Towards Priority-Awareness

Huma Samin
SEA, Aston University
Birmingham, UK, B47ET
https://cs.aston.ac.uk/sea/
h.samin@aston.ac.uk

Nelly Bencomo
SEA, Aston University
Birmingham, UK, B47ET
https://cs.aston.ac.uk/sea/
nelly@acm.org

ABSTRACT

In Autonomous and Intelligent systems (AIS), the decision-making
process can be divided into two parts: (i) the priorities of the require-
ments are determined at design-time; (ii) design selection follows
where alternatives are compared, and the preferred alternatives are
chosen autonomously by the AIS. Runtime design selection is a
trade-off analysis between non-functional requirements (NFRs) that
uses optimisation methods, including decision-analysis and utility
theory. The aim is to select the design option yielding the highest
expected utility. A problem with these techniques is that they use
a uni-scalar cumulative utility value to represent a combined pri-
ority for all the NFRs. However, this uni-scalar value doesn’t give
information about the varying impacts of actions under uncertain
environmental contexts on the satisfaction priorities of individ-
ual NFRs. In this paper, we present a novel use of Multi-Reward
Partially Observable Markov Decision Process (MR-POMDP) to
support reasoning of separate NFR priorities. We discuss the use of
rewards in MR-POMDPs as a way to support AIS with (a) priority-
aware decision-making; and (b) maintain service-level agreement,
by autonomously tuning NFRs’ priorities to new contexts and based
on data gathered at runtime. We evaluate our approach by applying
it to a substantial Network case.
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1 INTRODUCTION

Autonomous and Intelligent systems (AIS) exhibit autonomous
decision-making to deal with the environmental uncertainty they
find during execution and therefore, to adapt accordingly [12].
Such systems make decisions based on the trade-offs between non-
functional requirements (NFRs) [8] in terms of their priorities for
satisfaction [3, 5, 6, 13, 21, 33].

As such, a number of runtime modelling techniques have been
developed that take into account NFRs’ priorities [1, 4, 15, 17]. These
modelling techniques are based on optimisation methods, including
decision analysis and utility theory [25, 26]. The decision-making
process supported by these techniques can be roughly divided
into two parts: (i) at first the priorities of NFRs are determined by
the stakeholders at design time, (ii) design selection follows where
alternative options in the form of components, algorithms,protocols
etc. are compared. Based on that, the ultimate preferred alternatives
are chosen autonomously at runtime by the AIS. The alternatives
chosen should be those that best satisfy the requirements, focusing
most particularly on those requirements that constitute any Service
Level Agreement (SLA) to which the AIS is subject to. We refer
to the selection and binding of these design choices at runtime as
adaptive actions. Based on these optimisation techniques, decision-
making is focused on choosing the adaptive actions, under varying
environmental contexts, that are expected to yield the highest utility
value.

[Problems] A feature of such AIS is that they typically employ
single objective optimization techniques. These techniques use a
uni-scalar cumulative utility value to represent a combined priority
for all NFRs [1, 2, 4, 15, 17]. However, the adaptive actions taken
by the AIS can have different impacts, either positive or negative,
on the satisfaction levels of individual NFRs. For example, in the
case of an IoT network, decreasing the transmission power on the
networks links supports the minimization of energy consumption in
exchange of a negative impact on the packet delivery performance.
The problem with existing techniques is that the combined priority
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for all NFRs hides any information about the different impacts
of adaptive actions on the NFRs in terms of the extent to which
their individual priorities are respected. Further, these impacts
may change over time during the operation of AIS. For example,
following with the example of the IoT network, varying traffic loads
and the subsequent interference on the network links may lead the
IoT system to evolve its adaptation strategies. This, in turn, may
affect the NFRs’ satisfaction, leading to violation of the SLA. Hence,
the priorities assigned at design time may no longer be valid at
runtime due to unforeseen environmental contexts. The element
of unpredictability arising from the environment, in which an AIS
operates and must respond to, means that the AIS has to make
decisions about adaptation actions under uncertainty. This is a key
challenge for the AIS and an important reason why techniques
that oversimplify adaptation actions or obfuscate decision rationale
by, for example, collapsing all NFR priorities into a single utility
function, are inappropriate.

[Principal Ideas and Contributions] We argue that the prior-
ities of NFRs should not be modelled as a single combined value.
Nor should they be considered static. In this paper, we propose the
use of reinforcement learning, based on Multi-Reward Partially Ob-
servable Markov Decision Process (MR-POMDP) [24]. MR-POMDP
is a multi-objective sequential decision-making technique that we
use to support the runtime modelling and reasoning of distinct
priority values of NFRs using a vector-valued reward function. We
discuss the means of using the concept of rewards in MR-POMDPs
as a way :

a) to support better-informed decision-making in terms of the
distinct priorities of NFRs and study the explicit impacts of
the adaptation actions on the individual NFRs hence making
an AlS Priority-Aware [22, 27, 29].

b) to provide an AIS with a principled way to maintain the re-
quired NFR satisfaction levels by autonomously tuning NFRs’
priorities at runtime when an unanticipated context is en-
countered for which the prescribed priorities, initially pro-
vided by stakeholders, would result in violation of the SLA.

