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Abstract:  

Data-driven techniques, especially artificial intelligence (AI) based deep learning (DL) techniques, have 

attracted more and more attention in the manufacturing sector because of the rapid growth of the industrial 

Internet of Things (IoT) and Big Data. Tremendous researches of DL techniques have been applied in 

machine health monitoring, but still very limited works focus on the application of DL on the Remaining 

Useful Life (RUL) prediction. Precise RUL prediction can significantly improve the reliability and 

operational safety of industrial components or systems, avoid fatal breakdown and reduce the maintenance 

costs. This paper reviews and compares the state-of-the-art DL approaches for RUL prediction focusing on 

Recurrent Neural Networks (RNN) and its variants. It has been observed from the results for a publicly 

available dataset that Long Short-Term Memory (LSTM) networks and Gated Recurrent Unit (GRU) 

networks outperform the basic RNNs, and the number of the network layers affects the performance of the 

prediction.  
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1. INTRODUCTION 

Remaining useful life (RUL) prediction is an engineering 

discipline that works on the prediction of the future state or 

response of a given system based on the synthesis 

observations, calibrated mathematical models, and simulation 

(Leser, 2017). It generally refers to the study of predicting the 

specific time at which the system or the component will no 

longer be able to have its intended functional performance. 

Salunkhe et al. (2014) regard RUL as the time left before 

observing a failure. RUL is also called as remaining service 

life or remnant life referring to the time left before observing 

a failure given the current machine age, condition and the past 

operation profile. Okoh et al. (2014) define RUL as the time 

remaining for a component to perform its functional 

capabilities before failure. In recent years, RUL prediction has 

attracted vast attention from both academic researchers and 

industrial operators. There is no universal approach to predict 

RUL for all assets because of the variability in their 

surrounding conditions, initial working conditions and physics 

of different acquisition systems. Although many papers 

reviewed the methods of RUL prediction, there are very 

limited papers with a specific focus on the recent development 

of AI solutions for this topic. This paper gives a brief 

introduction of RUL prediction approaches and reviews the 

start-of-the-art DL approaches, particularly focusing on 

Recurrent Neural Networks (RNN) and its variants. The 

selected methods are then tested on a publicly available dataset 

and the performance is compared. 

 

 

2. RELATED WORKS 

In early years, RUL prediction approaches were simply 

catalogued into model-based (physics-based) approaches, 

data-driven based approaches and hybrid-based approaches. 

With the increasing study in this area, more detailed 

classifications have been proposed. The data-driven 

approaches were further classified into AI approaches and 

statistical approaches by Dawn et al. (2015). Okoh et al. 

(2014) divided the approaches into model-based, analytical-

based, knowledge-based and hybrid-based simulation 

algorithms and tools. The model-based RUL prediction is 

applicable to statistics and computational intelligence 

approaches. The analytical-based methods refer to the physical 

failure technique. Since the system degradation modelling 

depends on the laws of nature, these approaches are generally 

quite efficient and descriptive. The knowledge-based RUL 

prediction is a combination of computational intelligence and 

experience. The hybrid approach is a collection methodology 

and technique, which can consist of any of the former 

approaches. A hybrid approach can often be the better option 

since it attempts to integrate advantages of both physics-based 

and data-driven based approaches. Meanwhile, based on a 

certain amount of data and relatively high fidelity models, a 

hybrid approach can usually achieve a higher accuracy for 

RUL prediction (Liao and Köttig, 2016). Nevertheless, the 

drawback of the hybrid approaches is that they also carry the 

shortcomings of both approaches and the increased complexity 

in achieving the solution. 

Data-driven approaches are most widely used in the field of 

RUL prediction, where RUL is computed through statistical 

and probabilistic methods by utilising historic information and 

2020 IFAC AMEST
September 10-11, 2020. Cambridge, UK

     

Recurrent Neural Networks  and its variants in Remaining Useful Life prediction  

YoudaoWang a, Sri Addepalli a, Yifan Zhao a,* 


a Through-Life Engineering Services Institute, Cranfield University, MK43 0AL, Cranfield, United Kingdom 
*Corresponding author: Tel.: +44 (0)1234 754729, E-mail yifan.zhao@cranfield.ac.uk 

Abstract:  

Data-driven techniques, especially artificial intelligence (AI) based deep learning (DL) techniques, have 

attracted more and more attention in the manufacturing sector because of the rapid growth of the industrial 

Internet of Things (IoT) and Big Data. Tremendous researches of DL techniques have been applied in 

machine health monitoring, but still very limited works focus on the application of DL on the Remaining 

Useful Life (RUL) prediction. Precise RUL prediction can significantly improve the reliability and 

operational safety of industrial components or systems, avoid fatal breakdown and reduce the maintenance 

costs. This paper reviews and compares the state-of-the-art DL approaches for RUL prediction focusing on 

Recurrent Neural Networks (RNN) and its variants. It has been observed from the results for a publicly 

available dataset that Long Short-Term Memory (LSTM) networks and Gated Recurrent Unit (GRU) 

networks outperform the basic RNNs, and the number of the network layers affects the performance of the 

prediction.  

 

Keywords: Remaining useful life, Prognostics, asset lifecycle management, Deep Learning; Recurrent 

Neural Networks, Long Short-Term Memory, Gated Recurrent Unit 



1. INTRODUCTION 

Remaining useful life (RUL) prediction is an engineering 

discipline that works on the prediction of the future state or 

response of a given system based on the synthesis 

observations, calibrated mathematical models, and simulation 

(Leser, 2017). It generally refers to the study of predicting the 

specific time at which the system or the component will no 

longer be able to have its intended functional performance. 

