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Abstract—Neurofeedback systems can be modeled as closed-
loop control systems with negative feedback. However, little
work to date has investigated the potential of this representation
in gaining a better understanding of the actual dynamics of
neurofeedback towards explaining subjects’ performance. In this
paper, we analyze neurofeedback training data through a PID
control model. We first show that PID model fitting can produce
curves that are qualitatively aligned to the measured BCI signal.
Secondly, we examine how brain activity during neurofeedback
can be related to common characteristics of control systems. For
this, we formalized a pre-existing neurofeedback EEG experiment
using a Simulink R© model that captures both the neural activity
and the external algorithm that was utilized to generate the feed-
back signal. We then used a regression model to fit individual trial
data to PID coefficients for the control model. Our results suggest
that successful trials tend to be associated to higher average values
of Ki, which represents the error-reducing component of the PID
controller. It hints that convergence in successful neurofeedback
is progressive but complete in approaching the target.

Index Terms—neurofeedback, BCI, model fitting, PID, linear
control systems, statistical analysis, optimization.

I. INTRODUCTION

Neurofeedback (NF) [1] can be defined as the mechanism
through which human subjects acquire volitional control over
the activation of specific brain regions, generally through a
process of operant conditioning. The recent development of
Brain-Computer Interfaces (BCIs) has seen a growing interest
in NF outside neuroscience and clinical research, because of
its potential to support the development of BCIs that can be
embedded into a variety of interactive software applications.

Despite the intuitive description of any biofeedback system
as a control system [2], the idea that NF could be investigated
from a control theory perspective has gained acceptance only
recently [3]. In such a setting, the “plant” to be controlled
corresponds to the target neural activity that the subject is
attempting to establish control of, and the negative feedback
loop consists of a sensing device measuring the activity of the
target brain region, and a method to process and display it.

Such a control system is somehow unique in that it is a
hybrid system — neither fully natural like existing physio-
logical systems described through control theory models [2],
nor fully artificial like an engineered control system in which
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various parameters can be analytically fine-tuned. This poses
distinctive challenges for its description and modeling, and, in
particular, its identification from experimental data.

In this paper, we investigate the potential for EEG-based
NF systems to be modeled using Linear and Time-Invariant
(LTI) control systems. More specifically, we attempt the post-
hoc modeling of a pre-existing EEG-based NF system using
Proportional-Integral-Derivative (PID) control [4], with sev-
eral objectives in mind. The first one is to confirm whether
observed empirical data for NF are compatible with control
systems modeling, thereby confirming common intuitions and
the most recent proposal of [3]. The second one is to explore
whether the PID control system model would allow us to gain
specific insights into individual subject performances, such as
differentiating between successful and unsuccessful NF trials,
or even characterizing control parameters as subject-specific.

To support the current study, we have used data from a
previous experiment in which subjects were asked to control
their pre-frontal EEG alpha asymmetry as an input signal
as part of an affective BCI [5], [6]. The main history of
pre-frontal EEG alpha NF has been in clinical studies of
depression [7], but the same variable, corresponding to the
affective dimension of approach [8], can be used for affective
BCI in a variety of software applications, including computer
games and interactive narratives, as demonstrated in [6]. The
rationale for using a pre-existing NF experiment is that its
design would be free of any influence or preconceptions from
a control engineering perspective, whilst providing access to
significant empirical data sets to be used for model fitting,
simulation and subsequent analysis of the controller.

Pre-frontal asymmetry is generally measured through an
asymmetry score in the alpha band, such as the A2 score
defined by (F4−F3)/(F4+F3) [9]. This variable is known to
have trait properties that characterize a given individual [10];
it is moreover amenable to voluntary control on top of the
baseline (trait) value, as it also possesses state properties [11].
The EEG A2 signal is notoriously difficult to control, beyond
the intrinsic difficulty of NF. This is reflected in the variations
of success criteria proposed throughout the literature. For
instance, [7] proposes counting the number of times that the
A2 value would cross a predefined threshold to account for the
high instability in the EEG signal. We have opted for a signal
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Fig. 1. Experimental setup of our NF installation that was used to collect the empirical data for PID fitting.

more suitable to control systems modeling, using a 4-point
moving average for A2 and an individual threshold determined
by the subject’s baseline as suggested in [12], with a success
score derived from the integration of above-threshold values
over the NF trial epoch. We note that this success criterion is
trait dependent, taking the subject’s baseline into account.