We also provide a proof of concept by applying the proposed ap-
proach to the case of a Remote Data Mirroring (RDM) network [10]
and comparing it to the existing state-of-the-art techniques. On
the basis of the experiments performed, we show that the priority-
aware decisions taken using MR-POMDP better satisfy the NFRs,
thereby conforming to the SLA.

[Organization of the paper] The paper is organized as follows:
Section 2 gives an overview of the background with the state of the
art techniques. Section 3 explains concepts related to autonomous
decision making. Section 4 presents the MR-POMDP++, a runtime
model to support priority-aware autonomous decision making. In
Section 5, the experiments and evaluations are presented. Finally,
the conclusions and future work are presented in Section 6.

2 BACKGROUND

In this section, we discuss different state-of-the-art techniques that
deal with prioritization of NFRs in AIS. We have classified these
techniques in two categories as follows:
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2.1 Techniques used at Design Time and
Off-line
The Analytic Hierarchy Process (AHP) and Primitive Cognitive
Network Process (P-CNP) are techniques based on Multi-Criteria
Decision Making (MCDM) that support the ranking and explicit
modelling of NFRs. These approaches have been used in [13] and
[33] respectively as design time techniques. However, the authors
of [18] have shown how they can support a POMDP model with
P-CNP approach to assist with the prioritization of NFRs at runtime.
However, even if P-CNP has been used as a runtime technique, it is
not autonomous and does not work within the POMDP model.
Other approaches support optimization of NFRs using search-
based techniques [3, 20]. These approaches have tackled the opti-
mization of priorities either at design time or off-line. In contrast to
these techniques described above, our approach supports runtime
reasoning of distinct priorities associated with NFRs to therefore
offer priority-aware decision-making.

2.2 Techniques used at Runtime

In order to support decision-making under uncertainty exhibited
by an AIS, a number of runtime modelling techniques exist that
use prioritisation of NFRs.The techniques in [1, 4, 15, 17] make
use of Markov-based approaches such as Markov Decision Process
(MDPs), Partially Observable Markov Decision Processes (POMDPs)
and Discrete Time Markov Chains (DTMCs) along with probablistic
model checking. As these techniques are Markov-based they also
support the quantification of uncertainty by the use of probabilities
over the variables of the states of the environment. They lack treat-
ment of the distinct NFRs’ priorities. Furthermore, the approaches
based on MDPs and POMDPs model the priorities of the NFRs as
a scalar reward value to denote a cumulative priority of all the
NFRs. This can lead to undesirable effects. A change in this single
reward value can have a significant impact on the adaptation deci-
sion to be selected and will lead to ignorance of some NFRs during
decision-making. The approach of RE-STORM [17] uses POMDPs
and therefore it lacks the modelling of distinct NFRs’ priorities.
However, it uses ARROW [18] (as an external support) to reason
about the priorities based on runtime evidence which is external
to POMDP. Control theory based approaches such as [14, 19] have
also been used to support explicit runtime configuration and tuning
of NFRs. However, they are subject to more severe limitations w.r.t.
the treatment of priorities than the approaches described above.
The technique in [14] lacks the autonomous prioritization of NFRs,
while the approach in [19] lacks the capability of dealing with the
NFRs having the same priority rank. These techniques also lack the
consideration of uncertainty as a quantifiable measure.

In summary, different approaches have been shown to support
runtime decision-making in AIS. However, existing Markov based
solutions fail to adequately take account of NFRs’ priorities, po-
tentially leading to compromised adaptation decisions. Our work
seeks to support autonomous decisions whilst explicitly respecting
the NFRs’ priorities.

3 KEY CONCEPTS

In this section, we briefly present key concepts related to autonomous
decision-making in AIS driven by NFRs [8, 9], Partially Observable



Markov Decision Process [31] and Multi-Reward Partially Observ-
able Markov Decision Process (MR-POMDP)[24].

3.1 Autonomous Decision Making

AIS are continuously exposed to uncertain environmental contexts
that may cause changes on the the satisfaction of NFRs. During the
decision-making process of an AIS, the system performs different
adaptation actions that have different effects on the satisfaction
levels of NFRs. The key entities involved in the decision-making
process of an AlS are as follows [2]:

3.1.1 NFR. The main objective of autonomous decision-making is
to choose the best adaptation strategy, in order to satisfy its quality
goals (i.e. the NFRs), while achieving the functional goals. The NFRs
are associated with two important concepts [9]:

- Satisfaction Level: The satisfaction level of a particular NFR
refers to the extent to which that NFR has been satisfied as a result of
the action a (related to task a) performed by the AIS. The satisfaction
level can be represented by the conditional probability distribution
P(NFRI is satisfied | action a) [2].

- Priority: The priority value for a NFR is a scalar value that
represents its significance or relevance for satisfaction. Due to
the change in environmental contexts at runtime, the priority for
satisfaction of NFR may change as well.

3.1.2 Monitorables. The AIS continuously monitors environ-
mental changes over time in order to support the decision-making.
Monitoring is done by using monitorables that collect information
from the environment.

3.1.3 Tasks. The task is a concept taken from goal models com-
munity. Tasks are defined as the adaptation strategies or actions
that correspond with a discrete set of software configurations or
adaptations that are selected by an AIS during decision-making. In
order to achieve the target functional goal along with satisfying the
NFRs, the AIS selects a task [2, 17] on the basis of the monitorable
values, the satisfaction levels and priorities for the NFRs at a given
time step.