Salunkhe et al. (2014) regard RUL as the time left before 

observing a failure. RUL is also called as remaining service 

life or remnant life referring to the time left before observing 

a failure given the current machine age, condition and the past 

operation profile. Okoh et al. (2014) define RUL as the time 

remaining for a component to perform its functional 

capabilities before failure. In recent years, RUL prediction has 

attracted vast attention from both academic researchers and 

industrial operators. There is no universal approach to predict 

RUL for all assets because of the variability in their 

surrounding conditions, initial working conditions and physics 

of different acquisition systems. Although many papers 

reviewed the methods of RUL prediction, there are very 

limited papers with a specific focus on the recent development 

of AI solutions for this topic. This paper gives a brief 

introduction of RUL prediction approaches and reviews the 

start-of-the-art DL approaches, particularly focusing on 

Recurrent Neural Networks (RNN) and its variants. The 

selected methods are then tested on a publicly available dataset 

and the performance is compared. 

 

 

2. RELATED WORKS 

In early years, RUL prediction approaches were simply 

catalogued into model-based (physics-based) approaches, 

data-driven based approaches and hybrid-based approaches. 

With the increasing study in this area, more detailed 

classifications have been proposed. The data-driven 

approaches were further classified into AI approaches and 

statistical approaches by Dawn et al. (2015). Okoh et al. 

(2014) divided the approaches into model-based, analytical-

based, knowledge-based and hybrid-based simulation 

algorithms and tools. The model-based RUL prediction is 

applicable to statistics and computational intelligence 

approaches. The analytical-based methods refer to the physical 

failure technique. Since the system degradation modelling 

depends on the laws of nature, these approaches are generally 

quite efficient and descriptive. The knowledge-based RUL 

prediction is a combination of computational intelligence and 

experience. The hybrid approach is a collection methodology 

and technique, which can consist of any of the former 

approaches. A hybrid approach can often be the better option 

since it attempts to integrate advantages of both physics-based 

and data-driven based approaches. Meanwhile, based on a 

certain amount of data and relatively high fidelity models, a 

hybrid approach can usually achieve a higher accuracy for 

RUL prediction (Liao and Köttig, 2016). Nevertheless, the 

drawback of the hybrid approaches is that they also carry the 

shortcomings of both approaches and the increased complexity 

in achieving the solution. 

Data-driven approaches are most widely used in the field of 

RUL prediction, where RUL is computed through statistical 

and probabilistic methods by utilising historic information and 

2020 IFAC AMEST
September 10-11, 2020. Cambridge, UK

     

Recurrent Neural Networks  and its variants in Remaining Useful Life prediction  

YoudaoWang a, Sri Addepalli a, Yifan Zhao a,* 


a Through-Life Engineering Services Institute, Cranfield University, MK43 0AL, Cranfield, United Kingdom 
*Corresponding author: Tel.: +44 (0)1234 754729, E-mail yifan.zhao@cranfield.ac.uk 

Abstract:  

Data-driven techniques, especially artificial intelligence (AI) based deep learning (DL) techniques, have 

attracted more and more attention in the manufacturing sector because of the rapid growth of the industrial 

Internet of Things (IoT) and Big Data. Tremendous researches of DL techniques have been applied in 

machine health monitoring, but still very limited works focus on the application of DL on the Remaining 

Useful Life (RUL) prediction. Precise RUL prediction can significantly improve the reliability and 

operational safety of industrial components or systems, avoid fatal breakdown and reduce the maintenance 

costs. This paper reviews and compares the state-of-the-art DL approaches for RUL prediction focusing on 

Recurrent Neural Networks (RNN) and its variants. It has been observed from the results for a publicly 

available dataset that Long Short-Term Memory (LSTM) networks and Gated Recurrent Unit (GRU) 

networks outperform the basic RNNs, and the number of the network layers affects the performance of the 

prediction.  

 

Keywords: Remaining useful life, Prognostics, asset lifecycle management, Deep Learning; Recurrent 

Neural Networks, Long Short-Term Memory, Gated Recurrent Unit 



1. INTRODUCTION 

Remaining useful life (RUL) prediction is an engineering 

discipline that works on the prediction of the future state or 

response of a given system based on the synthesis 

observations, calibrated mathematical models, and simulation 

(Leser, 2017). It generally refers to the study of predicting the 

specific time at which the system or the component will no 

longer be able to have its intended functional performance. 

Salunkhe et al. (2014) regard RUL as the time left before 

observing a failure. RUL is also called as remaining service 

life or remnant life referring to the time left before observing 

a failure given the current machine age, condition and the past 

operation profile. Okoh et al. (2014) define RUL as the time 

remaining for a component to perform its functional 

capabilities before failure. In recent years, RUL prediction has 

attracted vast attention from both academic researchers and 

industrial operators. There is no universal approach to predict 

RUL for all assets because of the variability in their 

surrounding conditions, initial working conditions and physics 

of different acquisition systems. Although many papers 

reviewed the methods of RUL prediction, there are very 

limited papers with a specific focus on the recent development 

of AI solutions for this topic. This paper gives a brief 

introduction of RUL prediction approaches and reviews the 

start-of-the-art DL approaches, particularly focusing on 

Recurrent Neural Networks (RNN) and its variants. The 

selected methods are then tested on a publicly available dataset 

and the performance is compared. 

 

 

2. RELATED WORKS 

In early years, RUL prediction approaches were simply 

catalogued into model-based (physics-based) approaches, 

data-driven based approaches and hybrid-based approaches. 

With the increasing study in this area, more detailed 

classifications have been proposed. The data-driven 

approaches were further classified into AI approaches and 

statistical approaches by Dawn et al. (2015). Okoh et al. 

