apache Nifi. http://nifi.apache.org. Accessed

11 Dec 2019
16. Apache Apex Welcome to The Apache Apex
17. Apache Kafka Welcome to The Apache Kafka. http://kafka.apache.org.

Accessed 11 Dec 2019
18. Apache Samza Welcome to The Apache Samza. samza.apache.org.

Accessed 11 Dec 2019
19. Apache Flink Welcome to The Apache Flink. http://flink.apache.org.

Accessed 11 Dec 2019
20. Apache BeamWelcome to The Apache Beam. http://beam.apache.org.

Accessed 11 Dec 2019
21. Apache Ignite Welcome to The Apache Ignite. http://ignite.apache.org.

Accessed 11 Dec 2019
22. Tatbul N (2010) Streaming data integration: Challenges and

opportunities. In: 2010 IEEE 26th International Conference on Data
Engineering Workshops (ICDEW 2010). IEEE, USA. pp 155–158

23. Watanabe Y, Yamada S, Kitagawa H, Amagasa T (2007) Integrating a
stream processing engine and databases for persistent streaming data
management. In: International Conference on Database and Expert
Systems Applications. Springer, USA. pp 414–423

24. Atzori L, Iera A, Morabito G (2010) The internet of things: A survey.
Comput Netw 54(15):2787–2805

25. Vural S, Navaratnam P, Wang N, Wang C, Dong L, Tafazolli R (2014)
In-network caching of internet-of-things data. In: 2014 IEEE International
Conference on Communications (ICC). IEEE, USA. pp 3185–3190

26. Stonebraker M, Çetintemel U, Zdonik S (2005) The 8 requirements of
real-time stream processing. ACM Sigmod Rec 34(4):42–47

27. Gaur P, Tahiliani M (2015) Operating systems for iot devices: A critical
survey. In: 2015 IEEE Region 10 Symposium. pp 33–36. IEEE

28. Kang Y-S, Park I-H, Rhee J, Lee Y-H (2015) Mongodb-based repository
design for iot-generated rfid/sensor big data. IEEE Sensors J 16(2):485–497

29. Ranjan R (2014) Streaming big data processing in datacenter clouds. IEEE
Cloud Comput 1(1):78–83

30. Kamburugamuve S, Fox G, Leake D, Qiu J (2013) Survey of distributed
stream processing for large stream sources. Grids Ucs Indiana Edu 2:1–16

31. Lemon J, Wang Z, Yang Z, Cao P (2004) Stream engine: A new kernel
interface for high-performance internet streaming servers. In: Web
Content Caching and Distribution. Springer, USA. pp 159–170

32. Liew C, Atkinson M, van Hemert J, Han L (2010) Towards optimising
distributed data streaming graphs using parallel streams. In: Proceedings
of the 19th ACM International Symposium on High Performance
Distributed Computing. ACM, USA. pp 725–736

https://www.setur.fo/fo/setrid/tidindi/nyggjur-lektari/
http://www.ist.osaka-u.ac.jp/english/index.html
http://www.ist.osaka-u.ac.jp/english/index.html
https://www.nara-k.ac.jp/english/
https://www.nara-k.ac.jp/english/
https://www.nfri.re.kr/eng/index
https://www.kospo.co.kr/english/
http://english.seoul.go.kr/
http://english.seoul.go.kr/
https://www.korea.edu/
https://cmte.ieee.org/futuredirections/tech-policy-ethics/
https://sqlstream.com
https://www.tibco.com/
http://www.ibm.com
https://www.striim.com/
https://www.striim.com/
https://www.apache.org/
https://www.apache.org/
http://nifi.apache.org
http://kafka.apache.org
https://samza.apache.org
http://flink.apache.org
http://beam.apache.org
http://ignite.apache.org

Koo et al. Journal of Cloud Computing: Advances, Systems and Applications (2020) 9:50 Page 15 of 15

33. Saad A, Park S (2019) Decentralized directed acyclic graph based dlt
network. In: Proceedings of the International Conference on Omni-Layer
Intelligent Systems. ACM, USA. pp 158–163