The use of LTI systems to approximate the behavior of neu-
rofeedback faces similar issues as their use for physiological
control systems, in that they are most likely to constitute an
approximation of a potentially more complex and non-linear
system [2]. It is difficult to hypothesize which components of
an NF system actually depart from linearity, because in an NF
control model, the “plant” to be controlled artificially groups
together two entities: (i) a physiological system corresponding
to the target neural activity, and (ii) some internal (not yet
fully understood) control mechanism through which subjects
gain volitional control of the target neural activity via operant
conditioning. Further to linearity, we assume that considering
the limited duration of NF epochs, a time-invariant hypothesis
is acceptable on all or significant fractions of the NF epoch. It
should be noted that we are only interested in NF for real-time
BCIs, not the induced effects of NF on the subject, which are
most likely to impact on the control model.

In this paper, we therefore consider an NF system as an LTI
closed-loop control system with PID negative feedback. Since
the objective of NF is to reach a target state and maintain that
state for the duration of the NF epoch, we consider the set
(target) value as a Heaviside step function, and do not model
any explicit perturbation of the target. We provide statistical
evidence for PID parameters derived from our model fitting to
be significantly correlated with success scores of NF trials.

In Section II, we discuss previous and related work, and
Section III explains our experimental setup for the NF. Next,
Section IV details the PID control model, and Section V
presents a statistical analysis of our findings and fitting results.
Lastly, in Section VI we conclude and identify future work.

II. PREVIOUS AND RELATED WORK

Héliot et al. [13] have reported the successful use of control
theory to model the learning process of an invasive Brain-

Machine Interface in macaque monkeys. Their hypothesis was
that closed-loop operation of a brain-machine interface relied
on the subject’s ability to learn an inverse transformation of
the plant (neural activity) to be controlled, and their model was
successfully correlated with experimental data.

Ros et al. [3] have provided the most recent and compre-
hensive proposal for a control systems approach to NF, albeit
not necessarily in the context of linear systems. Their central
argument is that while specific neural activity is the target of
control, it is the feedback channel of NF (its sensing com-
ponent) that makes the overall system a closed-loop control
circuit [3]. They draw upon previous considerations on the
applicability of control systems to neuroscience [13], [14]. One
difference to our work here is that their interest is mainly in NF
learning (through the neural modifications induced by NF in
the subject, such as Hebbian plasticity), and ours in using NF
for BCIs, which may set a different context for control systems
analysis — in particular, how set-point values are determined.

The use of PID controllers has been reported for automatic
adaptation of game level difficulty in biofeedback games [15].
While this approach shares some of the topics addressed in
our own work, Parnandi and Gutierrez-Osuna [15] did not use
PID controllers to model the biofeedback process itself.

However, one of the most relevant works to date has been a
PID model of human balance keeping, introduced by Hidenori
and Jiang [16], in which PID coefficients were determined
from experimental data on the subjects’ balance, with the aim
of differentiating between normal and pathological balance
control, as encountered in certain medical conditions. We have
drawn part of our methodology in terms of PID experimental
data fitting from their work [16].

We next review the experimental setup that was used to
obtain the NF data employed later on for PID fitting.

III. EXPERIMENTAL SETUP

The NF experiments that have provided the data we analyze
here have been carried out as part of previous research in
affective BCI [17]. In these experiments, we explored the
ability of subjects to control their level of pre-frontal EEG



Fig. 2. Simulink R© control model of the NF experimental setup depicted in Fig. 1.

alpha asymmetry as a marker of approach, as proposed in [8].
The cognitive task that subjects were given as part of the ex-
periment was to mentally support a virtual character, which is
expected to result in an increase of left pre-frontal asymmetry.

The overall setting is depicted on Fig. 1. Subjects were
equipped with an EEG cap from which alpha band (8-12Hz)
power was extracted online from the electrodes F3 and F4,
sampled at 1Hz with a reference electrode at FCz . The 4-
point moving average MA2 of the A2 asymmetry score was
computed in real-time as input to the system. The feedback
channel consisted in the color saturation level of a virtual
character: the more the subjects were perceived to support the
character (through variation of their MA2 signal), the more
the character restored to its original skin hue. Each subject
went through 12 NF training epochs of 32 seconds, each
preceded by a 15 seconds resting period. Because the baseline
value of A2 acts as a characteristic feature of each individual,
success scores had to be defined individually, after an initial
calibration step in which A2 was measured (eyes open) for
120 seconds. During NF, the real-time MA2 value is mapped
onto color saturation in a linear fashion to yield a percentage
with 0% corresponding to the subject’s baseline and 100% to
the maximum variation of A2 observed across subjects during
calibration (empirically determined as baseline+0.2). Success
over a given NF block is determined by calculating the average
saturation value over the 32 seconds block, with a success
threshold of 10%, which is equivalent to approximately 50%
saturation over 6 seconds. As a caveat, for successful epochs,
we also require that the score has to increase with respect to
the average of the preceding resting period.

