
Received: 9 July 2020 Revised: 26 March 2021 Accepted: 5 April 2021

DOI: 10.1002/spy2.164

R E S E A R C H A R T I C L E

Android Permission Classifier: a deep learning algorithmic
framework based on protection and threat levels

Moses Ashawa Sarah Morris

Centre for Electronic Warefare
Information and Cyber, Cranfield
University, Shrivenham, UK

Correspondence
Moses Ashawa, Centre for Electronic
Warefare Information and Cyber,
Cranfield Univrsity, Shrivenham SN6
8LA, UK.
Email: m.ashawa@cranfield.ac.uk

Funding information
Petroleum Technology Development Fund

Recent works demonstrated that Android is the fastest growing mobile OS with
the highest number of users worldwide. Android’s popularity is facilitated by fac-
tors such as ease of use, open-source, and cheap to purchase compared to mobile
OS like iOS. The widespread of Android has brought an exponential increase in
the complexity and number of malicious applications targeting Android. Mal-
ware deploys different attack vectors to exploit Android vulnerability and attack
the OS. One way to thwart malware attacks on Android is the use of Android
security patches, antivirus software, and layer security. However, the fact that
the permission request dynamic is different from other attack vectors, makes it
difficult to identify which permission request is malicious or not especially when
constructing permission request profiles for Android users. The aforementioned
challenge is tackled by our research. This article proposed a framework called
Android Permission Classifier for the classification of Android malware permis-
sion requests based on threat levels. This article is the first to classify Android
permission based on their protection and threat levels. With the framework,
out of the 113 permissions extracted, 23 were classified as more dangerous. Our
model shows classification accuracy of 97% and an FPR value of 0.2% with high
diversity capacity when compared with the performance of those of other similar
existing methods.

K E Y W O R D S

Android permission request, feature diversity, machine learning algorithms, neural networks

1 INTRODUCTION

Smartphones’ increase in the market for business and personal purposes has brought about a corresponding increase in
the number of malicious applications today. Malware attacks on mobile devices have become one of the most dreaded and
precarious threats causing economic and information impairments. The study of Ashawa et al.1,2 asserted that the increase
and fast-growing rate at which mobile applications are been used in the 21st century has caused a proportionate growth
in the number of cyber-attacks one of which is malware attacks on mobile and personal computers. Though, malicious
applications target different mobile OS platforms, malware targeting Android has become a massive surge recently.

Smartphone market share recently published by the International Data Corporation (IDC) reported that Android
OS shipment worldwide has slightly increased from 85.1% in 2018 to 86.7% in the second quarter of 2019 3 and is the

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium,
provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2021 The Authors. Security and Privacy published by John Wiley & Sons Ltd.

Security Privacy. 2021;e164. wileyonlinelibrary.com/journal/spy2 1 of 26
https://doi.org/10.1002/spy2.164

https://orcid.org/0000-0002-1016-0791
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fspy2.164&domain=pdf&date_stamp=2021-05-05
e805814
Text Box
Security and Privacy, Available online 5th May 2021, Article number e164DOI:10.1002/spy2.164

2 of 26 ASHAWA AND MORRIS

most popular mobile OS. The popularity of Android and its fast-growth shipment worldwide made the OS the major
attack target by malware writers. This proliferation of different app from third parties makes application repacking and
decompilation easier on the Android platform than could be done on the iOS platform due to Android’s open-source.

Android popularity has made the most targeted mobile OS by mobile malware according to the recent research pub-
lished by Kim et al.4 Some of the factors which enhanced the popularity of Android OS including but not limited to
open source, cheap to purchase, easy to use, and the launching of new models due to 5G inventions. Among other fac-
tors, open-source makes it easier for a lot of android developers to publish their applications on different Android market
platforms without much critical security analysis and scrutiny, unlike iOS.

Different detections, classifications, and analysis techniques have been widely proposed by various researchers and
security organizations across the world to curb the widespread of malware and to alleviate their attacks on Android
devices. Some of the proposed techniques and strategies include dynamic detection,5-12 static detection,13-17 hybrid
detection,5,18-22 and memory forensics techniques, 23-31 respectively. The technique observes and monitors the applica-
tion’s behavior by focuses on knowing how the malware is connected and is interacting with mobile device resources at run
time. The Static detection technique involves malware analysis without execution of the malware application but focuses
on the evaluation of the signature and heuristic behaviour of the application using semantic properties. The hybrid tech-
nique is an amalgamation of both the static and dynamic technique features deployed for malware detection. It moderates
at runtime portions of malware code to be inspected using static technique. Malware detection by the hybrid approach
creates more stability in detection efficacy and accuracy by using advantages from both dynamic and static methodolo-
gies to provide more detection results and efficiency. The memory forensics analysis technique involves acquiring the
device memory image which is infected or suspected using forensics memory acquisition tools and then analyzing the
memory dump for forensic artifacts such as running processes, list of network connections, kernel modules, list of shared
libraries, and rootkits. The technique is more reliable and efficient32 when investigating sophisticated malware such as
oligomorphic, polymorphic, and metamorphic.

Several types of research had been carried out on android malware detection, classification, and analysis. Our research
is different from the rest because there has not been any research that focused on extracting and classifying Android mal-
ware permission requests based on their protection and threat levels using deep learning. While there are four permission
attributes namely; normal permissions, dangerous permissions signature permissions, and signatureOrSystem permis-
sions, our research focuses on the first two which are the normal and dangerous permissions. Android applications have
many features including strings, opcode frequencies, API features, shared libraries, and so on which many previous stud-
ies have investigated. All of those features were generated by decoding the apk manifest file, decompiling the dex code,
and disassembling the applications’ shared libraries. Our framework on the other hand focused mainly on permission
request features. Using APKtool,33,34 we created permissions request feature vectors and refined them by decoding the
Android Manifest file which was used to develop the algorithm for permission request classification. Using permission
features extracted from manifest files, our classification framework maximizes the permission components and generated
a feature vector representation. Each of the feature vectors was discretely inputted into the Android Permission Classi-
fier (APC) framework. There are many Android malware sample dataset repositories such as DREDIN,35 AndroZoo,36

Genome project,37 VirusShare.38 Our framework performance was validated by series of experimental results using 6528
Android malware samples obtained from Ashawa and Sarah.25 Effective permission extraction accuracy and classification
based on the threat level of such permission request and the corresponding protection level was achieved by our model.

The following contributions were made by our research:

1. We proposed a novel Android malware permission request classification framework that employs only permission
features that replicates Android malicious application attributes.

2. We proposed a neural network technique for the generation of malicious feature vectors with effectual classifica-
tion and representation of malicious binary features with mutual qualities with benign or non-threatening Android
applications.

3. We offered a permission classification method tagged APC using neural networks particularly deep learning. The
method extracted all the permissions both malicious and benign applications requests and then separated malicious
request from benign permissions.

4. We produced results that demonstrated our framework producing best validation performance at the minimum epoch
when compared with other classifiers. To the best of our knowledge, there has not been any work that used deep
learning to classify Android malware permissions request based on their threat and protection levels.

ASHAWA AND MORRIS 3 of 26

The rest of the article is structured as follows. Section 2 provides a review of the literature by discussing related works.
Section 3 presents the methods and the algorithmic approach. Section 4 presents the proposed framework description.
Section 5 presents our evaluation procedure and experimental results, assessing the diversity capacity of our framework.
Section 6 makes some concluding remarks and discusses future work.

2 BACKGROUND AND RELATED WORK

While numerous researches have been published on Android malware, a very limited amount of work has been done on
malware protection and threat levels. In this section, related work on android malware similarity feature extraction and
malware dynamic and static analysis were revisited. Then, we summarize and discuss permission requests and detection
algorithms in the existing literature.

2.1 Similarity feature extraction

Similarity exists between non-zero vectors which might help when determining feature standardization. The study of
Schmidt et al.39 in a multimodal deep learning method for android malware detection; using various feature sets pro-
posed a framework that used a similarity-based system to extract and represent android malicious application features.
The binary vectors and feature set were calculated and represented as similarity features by creating a match with their
record and characteristics existence using a similarity-based feature vector generation algorithm. The extracted features
represented the reflective characteristics of an Android-based application.

Using a machine learning algorithm, the study of McLaughin et al.40 proposed an Android malware detection model
that utilizes different Android Package Kit (APK) file features and permission requests information. Similar to the study of
McLaughin et al.40 the research of Saxe and Berlin41 applied classification and clustering algorithms to obtain permission
that malicious application request on Android-based platforms. The study performed by David and Netanyahu42 used
hardware and software features and components such as API calls, permission requests, and message intents to detect
Android malicious applications. In addition, Kim43 proposed a method whereby CFGs are used as features by utilizing
keyword correlation gaps in FVG for Neural Support Vector Machine (SVM) classification. The SVM imposes its features
to have a weight that is uniformly distributed.

An investigation into the leakage of sensitive information by Android malicious applications, a data flow explo-
ration was performed by TaintDraoid dynamically McLaughlin44. Changes in the system’ such as threads and processes
were extracted and analyzed. Abnormalities identified showed different usage of system features such as CPU by mali-
cious applications. The research of Wang et al.45 performed a systematic review on different mobile detection techniques
approaches. The result obtained in the research identified detection techniques with their respective strengths and
weaknesses. Other studies such as Yerima46 proposed a model for detecting mobile usage abnormalities.

2.2 Permission requests and detection algorithms

Similarly, research47 proposed a detection model where Convolutional Neural Network was used to detect malware on
Android mobile devices. Sequences of opcode applications were used as features without alterations. Similarly, the study
of Hao et al.48 proposed a Deep Neural Network (DNN) framework for detecting malicious applications on Android-based
devices. However, the method did not detect sophisticated and Zero-day malware that has similar attributes related to the
benign application. Benign and malicious files were classified by the proposed work of Kim et al.49 which uses Window
dynamic API calls as feature vectors. The deep neural network-based model was believed to classify malicious files from
benign files.