(2014) divided the approaches into model-based, analytical-

based, knowledge-based and hybrid-based simulation 

algorithms and tools. The model-based RUL prediction is 

applicable to statistics and computational intelligence 

approaches. The analytical-based methods refer to the physical 

failure technique. Since the system degradation modelling 

depends on the laws of nature, these approaches are generally 

quite efficient and descriptive. The knowledge-based RUL 

prediction is a combination of computational intelligence and 

experience. The hybrid approach is a collection methodology 

and technique, which can consist of any of the former 

approaches. A hybrid approach can often be the better option 

since it attempts to integrate advantages of both physics-based 

and data-driven based approaches. Meanwhile, based on a 

certain amount of data and relatively high fidelity models, a 

hybrid approach can usually achieve a higher accuracy for 

RUL prediction (Liao and Köttig, 2016). Nevertheless, the 

drawback of the hybrid approaches is that they also carry the 

shortcomings of both approaches and the increased complexity 

in achieving the solution. 

Data-driven approaches are most widely used in the field of 

RUL prediction, where RUL is computed through statistical 

and probabilistic methods by utilising historic information and 

2020 IFAC AMEST
September 10-11, 2020. Cambridge, UK

     

Recurrent Neural Networks  and its variants in Remaining Useful Life prediction  

YoudaoWang a, Sri Addepalli a, Yifan Zhao a,* 


a Through-Life Engineering Services Institute, Cranfield University, MK43 0AL, Cranfield, United Kingdom 
*Corresponding author: Tel.: +44 (0)1234 754729, E-mail yifan.zhao@cranfield.ac.uk 

Abstract:  

Data-driven techniques, especially artificial intelligence (AI) based deep learning (DL) techniques, have 

attracted more and more attention in the manufacturing sector because of the rapid growth of the industrial 

Internet of Things (IoT) and Big Data. Tremendous researches of DL techniques have been applied in 

machine health monitoring, but still very limited works focus on the application of DL on the Remaining 

Useful Life (RUL) prediction. Precise RUL prediction can significantly improve the reliability and 

operational safety of industrial components or systems, avoid fatal breakdown and reduce the maintenance 

costs. This paper reviews and compares the state-of-the-art DL approaches for RUL prediction focusing on 

Recurrent Neural Networks (RNN) and its variants. It has been observed from the results for a publicly 

available dataset that Long Short-Term Memory (LSTM) networks and Gated Recurrent Unit (GRU) 

networks outperform the basic RNNs, and the number of the network layers affects the performance of the 

prediction.  

 

Keywords: Remaining useful life, Prognostics, asset lifecycle management, Deep Learning; Recurrent 

Neural Networks, Long Short-Term Memory, Gated Recurrent Unit 



1. INTRODUCTION 

Remaining useful life (RUL) prediction is an engineering 

discipline that works on the prediction of the future state or 

response of a given system based on the synthesis 

observations, calibrated mathematical models, and simulation 

(Leser, 2017). It generally refers to the study of predicting the 

specific time at which the system or the component will no 

longer be able to have its intended functional performance. 

Salunkhe et al. (2014) regard RUL as the time left before 

observing a failure. RUL is also called as remaining service 

life or remnant life referring to the time left before observing 

a failure given the current machine age, condition and the past 

operation profile. Okoh et al. (2014) define RUL as the time 

remaining for a component to perform its functional 

capabilities before failure. In recent years, RUL prediction has 

attracted vast attention from both academic researchers and 

industrial operators. There is no universal approach to predict 

RUL for all assets because of the variability in their 

surrounding conditions, initial working conditions and physics 

of different acquisition systems. Although many papers 

reviewed the methods of RUL prediction, there are very 

limited papers with a specific focus on the recent development 

of AI solutions for this topic. This paper gives a brief 

introduction of RUL prediction approaches and reviews the 

start-of-the-art DL approaches, particularly focusing on 

Recurrent Neural Networks (RNN) and its variants. The 

selected methods are then tested on a publicly available dataset 

and the performance is compared. 

 

 

2. RELATED WORKS 

In early years, RUL prediction approaches were simply 

catalogued into model-based (physics-based) approaches, 

data-driven based approaches and hybrid-based approaches. 

With the increasing study in this area, more detailed 

classifications have been proposed. The data-driven 

approaches were further classified into AI approaches and 

statistical approaches by Dawn et al. (2015). Okoh et al. 

(2014) divided the approaches into model-based, analytical-

based, knowledge-based and hybrid-based simulation 

algorithms and tools. The model-based RUL prediction is 

applicable to statistics and computational intelligence 

approaches. The analytical-based methods refer to the physical 

failure technique. Since the system degradation modelling 

depends on the laws of nature, these approaches are generally 

quite efficient and descriptive. The knowledge-based RUL 

prediction is a combination of computational intelligence and 

experience. The hybrid approach is a collection methodology 

and technique, which can consist of any of the former 

approaches. A hybrid approach can often be the better option 

since it attempts to integrate advantages of both physics-based 

and data-driven based approaches. Meanwhile, based on a 

certain amount of data and relatively high fidelity models, a 

hybrid approach can usually achieve a higher accuracy for 

RUL prediction (Liao and Köttig, 2016). Nevertheless, the 

drawback of the hybrid approaches is that they also carry the 

shortcomings of both approaches and the increased complexity 

in achieving the solution. 

Data-driven approaches are most widely used in the field of 

RUL prediction, where RUL is computed through statistical 

and probabilistic methods by utilising historic information and 

2020 IFAC AMEST
September 10-11, 2020. Cambridge, UK

     

Recurrent Neural Networks  and its variants in Remaining Useful Life prediction  

YoudaoWang a, Sri Addepalli a, Yifan Zhao a,* 


a Through-Life Engineering Services Institute, Cranfield University, MK43 0AL, Cranfield, United Kingdom 
*Corresponding author: Tel.: +44 (0)1234 754729, E-mail yifan.zhao@cranfield.ac.uk 

Abstract:  

Data-driven techniques, especially artificial intelligence (AI) based deep learning (DL) techniques, have 

attracted more and more attention in the manufacturing sector because of the rapid growth of the industrial 

Internet of Things (IoT) and Big Data. Tremendous researches of DL techniques have been applied in 

machine health monitoring, but still very limited works focus on the application of DL on the Remaining 

Useful Life (RUL) prediction. Precise RUL prediction can significantly improve the reliability and 

operational safety of industrial components or systems, avoid fatal breakdown and reduce the maintenance 

costs. This paper reviews and compares the state-of-the-art DL approaches for RUL prediction focusing on 

Recurrent Neural Networks (RNN) and its variants. It has been observed from the results for a publicly 

available dataset that Long Short-Term Memory (LSTM) networks and Gated Recurrent Unit (GRU) 

networks outperform the basic RNNs, and the number of the network layers affects the performance of the 

prediction.  