IV. NEUROFEEDBACK CONTROL MODEL

We have used the Simulink R© [18] software to facilitate
modeling and simulation of our control system. Simulink R©

integrates with the MATLAB R© platform, which provides a rich
set of functions to perform mathematical operations on vectors
and matrices. Notable features of Simulink R© are support for
both discrete and continuous models, and the ability to extract
and visualize data from simulations via program scripts.

Fig. 2 illustrates the Simulink R© control model of our NF
experimental setup described above. We use a PID Controller
to model the subject’s cognitive process for the NF. The output
of the PID (Control) corresponds to the A2 signal predicated
by the model, and the PID input (Error) is the error between
the saturation (visual feedback) and a fixed target S for the
saturation score, whose empirical definition corresponds to
the NF task. The visual feedback is calculated from the A2

signal by virtue of two subsystems, one for the 4-point Moving
Average and another for the subject-specific Visual Mapping,
mirroring our setup in Fig. 1. The model, in addition, includes
a source block for the empirical MA2 signal, which is used to
calculate the error between empirical and control model MA2.

For brevity, we omit a detailed description of the subsystems
PID Controller, Moving Average, and Visual Mapping, as their
definition is standard [19]. For the Moving Average block,
we use the difference between two integrators, one of them
being delayed by 4 time steps; the Visual Mapping block
implements the arithmetic operations to map signal values
from the interval [baseline,min(0.7, 0.2+baseline)] into the
interval [0, 1], where baseline is the subject’s A2 baseline. A
detailed justification of the mapping is in [17]. We have both, a
discrete and continuous version of the Simulink R© model. For
simulation, we shall use the continuous version.

The Saturation Target block outputs a Heaviside function
scaled by the constant S. The use of a Heaviside function as
our target reflects the assumption noted earlier that subjects
are trying to maximize the visual feedback during the entire
32 seconds trial period. We have set the saturation target to
100%, even though subjects may not be able to sustain their
maximum asymmetric activity for a prolonged period of time1.
However, experimental results show that a target of 100% does
indeed yield the best approximation of the control model MA2

vs the empirical MA2 signal; while in some cases, a local
optimum for S near 60% can be observed, the performance
improvement of the PID fitting for values of S above 70%
turns out to be only marginal in the majority of cases.

1Due to the individualized definition of saturation, a 100% saturation target
does not correspond to an asymmetry score of 1.0, which would actually be
unrealistic to achieve.



A. PID Fitting

The control behavior of a PID is typically characterized by
three constants: Kp, Ki and Kd. They are weights (gains) that
are respectively applied to the current value of the control error,
integral of the error, and derivative of the error. The sum of the
three weighted signals determines the actual control output of
the PID - here being the A2 signal. To derive the gains for a
given subject and trial epoch, we use the empirically measured
A2 signal and visual feedback (saturation signal) obtained from
the experimental data reported in [17]. We have A2 signal data
for 22 subjects, each providing 12 trial epochs; we recall that
a trial epoch samples A2 over a 32 seconds window, at a rate
of 1Hz. Fitting is done on a per-trial basis.

The derivation of optimal PID gains is achieved by solving
a least-mean-squares (LMS) optimization problem in the time
domain. Generally, the output c(t) of a continuous-time2 PID
with input e(t) is determined by the following equation.

c(t) = Kpe(t) +Ki

∫ t

0

e(t)dt+Kd
de

dt
(1)

In our case, c(t) corresponds to the measured A2 signal and
e(t) can be calculated from it via the 4-point moving average
and visual mapping functions realized by the blocks in Fig. 2.
Furthermore, for a given e(t) signal, we can calculate a priori
its integral ei(t) and derivative ed(t). Equation 1 then gives
rise to a system of 32 linear equations — one for each sample.
It can be more concisely written in matrix form as follows.

c = EK (2)

where

E =


e(1) ei(1) ed(1)
e(2) ei(2) ed(2)

...
...