3.1.4 Task Contribution. Task contribution refers to the effect
(good or bad) of performing a task on the NFRs’ satisfaction levels
at a particular time step.

As tasks are defined as the adaptation strategy or actions, we
use the term of actions in this paper to refer to the term tasks.

3.2 POMDPs

POMDPs [31] consider the decision-making agents working in a
partially observable environment in order to deal with and quan-
tify the effects of uncertainty about the state of the environment.
A POMDP is specified as a tuple <S,A,ZT,O,R,y > where S rep-
resents the set of states; A is the set of Actions; Z is the set of
Observations related to the set of states; T is the transition function
T(s,a,s") = P(s’]s, a) specifying the probability of moving to the
next state s’ given an action a and current state s; O is the obser-
vation function O(s, a, z) = P(z|s, a) specifying the probability of
observing the observation z given an action a and resulting state s; R
is the reward function R(s,a) specifying a scalar real value generated
by the environment as a feedback of the action a performed by the
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agent given the state s of the environment; y is the discount factor.
The agent tries to find the policy 7, a mapping from the state of the
environment to action, that maximizes the value function i.e. the
expected utility value of the sum of discounted rewards as follows:

(1)

On the basis of the current state of the system, the value function
is used to compute the cumulative reward value that we would
expect to get in the future if a particular action is performed in that
state. Thus, the reward value R(s,a) generated by the environment
is used to evaluate the effect of performing an action a during the
state s with the help of a value function at runtime. Therefore, it
assigns a cardinal scale to each decision made during a specific
state as a result that indicates its priority.

As the states in a POMDP are not fully observable, a belief b over
the states of the system is maintained. In reference to point-based
planning methods [28, 31] for solving POMDPs, the value function
Vp, in terms of the belief, is represented by a set of a-vectors A. Each
a-vector, associated with an action a, has a length of |S| to provide
a value for each state s. The a-vector is computed as follows:

Ve=E, [Rt + )/RH.] + yZRt+2...|St]

aa = [V(s5i), V(si+1)s - V(s(n))] @)
Here V (s;) represents the value of the value function for state s;
given a total number of n states.
Thus, the value of the belief given A is computed as:

©)

Therefore, for each belief b, a set of a-vectors A provides a policy
14 for the action that maximizes the value.

Vp = max b.a
acA

3.3 MR-POMDPs

Multi-reward POMDPs (MR-POMDP for short) [23, 24], based on
the constructs of Partially Observable Markov Decision Process
(POMDP)[31], are used to solve multi-objective decision problems.
In contrast to POMDP, which is a single objective approach. MR-
POMDP [23, 24] has more than one reward value represented in
the form of a vector-valued reward function R. In MR-POMDPs,
each objective (i.e. each NFR in our case) has its own separate re-
ward value. Hence, the size of the reward vector equals the number
of objectives. These reward vector values represent explicitly the
cardinal impacts of the actions on individual objectives under un-
certain contexts. Furthermore, the value function, given an initial
belief V, for the policy 7 of the MR-POMDP, is also a vector. Thus,
each single element in the value function vector represents the
expected utility value related to one objective. We use this inher-
ent capability of MR-POMDPs to compute expected utility value
for each individual objective as a base for the autonomous tuning
process of the priorities at runtime.

Given R as a vector, each element in the a-vector is also a vec-
tor thereby, creating an a-matrix, A. Each row in the a-matrix
represents the values for the objectives in a particular state. The
multi-objective value of taking an action a associated with alpha
matrix A under a belief b is computed as follows:

V, =bA (4)



As the value function is represented as a vector in the MR-
POMDP, there may be multiple policies. In order to select the best
optimal policy from these multiple policies, a scalarization function
(VW) is used to scalarize the value vectors V}, with respect to
the weights W [23] that is computed as follows:

f(Vp, W) =W.V, = Wthi + Wi+1Vb,-+1 ot W"Vbn (5)

where w; and Vj, refer to the weight and value for the ith objective
given n number of total objectives. The size of the weights vector
W is also equal to the number of the objectives. These weights
vector values are computed by the decision-making agent using the
Optimistic Linear Support (OLS) algorithm [24] at runtime. Hence,
for a given belief b, @-matrix for each action and weight w, we
can compute the policy 74 that takes the maximal value using
equations 4 and 5 as:

v = bAW
() = may

(6)

4 PRIORITY-AWARE MR-POMDP++

This section presents MR-POMDP++, a priority-aware model, for
autonomous decision-making of the AIS. Next, we present the case
of a RDM network and explain the concept using this case as an
example.

4.1 Remote Data Mirroring

In order to illustrate our proposed approach, we consider the case
of a RDM network [10] based on the operational model presented
in [11]. The RDM system is a disaster recovery system that toler-
ates failures by maintaining multiple copies (i.e. replicas) of data
at remotely located servers (i.e. Mirrors). Therefore, it maintains
data availability by preventing data loss. Each network link has an
associated operational cost! and a measurable throughput, latency
and loss rate used to determine the reliability, performance and
cost of the RDM system. The goal here is to satisfy the NFRs of
Minimization of Costs (MC), Maximization of Performance (MP)2 and
Maximization of Reliability (MR) under environmental uncertainty of
link failures and varying ranges of bandwidth consumption [10]. For
this purpose, the network is required to continuously take adaptive
actions of switching between the topological configurations of Min-
imum Spanning Tree (MST) and Redundant Topology (RT) to maintain
better levels of satisfaction of NFRs. Both the configurations offer a
different impact on the NFRs’ satisfaction. The topological configu-
ration of RT provides a higher level reliability than MST topology
but it has a negative impact on the satisfaction of the MC and MP
as the cost of maintaining non-stop RT topology will be high and
due to data redundancy, the performance can be reduced. On the
other hand, MST topology supports the satisfaction of MC and MP
by maintaining a minimum spanning tree for the network.