Related works that employed deep learning techniques include the research of TaeGuen et al.52 which using a multi-
modal deep learning method, developed and Android detection model using various features. The model learning strategy
was based on a neural network. Using seven features namely String, opcode, API, shared library function, permission
features, component, and environmental features; the model merged all the features into one feature and fed them into
the classifier for malware detection. Their research did not in any given consideration on dangerous permissions request
classification. The study of Jei et al.51 using Convolutional neural network proposed a detection technique for Android
malware. The detection model used opcode features of android applications without modification.

4 of 26 ASHAWA AND MORRIS

Investigating the permissions with the risk that malicious applications use to explore Android resources, the study of
Jha et al.50 extracted permissions requests by Android applications using Random Forest. However, less relevant features
that are inherent to an application were not explored. Though several previous works were carried out on identifying
malicious applications using neural networks, none has investigated extracting and classifying permissions requests that
android applications request using deep learning. In addition, none of the previous works consider the threat level that
dangerous permission requests posed on the protection level of Android mobile devices. The study of Pei et al.51 carried
a systematic review on Android malware detection techniques. In the comparative results, the research identified the
algorithms deployed in each of the techniques and their detection accuracy with their identified strengths and limitations,
respectively.

The research intensively explored all the well-known detection techniques such as dynamic, static, hybrid,
content-based, and emulation-based detection. However, they did not cover deep learning techniques for Android mal-
ware detection. What distinguished our work from the previous work is that though many of the previous research used
several features and did not focus on classifying permission requests based on their threat and protection levels. Though
several previous works were carried out, none has investigated the threat level that dangerous permission requests posed
on the protection level of Android mobile devices. This formed part of the novelty of our research.

3 MATERIALS AND METHODS

3.1 Malware data set

The Android malware dataset used for this research was obtained from Contagio31 and DREBIN46 Android malware
dataset repository. Using an online VirusTotal scanner, we scanned to ascertain the benignity and maliciousness of the
sample files. After scanning, the APK file was unzipped to extract the file contents of the dataset folder. The dataset
consisted of 5560 malicious applications and 9476 benign application samples. The whole dataset relation consisted of
15 035 instances in an APK file format.

3.2 APK file decompilation

To obtain the resources contained in the raw dataset, the APK file was decompiled using Apktool47 embedded in the
newest version of the Androguard.48 The decompiled APK contains lib, res, original assets, and the Android Manifest file
application resources. The output of the decompiled APK generated Smali and Java class folders holding the resource
files. Features such as the manifest permissions, API call signatures, intents, and command signatures were obtained to
form feature sets and input vectors to the network. Other features such as shared lib and libdata were also extracted after
disassembling the source code of the .so file. The manifest permissions were extracted from the AndroidManifest.xml file
extension while the API call signatures were extracted from Android class files. Using class conditional probabilities with
minimum values, a total of 215 attribute partitions were extracted from pr_partition_0. The attributes extracted formed
the general feature set. Specifically, the attributes contain 113 manifest permissions, 72 API call signatures, 23 intents, 6
command signatures, and binary attributes for (Benign = B, Malware = S [1]). In summary, our proposed classifier uses
the following features: permission feature, API call feature, command feature, and intent feature, respectively.

3.2.1 Permission features

Permission manifest is one of the essential access control security mechanisms that Android uses. This access con-
trol mechanism (permission) places a constraint on the operational performance of any Android process. Permissions
requested by applications provide relevant information regarding the application’s behavior. Permissions features are
usually defined or declared in the manifest file of the Android APK. During application installation, the manifest.xml
file 49-51 holds significant information about an application. When permission is granted, the application can be able to
use and interact with the device- protected features. Android permissions are classified into four distinct threat levels
namely, “normal permission, dangerous permissions, signature permission, and signature/System permission.”52 This
study grouped both protection levels and manifest permissions as permissions features for the framework.

ASHAWA AND MORRIS 5 of 26

3.2.2 API call features

Android architecture is designed in such a way that the API of the system framework interacts with the Android system.
Android API is made of two major components namely: classes, and package.51 Malicious applications often invoke API.
API invocational provides information on the application behavior. Reverse engineering of the Android APK extracted
all the API features in the dataset used for this research.

3.2.3 Command signature features

These are the command instruction sets for signing the Android label and activity class, respectively. Command signatures
are used to sign requested permissions that applications request. In the case of benign applications, command signature
signs applications whose signature certificate is the same as that of the permissions declared. When there is a match of
certificates, Android automatically grants access to the application, without notifying the user or seeking his approval to
grant access. Malicious applications that have the same signature as the declared permissions in the device protection
level can easily have access to the system resources in the background. While permission request features of a malicious
file are harmful to system information, command features are to the system’s data and hardware.

3.2.4 Intent features

An Intent is theoretical or abstract decryption of an action or activity to be implemented or performed. Android uses
intent to launch and broadcast processes to any component of interest. Intents communicate with different services in
the background; thus, facilitating runtime binding of different application codes. Android uses intent features to launch
activities. Intent contains two primary attributes, action and data. Other secondary attributes such as the category of the
action to be performed on the data, component class to be used and, extras formed the metadata.

3.3 Feature selection and database generation

To improve the classifier’s performance efficiency and reduce its computational cost, we reduced the number of the
model’s input variables. The selected input variables in this research were those whose correlation with the target vari-
ables was strongest. To achieve this, feature ranking approach53 was applied as a preliminary phase in determining the
application characteristics and input variables reduction. Various android features such as the API call signatures, intents,
manifest permissions, and command signatures were extracted from the apk as explained in subsection 3.2. These fea-
tures formed the general feature vectors. Features extracted (see Section 3.2) formed the database of the feature vectors.
In generating, the database for the feature vectors, the extracted features were classified into two different features based
on their class pattern. To normalize the feature value, the mix-max scaling approach54 was applied by scaling feature
values between the intervals of 0 to 1. Features with no value attributed to being scaled as zero (0) while those with val-
ues attributed to were scaled as one (1), respectively. Using the K-means clustering method, eighty (8) iterations were
performed within-cluster sum of squared errors. C0 and C1 are the cluster labels for classes1 and 2 with counts 66 and
34, respectively. The class attribute has 66.0 weight in C0 and 34.0 weight in C1(as shown in Table 1). These formed the
cluster centroids for the feature vector attributes of the dataset attributes distribution (as shown in Table 2).

A total of eight iterations was performed within-cluster sum of squared errors using the K-means clustering method.
C0 and C1 are the cluster labels for classes 1 and 2 with counts 66 and 34, respectively. The class attribute has 66.0 weight
in C0 and 34.0 weight in C1. These formed the cluster centroids where permission attributes are distributed accordingly.
Cluster attributes logical table contain the attribute class and the logical values (as shown in Table 3) while the decision
list (as shown in Table 4) shows the associated rules formed from the attribute logical tables, respectively.

All the feature categories were then combined to form a unified set of vectors which were used as the input vector.
The input vector was converted into Comma Separated Values (CSV). The reason for converting the input vector into
CVS format was to make it friendly with tools that find it difficult to accept datasets without a field separator. All the four
feature categories were generated using K-means. Then combined to form a unified set of vectors which were used as the
input vector. The input vector was converted into CSV. The reason for converting the input vector into CVS format was

6 of 26 ASHAWA AND MORRIS

T A B L E 1 Clusters containing feature vector binary attributes

Clusters Binary features

Cluster 0 (c0): S 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,0,0,
0,0,0,1,0,1,0,
0,
0,
0,
0,0,0,0,0,0,0,0,S

Cluster 1 (c1): B 1,1,1,1,1,1,0,1,1,1,1,1,0,0,0,1,1,1,1,1,0,1,0,0,1,0,0,0,1,1,0,0,1,1,1,0,0,1,0,0,0,0,
0,0,1,0,1,0,1,0,0,1,1,0,1,0,0,1,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,
0,1,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,
0,0,0,0,1,0,0,1,1,1,0,0,0,B

Statistical attributes Distinct values

Minimum 0

Maximum 1

Mean 0.426

StdDev 0.495

Class pattern 8624

Benign [0, 0.071]

Class pattern 6412

malicious [0.929, 1]

Note: Statistical attributes: The qualitative characteristics of malware dataset, Distinct
values: These are calculated values held by each statistical attribute, Minimum: 0 and 1
are the minimum and maximum binary values contained in each cluster (Cluster 0,
Cluster 1), respectively, Mean: statistical mean of the dataset distribution, StdDev: SD,

T A B L E 2 Data set attributes distribution

to make it friendly with tools that find it difficult to accept datasets without a field separator. The algorithm for feature
vector generation (as shown in Algorithm 1).

Algorithm 1. Generation of combined feature vectors from the binary feature vector database

Input: Android applications’ feature set contained in the Database.
Output: Combined feature vectors.
1: decompile APK // to access all the APK components.
2: set_partition_index_feature_vector←−[1| 0| 0| 1| 0| … 0| 1].
3: centroids←− K_means
4: for index←−0 // setting the feature vector index
5: for ∀𝓕𝓼 ∈ 𝜷𝓕V_𝓭b do while
6: if 𝓕𝓼 ∈𝓕V_Android_app
7: then
8: combined_feature_vectors[index] ←−1
9: return combined_feature_vectors
10: exit

The feature vector information extracted from the dataset form the malicious feature database which consists of
strings, permissions, components, and other environmental features. The structure of the database composed of different

ASHAWA AND MORRIS 7 of 26

T A B L E 3 Attributes logical table Attribute Logical values

@attribute a0 {false,true}

@attribute a1 {false,true}

@attribute a2 {false,true}

@attribute a3 {false,true}

@attribute a4 {false,true}

@attribute a5 {false,true}

@attribute a6 {false,true}

@attribute a7 {false,true}

@attribute a8 {false,true}

@attribute a9 {false,true}

@attribute class {c0,c1}

components where all the features were pruned and classified. All the string features with their respect hashes and sizes,
permission features are in <uses-permission> and< permission> tag. All:<provider>, <filter>, <activity>, <intent>,
<grant-uri permission>, <service>, and< receiver> formed the general component of the feature database were all the
distinct features are extracted and classified. Environmental components: <library> and<uses-sdk>. Opcode and API
methods: send_message, socket, and invoke. Details of the feature vector set information extracted by the algorithm which
contained intent (as shown in Table 5), commands signature (as shown in Table 6), permission (as shown in Table 7), and
API call signature (as shown in Table 8) formed the major feature categories of the combined database, respectively.

