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Mono-silicon crystals, free of defects, are essential for the Integrated Circuit industry. Chaotic swing in the flexible
shaft rotating-lifting (FSRL) system of the mono-silicon crystal puller causes harm to the quality of the crystal and
must be suppressed in the crystal growth procedure. From the control system viewpoint, the constraints of the FSRL
system can be summarized as not having measurable state variables for state feedback control, and only one parameter
is available to be manipulated, namely, the rotation speed. From the application side, an additional constraint is that the
control should affect the crystallization physical growth process as little as possible. These constraints make the chaos
suppression in the FSRL system to be a challenging task. In this work, the analytical periodic solution of the swing
in the FSRL system is derived using perturbation analysis. A bi-directional impulse control method is then proposed
for suppressing chaos. This control method does not alter the average rotation speed. It is thus optimum regarding the
crystallization process as compared with the single direction impulse control. The effectiveness and robustness of the
proposed chaos control method to parameters uncertainties are validated by the simulations.

Mono-silicon crystal is the basic material of Integrated
Circuits and solar panels, which is grown by using a
mono-silicon crystal puller in a 1420 Celsius degree air-
tight vacuum environment. During the crystal growth pro-
cedure, the flexible shaft rotating-lifting (FSRL) system
keeps both the crystal rotating smoothly and the gradu-
al crystal pulling, according to the crystallization physical
requirements. In such a way, the atoms in the silicon melt
within the crucible are able to crystalize in a predefined
array that ensures crystal quality. However, an irregular
and chaotic swing of the FSRL system, caused by external
perturbation, is present. That must be suppressed since it
does harm the crystal quality. The dynamics and the p-
resence of chaos in the FSRL system was first investigated
in [1]. The irregular swing has been identified for some
time, traditionally considered as being part of an imper-
fect manufacturing. However, improvements in manufac-
turing could not solve the problem. Furthermore, with the
increase demand in the diameter of the crystal, the height
of the puller and the length of the shaft have become larg-
er, making the situation even worse. To solve the prob-
lem, engineers replaced the soft shaft with a hard shaft, so
that the swing could be eliminated. Although this solution
is somewhat effective, it comes at high cost, making it of-
ten a too expensive solution for such competitive industry.
For this reason and after the dynamics being understood
as a chaotic vibration problem [1], there is the possibility
to solve the problem by chaos (vibration) control method-
s. There exist much theoretical research about chaos con-
trol. However, when facing with a practical plant, most
of them are excluded due to operation constraints. The
constraints in the FSRL system can be summarized as: (i)
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no state feedback is available; (ii) only the rotation speed
parameter is accessible for manipulation; (iii) the control
method must have no or little effect on the crystallization
process. Facing with these constraints, the state feedback
based methods are outrightly excluded. Therefore, for a
functioning plant, the control of chaos is not a trivial task
under such restrictive constraints. The periodic single im-
pulse control is a candidate for the FRSL system [2]. How-
ever, there exists a significant weak point in that control
method. It leads the average rotation speed, which is the
controlled parameter, to deviate from the physical require-
ments for the crystallization. To address this shortcoming,
a bi-directional impulse control is being proposed in this
work. The proposed method keeps the merits of impulse
control, i.e., the application of small perturbations to the
manipulating parameter, while keeping the average rota-
tion speed constant. The controlling parameter perturba-
tions are determined according to a bifurcation analysis.
The select range is verified by numerical simulations. The
vibration response is analyzed using a singular perturba-
tion method. The robustness of the FSRL system due to
parameters uncertainties is also validated by simulations.

I. INTRODUCTION

Mono-silicon crystal puller is a manufacturing large appa-
ratus in which polycrystalline silicon blocks are melted in a
crucible using graphite heater. From a mono-silicon seed, a
mono-silicon crystal is grown in an inert gas vacuum environ-
ment. The large mono-silicon crystals play an important role
in semiconductor integrated circuits and solar panels industry.
An undesirable irregular swing has been an impediment dur-
ing the seeding stage in the FSRL system [1]. It is found that
the irregular swing, associated with chaos, disrupts the atoms
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FIG. 1. The simplified structure diagram of the FSRL system.

to crystalize in a predefined and perfect array, causing defec-
tive mono-silicon crystal production. Therefore, the chaotic
swing must be suppressed. Due to the lack of understand-
ing about the intrinsic chaotic dynamics of the FSRL system
in the past, the field engineers attributed the irregular swing
phenomenon to the imperfections in manufacturing, trying to
suppress it by fine mechanical adjustments. However, these
methods could not eliminate the swing phenomenon, intrinsic
to the nonlinear dynamics of the FSRL system as systemati-
cally analyzed in [1]. Thus, chaos control methods have been
recognized as a solution to suppress the irregular swing.