 

Keywords: Remaining useful life, Prognostics, asset lifecycle management, Deep Learning; Recurrent 

Neural Networks, Long Short-Term Memory, Gated Recurrent Unit 



1. INTRODUCTION 

Remaining useful life (RUL) prediction is an engineering 

discipline that works on the prediction of the future state or 

response of a given system based on the synthesis 

observations, calibrated mathematical models, and simulation 

(Leser, 2017). It generally refers to the study of predicting the 

specific time at which the system or the component will no 

longer be able to have its intended functional performance. 

Salunkhe et al. (2014) regard RUL as the time left before 

observing a failure. RUL is also called as remaining service 

life or remnant life referring to the time left before observing 

a failure given the current machine age, condition and the past 

operation profile. Okoh et al. (2014) define RUL as the time 

remaining for a component to perform its functional 

capabilities before failure. In recent years, RUL prediction has 

attracted vast attention from both academic researchers and 

industrial operators. There is no universal approach to predict 

RUL for all assets because of the variability in their 

surrounding conditions, initial working conditions and physics 

of different acquisition systems. Although many papers 

reviewed the methods of RUL prediction, there are very 

limited papers with a specific focus on the recent development 

of AI solutions for this topic. This paper gives a brief 

introduction of RUL prediction approaches and reviews the 

start-of-the-art DL approaches, particularly focusing on 

Recurrent Neural Networks (RNN) and its variants. The 

selected methods are then tested on a publicly available dataset 

and the performance is compared. 

 

 

2. RELATED WORKS 

In early years, RUL prediction approaches were simply 

catalogued into model-based (physics-based) approaches, 

data-driven based approaches and hybrid-based approaches. 

With the increasing study in this area, more detailed 

classifications have been proposed. The data-driven 

approaches were further classified into AI approaches and 

statistical approaches by Dawn et al. (2015). Okoh et al. 

(2014) divided the approaches into model-based, analytical-

based, knowledge-based and hybrid-based simulation 

algorithms and tools. The model-based RUL prediction is 

applicable to statistics and computational intelligence 

approaches. The analytical-based methods refer to the physical 

failure technique. Since the system degradation modelling 

depends on the laws of nature, these approaches are generally 

quite efficient and descriptive. The knowledge-based RUL 

prediction is a combination of computational intelligence and 

experience. The hybrid approach is a collection methodology 

and technique, which can consist of any of the former 

approaches. A hybrid approach can often be the better option 

since it attempts to integrate advantages of both physics-based 

and data-driven based approaches. Meanwhile, based on a 

certain amount of data and relatively high fidelity models, a 

hybrid approach can usually achieve a higher accuracy for 

RUL prediction (Liao and Köttig, 2016). Nevertheless, the 

drawback of the hybrid approaches is that they also carry the 

shortcomings of both approaches and the increased complexity 

in achieving the solution. 

Data-driven approaches are most widely used in the field of 

RUL prediction, where RUL is computed through statistical 

and probabilistic methods by utilising historic information and 

2020 IFAC AMEST
September 10-11, 2020. Cambridge, UK

Copyright © 2020 The Authors. This is an open access article under the CC BY-NC-ND license  
(http://creativecommons.org/licenses/by-nc-nd/4.0)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Cranfield CERES

https://core.ac.uk/display/426869982?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


138 Youdao Wang  et al. / IFAC PapersOnLine 53-3 (2020) 137–142 

 

     

 

routinely monitored data of the system (Kabir et al., 2012).  

The precondition for setting up the data-driven models for 

RUL prediction is the availability of multivariate historical 

data about system behaviour, which must encompass all 

phases of the system operation and degradation scenarios 

under certain operating conditions. Recent years, AI 

techniques, particularly deep learning (DL) techniques are 

becoming more and more attractive because of the rapid 

growth in the industrial Internet of Things (IoT) and Big Data 

(Zhao et al., 2019). Deep learning is one of the sub-branches 

of machine learning, which is featured with multiple nonlinear 

processing layers, and originated from Artificial Neural 

Network (ANN). With the rapid development of 

computational infrastructure, DL has become one of the main 

research topics in the field of prognostics, given its capability 

to capture the hierarchical relationship embedded in deep 

structures (Ma, Sun and Chen, 2017). The characteristic of DL 

is its deep network architecture where multiple layers are 

stacked in the network to fully capture the representative 

information from raw input data (Geoffrey Hinton and Ruslan 

Salakhutdinov, 2006). 

The published literature on DL approaches of prediction RUL 

mainly focused on four representative deep architectures, 

including Auto-encoder (AE), Deep Belief Network (DBN), 

Convolutional Neural Network (CNN) and Recurrent Neural 

Network (RNN) (Zhao et al., 2015). AE and DBN are often 

used for pre-training of networks. CNN and RNN are generally 

used as predictive models. Both CNN and RNN have proved 

to outperform traditional prognosis algorithms in RUL 

prediction, while CNN based approaches are used more in 

fault diagnosis and surface integration inspection (Wang et al., 

2018). RNN, on the other hand, gained much more attention 

and achievement because it can model time sequence data 

(Zheng et al., 2017). Nevertheless, RNN suffers from long-

term time dependency problems that the gradients would either 

vanish or explode when propagated over many stages. Long 

Short-Term Memory (LSTM) network, as a type of RNN 

network for sequence learning, gains great favour for solving 

the long-term time dependency problems by controlling 

information flow using input gate, forget gate and output gate. 