3.4 Feature classification

The approach used for the feature classification process in this research is the backpropagation mechanism.55 Back-
propagation constitutes the central learning hub for producing an accurate classification outcome. It is the information
transmission with the error which neural network generates when trying to make a prediction or classification about
a given dataset. This is composed of the iteration and learning layers (input, hidden, and output layer) with distinc-
tive random initialization weights and biases. Our model applied information gain approach56 as feature classification
methodology. The IG processes the amount of information a feature X provides about the class. Let X be a feature in a
given Android application sample contain xi possible outcomes, the IG is represented as follows:

IG = H(X) − H(x∕y) (1)

where H(x) is the measure of randomness in the processed information which forms the entropy of feature X , H(x/y) is
the entropy after observing Y features. Given the probability density function (PDF) p(x) for random variable X , the H(X)
of X feature defined as:

H(X) = −
∑

p(x)log2(p(x)) (2)

Similarly, the H(X) of X comparative to feature Y is defined as:

H
(

x∕y
)
= −

∑
p
(

x∕y
)

log2
(

p
(

x∕y
))

(3)

where p(x/y) is the conditional probability. High diminution of the entropy in X increases the significance of its features. IG
decreases at the apex of PDF when the conditional probability in the sample pattern of both malicious and benign features
increases; while the entropy in X decreases as PDF decreases, respectively. We assumed that there was no probabilistic
failure that existed at any time (t) during the attribute’s distribution and clustering.

8 of 26 ASHAWA AND MORRIS

Rule Decision List

RULE 0: c0: = not(a3), not(a2), a6, a0

RULE 1: c1: = not(a9), a2, not(a4), not(a1), a5

RULE 2: c0: = a3, a4, a6, not(a9), not(a5)

RULE 3: c1: = a1, a6, a0, not(a7), a3, a9, not(a5), a8

RULE 4: c0: = not(a5)

RULE 5: c1: = a4, not(a3), a2, not(a8), a9, not(a0), a5

RULE 6: c0: = not(a2), a3, a7, not(a4), not(a6), a1, a0, a8, a5

RULE 7: c1: = not(a8), a5, a9

RULE 8: c0: = a6, not(a3), not(a4)

RULE 9: c1: = a5, not(a6), not(a2), not(a9), not(a7), a4

RULE 10: c0: = a5, not(a4), not(a2)

RULE 11: c1: = not(a2), not(a6), a7, a8, a3, not(a0), a5, not(a9)

RULE 12: c0: = a9, not(a3), a1, a0, a5

RULE 13: c1: = not(a9), a6, a7, a4, a2, a3, not(a1), not(a8), a0

RULE 14: c0: = a6, a0, a5, a8, a4, a7, a3

RULE 15: c1: = not(a9), a0, not(a8), a6, a5, a4, a1

RULE 16: c0: = a1, a3, a5, a9, a2

RULE 17: c1: = not(a4)

RULE 18: c0: = a2

RULE 19: c1: = not(a0), not(a6), a3, a8, a7, a4, a9

RULE 20: c0: = not(a0), a8, not(a2), not(a9), a5

T a b l e 4 Decision list using associated rules

On the other hand, if a probability failure occurs at any given survival; the risk function h(t) will occur by forming an
integral and instantaneous ratio. The hazard or risk function h(t) was defined as follows:

H(x) =

x

∫
∞

h(t)dt (4)

where ∞ is the range of time t from 0 to ∞. Our research assumed that all the features in the dataset survive the past time
and hazard function. Thus, the survival function was defined as:

s(t) = pr(T > t) = 1 − F(t) (5)

where S(t) is the survival function at time t, T is the random variable, Pr is the probability that some feature survived, and F
is the event density. Using three different distributions: Weibull, normal, and Birnbaum–Saunders, we demonstrated that
at each intersection of either of the distributions, as F increases, the corresponding value of S(t) decreases, respectively.
This provides a guide in studying the binary vectors in the dataset during feature representation.

3.5 Binary feature representation

In this subsection, we described the permission classification problem of our proposed classifier. Our binary feature vec-
tors were obtained by performing eight iterations within-cluster sum of squared errors using the K-means clustering
method. Let m represent a set of given G programs given as G = {g1 … gm} with gi∈ G. Let the class label (Ci) and the

ASHAWA AND MORRIS 9 of 26

T A B L E 5 Intent feature vectors Feature Category

android.intent.action.BOOT_COMPLETED Intent

android.intent.action.PACKAGE_REPLACED Intent

android.intent.action.SEND_MULTIPLE Intent

android.intent.action.TIME_SET Intent

android.intent.action.PACKAGE_REMOVED Intent

android.intent.action.TIMEZONE_CHANGED Intent

android.intent.action.ACTION_POWER_DISCONNECTED Intent

android.intent.action.PACKAGE_ADDED Intent

android.intent.action.ACTION_SHUTDOWN Intent

android.intent.action.PACKAGE_DATA_CLEARED Intent

android.intent.action.PACKAGE_CHANGED Intent

android.intent.action.NEW_OUTGOING_CALL Intent

android.intent.action.SENDTO Intent

android.intent.action.CALL Intent

android.intent.action.SCREEN_ON Intent

android.intent.action.BATTERY_OKAY Intent

android. Intent.action.PACKAGE_RESTARTED Intent

android.intent.action.CALL_BUTTON Intent

android.intent.action.SCREEN_OFF Intent

intent.action.RUN Intent

android.intent.action.SET_WALLPAPER Intent

android.intent.action.ACTION_POWER_CONNECTED Intent

android.intent.action.BATTERY_LOW Intent

T A B L E 6 Commands signature feature vectors Feature Category

mount Commands signature

chmod Commands signature

remount Commands signature

chown Commands signature

/system/bin Commands signature

/system/app Commands signature

feature vector (f i) matched as gi ∈ G for every gi ∈G. We defined our class label and feature vector as follows:

Ci ∈ {cm, cb, ck} (6)

fi = {f1, f2, … , fn} (7)

where Cm, Cb, Ck represents class label for the malicious request, class label for the benign permission request, and
class label for an unknown permission request respectably. Let R = {r1, r2, … , rn,} represent n classifiers set that label
permission requests from the input apk file as either benign or malicious. Let ri = {ai, Ci, Ti}, where Ti is the classifiers’
computational time, ai is the classification accuracy, and Ci is the function that labels and maps the feature vector f to c
and ai, respectively, upon the training set represented as Ci(f) : f −→ c.