The crystal seed having 10 mm in diameter is grasped and
fixed at the end of a flexible shaft, as shown in Fig. 1. The oth-
er end of the flexible shaft is fixed in a rotating disk. During
the process of the mono-silicon crystal production, the rotat-
ing disk, driven by a motor, rotates at a speed determined by
the crystallization physical requirements. In ideal conditions,
the crystal seed rotates in the melted silicon in a period one
mode and is lifted slowly, so that the crystal is grown to a
larger diameter with a predefined atom array. However, the
small apparatus eccentricity brings about a small external per-
turbation to the FSRL system, leading to the observed chaotic
phenomenon. In order to suppress chaos in the manufacturing
plant, the following practical constraints have to be consid-
ered: (i) no state variable can be measured for controller de-
sign; (ii) the only accessible parameter is the rotation speed;
(iii) the controlling perturbation must be as small as possible
as required by the physics of the crystal growth. Bearing all
the above constraints in mind, we consider the chaos control
methods reported since the seminal work by Ott, Grebogi and
Yorke [3]. Because there is no measurable system state of the
FSRL system, all state feedback based methods are exclud-
ed, such as linear feedback [4-5], delay feedback [6], adaptive
control [7-8], active control [9], robust control [10], and fuzzy
control [11]. Anishchenko’s work on chaos synchronization,
as a kind of chaos control method, yielded fruitful research re-
sults [12-14], but it cannot be used to suppress chaos in the F-
SRL system. The random phase perturbation method has been
proposed to control chaos in Duffing oscillator [15], however,

for FSRL system with the similar dynamic equation as that
of the oscillator in [15], there is no way to perturb the ec-
centric phase of the FSRL system, because of the physical
constraints given before. Fortunately, periodic impulses can
stabilize chaos by perturbing a system parameter at every s-
mall interval, having less influence on the steady state of the
controlled system.

In general, the impulse control method is based on the theo-
ry of impulsive differential equations. Researchers studied the
asymptotic stability of the impulse control system by using the
Lyapunov method [16-18] and the comparison theorem [19].
Among the published impulse control methods, some control
strategies require to adjust all state variables [20-22], others
achieve the goal by manipulating only one state variable [23-
24], but only [25] dealt with the perturbation of a parameter,
as required in our work. In addition, depending on the differ-
ent requirements for the impulse action of the control system,
the impulse could be applied at a fixed interval [26-27], or at
a state-dependent one [28-29]. An impulse control method
was proposed for suppressing the chaos in Duffing oscillator
in [30], however, the method in [30] put the impulse on the os-
cillation force, which is impossible for a physical system like
FSRL, where the physical constraints have to be obeyed. For
a practice system in which the state variables cannot be mea-
sured and the manipulated variable is firmly restricted, such
as the FSRL system, the parameter impulse control is the a
appropriate control method. Hence, a single directional pa-
rameter impulse control was proposed to perturb the rotation
speed in [2]. However, there is a drawback in that method.
The single direction impulse alters the average rotation speed
(although the change is small). In practice, this rotation speed
is determined by the delicate crystal growth physical require-
ments, which cannot be altered. To overcome this drawback,
a bi-directional impulse control method is being proposed in
this work. The key characteristic of this method is that the av-
erage rotation speed is kept the same as the unperturbed one,
representing an essential feature for the manufacturing indus-
try.

The organization of this paper is as follows. In Section 2,
the dynamics of the FSRL system is revisited, and the vibra-
tion response of the system is obtained by using a singular
perturbation method. In Section 3, a bi-directional impulse
control method is proposed to suppress chaotic motion in the
FSRL system and the control parameters selection rule is giv-
en. In Section 4, the simulation results are given to show the
effectiveness of the proposed method. The robustness of the
proposed method to parameter uncertainties are also analyzed.
In Section 5, conclusions are given.