34. Qureshi N, Bashir A, Siddiqui I, Abbas A, Choi K, Shin D (2018) A
knowledge-based path optimization technique for cognitive nodes in
smart grid. In: 2018 IEEE Global Communications Conference
(GLOBECOM). IEEE, USA. pp 1–6

35. Qureshi N, Siddiqui I, Unar M, Uqaili M, Nam C, Shin D, Kim J, Bashir A,
Abbas A (2019) An aggregate mapreduce data block placement strategy
for wireless iot edge nodes in smart grid. Wirel Pers Commun
106(4):2225–2236

36. Siddiqui I, Qureshi N, Shaikh M, Chowdhry B, Abbas A, Bashir A, Lee S-J
(2019) Stuck-at fault analytics of iot devices using knowledge-based data
processing strategy in smart grid. Wirel Pers Commun 106(4):1969–1983

37. Zhu F, Wu W, Zhang Y, Chen X (2019) Privacy-preserving authentication
for general directed graphs in industrial IoT. Inf Sci 502:218–228

38. Kotilevets I, Ivanova I, Romanov I, Magomedov S, Nikonov V, Pavelev S
(2018) Implementation of directed acyclic graph in blockchain network to
improve security and speed of transactions. IFAC-PapersOnLine
51(30):693–696

39. Deng C, Yang E, Liu T, Tao D (2020) Two-Stream Deep Hashing With Class-
Specific Centers for Supervised Image Search. IEEE Trans Neural Netw
Learn Syst 31:2189–2201. https://doi.org/10.1109/TNNLS.2019.2929068

40. Saw J, Yang M, Mo T (1984) Chebyshev inequality with estimated mean
and variance. Am Stat 38(2):130–132

41. Duda P, Jaworski M, Pietruczuk L, Rutkowski L (2014) A novel application
of hoeffding’s inequality to decision trees construction for data streams.
In: 2014 International Joint Conference on Neural Networks (IJCNN). IEEE,
USA. pp 3324–3330

42. Qureshi N, Siddiqui I, Abbas A, Bashir A, Choi K, Kim J, Shin D (2019)
Dynamic container-based resource management framework of spark
ecosystem. In: 2019 21st International Conference on Advanced
Communication Technology (ICACT). IEEE, USA. pp 522–526

43. Siddiqui IF, Qureshi NMF, Chowdhry BS, Uqaili MA (2020)
Pseudo-Cache-Based IoT Small Files Management Framework in HDFS
Cluster. Wirel Personal Commun

44. Qureshi NMF, Siddiqui IF, Abbas A, Bashir AK, Nam CS, Chowdhry BS,
Uqaili MA (2020) Stream-Based Authentication Strategy Using IoT Sensor
Data in Multi-homing Sub-aqueous Big Data Network. Wirel Personal
Commun.1–13

45. Siddiqui IF, Qureshi NMF, Chowdhry BS, Uqaili MA (2019)
Edge-node-aware adaptive data processing framework for smart grid.
Wirel Personal Commun 106(1):179–189

46. Qureshi NMF, Shin DR, Siddiqui IF, Chowdhry BS (1374)
Storage-tag-aware scheduler for hadoop cluster. IEEE Access 5:2–13755

47. Qureshi NMF, Shin DR (2016) RDP: A storage-tier-aware Robust Data
Placement strategy for Hadoop in a Cloud-based Heterogeneous
Environment. TIIS 10(9):4063–4086

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1109/TNNLS.2019.2929068

	Abstract
	Keywords

	Introduction
	Motivation
	IOT-Enabled directed acrylic graph (I-DAG)
	Label-based event streaming
	Lemma-1: SEo,p,q=ni=1{ (eino), (binp), (iinq)}
	Lemma-2: E[s]=PP(ei, bi, ii)
	Lemma-3: V[sEo,p,q]2E[sEo,p,q]2
	Lemma-4: average T1 and T2 of SEo,p,q

	Heterogeneous stream transformation
	Lemma-5: G'[i]g[i]

	I-DAG workflow

	Performance evaluation
	Environment
	Experiments
	Metrics of evaluation
	Results
	Events labeling
	Labeling error factor
	Heterogeneous streams join
	Heterogeneous data frames
	Workflow endurance
	Cluster performance

	Conclusion
	Acknowledgments
	About the authors
	Declaration
	Authors' contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