10 of 26 ASHAWA AND MORRIS

T
A

B
L

E
7

Pe
rm

is
si

on
fe

at
ur

e
ve

ct
or

s

Fe
at

ur
e

C
at

eg
or

y
Fe

at
ur

e
C

at
eg

or
y

SE
N

D
_S

M
S

M
an

ife
st

Pe
rm

is
si

on
W

RI
TE

_S
EC

U
RE

_S
ET

TI
N

G
S

M
an

ife
st

Pe
rm

is
si

on

RE
A

D
_P

H
O

N
E_

ST
AT

E
M

an
ife

st
Pe

rm
is

si
on

D
U

M
P

M
an

ife
st

Pe
rm

is
si

on

G
ET

_A
CC

O
U

N
TS

M
an

ife
st

Pe
rm

is
si

on
BA

TT
ER

Y_
ST

AT
S

M
an

ife
st

Pe
rm

is
si

on

RE
C

EI
V

E_
SM

S
M

an
ife

st
Pe

rm
is

si
on

A
CC

ES
S_

CO
A

RS
E_

LO
C

AT
IO

N
M

an
ife

st
Pe

rm
is

si
on

RE
A

D
_S

M
S

M
an

ife
st

Pe
rm

is
si

on
SE

T_
TI

M
E

M
an

ife
st

Pe
rm

is
si

on

U
SE

_C
RE

D
EN

TI
A

LS
M

an
ife

st
Pe

rm
is

si
on

W
RI

TE
_S

O
C

IA
L_

ST
RE

A
M

M
an

ife
st

Pe
rm

is
si

on

M
A

N
A

G
E_

A
CC

O
U

N
TS

M
an

ife
st

Pe
rm

is
si

on
W

RI
TE

_S
ET

TI
N

G
S

M
an

ife
st

Pe
rm

is
si

on

W
RI

TE
_S

M
S

M
an

ife
st

Pe
rm

is
si

on
RE

BO
O

T
M

an
ife

st
Pe

rm
is

si
on

RE
A

D
_S

YN
C

_S
ET

TI
N

G
S

M
an

ife
st

Pe
rm

is
si

on
BL

U
ET

O
O

TH
_A

D
M

IN
M

an
ife

st
Pe

rm
is

si
on

A
U

TH
EN

TI
C

AT
E_

A
CC

O
U

N
TS

M
an

ife
st

Pe
rm

is
si

on
BI

N
D

_D
EV

IC
E_

A
D

M
IN

M
an

ife
st

Pe
rm

is
si

on

W
RI

TE
_H

IS
TO

RY
_B

O
O

K
M

A
RK

S
M

an
ife

st
Pe

rm
is

si
on

W
RI

TE
_G

SE
RV

IC
ES

M
an

ife
st

Pe
rm

is
si

on

IN
ST

A
LL

_P
A

C
K

A
G

ES
M

an
ife

st
Pe

rm
is

si
on

K
IL

L_
BA

C
KG

RO
U

N
D

_P
RO

C
ES

SE
S

M
an

ife
st

Pe
rm

is
si

on

C
A

M
ER

A
M

an
ife

st
Pe

rm
is

si
on

ST
AT

U
S_

BA
R

M
an

ife
st

Pe
rm

is
si

on

W
RI

TE
_S

YN
C

_S
ET

TI
N

G
S

M
an

ife
st

Pe
rm

is
si

on
PE

RS
IS

TE
N

T_
A

C
TI

V
IT

Y
M

an
ife

st
Pe

rm
is

si
on

RE
A

D
_H

IS
TO

RY
_B

O
O

K
M

A
RK

S
M

an
ife

st
Pe

rm
is

si
on

C
H

A
N

G
E_

N
ET

W
O

RK
_S

TA
TE

M
an

ife
st

Pe
rm

is
si

on

IN
TE

RN
ET

M
an

ife
st

Pe
rm

is
si

on
RE

C
EI

V
E_

M
M

S
M

an
ife

st
Pe

rm
is

si
on

RE
CO

RD
_A

U
D

IO
M

an
ife

st
Pe

rm
is

si
on

SE
T_

TI
M

E_
ZO

N
E

M
an

ife
st

Pe
rm

is
si

on

N
FC

M
an

ife
st

Pe
rm

is
si

on
CO

N
TR

O
L_

LO
C

AT
IO

N
_U

PD
AT

ES
M

an
ife

st
Pe

rm
is

si
on

A
CC

ES
S_

LO
C

AT
IO

N
_E

XT
RA

_C
O

M
M

A
N

D
S

M
an

ife
st

Pe
rm

is
si

on
BR

O
A

D
C

A
ST

_W
A

P_
PU

SH
M

an
ife

st
Pe

rm
is

si
on

W
RI

TE
_A

PN
_S

ET
TI

N
G

S
M

an
ife

st
Pe

rm
is

si
on

BI
N

D
_A

CC
ES

SI
BI

LI
TY

_S
ER

V
IC

E
M

an
ife

st
Pe

rm
is

si
on

BI
N

D
_R

EM
O

TE
V

IE
W

S
M

an
ife

st
Pe

rm
is

si
on

A
D

D
_V

O
IC

EM
A

IL
M

an
ife

st
Pe

rm
is

si
on

RE
A

D
_P

RO
FI

LE
M

an
ife

st
Pe

rm
is

si
on

C
A

LL
_P

H
O

N
E

M
an

ife
st

Pe
rm

is
si

on

M
O

D
IF

Y_
A

U
D

IO
_S

ET
TI

N
G

S
M

an
ife

st
Pe

rm
is

si
on

BI
N

D
_A

PP
W

ID
G

ET
M

an
ife

st
Pe

rm
is

si
on

RE
A

D
_S

YN
C

_S
TA

TS
M

an
ife

st
Pe

rm
is

si
on

FL
A

SH
LI

G
H

T
M

an
ife

st
Pe

rm
is

si
on

BR
O

A
D

C
A

ST
_S

TI
C

K
Y

M
an

ife
st

Pe
rm

is
si

on
RE

A
D

_L
O

G
S

M
an

ife
st

Pe
rm

is
si

on

W
A

K
E_

LO
C

K
M

an
ife

st
Pe

rm
is

si
on

SE
T_

PR
O

C
ES

S_
LI

M
IT

M
an

ife
st

Pe
rm

is
si

on

RE
C

EI
V

E_
BO

O
T_

CO
M

PL
ET

ED
M

an
ife

st
Pe

rm
is

si
on

M
O

U
N

T_
U

N
M

O
U

N
T_

FI
LE

SY
ST

EM
S

M
an

ife
st

Pe
rm

is
si

on

RE
ST

A
RT

_P
A

C
K

A
G

ES
M

an
ife

st
Pe

rm
is

si
on

BI
N

D
_T

EX
T_

SE
RV

IC
E

M
an

ife
st

Pe
rm

is
si

on

ASHAWA AND MORRIS 11 of 26

T
A

B
L

E
7

(C
on

tin
ue

d)

Fe
at

ur
e

C
at

eg
or

y
Fe

at
ur

e
C

at
eg

or
y

BL
U

ET
O

O
TH

M
an

ife
st

Pe
rm

is
si

on
IN

ST
A

LL
_L

O
C

AT
IO

N
_P

RO
V

ID
ER

M
an

ife
st

Pe
rm

is
si

on

RE
A

D
_C

A
LE

N
D

A
R

M
an

ife
st

Pe
rm

is
si

on
SY

ST
EM

_A
LE

RT
_W

IN
D

O
W

M
an

ife
st

Pe
rm

is
si

on

RE
A

D
_C

A
LL

_L
O

G
M

an
ife

st
Pe

rm
is

si
on

M
O

U
N

T_
FO

RM
AT

_F
IL

ES
YS

TE
M

S
M

an
ife

st
Pe

rm
is

si
on

SU
BS

C
RI

BE
D

_F
EE

D
S_

W
RI

TE
M

an
ife

st
Pe

rm
is

si
on

C
H

A
N

G
E_

CO
N

FI
G

U
RA

TI
O

N
M

an
ife

st
Pe

rm
is

si
on

RE
A

D
_E

XT
ER

N
A

L_
ST

O
RA

G
E

M
an

ife
st

Pe
rm

is
si

on
C

LE
A

R_
A

PP
_U

SE
R_

D
AT

A
M

an
ife

st
Pe

rm
is

si
on

V
IB

RA
TE

M
an

ife
st

Pe
rm

is
si

on
C

H
A

N
G

E_
W

IF
I_

ST
AT

E
M

an
ife

st
Pe

rm
is

si
on

A
CC

ES
S_

N
ET

W
O

RK
_S

TA
TE

M
an

ife
st

Pe
rm

is
si

on
RE

A
D

_F
RA

M
E_

BU
FF

ER
M

an
ife

st
Pe

rm
is

si
on

SU
BS

C
RI

BE
D

_F
EE

D
S_

RE
A

D
M

an
ife

st
Pe

rm
is

si
on

A
CC

ES
S_

SU
RF

A
C

E_
FL

IN
G

ER
M

an
ife

st
Pe

rm
is

si
on

C
H

A
N

G
E_

W
IF

I_
M

U
LT

IC
A

ST
_S

TA
TE

M
an

ife
st

Pe
rm

is
si

on
BR

O
A

D
C

A
ST

_S
M

S
M

an
ife

st
Pe

rm
is

si
on

W
RI

TE
_C

A
LE

N
D

A
R

M
an

ife
st

Pe
rm

is
si

on
EX

PA
N

D
_S

TA
TU

S_
BA

R
M

an
ife

st
Pe

rm
is

si
on

M
A

ST
ER

_C
LE

A
R

M
an

ife
st

Pe
rm

is
si

on
IN

TE
RN

A
L_

SY
ST

EM
_W

IN
D

O
W

M
an

ife
st

Pe
rm

is
si

on

U
PD

AT
E_

D
EV

IC
E_

ST
AT

S
M

an
ife

st
Pe

rm
is

si
on

SE
T_

A
CT

IV
IT

Y_
W

AT
C

H
ER

M
an

ife
st

Pe
rm

is
si

on

W
RI

TE
_C

A
LL

_L
O

G
M

an
ife

st
Pe

rm
is

si
on

W
RI

TE
_C

O
N

TA
CT

S
M

an
ife

st
Pe

rm
is

si
on

D
EL

ET
E_

PA
C

K
A

G
ES

M
an

ife
st

Pe
rm

is
si

on
BI

N
D

_V
PN

_S
ER

V
IC

E
M

an
ife

st
Pe

rm
is

si
on

G
ET

_T
A

SK
S

M
an

ife
st

Pe
rm

is
si

on
D

IS
A

BL
E_

K
EY

G
U

A
RD

M
an

ife
st

Pe
rm

is
si

on

G
LO

BA
L_

SE
A

RC
H

M
an

ife
st

Pe
rm

is
si

on
A

CC
ES

S_
M

O
C

K
_L

O
C

AT
IO

N
M

an
ife

st
Pe

rm
is

si
on

D
EL

ET
E_

C
A

C
H

E_
FI

LE
S

M
an

ife
st

Pe
rm

is
si

on
G

ET
_P

A
C

K
A

G
E_

SI
ZE

M
an

ife
st

Pe
rm

is
si

on

W
RI

TE
_U

SE
R_

D
IC

TI
O

N
A

RY
M

an
ife

st
Pe

rm
is

si
on

M
O

D
IF

Y_
PH

O
N

E_
ST

AT
E

M
an

ife
st

Pe
rm

is
si

on

RE
O

RD
ER

_T
A

SK
S

M
an

ife
st

Pe
rm

is
si

on
C

H
A

N
G

E_
CO

M
PO

N
EN

T_
EN

A
BL

ED
_S

TA
TE

M
an

ife
st

Pe
rm

is
si

on

W
RI

TE
_P

RO
FI

LE
M

an
ife

st
Pe

rm
is

si
on

C
LE

A
R_

A
PP

_C
A

C
H

E
M

an
ife

st
Pe

rm
is

si
on

SE
T_

W
A

LL
PA

PE
R

M
an

ife
st

Pe
rm

is
si

on
SE

T_
O

RI
EN

TA
TI

O
N

M
an

ife
st

Pe
rm

is
si

on

FE
AT

U
RE

SB
IN

D
_I

N
PU

T_
M

ET
H

O
D

M
an

ife
st

Pe
rm

is
si

on
RE

A
D

_C
O

N
TA

C
TS

M
an

ife
st

Pe
rm

is
si

on

RE
A

D
_S

O
C

IA
L_

ST
RE

A
M

M
an

ife
st

Pe
rm

is
si

on
D

EV
IC

E_
PO

W
ER

M
an

ife
st

Pe
rm

is
si

on

RE
A

D
_U

SE
R_

D
IC

TI
O

N
A

RY
M

an
ife

st
Pe

rm
is

si
on

H
A

RD
W

A
RE

_T
ES

T
M

an
ife

st
Pe

rm
is

si
on

PR
O

C
ES

S_
O

U
TG

O
IN

G
_C

A
LL

S
M

an
ife

st
Pe

rm
is

si
on

A
CC

ES
S_

W
IF

I_
ST

AT
E

M
an

ife
st

Pe
rm

is
si

on

C
A

LL
_P

RI
V

IL
EG

ED
M

an
ife

st
Pe

rm
is

si
on

W
RI

TE
_E

XT
ER

N
A

L_
ST

O
RA

G
E

M
an

ife
st

Pe
rm

is
si

on

BI
N

D
_W

A
LL

PA
PE

R
M

an
ife

st
Pe

rm
is

si
on

A
CC

ES
S_

FI
N

E_
LO

C
AT

IO
N

M
an

ife
st

Pe
rm

is
si

on

RE
C

EI
V

E_
W

A
P_

PU
SH

M
an

ife
st

Pe
rm

is
si

on
SE

T_
W

A
LL

PA
PE

R_
H

IN
TS

M
an

ife
st

Pe
rm

is
si

on

SE
T_

PR
EF

ER
RE

D
_A

PP
LI

C
AT

IO
N

S
M

an
ife

st
Pe

rm
is

si
on

12 of 26 ASHAWA AND MORRIS

T A B L E 8 API call signature feature vectors

Feature Category Feature Category

onServiceConnected API call signature createSubprocess API call signature

bindService API call signature URLClassLoader API call signature

attachInterface API call signature abortBroadcast API call signature

ServiceConnection API call signature TelephonyManager.getDeviceId API call signature

android.os.Binder API call signature getCallingPid API call signature

Ljava.lang.Class.getCanonicalName API call signature Ljava.lang.Class.getPackage API call signature