The state of the RDM corresponds with the state of the NFRs
of the RDM (i.e. MC,MP,MR), which is hidden and just partially
observable by the monitoring infrastructure. Based on the partial
knowledge collected as evidence from the monitoring infrastructure,
the RDM infers the level of satisfaction of the NFRs to then take the
decision of selecting the best topology. The decision-making takes
In RDM system, Operational Cost is measured in terms of intersite network traffic.

?In the case of RDM network, we are measuring performance in terms of total time to
write the data i.e. the sum of the time to write each copy of data on each remote site.
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into account the SLAs (stated from the requirements specifications),
and priorities of the NFRs. The use of MR-POMDP to support such a
decision making is presented next, which is called MR-POMDP++.

4.2 MR-POMDP++

In this section, we present MR-POMDP++, an extension of MR-
POMDPs to represent the satisfaction levels of NFRs and deal with
priorities to underpin autonomous decision-making in AIS, and
support priority-awareness (see Fig 1). Next, we present the rules
to map NFRs, their priorities and their related decision making to a
MR-POMDP to support priority-aware runtime decision-making in
AlS.

4.2.1 NFR satisfaction and MR-POMDP states. An AlS takes
different adaptive actions to achieve satisfaction of NFRs at runtime.
These actions have different effects (either positive or negative) on
the satisfaction of NFRs. As the NFRs can neither be labelled as
fully satisfied nor fully violated, their satisfaction levels cannot be
represented as absolute values True or False. This is known as the
lack of crispness in the nature of satisfaction of NFRs [8]. Therefore,
the satisfaction levels of NFRs are modeled in this paper using
probability distributions. A NFR is considered as satisfied if it meets
an acceptability threshold defined by the experts, which is expressed
using probabily values between [0,1]. For example, in the RDM case,
the satisfaction level of MC can be represented as P(MC=True)=0.75
and the NFR of MC can be considered as highly satisfied if it meets
the acceptability threshold of 0.7 i.e. P(MC=True)>=0.7 in order to
conform to the SLAs.

In MR-POMDP++, we consider each state as the representation
of the set of combinations of NFRs as shown in Fig 1. As the case of
the states in a MR-POMDP, the properties associated with the NFRs
are not directly observable, instead a belief (i.e. a probability) over
the states is maintained. Hence, the satisfaction levels of NFRs are
described in the form of probability distributions P(NFR;) where
NFR; belongs to the set of NFRs [17].

On the basis of this description, we derive a mapping rule as
follows:

Rule: 1 The state s € S in MR-POMDP represents the set of combi-
nations of the non-functional requirements (NFR;y...NFRy;, ). As the
states in the MR-POMDP are partially observable, the satisfaction
levels of the NFRs can be represented in the form of probability distri-
butions P(NFR;).

These probabilities can be used to conclude if the satisfaction
levels meet acceptable thresholds.

Using Rule 1, the size of set S in MR-POMDP representing the
total number of states in terms of the satisfaction levels of NFRs can
be computed as |S| = [2]'NFRI' Where |S| corresponds to the size
of set S, NFR corresponds to the NFR and 2 corresponds to True and
False. For example, in RDM network, we consider the three NFRs
of MC, MR and MP. As the number of NFRs is 3, so the number of
states for MR-POMDP will become |S| = 2% = 8 as shown in Table
1.

4.2.2 NFR priorities and Rewards Vectors. NFRs have priori-
ties associated with them that signify their importance for satis-
faction. The higher the priority, the more important it is to satisfy
the NFR. The MR-POMDPs use a vector-valued reward function
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Figure 1: Mapping of MR-POMDP to Priority-Aware MR-POMDP++

Table 1: States of Priority-Aware MR-POMDP for RDM Net-
work

S NFR=MC | NFR;-MR [ NFR;-MP
S1 True True True
S2 True True False
S3 True False True
S4 True False False
S5 False True True
S6 False True False
S7 False False True
S8 False False False

to associate a separate reward value with each of the objectives
(NFRs in our case). These reward values are generated as a feed-
back signal according to the decision prompted by MR-POMDPs.
The reward value associated with a particular objective indicates
the effect, either positive or negative, of performing an action on
the satisfaction of that objective. Consequently, the reward vector
values specify a relative ranking of the objectives in terms of the
cardinal effect that an action will have on the fulfillment of that
objective under an uncertain environmental context.

