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Abstract 14 

Quantifying temporal variation in sex-specific selection on key ecologically relevant traits, and 15 

quantifying how such variation arises through synergistic or opposing components of survival 16 

and reproductive selection, is central to understanding eco-evolutionary dynamics but rarely 17 

achieved. Seasonal migration versus residence is one key trait that directly shapes spatio-18 

seasonal population dynamics in spatially- and temporally-varying environments, but temporal 19 

dynamics of sex-specific selection have not been fully quantified. We fitted multi-event 20 

capture-recapture models to year-round ring resightings and breeding success data from 21 

partially-migratory European shags (Phalacrocorax aristotelis) to quantify temporal variation 22 

in annual sex-specific selection on seasonal migration versus residence arising through adult 23 

survival, reproduction, and the combination of both (i.e. annual fitness). We demonstrate 24 

episodes of strong, and strongly fluctuating, selection through annual fitness that were broadly 25 

synchronised across females and males. These overall fluctuations arose because strong 26 

reproductive selection against migration in several years contrasted with strong survival 27 

selection against residence in years with extreme climatic events. These results indicate how 28 

substantial phenotypic and genetic variation in migration versus residence could be maintained, 29 

and highlight that biologically important fluctuations in selection may not be detected unless 30 

both survival selection and reproductive selection are appropriately quantified and combined. 31 

 32 
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Introduction 37 

Quantifying temporal variation in the strength and direction of sex-specific selection on 38 

ecologically-relevant phenotypic traits is central to understanding eco-evolutionary dynamics 39 

[1–4]. This is because the forms and magnitudes of variation in selection will shape the 40 

maintenance of genetic and phenotypic variation, and shape the rate and direction of adaptive 41 

evolutionary change [2,3,5]. Temporal variation in selection will thus fundamentally affect 42 

population responses to varying and changing environmental conditions. In particular, both 43 

fluctuating selection and sexually antagonistic selection, respectively defined as episodes of 44 

selection acting in opposite directions within short ecologically-relevant periods or between 45 

the sexes, can help maintain genetic variation and alter timeframes for adaptation [3,5]. Yet, 46 

temporal dynamics of sex-specific selection on key traits in wild populations have still rarely 47 

been quantified [2]. Empirical evidence of temporally fluctuating selection is particularly scant, 48 

once sampling variance is accounted for [4,6]. Moreover, we commonly lack insights into how 49 

fluctuations are caused by environmental variation, even though such impacts are central to 50 

eco-evolutionary processes and outcomes [2,7,8]. 51 

In general, selection on any trait can operate through differential survival and/or 52 

differential reproduction in relation to phenotype, yielding survival selection and/or 53 

reproductive selection [9,10]. These selection components could act in the same or opposite 54 

direction, generating either strong or weak net selection within years [11]. Further, the relative 55 

strength and direction of selection through each fitness component could vary among years, 56 

potentially generating net fluctuating selection. Moreover, depending on sex-specific responses 57 

to underlying environmental variation, fluctuations in net selection could be synchronised or 58 

opposing across females and males. Comprehensive studies aiming to quantify temporal 59 

variation in the overall magnitude and direction of selection should therefore quantify sex-60 
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specific temporal variation through both fitness components, and through their combined 61 

effects. 62 

This ambition necessitates explicit estimation of temporal sequences of sex-specific 63 

selection within as well as among years. In many systems, reproduction (and resulting 64 

reproductive selection) occurs within discrete seasons, while survival selection could occur at 65 

any time, and might not coincide with reproductive selection. Such sequential selection 66 

episodes could have complex compound effects. For example, strong survival selection acting 67 

during a non-breeding season will leave fewer individuals of particular phenotypes available 68 

to breed subsequently, reducing the degree to which opposing reproductive selection could 69 

reverse the direction of net annual selection [12]. Further, carry-over effects of non-breeding 70 

season phenotypes on subsequent reproduction could cause additional components of time-71 

lagged indirect selection [13]. However, most studies of temporal variation in selection focus 72 

on either survival or reproduction [2,6], and/or do not estimate combined effects of different 73 

selection components across seasons. Fitness measures that combine survival and reproduction 74 

to quantify individual contributions to annual population growth have been developed 75 