Ljava.lang.Class.getMethods API call signature Ljava.lang.Class.getDeclaredClasses API call signature

Ljava.lang.Class.cast API call signature PathClassLoader API call signature

Ljava.net.URLDecoder API call signature TelephonyManager.getSimSerialNumber API call signature

android.content.pm.Signature API call signature Runtime.load API call signature

android.telephony.SmsManager API call signature TelephonyManager.getCallState API call signature

getBinder API call signature TelephonyManager.getSimCountryIso API call signature

ClassLoader API call signature sendMultipartTextMessage API call signature

Landroid.content.Context.registerReceiver API call signature PackageInstaller API call signature

Ljava.lang.Class.getField API call signature sendDataMessage API call signature

Landroid.content.Context.unregisterReceiver API call signature HttpPost.init API call signature

Ljava.lang.Class.getDeclaredField API call signature Ljava.lang.Class.getClasses API call signature

getCallingUid API call signature TelephonyManager.isNetworkRoaming API call signature

Ljavax.crypto.spec.SecretKeySpec API call signature HttpUriRequest API call signature

android.content.pm.PackageInfo API call signature divideMessage API call signature

KeySpec API call signature Runtime.exec API call signature

TelephonyManager.getLine1Number API call signature TelephonyManager.getNetworkOperator API call signature

DexClassLoader API call signature MessengerService API call signature

HttpGet.init API call signature IRemoteService API call signature

SecretKey API call signature Set_Alarm API call signature

Ljava.lang.Class.getMethod API call signature Account_Manager API call signature

System.loadLibrary API call signature TelephonyManager.getSimOperator API call signature

android.intent.action.SEND API call signature onBind API call signature

Ljavax.crypto.Cipher API call signature Process.start API call signature

android.telephony.gsm.SmsManager API call signature Context.bindService API call signature

TelephonyManager.getSubscriberId API call signature ProcessBuilder API call signature

Runtime.getRuntime API call signature Ljava.lang.Class.getResource API call signature

Ljava.lang.Object.getClass API call signature defineClass API call signature

Ljava.lang.Class.forName API call signature findClass API call signature

Binder API call signature Runtime.loadLibrary API call signature

android.os.IBinder API call signature transact API call signature

http://ljava.net
http://android.content.pm
http://android.content.pm

ASHAWA AND MORRIS 13 of 26

Our model computational time (TR) and the classification rate of accuracy (AR) is defined by the following equations,
respectively as:

TR =
n∑

i=1
T(ri) ∣ ri ∈ R (8)

AR =
n∑

i=1
a(ri) ∣ ri ∈ R (9)

To prevent the classifiers from going beyond the threshold level (𝜑) given that AR ≤ 𝜑 and all the n classifiers in our
model must not exceed the minimum classifiers’ number (E), we defined the minimum function in the system operates
as follows:

min
n

=
n∑

i=1
ri ≤ E (10)

Given a condition that each permission requested by the application is labeled as either malicious or benign as gi ∈ {Cm,
Cb}, ∀gi ∈G, 1≤ i≤m; where Cm represents class label for the malicious permission request, Cb represents class label
for the benign permission request, respectively. We included the classifiers’ number E to help determine the effective-
ness of our classifier. It also helps comparison with different machine learning classifiers in case there is a disparity in
classification performance between them. Each binary number represents a cluster attribute in the decision list. Using
2-fold cross-validation, we constructed attributes rules with each cluster in the decision list. Concerning the feature vec-
tors, each attribute can either be a false or a true and must contain each value representation in both clusters (cluster 0
and cluster 1). All the features were spread over pr_partion_0 which shows the distribution value for each attribute in
a density-based clustering pattern. The cluster attributes from attribute a0 to attribute a9 were formed using association
rules57 for feature mining attributes logical values (see Algorithm 2).

Algorithm 2. Classification of permission feature vector from the database

Input: Android applications’ manifest xml file
Output: Android permission features
1: all permissions ←−∀ 𝜹 // generating permission information
2: for 0 to Max_iteration do
3: if all perm==𝜹
4: then for 0 to total perm do
5: malicious perm←−select feature (0, 1) // padded zeros and leading zeros
6: newperm ←−newperm

⋃
{malicious}

7: else
8: for new.total ()< totalperm do
9: select K, L∈ (0, |allpermissions|)
10: malicious = K_crossover (allpermissions[k], allpermissions[l])
11: for maliciousperm∈ newperm do
12: for benignpermk ∈ newperm do
13: if ∃ maliciousperm| maliciousperml ∈ newperm

⋀
k≠l.maliciouspermk ≻ maliciousperml

14: then
15: newperm ←−newperm∖ maliciouspermk
16: if newperm ⊏ ∀maliciousperm then
17: permission_feature_vector [index] ←−1
18: else
19: permission_feature_vector [index] ←−0
20: return android_permission_feature_vectors
21: exit

14 of 26 ASHAWA AND MORRIS

4 FRAMEWORK DESCRIPTION

This subsection of the article describes the neural network approach applied in our proposed framework known as APC.
The principle used in developing our classification model is the principle of convolutional neural networks for recognizing
patterns in datasets.58,59 We defined our neural network system S ∈ {1, 2, 3} to consist of l number of layers defined as
lS = {1,2, … , n}, respectively. In our framework, the vector input x that enters the initial network was represented as𝓍S.
From linear transformation, the output from the initial network was transformed from a matrix to another vector (𝒵)
into the second layer to form the incoming vector represented as 𝒵 (𝓍S). Where 𝒵 is the transformation function. From
partial differentiation, y = f (𝓍) where y is the output of the function. The rectified linear unit (ReLu) as the activation
function applied in our neural network model is defined as:

y = f (x) =

{
0 for x < 0
x for x ≥ 0

(11)

The transformation z over the input vector x, weights W and biases b on the above function is defined as:

z = f (x,w, b) (12)

y = g(x) (13)

To design a classification model that captures multidimensional data inputs with weights and biases, we applied
max-pooling operation after convolution with Relu function as follows:

z = tanh(f (x1,w1, b1)) (14)

y = Relu(f (z,w2, b2)) (15)

Relu(x) = max(0, z) (16)

where ReLu is the activation function of the network, x is the input vector, w is the network weight and b are the biases
in the network, respectively. The output, weights, and biases from the network layer lSwhile applying the ReLu function
(activation function) in the initial network using backpropagation was defined by the following equations:

y(ls + 1) = f (Z(ls + 1)) (17)

z(ls + 1) = w(ls + 1).y(ls) + b(ls + 1) (18)

where W are the network weights, b are the network biases, y(lS) output vector, and f is the network activation function,
respectively. Based on the working principle illustrated in the transformation operation shown in the figure above, the
output in the initial network layer was been transformed and became an input vector in the final network of our neural
network model as follows:

z′(⟨i′ + 1⟩) = w′(⟨i′ + 1⟩).y′(ls) + b′(ls+1) (19)

To help predict the probability of the output between 0 and 1 range, the squashing function (𝜎) was applied at the last
layer of the network. This is to determine permission is malicious (1) or benign (0) in our framework. Given the quashing
function 𝜎, the number of layer n in the neural network, the output vector of the final layer y′, the input vector x in the
network; The transformation at the last layer of the network was defined as follows:

y′(nx) = 𝜎(z′(nx)) (20)

where 𝜎 is the applied squashing function, n is the number of layers in the neural network, y′ is the output vector of the
final layer, x is the input vector in the network, and Z is the matrix vector, respectively. The overall system architecture (as
shown in Figure 1) illustrates the various processes performed from dataset collection to binary feature vector generation.

ASHAWA AND MORRIS 15 of 26

F I G U R E 1 The overall system architecture

4.1 Network overfitting

When developing a classification model using a neural network, network overfitting characterizes the basic drawback
in many models. To avoid overfitting occurrence, our research applied Bayesian regularization (BR) technique.60,61 The
choice to choose the Bayesian regularization over other algorithms such as Levenberg–Marquardt48 is its capability to
show potential convoluted relationships between variables in the distribution of a dataset. Therefore, providing robust-
ness in the model. Unlike Dropout regulation62 that skips some unit randomly during training of the network, Bayesian
regularization technique skips the model from bias definition,63 thus, making the model totally reliant on biases and
weights associated with the network units. Using BR in the APC model provides the framework with enhanced generation
performance and achieved the best network validation performance.

The overall problem definition of the Bayesian regularization training to overcome network overfitting is defined in
the equation as follows:

y(t) = f (x(t − 1), … , x(t − d), y(t − 1), … , y(t − d)) (21)

where x is the random variable taken definite values between 0 and 1 in the dataset of X independent variables, d is the
number of delays in the network, t is the target variable, f is the nonlinear function of x variables, and y(t) is the output of
the target value. Our dataset was trained by introducing a linear function w to minimalize the error in t. The expectation
(E) of the nonlinear function f is defined as:

E[f] = ∫ p(x).f (x)dx (22)

We defined the average expected loss L when a malicious permission is wrongly classified as benign as follows:

E[L] = ∫ ∫ L(t, y(x))p(x, t)dxdt (23)

where L(t, y(x)) = (y(x)− t)2 and p(x, t) are normal distribution parameters. The MSE over the parameterized function is
the model cost function. The neural network operation (as shown in Figure 2) schematically shows the operation function
of the proposed classifier.