...
e(32) ei(32) ed(32)

 and K =

 Kp

Ki

Kd

 (3)

The system is over-determined and thus generally does not
have an exact solution; but we can use LMS regression to
find a vector K that best approximates the left-hand and right-
hand side of (2). Formally, this is minimizing the residual |r|2
in c = EK + r. Generally, we obtain K = (ETE)−1ET as
the unique solution to this linear optimization problem.

In practical terms, for model fitting we ignore the first input
tuple (e(1), ei(1), ed(1)) since the differential error ed(1) is
not meaningful as the first measurement is taken. Because the
control analysis is done in MATLAB R©, we can take advantage
of built-in functions to solve the LMS problem. We thereby
obtain a triple (Kp,Ki,Kd) for each trial of each subject, and
those triples provide the basis for further statistical analysis.

We note that the three K values fully characterize the
subject’s NF process as a PID controller. In real-life control
engineering, PIDs often additionally specify a filter coefficient
for the derivate action, which we do not consider in our model.

2While NF data acquisition is usually discrete, any exact control model for
NF must be essentially continuous. The choice of a discrete over continuous
model only affects simulation but not the PID fitting approach per se.

Fig. 3. Signal plots for simulations of the fitted PID control system.

B. Simulation of the Control Model

To visually confirm the quality of the fitted model, we have
used the estimated K-gains to simulate the NF control system
in Fig. 2. Fig. 3 includes two sample plots of the predicted
MA2 (green line) vs measured MA2 (red line) for two trials
of a successful subject (no. 6233, trials 2 & 6). To validate the
simulation, we examine the MA2 signals rather than the raw
A2 signals because MA2 already filters out some of the noise
and erratic (high-frequency) oscillations present in A2.

While the two signals are subjectively well aligned for these
particular trials and subject, this is not consistently the case for
all trials and subjects. For the majority of the cases, however,
we can observe that the trend of the simulated signal is visually
aligned with that of the empirical one, though the signal levels
may not always peak at comparable magnitudes.

Simulation in Simulink R© allows us furthermore to derive a
quantitative measure for the quality of the fitting. For this, we
calculate the integral of the absolute error between empirical
and model MA2 over the 32 seconds sample window.

While visual validation generally confirmed viability of the
model fitting approach, we next report on a statistical analysis
of the K-gains in order to examine their correlation to the
success and failure behavior of subjects during the NF trials.



Fig. 4. Boxplot: Ki in successful vs failed epochs.

V. STATISTICAL ANALYSIS

Our hypothesis is that the parameters of the fitted PID
model enable us, with reasonable certainty, to discriminate be-
tween successful and failed NF trials. Towards confirming this,
we first examined the three K-gains across the 12 trial epochs
of each subject. For each subject, we calculated the mean and
standard deviation (SD) of, Kp, Ki and Kd for successful and
unsuccessful epochs, respectively. This revealed that the mean
difference of Ki between successful and unsuccessful trials
of a subject exhibited a discernible pattern: for 13 of the 22
subjects (59%), the mean of Ki [success] was indeed larger
than the mean of Ki [failure].

We note that data for 5 out of the 22 subjects had to be
ignored in this analysis due to those subjects having either no
successful or no failed trials. Hence, in 76% of the permis-
sible trials, the aforementioned pattern could be observed. In
addition, for 9 subjects (53%), the mean difference in Ki was
centered around 5·10−3 (±2·10−3), whereas Kp and Kd seem
to vary more randomly with no discernible pattern.

A dependent t-test revealed that the mean of Ki was signif-
icantly larger in successful trials, M = 0.04, SD = 3.9 ·10−3,
than failed trials, M = 1.2·10−3, SD = 1·10−3, t(16) = 2.66,
p = 0.02, (large effect-size). This initial analysis suggests that
Ki may be a good candidate for a predictor of NF success. To
further explore this surmise, we considered the correlation of
Kp, Ki and Kd with the raw (continuous) NF score. This was
done separately for successful and unsuccessful trials across
all subjects. Overall, we utilized a pool of 264 trial epochs, of
which 110 had successful and 154 had failed NF outcomes.