[10,14,15], but are still rarely applied to estimate selection [16,17]. 76 

One key phenotypic trait that could directly link ecological and evolutionary dynamics 77 

is seasonal migration (hereafter “migration”), defined as reversible individual movements 78 

between locations across seasons. Migration allows individuals to exploit seasonally varying 79 

resources and avoid unfavourable conditions, and directly determines individuals’ seasonal 80 

locations and resulting spatio-seasonal population distributions [18,19]. Moreover, phenotypic 81 

expression of migration versus residence commonly varies among individuals within 82 

populations, creating opportunity for selection. Specifically, forms of ‘partial migration’, 83 

where some individuals remain resident at their breeding location during the non-breeding 84 

season while other individuals are seasonal migrants, occur in diverse amphibian, reptile, fish, 85 
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bird and mammal populations [18,20–22]. Sympatric-breeding individuals with migrant and 86 

resident phenotypes are then spatially segregated in the non-breeding season. Episodes of 87 

strong seasonal selection could then arise due to spatial variation in non-breeding season 88 

environmental conditions that causes differences in survival and/or subsequent reproduction, 89 

which may be modulated by sex-specific environmental tolerances and/or constraints on 90 

reproductive success [18,23]. Quantifying among-year variation in sex-specific selection on 91 

migration versus residence is therefore central to understanding how spatio-temporal 92 

environmental variation could drive micro-evolution of migration, and hence drive micro-93 

evolution of spatio-seasonal population dynamics and distributions. Yet, to date, such variation 94 

in selection has not been fully quantified. 95 

Progress requires quantifying non-breeding season phenotype (resident or migrant), 96 

survival and subsequent reproduction of numerous females and males across multiple years 97 

within a sympatric-breeding partially-migratory population. This can be achieved through 98 

large-scale year-round resightings of marked individuals designed to determine individuals’ 99 

non-breeding season locations, coupled with subsequent reproductive monitoring. However, 100 

since not all individuals’ locations and reproduction will typically be observed at all times, 101 

inference of selection requires advanced full-annual-cycle capture-recapture models that 102 

account for the resighting process and resulting partial observation of individuals’ phenotypes 103 

and uncertainty in survival and breeding outcomes. Recent analyses in European shags 104 

(Phalacrocorax aristotelis, hereafter “shags”) demonstrated strong survival selection against 105 

residence in both sexes within two of nine non-breeding seasons containing extreme late-winter 106 

storms (i.e. extreme climatic events, “ECEs”), with weak selection or neutrality otherwise [24]. 107 

However, the degree to which such temporal variation in survival selection could be overridden 108 

by sex-specific reproductive selection manifested through carry-over effects acting in 109 
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subsequent breeding seasons, potentially generating overall fluctuating selection, has not been 110 

quantified. 111 

Accordingly, we fitted multi-event capture-recapture models to year-round resightings 112 

and breeding success data from adult shags to jointly estimate annual sex-specific reproductive 113 

selection alongside survival selection. We then combined these estimates to quantify among-114 

year variation in overall selection on migration versus residence through annual adult 115 

contribution to population growth, explicitly tested for fluctuating selection, and examined 116 

whether variation and fluctuations were broadly synchronised across females and males. We 117 

thereby quantify how components of seasonal selection, including selective episodes 118 

associated with ECEs, can drive strong fluctuating and/or sex-specific selection on a key 119 

phenotypic trait that shapes spatio-seasonal population dynamics. 120 

 121 

Methods 122 

Study system and data collection 123 

The focal shag population breeds on the Isle of May (“IoM”) National Nature Reserve, 124 

Scotland (56°11′N, 2°33′W). These shags are typically socially monogamous, rearing a single 125 

brood per year with biparental care (Electronic Supplementary Material, “ESM”, S1). Since 126 

1997, >17000 chicks (ca. 80% of all those hatched) and >900 additional adult recruits have 127 

been ringed with uniquely-coded colour rings (field-readable to 150m with a telescope), 128 

generating a breeding population of individually-marked adults. During ten breeding seasons 129 

(April-July 2009-2018, “summers”) virtually all nest sites on IoM were monitored through 130 

frequent, systematic checks (ESM S1). Colour-ringed nest owners were systematically 131 

identified and hence classified as breeders, and sexed through vocalizations and/or genotyping. 132 