16 of 26 ASHAWA AND MORRIS

F I G U R E 2 An illustration of the neural network working operation function of the proposed classifier

4.2 Regularization of feature diversity

Feature redundancy (FRc) is one of the major factors that enhance errors in classification and detection frameworks.
Most conventional classification algorithms are limited to inaccurate discrimination of features related to malware. This
is due to the daily emergence of different malware variants with unique attributes. To minimize classification errors that
could occur because of FRc, diversity regularization technique 64 was applied in our framework. During this process, we
discarded all the features with self-correlation and only those whose correlation values are above the diversity threshold
𝜏 were considered. The diversity threshold provides a trade-off parameter to ensure that feature vectors in the malware
dataset are adequately differentiated. Feature sharing across several high-level attributes is ensured. Consider a vector
space V = {f 1,f 2, … , f n}, were fs are feature vectors. The similarity that exists between two feature vectors say, f1 and f2 is
determined by the correlation that occurs between f1 & f2.

During the training process, SIMc is set to take definite values within the range of −1 to 1. The SIMc value is negative
(−1) when f1 & f2 have opposite direction in the feature vector subspaceV. This does not connote the vectors in this direc-
tion are negative feature vectors. SIMc Value is set to zero (0) if f1 & f2 in the vector space are in an orthogonal projection
direction. For instance, when f1 & f2 are in orthogonal projection, we defined it in a bilinear form as follows: <f1 & f2>= 0
for i ≠j. The regularization cost for feature vector diversity abbreviated as (DrC) in the APC neural network layer lth with
connecting feature networks given n number of neurons in l layer, and the binary mask variable mi,j,.

To determine the earliest time that features classification failure may occur, the threshold parameter τ was taken as a
hyperparameter assuming values between 0 and 1. During the experiment, we avoided setting the hyperparameter to zero
(0) to avoid feature orthogonality. This was considered due to feature sharing abilities that exist in android based appli-
cations. To enforce feature diversity during training, the diversity factor 𝜆 in the experiments was performed at 1, 5, 15,
and 30, respectively, using 100 iterations. The threshold parameter was performed at 𝜏=0.1, 0.2, and 0.3, respectively. The
regularization cost for feature vector diversity abbreviated as (DrC) in the APC neural network layer lth with connecting
feature networks given n number of neurons in l layer, and the binary mask variable mi,j, edged with the SIMc and the
features in the vector space is defined as:

DrCf (l) = 1
2

n∑
n=1

n∑
j=1,i≠j

mi,j(l) = (SIMc(fi,fj)(l))2 (24)

ASHAWA AND MORRIS 17 of 26

The feature variables with binary mask (mi,j) and the hyperparameter 0≤𝜏≤1 with the dot product determinant (Ω) of
i and j with the regularized layers defined as:

Mi,j =
⎧⎪⎨⎪⎩

1 𝜏 ≤ |Ωi,j| ≤ 1
0 i = j
0 otherwise

(25)

where τ is threshold parameter. The similarity that exists between two feature vectors say, f1 and f2, is determined by the
correlation that occurs between f1 & f2. This correlation is defined by the cosine similarity measure (SIMc) function as:

SIMc(f1,f2) =
⟨f1,f2⟩⟨∥ f1 ∥∥ f2 ∥⟩ (26)

The overall DrC of the FRc was evaluated to 2.413 which has higher feature divergence capacity out of threefold measure.

4.3 System learning approach

To enhance the classifier’s accuracy and control the partial feature extraction problem, each permission type from the
feature vector was learned from each the initial layer of the neural network with a learning rate of 0.01. This approach
is repeated from initial layer to the final layer. At each layer, the succeeding layer learns from the preceding layer. Given
the network layer lS = {1, 2… n} (see Section 4), l0 learns froml1, l2 learns from l1, respectively, while updating each
network. Also, where a permission feature cannot be extracted in the manifest file, zeros were paddled to form a fea-
ture vector whose attribute is not associated with permission feature vectors. This helps the classifier in detecting and
differentiating permission features with a high threat to the protection level provided there is at least one (1) in the
feature vector.

This learning strategy of the APC model showed a significant reduction in the time taken for the network to be trained.
The approach was applied to overcome the more time it requires when using the BR regularization algorithm. Though the
Levenberg-Marquardt algorithm typically requires less time, it does not result in a good generalization for difficult, small,
or noisy data. Apart from enhancing classification accuracy of the model, produced a low MSE and SSE but it showed a
high correlation coefficient and classification accuracy. Error estimation was significantly minimized using the approach
due to the objection function in BR.

5 EXPERIMENTAL EVALUATION

In this section, we present the performance evaluation of the APC framework. We also present experimental using the col-
lected data set to validate the proposed permission classification model based on threat and protection level, respectively.
Different experiments were conducted to determine the classifier’s performance. This section also presented the exper-
imental design, the classifier’s performance metric, and comparison with state-of-art classification systems, discussion,
and conclusions.

5.1 Experimental setup

We performed the experiment in a controlled environment using a VMware workstation. The virtual environment was
created and used for this research to avoid malware escalation to the outside world. The virtualization approach of
the research experimental design helped in ensuring that the network infrastructure and other system resources are
not affected. Our framework was implemented in python, Keras library,65 TensorFlow,66 and Scikit learn67 were used
for modeling our neural network, cluster modeling, and other algorithms for the classifier. We analysed the result and
performance of our APC model using WEKA toolkit.68 WEKA is an open-source Waikato environment for knowledge
analysis.

18 of 26 ASHAWA AND MORRIS

F I G U R E 3 ROC showing the AUC of
the classifier

T A B L E 9 Performance metrics comparison with34,71,72

Precision (%) Recall (%) FPR (%) F1-Score (%) ACC (%) AUC (%)

APC 97.0 98.60 0.20 98.0 97.00 95.00

[34] 94.30 94.50 0.56 94.60 94.38 94.60

[71] 91.60 90.70 0.86 91.80 90.72 86.00

[72] 92.40 87.50 2.38 94.12 90.54 92.00

5.2 Evaluating performance metric

To evaluate the classifier performance, Area Under Curve (AUC) was used to measure the classifier’s performance. This
measurement approach helps to evaluate how efficiently the classifier can classify permission requests has been benign
or malicious. Also, AUC been the area under the Receiver Operating Characteristics (ROC) curve displays the graphical
representation or illustration of a binary classifier’s analytical ability for its discriminate threshold (as shown in Figure 3).
A different experimental test was used to derive variance measures. Precisely, our research used threshold averaging ROC
curve methodology 69 rather than vertical averaging. Although vertical averaging 70 easily makes single averages of depen-
dent variables and TPR which significantly calculates the confidence intervals and makes it simplified. However, when
using a vertical averaging approach, the researcher does not have direct and absolute control of the FPR and independent
variables. As a result, we used a threshold averaging curve to control the classifier’s threshold scores by ensuring that at
each threshold, the corresponding ROC curve was averaged.

The APC framework used the AUC also called the c-statistic of the ROC curve for performance evaluation of the APC
classifier. An AUC value of >0.9 (See Figure 3) was obtained by the framework which shows outstanding discrimination
of the feature variables used. These were tested centered on the utmost information gain computed, attaining 95.012%
(approximately 95%) confidence interval AUC that is 0.97± 0.006. ROC curve and AUC represent the plot of sensitivity ver-
sus 1-Specificity as a means of efficiently determining the framework’s accuracy with meaningful elucidation. ROC curve
plays a fundamental function in assessing the analytical capability of the framework to differentiate the true subject states
to get the best cuff of values. This helps in comparing alternative models or investigative tasks that were performed under
the same subject. In summary, the ROC curve was used to evaluate and c compare the performance of the APC classifier.

5.2.1 Comparison with state-of-art classification systems

We conducted a survey on previous works on Android permissions classifications using general machine learning algo-
rithms, deep learning methods, and the neural networks approach. We focused our comparison on six (6) performance

ASHAWA AND MORRIS 19 of 26

T A B L E 10 Performance comparison
with traditional classifiers

Classifier ACC AUC Tr

PCAE PCAD PCAE PCAD PCAE PCAD

KNB 86.2 89.2 0.92 0.93 12.713 9.355

CSVM 92.5 93.7 0.91 0.92 9.989 5.067

CDT 89.9 92.2 0.90 0.93 4.204 2.0134

ABT 89.9 93.2 0.93 0.94 13.755 11.961

WKNN 90.5 93.7 0.86 0.90 3.045 2.339

F I G U R E 4 Feature diversity
of the APC framework compared
with other existing classifiers

metrics namely: the classifier’s accuracy, precision, recall, False Positive Rate (FPR) of the classifier’s value, the F-measure
values, and the AUC (as shown in Table 9).

The comparative represented of the existing frameworks. APC: Our framework. The frameworks in the research
of71,34 and72 are the previously proposed frameworks. FPR: is the false positive rate for each framework, AUC repre-
sents the AUC. F-measure is the F1 Score which measures the test’s accuracy of the binary classifiers. As shown in
Table III, the machine learning detection approach proposed by Peiravian and Zhu72 using permission and API calls
obtained an accuracy value of 0.18% lower than the framework proposed by Aung and Zaw,34 and 3.84% lower than.71

Although all the frameworks71,34,72 used a similar approach to feature extraction, the method proposed in Xiong et al.71

focused on contrasting permission patterns and obtained a very low FPR compared to Aung and Zaw34 and Peiravian and
Zhu.72 Our framework reached an FPR value of 0.20, which is significantly lower than the surveyed frameworks, and
97% classification accuracy. Finally, unlike the previous works, our framework extracts various feature vector sets cate-
gories and was not limited to opcode sequence features. By this, generalization and application of our framework when
using diverse benign and malicious attributes become more effective. While the proposed approach of Bakour et al.9
focused on opcode sequence and frequency features, our framework centralized on the feature selection principle of
centroid methods.