LSTMs are naturally suited for RUL prediction tasks using 

sensor data with the inherent sequential nature due to their 

capability of remembering information over long periods of 

time.  

The original LSTM was developed by Hochreiter and 

Schmidhuber (Hochreiter and Schmidhuber, 1997), when 

researchers discovered a vanishing and exploding gradient 

issue in traditional RNNs. To cope with the difficult learning 

long-term dependencies that traditional RNNs had, the LSTM 

introduced a memory cell that regulated the information flow 

in and out of the cell. Yuan et al. (2016) proposed an LSTM 

approach for different types of fault, where C-MPASS dataset 

was used as the study case. Compared to the traditional RNN, 

Gated Recurrent Unit LSTM (GRU-LSTM) and AdaBoost-

LSTM showed improved performance in all cases. They also 

developed a vanilla LSTM approach two years later which 

further improved the prediction performance (Yuan et al., 

2018). Zhao et al. (2017) presented an integrated approach of 

CNN and bi-directional LSTM for machining tool wear 

prediction named Convolutional Bi-directional Long Short-

Term Memory (CBLSTM) networks. CNN was firstly used to 

extract local robust features from the sequential input. Then, 

LSTM was utilised to encode temporal information. The 

proposed CBLSTM’s capability of predicting the RUL of 

actual tool wear based on raw sensory data was verified with a 

real-life tool wear test. A multi-layer LSTM approach was 

provided by Zheng et al. (2017). The research investigated the 

hidden patterns from sensors and operational data with 

multiple operating conditions, fault and degradation models 

through combining multiple layers of LSTM cells with 

standard feed-forward layers. The superiority of the LSTM 

model in RUL prediction was validated on three widely used 

data sets, C-MAPSS Data Set, PHM08 Challenge Data Set and 

Milling Data Set. Consequently, Zhang et al. (2018) presented 

a bi-directional LSTM network to discover the underlying 

patterns embedded in time series to track the system 

degradation. The bi-directional LSTM network was 

implemented to track the variation of health index, and the 

RUL was predicted by the recursive one-step ahead method. 

Elsheikh et al. (Elsheikh, Yacout and Ouali, 2019) built a new 

LSTM architecture for RUL prediction, called Bidirectional 

Handshaking LSTM (BHLSTM) network, when short 

sequences of monitored observations were given with random 

initial wear. This method was able to predict the RUL with 

random starts, which made it more suitable for real-world 

cases as the initial condition of physical systems is usually 

unknown especially in terms of its manufacturing deficiencies. 

A new, asymmetric objective function that penalises late 

predictions rather than earlier ones was also presented to 

ensure safer predictions.  

It has been identified from the review that RNN and its’ 

variants dominate the state-of-the-art of DL-based RUL 

prediction. The next two sections present the typical RNN and 

its’ variants in more details and compares their performance 

on a publicly available dataset. 

3. RNN AND ITS’ VARIANTS 

3.1 RNN 

In a traditional neural network, inputs are independent. While 

in RNN, the front neurons pass the information to the 

following neurons. As illustrated in Figure 1, an RNN can be 

regarded as numerous copies of the same neural network cell, 

in which each cell passes the message to the next. In other 

word, the output from a recurrent neuron is connected to the 

next one to characterise the current system state as a function 

of current sensing data and preceding system state. 

 

Fig. 1. An unrolled RNN(Retrieved from: 

http://colah.github.io/posts/2015-08-Understanding-LSTMs/) 
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network for sequence learning, gains great favour for solving 

the long-term time dependency problems by controlling 

information flow using input gate, forget gate and output gate. 

LSTMs are naturally suited for RUL prediction tasks using 

sensor data with the inherent sequential nature due to their 

capability of remembering information over long periods of 

time.  

The original LSTM was developed by Hochreiter and 

Schmidhuber (Hochreiter and Schmidhuber, 1997), when 

researchers discovered a vanishing and exploding gradient 

issue in traditional RNNs. To cope with the difficult learning 

long-term dependencies that traditional RNNs had, the LSTM 

introduced a memory cell that regulated the information flow 

in and out of the cell. Yuan et al. (2016) proposed an LSTM 

approach for different types of fault, where C-MPASS dataset 

was used as the study case. Compared to the traditional RNN, 

Gated Recurrent Unit LSTM (GRU-LSTM) and AdaBoost-

LSTM showed improved performance in all cases. They also 

developed a vanilla LSTM approach two years later which 

further improved the prediction performance (Yuan et al., 

2018). Zhao et al. (2017) presented an integrated approach of 

CNN and bi-directional LSTM for machining tool wear 

prediction named Convolutional Bi-directional Long Short-

Term Memory (CBLSTM) networks. CNN was firstly used to 

extract local robust features from the sequential input. Then, 

LSTM was utilised to encode temporal information. The 

proposed CBLSTM’s capability of predicting the RUL of 

actual tool wear based on raw sensory data was verified with a 

real-life tool wear test. A multi-layer LSTM approach was 

provided by Zheng et al. (2017). The research investigated the 

hidden patterns from sensors and operational data with 

multiple operating conditions, fault and degradation models 

through combining multiple layers of LSTM cells with 

standard feed-forward layers. The superiority of the LSTM 

model in RUL prediction was validated on three widely used 

data sets, C-MAPSS Data Set, PHM08 Challenge Data Set and 

Milling Data Set. Consequently, Zhang et al. (2018) presented 

a bi-directional LSTM network to discover the underlying 

patterns embedded in time series to track the system 

degradation. The bi-directional LSTM network was 

implemented to track the variation of health index, and the 

RUL was predicted by the recursive one-step ahead method. 