For example, in the case of the RDM network, if network link
failures are observed at a particular point of time, it may result
in an increase in data packet loss. As a consequence, a negative
effect on the reliability of the system would be observed. In order
to support the satisfaction of MR, the decision-making agent might
select the adaptation action of switching to RT. However, RT might
have its own negative effects on the NFRs MC and MP. Consequently,
given the current environmental context of link failures, on the
basis of the selected action of RT, the system will generate a higher
immediate reward for MR (e.g. 75) than for MC and MP (that could be
e.g. -50 and -25). In this case, according to MR-POMDP, the reward
for MR is greater than that of MC and MP because the satisfaction
of MR is more important at this point of time given the current
conditions. Hence, the reward vector R(s,a) = [Ryr, Rvics Rvp] =
[75, =50, —25] presents a relative ranking of the NFRs MR,MC and
MP in terms of the effect that the action RT will have on their
satisfaction. Thus, the reward vector in MR-POMDP can be used to
model the NFRs’ priorities by indicating their desirability in terms
of their satisfaction given a particular state of the environment as
shown in Fig 1. These reward values are initially assigned by the
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Table 2: Reward Values for the NFRs in the RDM Network

S Action(A) | Reward Vector Values

RNFR1 = Rymc | RNFR2 =RMR [ RNFR3 = Rmp
51 | MST 39.17 39.0 40.0
5o | MST 1.0 700 39.0
53 | MST 39.0 38.0 385
54 | MST 7.0 16.0 15.0
55 | MST 340 730 135
56 | MST 29.0 28.0 27.0
57 | MST 4.0 3.0 135
58 | MST 7.0 1.0 1.0
51 | RT 310 730 310
52 | RT 32.0 33.0 310
53 | RT 28.0 29.0 27.0
54 | RT 26.0 27.0 75.0
55 | RT 28.0 29.0 27.0
56 | RT 16.0 7.0 15.0
57 | RT 23.0 24.0 22.0
55 | RT 1.0 2.0 10.0

requirements engineers and domain experts. Using this description,
we derive our next rule as follows:

Rule: 2 The values in the reward vector R(s,a) over the execution
of an action a € A given state s € S in MR-POMDP represent the
priorities of non-functional requirements (NFRs).

R(s,a)=[RNFR1.RNFR2:-RNFRm]
where Ry FRry represents the reward for NFR1 indicating the priority
value of NFR; and so on.

In the RDM system, the number of NFRs under consideration is 3,
therefore the reward vector is represented as R(s,a)=[Rarc,Rar:Rap]-
Rac represents the priority value for MC, Ryg represents the pri-
ority values for MR and Rysp represents the priority values for MP
at runtime. The reward vector values (provided by the experts) for
NFRs in the RDM network are shown in Table 2.

4.2.3 Expected Utility Values and Autonomous Tuning of
Priorities: In AlS, the priorities of NFRs may vary according to
the changes in the context. Using the reward vector, MR-POMDP++
offers the opportunity for autonomously tuning the NFRs’ priori-
ties, by computing the separate expected utility value for each NFR,
during the operation of MR-POMDPs using equation 1 as follows:

VNFRi = Ex[Rit + yRizs1 +y*Rizsz...Ist] (7)
where VN FRr; and Ri represents the expected utility value and re-
ward values for NFRi. Here, the rewards that represent the initial



priorities, are taken into account for the computation of the distinct
expected utility values for each NFR. Hence, these expected utility
values represent the new values for the tuned priorities of the differ-
ent NFRs. The expected utility values ponder the individual effect of
performing an action on the satisfaction of a NFR given a particular
context, and are considered while making the decisions at runtime.

4.2.4 Modelling of Actions, Transitions and Observations:
The actions, transition and observation functions of a MR-POMDP
in terms of the NFRs, adaptation strategies and the monitoring
variables of the RDM system are explained as follows:

Actions: represent the adaptation strategies to maintain the
satisfaction of the NFRs of MC, MR and MP. The actions for the case
of RDM network are the two topological configurations of Minimum
Spanning Tree (MST) and Redundant Topology (RT).

Transition Function: According to Rule 1, the states are repre-
sented as a combination of NFRs in MR-POMDP++. The transition
probabilities T(s,a,s’) are factored as marginal conditional probabil-
ities of NFRs P(MC’ | MC, a), P(MR’ | RPL,a) and P(MP’ | MP, a)
using the property of conditional independence and Bayes rule [17]
as follows:

T(s,a,s") =P(s'|s,a) = P(MC' | MC,a)P(MR’ | MR, a)P(MP’ | MP, a)
8)

The conditional transition probabilities for the NFR MC going
from one state to another as a result of action for the RDM case are
shown in Table 33. These transition probabilities are also defined
based on expert knowledge.

Observations: As the states of NFRs are not directly observable,
we use monitorables to obtain observations required for monitoring
the satisfaction levels of NFRs on the basis of the set of possible
values or information obtained from the environment. For this
purpose, three monitorable variables Ranges of Bandwidth Con-
sumption (RBC), Active Network Links (ANL) and Total Time for
Writing (TTW) related to the NFRs MC, MR and MP respectively
are specified in the RDM system. Higher the value for the ANL,
higher will be satisfaction of MR. On the other hand, lower the
values of RBC and TTW, higher will be the satisfaction of MC and
MP. In RDM System, all of these monitorable variables have range
boundaries that are specified in the requirements specifications by
the experts and are provided in [32].

In MR-POMDP++, the observations of each monitorable are
described by the probability distributions over its possible values.
Hence, Observation probability represented by O(s’,a,z) (i.e. P(z
la,s’)) specifies the probability of observing the observation z after
executing action a and transition to state s’.