II. NONLINEAR DYNAMICS AND VIBRATION
RESPONSE ANALYSIS OF THE FSRL SYSTEM

A simplified schematic diagram of the FSRL system is giv-
en in Fig. 1. The system is governed by the following equa-
tion:

θ̈ =
r
l
ω2 cos(ωt)+ω2 sinθ cosθ − g

l
sinθ − ξ

m
θ̇ , (1)
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FIG. 2. The amplitude-frequency response of the FSRL system for
different parameter sets. α represents the amplitude response of
the system and σ represents the frequency near the main paramet-
ric resonance. The blue dashed line corresponds to the parameters
γ = 1, f = 2; the black dash dotted line corresponds to the parameter-
s γ = 1, f = 1; the magenta solid line corresponds to the parameters
γ = 2, f = 1.

where θ is the angle between the rotational axis and the shaft,
ω is the rotation speed, l is the length of flexible shaft from
the fixed point O′ to the crystal seed, m is the mass of the
crystal seed and the grasp, ξ is the damping coefficient, and
g is the gravitational acceleration. A motor drives the rotating
disk with a belt pulley. The eccentricity effect causes the pe-
riodic perturbation of the fixed point O, r being the distance
from the eccentric fixed point O′ to the shaft central point O.
The working principle and modeling of the FSRL system have
been investigated in [1].

The perturbation analysis of the system is conducted us-
ing multiple scales method. Because the coefficients r

l and ξ
m

in the dynamical equation are very small, they can be repre-
sented in terms of a small parameter ε . Expanding sinθ in a
Taylor series and retaining the first two terms, Eq. (1) can be
rewritten as follows,

ϑ̈ +ω2
n ϑ +(

1
2

ω2 − 1
6

ω2
n )εϑ 3 + εγϑ̇ = ε f ω2cos(ωt), (2)

where ω2
0 = g

l ,
√

ε3 f = r
l , εγ = ξ

m , ω2
n = ω2

0 −ω2, and θ =√
εϑ .
The general solution of Eq. (2) is assumed to be of the

form, ϑ = ϑ0 + εϑ1 + · · · . A series of independent variables
are introduced: T0 = τ , T1 = ετ , · · · , Tn = εnτ , which are the
time scales, so that ϑ is the function ϑ(T0,T1, · · ·). The time
derivatives are given by the chain rule,

d
dτ

= D0 + εD1 + ε2D2 + · · · , (3)

and

d2

dτ2 = D2
0 +2εD0D1 + ε2(2D0D2 +D2

1)+ · · · , (4)

FIG. 3. The bifurcation diagrams of the system (16) for A = 0.2,c =
0.1.

where Dm
n = ∂ m/∂T m

n . In the following, the general solution
and its time derivatives are substituted into Eq. (2). By group-
ing together the terms with the same powers of ε , the set of
equations up to order ε are as follows,

ε0 : D2
0ϑ0 +ω2

n ϑ0 = 0 (5)

and

ε1 : D2
0ϑ1 +ω2

n ϑ1 =−2D0D1ϑ0 − γD0ϑ0 (6)

− (
1
2

ω2 − 1
6

ω2
n )ϑ 3

0 + f ω2cos(ωt).

The solution of Eq. (5) is the following,

ϑ0 = αcos(ωnT0 +β ).
= BeiωnT0 + B̄e−iωnT0 , (7)

where B = 1
2 αeiβ , B̄ = 1

2 αe−iβ , B̄ is the complex conjugate of
B. For the first approximation solution, it can be assumed that
α = α(T1), β = β (T1), B = B(T1), B̄ = B̄(T1).

Substituting Eq. (7) into Eq. (6), we have

D2
0ϑ1 +ω2ϑ1 = (

1
6

ω2
n −

1
2

ω2)(BeiωnT0 + B̄e−iωnT0)3

−2D1(iωnBeiωnT0 − iωnB̄e−iωnT0)

− γ(iωnBeiωnT0 − iωnB̄e−iωnT0)

+ f ω2cos(ωt). (8)

By introducing a detuning parameter σ , which is expressed
as ω = ωn + εσ , the following equation is obtained for the
time scale T1,

cos(ωt) = cos(ωnT0 +σT1). (9)

Using Euler’s formula, Eq. (9) can be written in complex
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conjugate form, and Eq. (8) becomes,

D2
0ϑ1 +ω2ϑ1 = (

1
6

ω2
n −

1
2

ω2)B3e3iωnT0

+(
1
6

ω2
n −

1
2

ω2)B̄3e−3iωnT0

+(
1
2

ω2
n −2ω2)B2B̄eiωnT0

+(
1
2

ω2
n −2ω2)BB̄2e−iωnT0

−2iωnD1BeiωnT0 +2iωnD1B̄e−iωnT0

− iγωnBeiωnT0 + iγωnB̄eiωnT0

+
f ω2

2
eiωnT0+iσT1 +

f ω2

2
e−iωnT0−iσT1 .