We observed that in successful trials, the NF score was
significantly (positively) correlated with Ki, r = 0.32 for
p < 0.001 (95% CI for r = [0.14; 0.48]), while there was no
significant correlation of Ki with the NF score in unsuccessful
trials, r = 0.09, p = 0.29, ns. Interestingly, we also discovered
that the NF score in unsuccessful trials was significantly
(negatively) correlated with Kd, r = −0.36, p < 0.001
(95% CI for r = [−0.22;−0.50]), whereas there was no

Fig. 5. Boxplot: Kd in successful vs failed epochs.

significant correlation between Kd and scores in successful
trials, r = −0.17, p = 0.08, ns. This supports the claim that
Ki indeed acts as an indicator for NF success, whereas Kd

may be associated with NF failure. Regarding Kp, we found
no correlation with neither successful nor failed trials.

To further explore the relationship between K-gains and
trial epoch success, we averaged the Ki and Kd values over
successful and failed trials for subjects who had at least 3
successful trials and had at least a single failed trial (13
subjects). This was to exclude subjects with BCI illiteracy, as-
suming that they are not amenable to description by our control
model. Applying a Wilcoxon signed-rank (non-parametric) test
showed that Ki was significantly larger in successful epochs
(Mdn = 4.6 · 10−3) than in failed ones (Mdn = 1.3 · 10−3),
T = 7, z = −2.69, p = 0.01, and r = −0.74 (large effect-
size). The same test with Kd as dependent variable showed that
the difference between Kd in failed epochs (Mdn = −0.21)
and in successful epochs (Mdn = −0.28) approached signifi-
cance, T = 19, z = −1.85, p = 0.06, r = 0.51 (large effect-
size). Boxplots indicating Ki and Kd for successful and failed
epochs are presented in Figs 4 and 5. The middle line is the
median, the bottom and top of the boxes are the 1st and 3rd

quartile, and the whiskers indicate lowest and highest values
within 2 SD from the mean. Only two trials lie outside; they
are referred to as outliers and indicated with a circle.

From Fig. 4, we observe that the smallest Ki in successful
epochs is larger than the median Ki in failed epochs, support-
ing discriminability of success based on Ki. Conversely, the
range of Kd in successful epochs (Fig. 5) completely overlaps
with the range of Kd in failed epochs.

These findings should be interpreted considering the known
effects [19] of each PID constant on the closed-loop response,
although with some caveats due to the specific conditions of
biological systems. Ki’s main effect is to eliminate steady-
state error, and in that sense it plays a major role in reaching
the target NF value. It is thus consistent that an improvement
in eliminating steady-state error results in more successful NF,
although the neurofeedback epoch is more likely to comprise



several short bursts of steady-state periods. The interpretation
of Kd’s impact is more challenging. Its nominal effect is
to reduce overshoot and settling time; however, it is also to
increase noise sensitivity. Since noise is very likely to be a
major issue in EEG neurofeedback, our tentative explanation
is that noise sensitivity should constitute the main impact of
Kd on NF, and this impact would actually be detrimental.

VI. CONCLUSION

We have presented a first attempt at modeling an NF
installation as a PID control system. Experimental NF data was
used to obtain coefficients for the best fit of the PID controller
on a per-trial basis, and we identified a correlation between
the values of those coefficients and failure / success of the
underlying NF experiments. The significance of our findings
is to provide evidence that neurofeedback can be meaningfully
described and analyzed through linear control models.

The hybrid nature of NF systems, which contain elements
of experimental design, and physiological elements which are
not yet fully understood, certainly constitutes a challenge when
recurring to traditional systems-modeling techniques pertaining
to general control theory. This is why we should emphasize
the inherently heuristic nature of our findings. However, for-
mal modeling tools can play an essential role in supporting
fundamental efforts in understanding the inner mechanisms of
NF and discover models that approximate them.

In addition to recent proposals based on control theory [3],
the endeavor of unravelling NF mechanisms should be traced
to the analysis of success determinants such as, for instance,
instructions [20] or cognitive strategies [21]. While formaliza-
tion may help understanding empirical NF results, theoretical
discussions on the “nature of control” in NF systems [22]
should also play an essential role in improving the type of
control systems modeling we have introduced here.

As for future work, we suggest a deeper and quantitative
analysis of the prediction error of the PID control model vs
the experimental NF data. It would additionally be interesting
to determine a possible relationship between the quality of the
model fitting and the PID coefficients, with the ultimate goal
of showing that they entail subject-specific traits. The baseline
of subjects could also be included in this analysis, for instance,
by examining whether it affects success of the fitting. Another
future work is a detailed examination of stability of the fitted
model, using, for instance, Nyquist plots.
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