Like the transition model, we also factor the observation model
into the product of conditional probabilities such that: P(z|s’, a) =
P(Mony,..Mony|s’, a) [17]. Hence for RDM we have:

P(z|s’,a) = P(RBC,ANL, TTW|s’, a)
9
= P(REC|s’,a)P(ANL|s’,a)P(TTW|s’, a) ©)

3The conditional probailities tables for MR and MP are provided on the following link:
https://gitlab.com/re_research/rdmexperiments/
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Table 3: Transition Probabilities for NFR MC

NFR; =Minimization of Cost (MC)

Action(A) | MC; | MR; | MP; | PMCzy1 =T7) [ PMCyyq = F)
MST True True True 0.9 0.1
MST True True False 0.88 0.12
MST True False | True 0.92 0.08
MST True False False 0.9 0.1
MST False True True 0.85 0.15
MST False | True False 0.83 0.17
MST False False | True 0.87 0.13
MST False | False | False 0.85 0.15
RT True True True 0.86 0.14
RT True True False 0.84 0.16
RT True False | True 0.88 0.12
RT True False False 0.86 0.14
RT False | True True 0.73 0.27
RT False True False 0.71 0.29
RT False | False | True 0.75 0.25
RT False False False 0.73 0.27

Table 4: Observation Probabilities- CPT RBC: P(RBC | MC, a)

Mon; =Ranges of Bandwidth Consumption(RBC)

Action(A) | MC; | PRBCsy1 < x) [ P(MCrypin[x, y]) [ PMCs41 >= 1)
MST True 0.8 0.15 0.05
MST False 0.72 0.18 0.1
RT True 0.78 0.16 0.06
RT False 0.68 0.2 0.12

The conditional observation probabilities for the monitorable
RBC, defined by the experts, for the RDM case are presented in
Table 4%,

5 EXPERIMENTAL EVALUATION

This section describes the experiments performed by applying the
decision-making process of MR-POMDP++ to the case of RDM
network [10]. For validation purposes, comparisons are presented
with the existing techniques of RE-STORM [17] and ARROW [18].
As the approach of RE-STORM is implemented using DESPOT
(a POMDP solver) and ARROW using DESPOT with P-CNP [33],
we refer to these techniques as DESPOT and DESPOT-ARROW
respectively from now onwards in the paper. Due to the limitation
of space, a more detailed report of the experiments performed is
documented in [32].

Next, we discuss the MR-POMDP solver that we have used as
well as the initial setup for RDM network describing the SLA and
the experimental scenario.

5.1 OLSAR: a MR-POMDP Solver

Solving MR-POMDP is often a computationally intractable prob-
lem [30]. However, techniques exist that solve MR-POMDP as an
approximation. In general, MR-POMDP solving methods can be
divided into two main categories: optimal solving methods, and
near-optimal and approximate methods. The technique used in the
experiments of this paper is the Optimistic Linear Support with
Alpha Re-use (OLSAR) algorithm [24], a point based MR-POMDP
solver that generates approximate solutions by performing approx-
imate backups during the computation of @— vectors over a set of
sampled belief values. The algorithm has proven to scale during
the experiments performed. The reuse of the alpha matrix in the
algorithm also makes it efficient. The experiments were performed
on a Lenovo Thinkpad with intel Core i7, 8th Gen processor and 16
GB RAM.

“The observation probabilities for ANL
https://gitlab.com/re_research/rdmexperiments/

and TTW are provided on



5.2 Initial Setup

The RDM network under consideration consists of 25 RDM Mirrors
(i.e. the servers), which are used to hold multiple copies of data, with
300 physical links in total that can used to transfer data between
the mirrors [7]. In such a setup, the maximum possible number of
concurrent active network links that does not affect the assigned
budget is considered as 120 [7]. For the current set of experiments,
our focus is on the NFRs concerned with the quality and perfor-
mance attributes [8] of the RDM network such as Minimization of
Costs (MC), Maximization of Reliability (MR) and Maximization of
Performance (MP). For the initialization of the MR-POMDP model,
the initial conditional probabilities used for the Transition model
are presented in Table 3°, for the Observation Model in Table 4°
and the Reward vector values are presented in Table 2.

5.2.1 Service Level Agreements. The initial set up of the exper-
iments also considers the Service Level Agreements (SLA) for the
RDM network that reflect the required satisfaction levels of NFRs.
These SLA are about the satisfaction thresholds and are defined by
the system experts. The knowledge and domain expertise applied
is based on [7, 10], The SLA, which indicate the requirements of
the suitable zone of NFRs’ satisfaction expressed in terms of the
MR-POMDP++, are as follows:

R1: The probability of satisfaction of Minimization of Cost shall
be greater than or equal to 0.70. i.e. P(MC=True)>=0.70

R2: The probability of satisfaction of Maximization of Reliability
shall be greater than or equal to 0.85 i.e. P(MR=True)>=0.85

R3: The probability of satisfaction of Maximization of Performance
shall be greater than or equal to 0.75. i.e. P(MP=True)>=0.75

The NFRs that have satisfaction levels below these threshold
values are considered to be presenting poor levels of satisfaction.

5.3 Experimental Scenario

The experiments have been designed to study the unforeseen im-
pacts of actions on the levels of satisfaction of NFRs. The unmatch-
ing NFRs’ priorities in such an uncertain context may lead to the
need of tunning these priorities by the MR-POMDP++. The idea
is to evaluate how MR-POMDP++ offers priority-aware decision-
making and informed choices related to individual NFRs.