Elsheikh et al. (Elsheikh, Yacout and Ouali, 2019) built a new 

LSTM architecture for RUL prediction, called Bidirectional 

Handshaking LSTM (BHLSTM) network, when short 

sequences of monitored observations were given with random 

initial wear. This method was able to predict the RUL with 

random starts, which made it more suitable for real-world 

cases as the initial condition of physical systems is usually 

unknown especially in terms of its manufacturing deficiencies. 

A new, asymmetric objective function that penalises late 

predictions rather than earlier ones was also presented to 

ensure safer predictions.  

It has been identified from the review that RNN and its’ 

variants dominate the state-of-the-art of DL-based RUL 

prediction. The next two sections present the typical RNN and 

its’ variants in more details and compares their performance 

on a publicly available dataset. 

3. RNN AND ITS’ VARIANTS 

3.1 RNN 

In a traditional neural network, inputs are independent. While 

in RNN, the front neurons pass the information to the 

following neurons. As illustrated in Figure 1, an RNN can be 

regarded as numerous copies of the same neural network cell, 

in which each cell passes the message to the next. In other 

word, the output from a recurrent neuron is connected to the 

next one to characterise the current system state as a function 

of current sensing data and preceding system state. 

 

Fig. 1. An unrolled RNN(Retrieved from: 

http://colah.github.io/posts/2015-08-Understanding-LSTMs/) 

 

 

     

 

In an unrolled RNN, the sensing data (… x(t-1), x(t), x(t+1) …) 

are fed simultaneously into the corresponding neurons, which 

generate the corresponding neuron time series (… h(t-1), h(t), 

h(t+1) …). The output of a single recurrent neuron can be 

expressed as: 

ℎ𝑡𝑡 = σ(W𝑥𝑥𝑥𝑥𝑡𝑡 + 𝑊𝑊ℎℎ𝑡𝑡−1 + b)            (1) 

𝑦𝑦𝑡𝑡 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥(𝑊𝑊𝑦𝑦ℎ𝑡𝑡 + 𝑐𝑐)                  (2) 

where 𝑊𝑊𝑥𝑥 , 𝑊𝑊ℎ  and 𝑊𝑊𝑦𝑦  represent the weight vectors 

respectively. The symbol 𝑏𝑏 and 𝑐𝑐 denote the bias term and σ 

is the activation function, with the hyperbolic tangent or Relu 

being commonly used in RNN. 𝑦𝑦𝑡𝑡 is the output of the recurrent 

neuron based on the output of the hidden state ℎ𝑡𝑡 . ℎ𝑡𝑡 is the 

hidden state at the time t which can be referred to a memory 

space containing the information of the current input and the 

former hidden state. It is worth mentioning that all the weight 

vectors are shared at every step, which means that the same 

task is repeated at every step with different inputs and the 

memory is renewed accordingly. 
The main issue of the standard RNN is the gradient exploring 

and the gradient vanishing. These issues might happen when 

the network is too deep. In the other word, when the number 

of the time step is too large, the information carried in the front 

neuron will be lost because there is no structure in a standard 

recurrent layer that individually controls the flow of the 

memory itself. To solve this problem, the LSTM, a modified 

structure of the recurrent cell that incorporates the standard 

recurrent layer along with additional “memory” control gates, 

has been proposed. 

3.2 Basic LSTM (Vanilla LSTM) 

An LSTM cell was proposed to overcome the limitations of 

training the traditional RNN. LSTM uses storage elements to 

transfer information from the past output instead of having the 

output of the RNN cell to be a non-linear function of the 

weighted sum of the current inputs and previous output. 

Additionally, three gates are added to the model to control the 

information of the past hidden state and the current input. As 

demonstrated in Figure 2, these gates decide whether to forget 

the information or memorise it.  

 

Fig. 2. A Basic LSTM cell (Retrieved from: 

https://adventuresinmachinelearning.com/keras-lstm-tutorial/) 

The output of LSTM at step t is calculated using the following 

equations: 

i = σ(𝑈𝑈𝑖𝑖𝑥𝑥𝑡𝑡 + 𝑊𝑊𝑖𝑖𝑠𝑠𝑡𝑡−1 + 𝑏𝑏𝑖𝑖)         (3) 

f = σ(𝑈𝑈𝑓𝑓𝑥𝑥𝑡𝑡 + 𝑊𝑊𝑓𝑓𝑠𝑠𝑡𝑡−1 + 𝑏𝑏𝑓𝑓)                    (4) 

o = σ(𝑈𝑈𝑜𝑜𝑥𝑥𝑡𝑡 + 𝑊𝑊𝑜𝑜𝑠𝑠𝑡𝑡−1 + 𝑏𝑏𝑜𝑜)                   (5) 

g = tanh(𝑈𝑈𝑔𝑔𝑥𝑥𝑡𝑡 + 𝑊𝑊𝑔𝑔𝑠𝑠𝑡𝑡−1 + 𝑏𝑏𝑔𝑔)             (6) 

𝑐𝑐𝑡𝑡 = 𝑐𝑐𝑡𝑡−1 ∙ 𝑠𝑠 + 𝑔𝑔 ∙ 𝑖𝑖                                   (7) 

𝑠𝑠𝑡𝑡 = tanh (𝑐𝑐𝑡𝑡) ∙ 𝑠𝑠                                      (8) 

where 𝑈𝑈 , 𝑊𝑊  and 𝑏𝑏  are the trainable weights and biases, 

respectively, and  𝑖𝑖 , 𝑠𝑠  and 𝑠𝑠  represent the input gate, forget 

gate and output gate respectively. These three gates have the 

same shape with different parameters 𝑈𝑈 and 𝑊𝑊, which need to 

learn from the training process. The hidden state 𝑔𝑔 cannot be 

used directly. It must pass through the input gate and then be 

used to calculate the internal storage 𝑐𝑐𝑡𝑡. While 𝑐𝑐𝑠𝑠 is not only 

affected by the hidden state but also by 𝑐𝑐𝑠𝑠−1 that is controlled 

by the forget gate. Based on 𝑐𝑐𝑡𝑡 , a layer of tanh function is 

applied to the output information 𝑠𝑠𝑡𝑡 , which is constrained by 

the output door. The existence of the gates enables the LSTM 

to fulfil the long-term dependencies in the sequence, and by 

learning of the gate parameters, the network can find the 

appropriate internal storage behaviour.  