20 of 26 ASHAWA AND MORRIS

F I G U R E 5 Effect of threshold and diversity factor on feature regularization

5.2.2 Evaluating feature diversity of the APC model

We compared our framework with five traditional machine learning classifiers namely: Kernel Naïve Bayes (KNB),
Cubic Support Vector Machine (KSVM), Weighted K Nearest Neighbor (WKNN), Ada Boosted Tree (ABT), and Coarse
Decision Tree (CDT) to compare their capacity of feature diversity performance (as shown in Table 10). In each
of the classifiers, we applied Principal Components Analysis (PCA). PCA approach enhances feature vector trans-
formation and reduces redundancy in their dimensions. Two different experiments were conducted during PCA
application on the classifiers. In the first experiment, the PCA was enabled to help the classifiers keep enough com-
ponents to explain up to 95% variance. After the training, we observed that irrelevant components were kept, and
only variances of the most significant components will be shown. We observed that higher accuracy was achieved
when PCA was disabled than when it was disabled during the classification. In addition, more training time was
required for each of the classifiers to finish classification when PCA was enabled. Less training time was taken at
disabled PCA

PCAE: Represents Principal Components Analysis enabled. PCAD: represents Principal Components Analysis Dis-
abled. Tr: represents the training time when PCA was both enabled and disabled. Our framework obtains a divergence
value of 3.4672 and a feature diversity capacity of 4.583, respectively (as shown in Figure 4). The capacity of feature
diversity of APC is higher compared to the survey classifiers in this study.

The effect of threshold and diversity factor on feature regularization (as shown in Figure 5) are determined at different
threshold parameter values and iterations. The blue line from (b) indicates that the feature diversity increases as the
diversity factor increases. Also, when the threshold parameter decreases, the diversity cost increases as in the yellow

ASHAWA AND MORRIS 21 of 26

F I G U R E 6 Dangerous
permissions classification by the
framework

line of (a) and (c), respectively. During feature diversity experimentation, it was observed that the regularization cost for
feature vector diversity increases with a decrease in threshold parameter 𝜏 and the diversity factor 𝜆, respectively.

5.2.3 Evaluating permission and threat levels

Using the association rule, the result shows that some permissions appeared frequently together. Permissions such as
READ_SMS and WRITE_SMS have 97.207% of appearance. They were also frequently requested. We also found that
READ_EXTERNAL_STORAGE and WRITE_EXTERNAL_STORAGE_ have a 91.503% chance to appear together. Our

22 of 26 ASHAWA AND MORRIS

F I G U R E 6 (Continued)

framework consistently produces a similar pattern of the recall rates. APC classified 24 permissions as having a very high
threat level to Android protection based on their frequency of occurrence and request. Permissions classification was
based on polarised and radared feature vector distribution (as shown in Figure 6).

The topological data representation and analysis of dangerous features are classified. (a) are the permissions features
when the feature set was polarized without stacking, (b) were classified with polarized stacking values, (c) when the
training dataset values were stacked to 100 permission features, (d) when the dataset was radared without values been
stacked, (e) radared with stacking values, (f) when the radared dataset stacked to 100. When the permission feature vectors

ASHAWA AND MORRIS 23 of 26

F I G U R E 7 Classified
permissions with different
threat levels by our framework

were polarized with and without stacking by the framework, the same permission features were classified as having a
high threat level to the protection level. The details of the permissions with their respective threat levels (as shown in
Figure 7).

6 CONCLUSION

Android is the most popular mobile OS platform in recent times. The popularity of Android brought a corresponding
increase in the number of attacks targeting the OS. One of the most common and well-known attacks highly experi-
enced by the OS is malware. Malware attacks on Android have caused several security risks ranging from device damage,
privacy breach, to financial loss. Different detection and classification tools designed focus chiefly on malware classifi-
cation and detection no traction to how permissions are used as attack vectors. This article aims to develop a framework
for classifying android permission requests to improve the security and protection level of android mobile devices. Our
research shows that the accuracy of permission requests by malicious applications can be enhanced by using an effective
classification framework. Classification of android permissions with high threat levels can be improved without having
much impact on the classification accuracy by using a regularization approach to increase feature diversity selection pro-
cedure. We proposed a new android permission classification framework. The best performance, obtained by combining
regularization and feature diversity scheme, is a 97% classification accuracy of the model.

In general, a total of four distinct features were extracted from different APK file segments. We used feature vectors
such as API calls, command signatures, permission requests to train the network. To increase the classifiers’ performance
run time, only 113 permissions were considered with 97% classification accuracy. This dataset is likely of Android plat-
form version 4.4 W (KitKat Watch). Other learning algorithms tested achieved 92.4% accuracy on average when PCA was
disabled and 89.8% when PCA was disabled, respectively. The results of the experiments presented in this work show a
higher AUC achievement of 95% compared with the state-of-the-art permission request classification and other machine
learning classifiers. We suggested a regularization function for feature diversity to reduce filtering and FRc. This helps
to increase feature diversity selection procedure and generalization of the framework improvement. Our framework has
a higher capacity for feature diversity when compared with traditional machine learning algorithms. Our framework
classified 24 permissions as having a higher threat level to Android protection level than the rest of the permissions.

24 of 26 ASHAWA AND MORRIS

Notwithstanding the positive performance result obtained, additional research must be done to improve the accuracy and
synthesis of the relationship between threat and protection level of the permission request. This forms our future work
and the direction for future research.

ACKNOWLEDGMENTS
This research is supported by the Petroleum Technology Development Fund (PTDF) by a grant
PTDF/ED/PHD/AMA/1245/17.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are openly available on request in the Cranfield University CORD.

ORCID
Moses Ashawa https://orcid.org/0000-0002-1016-0791

REFERENCES
1. Ashawa M, Ogwuche I. Forensic data extraction and analysis of left artifacts on emulated android phones: A case study of instant messaging

applications. Circ Comput Sci. 2017;2(11):8-16.
2. Ashawa M, Mansour A, Haider MA. Extracting data from Android’s instant messaging and social media apps. Quar Mag Digital Forensics

Pract. 2017;33:1.
3. Smartphone Market Share. The International Data Corporation (IDC) Worldwide Quarterly Mobile Phone. https://www.idc.com/promo/

smartphone-market-share/os.
4. Kim T, Kang B, Rho M, Sezer S, Im EG. A multimodal deep learning method for android malware detection using various features. IEEE

Trans Inf Forensics Secur. 2019;14(3):773-788.
5. Tuan LH, Cam NT, Pham VH. Enhancing the accuracy of static analysis for detecting sensitive data leakage in Android by using dynamic

analysis. Clust Comput. 2019;22(1):1079-1085.
6. Meng Z, Xiong Y, Huang W, Qin L, Jin X, Yan H. AppScalpel: Combining static analysis and outlier detection to identify and prune

undesirable usage of sensitive data in Android applications. Neurocomputing. 2019;341:10-25.
7. Kabakus AT. What static analysis can utmost offer for android malware detection. Inform Technand Cont. 2019;48(2):235-240.
8. Vinayakumar R, Soman KP, Poornachandran P, Sachin Kumar SS. Detecting Android malware using long short-term memory (LSTM).

J Intell Fuzzy Syst. 2018;34(3):1277-1288.
9. Bakour K, Ünver H, Ghanem R. The Android Malware Static analysis: Techniques, limitations, and open challenges. In 3rd International

Conference on Computer Science and Engineering (UBMK) 2018, 586–593.
10. Firdaus A, Anuar NB, Karim A, Ab Razak MF. Discovering optimal features using static analysis and a genetic search-based method for

Android malware detection. Front Inf Technol Electron Eng. 2018;19(6):712-736.
11. Li J, Sun L, Yan Q. Significant permission identification for machine-learning-based android malware detection. IEEE Trans Ind Inform.

2018;14(7):3216-3225.
12. Zhu HJ, You ZH, Zhu ZX, Shi Z, Chen WL, Cheng L. DroidDet: effective and robust detection of android malware using static analysis

along with rotation forest model. Neurocomputing. 2018;272(272):638-646.
13. Lee WY, Saxe J, Harang R. SeqDroid: Obfuscated android malware detection using stacked convolutional and recurrent neural networks.

Deep learning applications for cyber security. Cham: Springer; 2019:197-210.
14. Xiao X, Zhang S, Mercaldo F, Hu G, Sangaiah AK. Android malware detection based on system call sequences and LSTM. Multimed Tools

Appl. 2019;78(4):3979-3999.
15. Das S, Dubrovsky AE, Korsunsky I, Dhablania A, Muender JEG. SonicWALL Inc, 2019. Just in time memory analysis for malware detection.

U.S. Patent Application 15/890,192.
16. Lalande JF, Viet Triem Tong V, Graux P, Hiet G, Mazurczyk G, Berthomé P. Teaching android mobile security. Proceedings of the 50th

ACM Technical Symposium on Computer Science Education, 2019, 232–238.
17. Nissim N, Lahav O, Cohen A, Elovici Y, Rokach L. Volatile memory analysis using the MinHash method for efficient and secured detection

of malware in private cloud. Comput Secur. 2019;101590,87,1–20.
18. Grimmett Z, Staggs J, Shenoi S. Retrofitting Mobile Devices for Capturing Memory-Resident Malware Based on System Side-Effects. IFIP

Int Conf Dig Forens. 589. Cham, Switzerland: Springer Nature Switzerland AG; 2019:59-72.
19. Zhao C, Wang C, Zheng W. Android malware detection based on sensitive permissions and APIs. Int Conf Secur Priva New Comput

Environ. . Cham: Springer; 2019:105-113.
20. Kuo WC, Liu TP, Wang CC. Study on Android Hybrid Malware detection based on machine learning. 2019 IEEE 4th Int Conf Comput

Commun Syst ICCCS. 2019, 31–35.
21. Wang W, Zhao M, Wang J. Effective android malware detection with a hybrid model based on deep autoencoder and convolutional neural

network. J Amb Intelli Hum Comput. 2019;10(8):3035-3043.
22. Kothari S. Real time analysis of android applications by calculating risk factor to identify botnet attack. ICCCE 2019. Singapore: Springer;

2020:55-62.

https://orcid.org/0000-0002-1016-0791
https://orcid.org/0000-0002-1016-0791
https://www.idc.com/promo/smartphone-market-share/os
https://www.idc.com/promo/smartphone-market-share/os

ASHAWA AND MORRIS 25 of 26

23. Lopes J, Serrão C, Nunes L, Almeida A, Oliveira J. Overview of machine learning methods for Android malware identification. In IEEE2019
7th Int Symp Dig Foren Secur. (ISDFS). 2019;1-6.