(10)

Because the complex conjugate terms with eiωnT0 and
e−iωnT0 are secular terms, they must be eliminated by setting
the coefficients to zero. Thereby, the following condition is
obtained,

(
1
2

ω2
n −

3
2

ω2)B2B̄− iγωnB−2iωnD1B+
f ω2

2
eiσT1 = 0.

(11)
Substituting B = 1

2 αeiβ , B̄ = 1
2 αe−iβ , and eiσT1 =

cos(σT1 −β )+ isin(σT1 −β ) into Eq. (11), we have

(
1
2

ω2
n −

3
2

ω2)× 1
8

α3 − 1
2

iωnγα − iωnD1α +ωnD1β (12)

+
f ω2

2
cos(σT1 −β )+ i

f ω2

2
sin(σT1 −β ) = 0.

By introducing an auxiliary variable φ = β −σT1, and s-
plitting Eq. (12) into the real and imaginary parts, we obtain
the expressions for D1α and D1φ as given by

D1α =−1
2

γα − f ω2

2ωn
sinφ (13)

and

D1φ =−σ − (
1

16
ω2

n −
3
16

ω2)× α3

ωn
− f ω2

2ωn
cosφ. (14)

When α and φ are in the steady state, D1α = 0 and D1φ = 0.
Since sin2φ + cos2φ = 1, the amplitude-frequency response
equation is obtained as,(

1
2

γα
)2

+

(
σ +(

1
16

ω2
n −

3
16

ω2)× α3

ωn

)2

=

(
f ω2

2ωn

)2

.

(15)
The amplitude-frequency response curves for different pa-

rameters are shown in Fig. 2. The system amplitude re-
sponse increases with the increase of the excitation frequency
f , while, with the increase of the damping coefficient, the sys-
tem amplitude response decreases gradually.

Importantly, the curves of the amplitude frequency re-
sponse reveal the nonlinear features of the FSRL system, such

as the inclination and jump phenomena. The green and black
curves bending over to the right indicate that the same fre-
quency corresponds to two amplitude values, meaning system
instability. The magenta curve represents the case where the
system damping is sufficiently large. The amplitude response
of the system is greatly reduced, and the inclination and jump
phenomena disappear. However, in industrial plant, the sys-
tem damping, though small, cannot be manipulated.

As studied in [1], the FSRL system exhibits various dy-
namical behaviors, including period doubling bifurcation,
symmetry-breaking bifurcation, interior crisis, and chaotic
motion.

To see that, we rewrite system (1) into a dimensionless for-
m,

ẋ1 = x2,

ẋ2 = AΩ2 cos(Ωt)+Ω2 sinx1 cosx1 − sinx1 − cx2, (16)

where x1 = θ , x2 = θ̇ , A= r
l , c= ξ

m . A and Ω are the amplitude
and frequency of the excitation, respectively.

Figure 3 shows the bifurcation diagram of system (16) for
A = 0.2, c = 0.1, chaos occurs when Ω ∈ (1.08,1.23). It
demonstrates the nonlinear dynamics of the system. For addi-
tional dynamical analysis, we refer to [1].

III. A BI-DIRECTIONAL IMPULSE CONTROL METHOD
OF THE FSRL SYSTEM

In this Section, a bi-directional impulse control method is
proposed for suppressing chaos in the FSRL system. The
main goal of the approach is to eliminate chaotic motion while
maintaining the average rotation speed to be constant. Be-
cause the rotation speed is selected as the control input, we
define positive impulse when the speed increases and negative
impulse as it decreases. The dimensionless equation of the
proposed bi-directional controlled system is as follows:

ẋ1 = x2,

ẋ2 = A(P(t))2 cos((P(t)t)+(P(t))2 sinx1 cosx1

− sinx1 − cx2, (17)

where P(t) = Ω+ u(t) is determined by the rotation speed.
u(t) is defined as the impulse function with period T = 2π/Ω,
which is expressed as:

u(t) =
∞

∑
n=0

h(t −nT ), (18)

with

h(t) =


−κ, 0 < t < ∆
κ, T/2 < t < T/2+∆
0, otherwise,

(19)

where ∆ is the impulse duration and κ is the impulse ampli-
tude. From Eqs. (18) and (19), we require that both impulses
are applied to the rotation speed sequentially. The positive κ
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FIG. 4. The bifurcation diagrams of x1 versus Ω for the controlled
system (17) with parameter pair (κ ,∆) = (0.8,0.342).

means that the speed is increasing and the negative κ means
that the speed is decreasing. The bi-directional impulse con-
trol alternatively increases and decreases the speed within du-
ration ∆ at each half period of the rotation.

Figure 4 shows the bifurcation diagram of the controlled
system (17) using bi-directional impulse control, in which
the asymptotic state variable x1 is plotted against the rota-
tion speed Ω. It represents the periodic motion after the bi-
directional impulse control is applied, where the control pa-
rameters are (κ,∆) = (0.8,0.342). The impulse duration ∆
is 6 percent of the period, 2π/Ω. Comparing with Fig. 3, it
can be seen from Fig. 4 that the chaotic motion is converted
into a periodic motion by the proposed bi-directional impulse
control.

The bifurcation diagrams of the controlling impulse param-
eters are shown in Figs. 5(a) and 5(b) for κ and ∆, respec-
tively. Figure 5(a) shows that the state x1 of the controlled
system (17) changes from chaotic motion to period one mo-
tion for κ ∈ (0.58,1) when ∆ is fixed at 0.285. In Fig. 5(b),
κ is fixed at 0.6, the state x1 is periodic for ∆ ∈ (0.057,0.4).
Therefore, the bi-directional impulse control with the appro-
priate parameter pair (κ,∆) does eliminate the chaotic motion
in the controlled system.

In the mono-silicon growth process, a stable rotation be-
tween the seed and the melted silicon is essential to achieve
stable crystal/melt surface shape. Considering the special re-
quirements for the crystal growth technology, we determine
the parameter boundary for the controlled system to operate
in a stable period one motion, as shown in Fig. 6. With our
control strategy, the system continues to operate in the period
one motion. In Fig. 6, chaos is suppressed by using the bi-
directional impulse control with parameter pairs (κ,∆) in the
shade area, where the system parameters Ω = 1.1,A = 0.2 and
c = 0.1. For other system parameters, the control parameter
boundary can also be determined similarly.

IV. SIMULATION RESULTS

A. The effectiveness of the bi-directional impulse control
method

In the following, we verify the effectiveness of the proposed
method by using simulations. The parameters selection, ac-
cording to the rule given above, ensures that the chaotic be-
havior of the system is suppressed and the system is stabilized
at period one.

The bi-directional impulse control results are shown in Fig.
7(a) for the parameter pair (κ,∆) = (0.8,0.257) and the sys-
tem parameters Ω = 1.1,A = 0.2,c = 0.1. Figure 7(a) depicts
the waveform of the state x1 of the controlled system (17),
where the control impulses are activated at t = 100. It shows
the state x1 transition from chaotic motion to period one after
t = 100.

We compare the single direction impulse control with the
bi-directional impulse control. The equation of the controlled
system for the single impulse control method is defined in [2].
The method applies one negative impulse per period. Fig-
ure 7(b) shows the simulation result of single impulse control
for choosing the control parameters pair (κ,∆) = (−0.8,0.51)
and the system parameters Ω = 1.1,A = 0.2,c = 0.1. The im-
pulse amplitude of single impulse control is the same as that
of bidirectional impulse control, while the impulse duration of
these two control methods are also the same. Comparing with
Fig. 7(a), it can be seen that the amplitude of the controlled
system in bi-directional impulse control is smaller than that of
the single direction impulse control system in the steady state,
which entails a correct crystal growth. The changes of rotation
speed after the different impulse control applied are shown in
Figs. 7(c) and 7(d). Figure 7(c) represents the situation where
the system rotation speed is controlled by bi-directional im-
pulse, corresponding to Fig. 7(a). The average rotation speed
of the system does not change, being kept at Ω = 1.1, because
the bi-directional impulse control alternatively increases and
decreases the speed during the same amount of time. Figure
7(d) depicts the rotation speed after applying the single im-
pulse control, corresponding to Fig. 7(b); in this case, the av-
erage rotation speed of the system is reduced, below Ω = 1.1.