For active nests (mean 533 year-1, range 388-821), and hence their associated owners, breeding 133 
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success was recorded as the number of chicks fledged (0–4), or recorded as unknown in cases 134 

with uncertain success (~1% of nests; ESM S1). In addition, regular (~3 week-1) resighting 135 

surveys at roost sites on IoM were undertaken to identify ringed adults that apparently did not 136 

attempt breeding or could have failed early (hereafter early-failed/non-breeders). These 137 

individuals were assigned breeding success of 0 fledglings, affecting 2–18% of all resighted 138 

adult females and 1–30% of males (means 5%, ESM S1). Due to the intensive ringing, 139 

comprehensive nest monitoring and high overall breeding season resighting probability (mean 140 

0.95 during 2010–2018; range 0.90–0.98; [24]), annual breeding success was assigned for a 141 

very high proportion of the total adult population. Ringing and nest monitoring were licensed 142 

by British Trust for Ornithology and NatureScot. 143 

Because shags have partially wettable plumage and hence must return to shore every day 144 

to dry, ringed individuals can be resighted at coastal locations throughout the non-breeding 145 

season (“winter”). Hence, throughout each winter (September–February) during 2009–2018, 146 

major roost sites on IoM and across the known winter range of migrant IoM shags (eastern and 147 

northern Scotland) were surveyed approximately every two weeks and resightings of colour-148 

ringed individuals recorded (ESM S1, [24,25]). Since breeding dispersal from IoM is very rare 149 

[24,26], these winter surveys allowed individuals to be directly classified as residents when 150 

resighted on IoM, and as migrants when resighted elsewhere. These resightings also effectively 151 

inform on true survival, with virtually no confounding permanent emigration. 152 

 153 

Model design  154 

To estimate survival and reproductive selection on migration versus residence, we devised a 155 

discrete-time multi-event capture-recapture model that considers hidden transitions between 156 

individual states and imperfect observation of these states. States are defined as locations (i.e. 157 

residence on IoM, versus migratory areas elsewhere; ESM S1), and breeding outcomes (i.e. 158 
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breeding status and number of fledglings). The state transition process thus represents seasonal 159 

movement and survival, and subsequent breeding success. The observation process represents 160 

spatially and temporally varying resighting effort, and uncertainty in breeding success 161 

assessment. The model thereby allows robust probabilistic inference on the (partially-162 

observed) full-annual-cycle sequence of individual phenotypes (migrant or resident), and hence 163 

migration-dependent survival and breeding success (i.e. survival and reproductive selection; 164 

Fig. 1a). 165 

To maximise use of available year-round resighting data to make probabilistic inference 166 

on individuals’ winter locations, and hence phenotypes and resulting selection, we divided each 167 

annual cycle (y; one breeding season to the next) into five capture-resighting occasions (o), 168 

comprising the breeding season and four subsequent winter occasions (Fig. 1a; ESM S1, [24]). 169 

In each breeding season, new adults enter the dataset and all alive individuals are assumed to 170 

be in the residency area (on IoM). Through the four subsequent winter occasions (Fig. 1a), 171 

alive individuals can be in the residency area or a migratory area (corresponding to resident 172 

and migrant states). At each occasion, alive individuals can be seen where they are located or 173 

not seen, according to occasion- and location-dependent resighting probability (p). To model 174 

spatial heterogeneity in the observation process, we defined multiple migrant states, including 175 

a “ghost area” encompassing sites with no resighting effort (i.e. an unobservable state with 176 

p=0, ESM S1; [24]). Between occasions, survival probability (ϕ) is sex, time- (i.e. occasion by 177 

year) and migration-dependent (i.e. all migrants versus residents). Individuals can move 178 

between residency and migratory areas, according to probabilities of departing from residency 179 