24. Fernando O, Colon C, Qiu H, Arrott A. Segmented sandboxing-A novel approach to Malware polymorphism detection. 2015 10th Int Conf
Mali Unwan Soft (MALWARE). 2015;59-68.

25. Ashawa M, Morris S. Analysis of Android Malware Detection Techniques: A systematic review. 2019;8(3):177-187.
26. Arnatovich YL, Wang L, Ngo NM, Soh C. A comparison of android reverse engineering tools via program behaviors validation based on

intermediate languages transformation. IEEE Access. 2018;6:12382-12394.
27. Talha KA, Alper DI, Aydin C. APK Auditor: Permission-based Android malware detection system. Digital Investig. 2015;13:1-14.
28. Androzoo. September 2019. [Online]. https://androzoo.uni.lu/
29. Android Malware Genome Project. Accessed September 2019. [Online]. http://www.malgenomeproject.org/
30. VirusShare. Accessed September 2019. [Online]. Available: https://virushare.com
31. Contagio Mobile. Accessed September 2019. [Online]. http://contagiomobile.deependresearch.org/index.html
32. Ashawa M, Morris S. Host-Based detection and analysis of android malware: Implication for privilege exploitation. 2019;9(2):871-880.
33. Huang C-Y, Tsai Y-T, Hsu HH. performance evaluation on permission-based detection for Android malware. Advances in Intelligence

Systems and Applications (Smart Innovation, Systems and Technologies), vol. 2. Berlin, Germany: Springer; 2013:11-120.
34. Aung Z, Zaw W. Permission-based Android malware detection. Int J Sci Technol Res. 2013;2(3):228-234.
35. Arp D, Spreitzenbarth M, Hubner M, Gascon H, Rieck K. DREBIN: Effective and explainable detection of Android malware in your pocket.

Proc Netw Distrib Syst Secur Symp (NDSS). 2014;14:23-26.
36. Narayanan A, Yang L, Chen L, Jinliang L. Adaptive and scalable Android malware detection through Online learning. Proc Int Joint Conf

Neural Netw (IJCNN). 2016;2484-2491.
37. Enck W, Gilbert P, Chun BG, et al. TaintDroid: An information flow tracking system for real time privacy monitoring on smartphones.

ACM Trans Comput Syst. 2014;32(2):5.
38. Yan LK, Yin H. DroidScope:Seamlessly reconstructing the OSand Dalvik semantic views for dynamic Android malware analysis. Proc.

21st USENIK secur. Symp. 2012, 569–584.
39. Schmidt AD, Peters F, Lamour F, Scheel C, Campete SA, Albayrak S. Monitoring smartphones for anomaly detection mobile. Netw Appl.

2009;14(1):92-106.
40. McLaughin N, Ricon JM, Kang B, et al.. Deep Android malware detection. Proc. ACM Conf. Data Appl. Secur. Privacy (CODASPY), 2017,

301–308.
41. Saxe J, Berlin K. Deep neural network-based malware detection using two-dimensional binary program features. Proc. 10th Int. Conf.

Malicious unwanted Softw. (MALWARE), Oct. 2015, 11–20.
42. David OE, Netanyahu NS. Deep sign: Deep learning for automatic signature generation and classification. Proc. Int. Conf. Joint Conf.

Neural Netw. (IJCNN), Jul. 2015, 1–8.
43. Kim T. Multimodal deep learning method for Android malware detection. IEEE Trans Info Forensic Secur. 2019;14(3):773-788.
44. McLaughlin N. Deep Android Malware detection. Proc. ACM Conf. Data Appl. Secur. Privacy (CODASPY), 2017, pp. 301–308.
45. Wang W, Wang X, Feng D, et al. Exploring permission-induced risk in Android applications for malicious application detection. IEEE

Trans Inform Forensics Secur. 2015;32(2):1-14.
46. Yerima S. Android malware dataset for machine learning 2. September 2019. [Online]. https://figshare.com/articles/Android_malware_

dataset_for_machine_learning_2/5854653.
47. Apktool - A tool for reverse engineering 3rd party, closed, binary Android apps. Accessed September 2019. [Online]. https://ibotpeaches.

github.io/Apktool/
48. Hao J, Zhang G, Zheng Y, Hu W, Yang K. Solution for selective harmonic elimination in asymmetric multilevel inverter based on stochastic

configuration Network and Levenberg-Marquardt Algorithm. 2019 IEEE Applied Power Electronics Conference and Exposition (APEC),
2019, 2855–2858.

49. Kim B, Lim K, Cho SJ, Park M. RomaDroid: A robust and efficient technique for detecting android app clones using a tree structure and
components of each app’s manifest file. IEEE Access. 2019;7:72182-72196.

50. Jha AK, Lee S, Lee WJ. Developer mistakes in writing android manifests: An empirical study of configuration errors. IEEE Int Work Conf
Min Softw Repos. 2017;25-36.

51. Pei W, Li J, Li H, Gao H, Wang P. ASCAA: API-level security certification of android applications. IET Softw. 2017;11(2):55-63.
52. Felt AP, Ha E, Egelman S, Haney A, Chin E, Wagner D. Android permissions: User attention, comprehension, and behavior. SOUPS 2012

- Proc 8th Symp Usable Priv Secur. 2012; 1–14.
53. Acas RK. Feature selection methods data mining to pick predictive variables. 2008.
54. Patro SGK, sahu KK. Normalization: A preprocessing stsage. IARJSET. 2015;2(3):20-22.
55. Firdausillah F, Mahendra DG, Zeniarja J, et al. Implementation of neural network backpropagation using audio feature extraction for

classification of gamelan notes. Proc. - 2018 Int. Semin. Appl. Technol. Inf. Commun. Creat. Technol. Hum. Life, iSemantic, 2018, 570–574.
56. Lin WC, Lu YH, Tsai CF. Feature selection in single and ensemble learning-based bankruptcy prediction models. Expert Syst.

2019;36(1):12335.
57. Li J, Sun L, Yan Q, Li Z, Srisa-An W, Ye H. Significant Permission Identification for Machine-Learning-Based Android Malware Detection.

IEEE Trans Ind Informatics. 2018;14(7):3216-3225.
58. Rastegari M, Ordonez V, Redmon J, Farhadi A. Xnor-net: Imagenet classification using binary convolutional neural networks. European

Conf. on Comp. Vision. Cham: Springer; 2016:525-542.

https://androzoo.uni.lu/
http://www.malgenomeproject.org/
https://virushare.com
http://contagiomobile.deependresearch.org/index.html
https://figshare.com/articles/Android_malware_dataset_for_machine_learning_2/5854653
https://figshare.com/articles/Android_malware_dataset_for_machine_learning_2/5854653
https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/

26 of 26 ASHAWA AND MORRIS

59. Gu J, Wang Z, Kuen J, et al. Recent advances in convolutional neural networks. Pattern Recogn. 2018;77:354-377.
60. Al Khafaf N, El-Hag A. Bayesian regularization of neural network to predict leakage current in a salt fog environment. IEEE Transa

Dielectrics Electr Insulat. 2018;25(2):686-693.
61. Bartilson D, Jang J, Smyth AW. Finite element model updating using objective-consistent sensitivity-based parameter clustering and

Bayesian regularization. Mech Syst Signal Proces. 2019;114:328-345.
62. Bevan A, Kim T, Kang B, et al. A multimodal deep learning method for Android malware detection using various features. IEEE Trans Inf

Forensics Secur. 2019;14(3):773-788.
63. Kayri M. Predictive abilities of Bayesian regularization and Levenberg–Marquardt algorithms in artificial neural networks: a comparative

empirical study on social data. Math Comput Appl. 2016;21(2):20.
64. Ayinde BO, Inanc T, Zurada JM. Regularizing Deep Neural Networks by Enhancing Diversity in Feature Extraction. IEEE Trans Neural

Networks Learn Syst. 2019;30(9):2650-2661.
65. Studer M, Falbel MD. Package ‘ keras’. 2019.
66. Bevan A. Machine learning with tensor flow scope: Introduction to some features of. 2017, 1–65.
67. Géron A. Hands-on machine learning with Scikit-Learn and TensorFlow. Boston, MA: O’Reilly Media, 2019.
68. Frank E, Hall MA, Witten IH. The WEKA workbench. Data Min. 2017;10:553-571.
69. Fawcett T. An introduction to ROC analysis. Pattern Recognit Lett. 2006;27(8):861-874.
70. Fawcett T. ROC Graphs: Notes and Practical considerations for data mining researchers ROC Graphs: Notes and practical considerations

for data mining researchers. HP Inven. 2003;6(1):27.
71. Xiong P, Wang X, Niu W, Zhu T, Li G. Android malware detection with contrasting permission patterns. China Commun. 2014;11(8):1-14.
72. Peiravian N, Zhu X. Machine learning for Android malware detection using permission and API calls. Proceedings - International

Conference on Tools with Artificial Intelligence, ICTAI. 300–305.

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: Ashawa M, Morris S. Android Permission Classifier: a deep learning algorithmic
framework based on protection and threat levels. Security and Privacy. 2021;e164. https://doi.org/10.1002/spy2.164

https://doi.org/10.1002/spy2.164
https://doi.org/10.1002/spy2.164
https://doi.org/10.1002/spy2.164