B. The robustness of the method to the small parameter
uncertainty

The proposed method is insensitive to the small model pa-
rameter uncertainty in the FSRL system, which is also validat-
ed by the corresponding simulations. The reason is as follows.
The control parameters are designed according to the bifurca-
tion diagram calculated by the nominal system parameters in-
cluding A and c. These control parameters are robust to small
system uncertainties, as made evident by the bifurcation dia-
gram when the parameters are far from the bifurcation points.
This fact can be observed from the bifurcation diagrams in
Fig. 8. For fixed κ and ∆, the period one can be achieved even
though there exist small parameters mismatch between the ac-
tual system and the controller design. The method is sensitive
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FIG. 5. (a) The bifurcation diagram of the controlling impulse parameters κ and ∆ with A = 0.2, Ω = 1.1, c = 0.1 and ∆ = 0.342 for varying
control parameter κ . (b) The bifurcation diagram of the system with A = 0.2, Ω = 1.1, c = 0.1 and κ = 0.6 for varying control parameter ∆.
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FIG. 6. The pairs of (∆,κ) in the shade area can be used to suppress
chaotic motion.

to the excitation frequency, though, it is fortunate that the ex-
citation frequency is determined by the rotation speed. If the
rotation speed is not very accurate, the frequency determined
on the same apparatus base is inaccurate accordingly. There-
fore, this inaccuracy will not destroy the effectiveness of the
proposed method.

Figures 9(a) and 9(b) show the control results with small
parameter uncertainty, including A and c. We choose the con-
trol parameters pair (κ,∆)= (0.8,0.257) from Fig. 6 and keep
the excitation frequency Ω = 1.1 unchanged. Figures 9(a) and
9(b) show that the state variable x1 is stabilized in a period
one motion after the control is applied, where the model pa-
rameters are (A,c) = (0.19,0.08) and (A,c) = (0.24,0.12),
respectively. They are all different from the ones used for the
controller design in Fig. 6 (i.e., A=0.2, c=0.1). From Figs.
9, it can be seen that the uncertainty of the system parameter-
s does not affect the method for suppressing chaos, once the
parameters selected is far from the bifurcation points.

V. CONCLUSIONS

This work investigates the vibration response of the FSR-
L system by the perturbation method of multiple scales. A
bi-directional impulse control method is proposed to suppress
chaos in FSRL system. The advantages of this method is that
it ensures the average rotation speed of the system to remain
constant, and the amplitude of the resulting period one opera-
tion is smaller with respect to the single direction impulse con-
trol. Numerical simulations show that the proposed method
is an effective control technique for the chaos suppression in
the FSRL system, and it is insensitive to the system parame-
ters small uncertainty, including A and c. This point is also
an important aspect of our proposed bi-directional control for
practical application.

DATA AVAILABILITY

The data that supports the findings of this study are avail-
able within the article.
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FIG. 7. (a) The state variable x1 as a function of t for κ = 0.8 and ∆ = 0.257. The bi-directional impulse control is applied at t = 100; (b)
The simulation result of single impulse control by choosing the control parameters pair (κ ,∆) = (−0.8,0.51). The state variable x1 of the
controlled system in single impulse control is plotted as t varies and the single impulse control is applied at t = 100; (c) The rotation speed
after the bi-directional impulse control is applied; (d) The rotation speed after the single impulse control is applied.
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FIG. 8. (a) The bifurcation diagram of the system with Ω = 1.1, c = 0.1 and κ = 0.8, ∆ = 0.257 by varying A, and the period one is achieved
at A ∈ (0.15,0.24). (b) The bifurcation diagram of the system with Ω = 1.1, A = 0.2 and κ = 0.8, ∆ = 0.257 by varying c, and the period one
is achieved at c ∈ (0.05,0.12).
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FIG. 9. (a) The state variable x1 is plotted for κ = 0.8 and ∆ = 0.257, where Ω = 1.1,A = 0.19 and c = 0.08. The bi-directional impulse control
is applied at t = 100; (b) The state variable x1 is plotted for κ = 0.8 and ∆ = 0.257, where Ω = 1.1,A = 0.24 and c = 0.12. The bi-directional
impulse control is applied at t = 100.
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