In order to study the impact of actions on the satisfaction lev-
els of the NFRs MC, MR and MP, we simulate dynamic situations
by introducing random changes in the environment of the RDM
network. The random changes are introduced to simulate failures
in the network links during execution of AIS. Such failures may
be due to problems in devices such as switches or routers. We re-
fer to these random changes as the disturbance levels that may
occur at runtime. In order to introduce these disturbance levels,
deviations from the initially defined transition probabilities (i.e.
P(NFRt +1 = True|NFRt, A;)) for the topologies (MST and RT) are
introduced randomly at runtime.
5The conditional probabilities for NFRs
https://gitlab.com/re_research/rdmexperiments/

%The observation probabilities for ANL
https://gitlab.com/re_research/rdmexperiments/

MR and MP are provided in

and TTW are provided in
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Table 5: Experiment Results for timesteps 45 - 51

Time | Action | Valyc Valyr Valyp Satyrc Saty[r Satp p
45 MST 392.131 388.213 395.327 0.90299 0.92395 0.91017
46 MST 391.980 388.045 395.155 0.90445 0.89257 0.91361
47 MST 391.978 388.043 395.154 0.9052 0.89170 0.91431
48 MST 391.715 387.744 394.835 0.90532 0.83722 0.91445
49 RT 386.767 392.139 386.258 0.90618 0.92089 0.91524
50 MST 392.302 388.331 395.313 0.86462 0.95651 0.84732
51 MST 392.139 388.219 395.331 0.90089 0.92493 0.90972

*Valn FR represents the expected utility value of NFRi
*Satn FR represents satisfaction level of NFRi

We have considered the following context scenario for the pur-
pose of evaluation of our results:

Detrimental Context: The disturbance levels, that are introduced,
simulate an unexpected data packet loss during the execution of the
AIS. An increase in the packet loss during the execution of the RT topol-
ogy would result in an unusual rate of data forwarding that would
lead to higher level of bandwidth consumption and reduction of the
performance. As a result, the satisfaction levels of MC i.e. P(MC=True)
and MP i.e. P(MP=True) would be expected to be reduced. For the
current set of experiments, to simulate small realistic changes, a max-
imum deviation of 12 percent from the current transition probabilities
is introduced for a randomly selected duration (between 5 to 15 time
steps) for the selected disturbance level.

Case:1- Priority-Aware Decisions and Autonomous Tuning
of NFRs’ Priorities: Here we focus on demonstrating priority-
awareness by MR-POMDP++ and how it supports compliance with
the SLA. In order to perform priority-aware decision-making, our
proposed approach makes use of MR-POMDPs, to represent distinct
priorities of NFRs. We study how the priorities of NFRs, represented
in the form of rewards in MR-POMDP++ model, have an impact
on the action selection for the purpose of satisfaction of NFRs as
shown in Table 5. For example, using the initial setup, at timestep 45,
the selection of the MST topology over RT provides the best possible
trade-off. This is due to the fact that the expected utility values for
MP and MC are 395.327 and 392.131 respectively, which are higher
than those for MR, which has an expected utility value of 388.213 as
presented in Table 5.

The above shows that the usage of MST has more positive impact
on MP and MC than on MR when compared to the alternative RT
topology (for which the expected utility values were 386.718 for MC,
392.086 for MR and 386.203 for MP at this point of time). Therefore,
the system selects MST as the preferred topology, in order to support
the reduction of inter-site network links cost and therefore, improve
the performance of the network.

In contrast, at timestep 49, the system takes the adaptive action
of switching to the topology RT. This is due to the fact that the ex-
pected utility value of MR being 392.139 is higher than the expected
utility values of MC and MP i.e. 386.767 and 386.258 respectively,
as shown in Table 5. As a result, the adaptive action of RT topol-
ogy at this timestep improves the satisfaction level of MR from
P(MR=True)=0.83722 to P(MR=True)=0.92089 and therefore, satis-
fying the SLA of P(MR=True)>=0.85. Hence, these expected utility
values representing the new values for the tuned priorities of the
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NFRs are taken into account by MR-POMDP++ during decision-
making. This is one of the contributions of the MR-POMDP++ ap-
proach, different from other approaches, to offer the AIS with a
priority-aware decision-making process.

During the setup of experiments, the initial set of priorities for
NFRs of the RDM network were defined in advance considering the
different foreseeable runtime contexts. Following the mapping rules
of Section 4, the priorities are inserted as the initial rewards for
the initialization of the runtime MR-POMDP++ model (as shown
in Table 2). During the autonomous decision-making, in situations
where it was considered appropriate by the MR-POMDP++, the pre-
defined priorities were tuned autonomously with the computation of
expected utility values for individual NFRs (using equation 7). Such
considerations obey to keeping levels of satisfaction according to
the SLA, by the support of the new priorities under the new contexts
found. These new priorities correspond with the expected utility
values shown in Table 5. The goal of this autonomous tuning with
help of expected utility values is to meet the required SLA for the
NFRs.

Case: 2-Impacts of Priority-Aware Autonomous Decisions
on satisfaction levels of NFRs. We have also studied the im-
pact of priority-aware decisions by MR-POMDP on satisfaction
levels of NFRs under the detrimental conditions and, have com-
pared its results with existing techniques that use DESPOT [17]
and DESPOT-ARROW [18].