3.3 Bi-directional LSTM 

As shown in the basic LSTM, the hidden outputs between the 

LSTM layers are relayed to both the adjacent LSTM cells and 

the collected and used cells as the inputs for the LSTM next to 

it. A bi-directional LSTM structure is proposed with the 

information flowing back to the former LSTM cells.  In the Bi-

directional LSTM, the forward flow of information can 

discover the system variation, and it flows back to smooth the 

predictions. The outputs of the forward path and the backward 

path will then be concatenated. The governing equations of Bi-

directional LSTM can be presented as :  

ℎ𝑖𝑖
1 = 𝑠𝑠(𝑈𝑈1 ∙ 𝑥𝑥𝑖𝑖 + 𝑊𝑊1 ∙ ℎ𝑖𝑖−1)               (9) 

ℎ𝑖𝑖
2 = 𝑠𝑠(𝑈𝑈2 ∙ 𝑥𝑥𝑖𝑖 + 𝑊𝑊2 ∙ ℎ𝑖𝑖−1) (10) 

𝑦𝑦𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥(𝑉𝑉 ∙ [ℎ𝑖𝑖
1; ℎ𝑖𝑖

2])          (11) 

where Equation (9) refers to the forward paths and Equation 

(10) refers to the backward path. 𝑦𝑦𝑖𝑖  is the output of the Bi-

directional LSTM obtained by fusing the results from both 

directional paths. 

  

Fig. 3. A Bi-directional LSTM structure(Cui, Ke and Wang, 

2018) 
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3.4 Gated Recurrent Unit (GRU) 

GRU is the newer generation of RNNs and it looks very similar 

to LSTM as demonstrated in Figure 4. Instead of using the cell 

state, GRU uses the hidden state to transfer information. 

Moreover, it only has two gates (a reset gate and update gate) 

instead of three. Similar to the forget and input gate of LSTM, 

the function of the update gate is to decide what information 

to keep and what to throw away. The function of the reset gate 

is to decide what to keep from the past information. 

 

Fig.4. comparison of LSTM and GRU (Retrieved from 

https://towardsdatascience.com/illustrated-guide-to-lstms-

and-gru-s-a-step-by-step-explanation-44e9eb85bf21) 

Since there are fewer tensor operations in GRU, it runs a little 

faster when training the structure than LSTM. However, as 

there is one gate less, it ranks behind the LSTM network in 

terms of performance. Thus, when the computational resource 

is limited, or a faster training is required, GRU could be a good 

option. 

4. CASE STUDY ON RUL PREDICTION 

4.1 Benchmark dataset overview 

The case study focuses on adopting RNN algorithms on RUL 

prediction using NASA’s C-MAPSS dataset. The dataset was 

collected from a Commercial Modular Aero-Propulsion 

System Simulation which could model the damage 

propagation of aircraft gas turbine engines.  

The turbine engine includes five modules: fan, low-pressure 

compressor (LPC), high-pressure compressor (HPC), low-

pressure turbine (LPT) and high-pressure turbine (HPT). To 

monitor the degradation process of the turbine engine, 58 on-

board sensors were set on the turbine, recording the 

measurements of speed, temperature, and pressure at different 

locations. In this engine simulator, four datasets of different 

issues are presented, and consisted of three operational 

condition indicators and 21/58 sensor measurements. 

In the dataset, engine profiles were simulated, with different 

initial degradation conditions. In addition, the maintenance 

was not considered during the simulation. The dataset includes 

one training set and one testing set for each engine. The 

training set consists of the historical run-to-failure 

measurement records of the engines from 21 on-board sensors. 

The testing dataset consists of the sensor measurements of 

engines which stopped at a certain point before failure. The 

objective is to predict the RUL of each engine based on the 

given sensor measurements. The information of the four sub-

datasets is listed in Table 1. 

Dataset FD001 refers to the engine failure arising from the 

high-pressure compressor under a single operation condition. 

Dataset FD002 refers to the engine failure from the high-

pressure compressor under multiple operation conditions. 

Dataset FD003 refers to the engine failure from both high-

pressure compressor and fan under a single operation 

condition. Dataset FD004 refers to the engine failure from both 

high-pressure compressor and fan under multiple operation 

conditions. 

Table 1 C-MAPSS dataset 

Dataset FD001 FD002 FD003 FD004 

Data for 

training  

100 260 100 249 

Data for 

test 

100 259 100 248 

Operating 

conditions 

single multiple single multiple 

Fault 

conditions 

compre

ssor 

compres

sor 

compress

or & fan 

compress

or & fan 

4.2 Data pre-processing  

The raw sensor data were normalised to [0, 1]. Some of the 

operation conditions and sensor readings are constant, so the 

related data after normalisation are zeroes as indicated in ‘s6’ 

in Figure 5. No feature extraction has been taken place in this 

case study and the entire sensor data stack was used as inputs 

for training. In addition, since there is no target output in raw 

datasets, the RUL has to be labelled at every cycle for each 

sample before training the models. 

 

Fig. 5. Sensor data after normalisation (dataset FD001_engine 

id=3, windows of 50 cycles, sensor 6,7,8)  
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 4.3 Performance evaluation 

In this case study, the mean square error (MSE) are used to 

evaluate the performance of the trained neural networks. The 

mathematical expression is:  

MSE =
1

𝑛𝑛
∑ 𝑑𝑑𝑖𝑖

2𝑛𝑛
𝑖𝑖=1                                                                 (12) 

where 𝑛𝑛 is the total number of true RUL targets in the related 

test set and di refers to the difference between the true RUL 

and the predicted RUL. Table 2 summarises the performance 

of different network structures on the training set and test set 

for FD001. The sequence length is set to be 50 indicating a 

window size of 50 cycles. All the structures were run for 5 

times and the average value was used to evaluate the 

performance. The activation of hidden neurons was ‘ReLU’. 

Probability of dropping out neurons at the output layer was set 

to 0.4. The quantity of the hidden layer neurons is 128.  The 

optimiser used for this evaluation is RMSprop.  

Table 2 Performance of selected methods for FD001 

Structures MSE(Train) MSE(Test) 

RNN 1,073.8±120.7 568.5±139.4 

RNN_2LAYERS 943.2±236.2 494.0±178.1 

Vanilla LSTM 616.6±88.5 566.0±147.3 

LSTM_2LAYERS 415.3±71.1 397.7±123.3 

LSTM_3LAYERS 459.9±98.7 411.4±74.2 

Bi-directional LSTM 926.5±184.0 717.7±371.4 

Bi-directional 

LSTM_2LAYERS 
429.4±81.0 440.9±143.4 

GRU 495.1±54.4 457.2±103.7 

GRU_2LAYERS 497.8±52.9 416.8±94.1 

As demonstrated in Table 2, LSTM and GRU perform much 

better than the basic RNN structure.  In addition, the outcome 

of the same structure varies at every run with a relatively large 

standard deviation. The performance of GRU, LSTM and Bi-

directional LSTM is quite similar, and as for the dataset FD001, 

a 2-layer LSTM structure has the best performance. Moreover, 

the number of structure hidden layers affects the prediction 

performance, but there is no clear monotonous relationship.  

The performance of different structures on the other three 

datasets is listed in Table 3, 4 and 5 with the same parameters 

for the structure. Generally, the observations are similar to that 

of the dataset FD001. The highlighted values refer to the 

gradient vanishing or explosion problem which means that 

structure is not suitable for the corresponding dataset or some 

parameters need to be changed. For instance, the quantity of 

the hidden layer neurons, the activation function, the dropping 

out neurons at the output layer and the optimiser can all affect 

the training performance.  

 

Table 3 Performance of selected methods for FD002 

Structures MSE(Train) MSE(Test) 

RNN 3303.6 2820.76 

RNN_2LAYERS 10499.13 8430.26 

Vanilla LSTM 1,351.8±196.9 970.2±166.6 

LSTM_2LAYERS 664.6±161.0 768.7±100.7 

LSTM_3LAYERS 820.1±103.7 722.6±43.3 

Bi-directional LSTM 1,314.5±167.3 955.1±141.1 

Bi-directional 

LSTM_2LAYERS 

821.7±181.5 821.2±166.1 

GRU 3304 3051 

GRU_2LAYERS 518.1±176.1 721.6±81.4 

Table 4 Performance of selected methods for FD003 

Structures MSE(Train) MSE(Test) 

RNN 2823.27 2102.9 

RNN_2LAYERS 21754.34 7036.18 

Vanilla LSTM 1,709.3±119.8 1,065.4±357.4 

LSTM_2LAYERS 1,218.8±170.1 778.2±311.5 

LSTM_3LAYERS 1,383.3±146.9 522.4±98.5 

Bi-directional LSTM 1,536.1±252.4 967.9±358.4 

Bi-directional 

LSTM_2LAYERS 
1,208.1±219.9 799.5±245.0 

GRU 8095.06 3479.04 

GRU_2LAYERS 1,265.9±208.3 446.8±66.5 

Table 5 Performance of selected methods for FD004 

Structures MSE(Train) MSE(Test) 

RNN 6273.05 3645.16 

RNN_2LAYERS 16861.05 9171.44 

Vanilla LSTM 6273.4 3663.36 

LSTM_2LAYERS 1,486.5±85.3 1,024.4±130.7 

LSTM_3LAYERS 1,793.6±195.9 1,142.5±276.5 

Bi-directional LSTM 2,825.0±264.3 2,062.8±347.0 

Bi-directional 

LSTM_2LAYERS 
2,250.5±364.4 1,582.0±149.5 

GRU 6273 3663.15 

GRU_2LAYERS 1,602.2±279.4 944.9±354.4 

5. CONCLUSIONS 

Compared with traditional physics-based models, data-driven 

models gain more attention due to the significant development 

of sensors, sensor networks and computing systems. Machine 

learning techniques, especially, the DL techniques are 
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regarded as a powerful solution due to their ability to provide 

more agility to process data associated with highly nonlinear 

and complex feature abstraction through a cascade of multiple 

layers. DL provides the decision-makers new visibility into 

their operations, as well as real-time performance measures 

and costs. This paper reviewed one of the most popular DL 

algorithms, RNN and its variants, on RUL prediction. RNNs 

are good for processing sequence data for predictions but 

suffer from short-term memory issue. LSTMs and GRUs were 

designed as the solution to address this issue by adding some 

gates to the RNN structure. These gates are used to control the 

information flow through the sequence chain. A case study on 

RUL prediction using the C-MAPSS dataset was carried out to 

validate all these approaches. Some of the RNN structures 

were adopted in this study including LSTM, Bi-directional 

LSTM and GRU.  When the size and complexity of dataset are 

relatively small, the results obtained by various algorithms are 

relatively similar. With the increase of the size and complexity, 

the performance difference of the selected methods started to 

show up. For instance, gradient vanishing or explosion 

problem of basic RNN has been observed in all the datasets 

except FD001. In addition, the performance of GRU and 

LSTM are relatively close in every tested dataset. A vanilla 

LSTM or GRU may also be affected by some gradient 

explosion problems. It also has been observed that the number 

of the layers affects the performance of the structure. As in this 

case study, a 2-layer LSTM network performs better than a 3-

layer LSTM network in most of the datasets. Thus, the choice 

of the optimum network structure is often based on the volumn 

of the dataset.   
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