Let us observe Figures 2 and 3, which show the results of the
solvers OLSAR and DESPOT under i) the initial set of pre-defined
rewards, transition and observation probabilities (normal or sta-
ble conditions), and ii) the detrimental scenario where the distur-
bance levels are introduced. Under these scenarios, both OLSAR
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and DESPOT show comparable results by maintaining the NFRs
of MC, MR and MP in the suitable zone of satisfaction, i.e. above
the threshold values of P(MC=True)>=0.70, P(MR=True)>=0.85 and
P(MP=True)>=0.75. Both techniques show preference for the MST
topology, with an increase in the use of MST topology by OLSAR
under detrimental context to support the satisfaction of both MC
and MP as shown in Fig. 4 and 5.

Furthermore, we have also compared our results with the tech-
nique using DESPOT and ARROW( based on P-CNP) [18], which
offers the support of updating initially defined rewards for DESPOT
under the detrimental contexts. However, even if the technique
DESPOT-ARROW supports the satisfaction of MR under the detri-
mental context, it leads the levels of satisfaction of MC and MP to
poor zones of satisfaction during several time steps as shown in
Fig. 3. Hence, from the results observed, we can deduce that the
priority-aware decision-making process of MR-POMDP++ offers
higher levels of satisfaction even in the detrimental scenarios ob-
served when compared to the existing single-objective techniques.
Further, another downside of the technique DESPOT-ARROW is
that the tuning offered is not autonomously executed by the POMDP
as is the case of MR-POMDP++. The former creates problems of
efficiency in the case of DESPOT-ARROW.

Discussion: From the results, it is evident that the approach of MR-
POMDP++, using the priority-aware decisions, maintains the SLA
for the RDM network both under the operation of the system under
initially defined stable conditions and the detrimental conditions in-
troduced at runtime. The average satisfaction levels for all the NFRs
of MC, MR and MP, generated by OLSAR, under initial stable condi-
tions are 0.8732, 0.9069 and 0.8747 respectively. For the detrimental
scenario, the average satisfaction levels are P(MC=True)=0.8756,
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P(MR=True)= 0.9042 and P(MP=True)=0.8811. Hence, the system
is conforming to the required SLAs of P(MC = True) >= 0.70,
P(MR = True) >= 0.85 and P(MC = True) >= 0.75 as shown in
Fig. 6. In order to further evaluate our approach, we have also exe-
cuted other experiments considering other detrimental scenarios,
which are reported in [32].

Under all the scenarios provided in [32], our approach shows
comparable and sometimes even better satisfaction levels for NFRs
than DESPOT and DESPOT-ARROW which are representatives of
a single objective approaches. Hence, on the basis of the results,
we can deduce that our approach using multiple rewards provides
statiscally better results by providing more awareness to the deci-
sions in terms of NFRs’ priorities as compared to the single objective
approaches.

6 THREATS TO VALIDITY

A threat to validity posed by the use of MR-POMDPs is the com-
putational cost. It is known that solving a MR-POMDP is often
a computationally intractable problem at worst [23]. The OLSAR
algorithm that we use, overcomes computational scalability issues
related to the “curse of history” [24]. However, in a MR-POMDP++,
the states are defined in terms of combinations of satisfaction levels
of NFRs. If the number of NFRs is 2, we would have 4 states for MR-
POMDP, for 3 NFRs, it would be 8, and so on. Therefore, the number
of NFRs that can be handled by the approach of the MR-POMDP++,
is limited. It hints to the fact that it faces a limitation in terms of a
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maximum number of NFRs. While this limit exists, MR-POMDP++
is scoped to domains that need multi-objective sequential decision-
making mechanisms with a focus both theoretically and practically
on few objectives [23]. Nevertheless, further research is needed to
understand the extent to which this will prove to be a limitation to
generalizabilty.

7 CONCLUSION AND FUTURE WORK

We have presented MR-POMDP++, a priority-aware model, to per-
form decision-making under uncertainty for AISs [22, 27, 29]. The
use of MR-POMDP++ underpins awareness and reasoning about
the distinct priorities of NFRs and allow tuning of priorities of the
NFRs to match newly found contexts. For the purpose of evalua-
tion of the proposed approach, we have applied it to a robust case
study called RDM network, and have also compared the results
with the techniques of DESPOT and DESPOT-ARROW, which are
techniques that treat the NFR priorities using a single utility value.
Our experiments have demonstrated that, based on empirical data
gathered at runtime, the use of MR-POMDP++ offers the following
contributions:

-provides support for priority-aware decision-making for AIS,
which takes into account the individual priorities of NFRs during
the decision-making process.

- provides an AIS with a principled approach to maintain the
required SLA by autonomously tuning the priorities of NFRs at
runtime in order to match the changing environmental contexts.

In future, we plan to use MR-POMDP++, as a tool for the apriori-
elicitation of priorities for NFRs. Specifically, MR-POMDP++ can
be used during simulations to further learn about the environment
of the AIS, and to uncover unforeseen contexts that may be difficult
otherwise, to envisage in advance. Further, as the approach helps
to discover further knowledge about a system’s behaviour and its
environment based on runtime evidence, it can also be used to
provide post-hoc explanations for AISs’ behaviour [16].
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