(ε), moving to a particular migratory area conditional on departure (δ), returning from a 180 

migratory area to the residency area (ω), and switching between migratory areas conditional 181 

on not returning (σ; [24]). The model was parameterised with interacting sex-, location-, and 182 

time-dependence in movement and resighting probabilities. However, σ was set constant across 183 
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locations and time, because switching between migratory areas between winter occasions was 184 

rarely observed [24]. Since the data did not suggest any major sex bias in migrants’ 185 

destinations, δ and σ were modelled as sex-independent. Since an individual cannot be a 186 

migrant during the breeding season, parameters were constrained such that individuals can only 187 

move from or remain in the residency area between occasion 1 (breeding season) and 2 (first 188 

winter occasion), and can only move to or remain in the residency area between occasion 5 189 

(late-winter occasion) and 1 (Fig. 1a). Full details of non-breeding season model structure and 190 

parameterisation are in [24]. 191 

In each breeding season (occasion o=1), adults that survived the previous winter 192 

transition to one of six possible breeding states conditional on whether they were resident or 193 

migrant in the preceding late-winter occasion (o=5; Fig. 1b). Specifically, individuals first 194 

become breeders (B), or conversely transition to the early-failed/non-breeder state ( B ) 195 

according to migration-dependent breedingprobability ζ. Breeders then produce n fledglings 196 

(0≤n≤4) and thus transition to the corresponding states (Bn), following the migration-dependent 197 

set of nest outcome probabilities χn (with ∑ 𝜒𝜒𝑛𝑛4
𝑛𝑛=0 = 1; Fig. 1b). The model was parameterised 198 

with interacting migration- and year-dependence in ζ and χn. Because there are as yet no 199 

capture-recapture methods allowing breeding outcome to be modelled as a joint state for two 200 

paired individuals, breeding outcome was modelled for one sex at a time (hereafter ‘focal sex’) 201 

and hence treated as independent from the other sex. Corresponding observation events for 202 

focal sex individuals are resighted as early-failed/non-breeder (B), resighted as breeder with 203 

success of n fledglings (Bn) or unknown success (B?), or not resighted (Ø) (Fig. 1b). We assume 204 

that, since nests are exhaustively monitored (ESM S1), all breeders are resighted (i.e. pB=1 for 205 

each breeder state). Breeder states are consequently either recorded with certainty or unknown 206 

(i.e. a breeder that produced n fledglings can only have observation event Bn or B?), following 207 

state-dependent assignment probability αBn (Fig. 1b). However, early-failed/non-breeders can 208 
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be resighted or not, with resighting probability pB. All surviving non-focal sex individuals 209 

transition into a single live state unlinked to reproduction, and are resighted with probability p 210 

[24]. However, winter observations of non-focal sex individuals inform movement parameters 211 

of both sexes, and therefore improve precision and accuracy of estimates for the focal sex. 212 

 213 

Data  214 

We used 42322 year-round resightings to compile individual capture-resighting histories (i.e. 215 

sequences of observation events) of 2147 known-sex adult shags that bred on IoM at least once 216 

during 2009–2017 (19011 resightings of 1108 females; 23311 resightings of 1039 males). Each 217 

individual was first assigned to the residency area in the summer of its first observed breeding 218 

attempt during 2009-2017, then assigned as observed in an area or unobserved in each 219 

subsequent occasion, with a specific breeding observation in summer (ESM S1).  220 

Breeding season events comprised 2569 and 3004 direct observations of breeding success 221 

(and 31 and 25 unknown success) for females and males respectively. Success of each 222 

individual’s first observed breeding attempt during 2009-2017 is excluded from current 223 

analyses. This is because previous winter location (and hence migrant versus resident state) 224 

cannot be inferred for individuals that entered the dataset in summer 2009 (before winter 225 

resightings started; 340 females, 382 males), or were ringed as breeding adults during 2010-226 

2017 (187 females, 127 males). Other individuals originally ringed as chicks entered the dataset 227 

at recruitment, typically aged three years (563 females, 508 males). However, individual pre-228 

recruitment histories cannot be included without further assumptions, model developments, 229 

and data regarding natal dispersal and recruitment processes. Since first breeding attempts were 230 

necessarily excluded, we did not aim to test general hypotheses regarding age-specific breeding 231 

success. Accordingly, we retained individuals of known and unknown ages (ringed as chicks 232 
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and adults respectively) in the data. However, to confirm that estimated differences in breeding 233 

success between residents and migrants, and hence apparent reproductive selection, were not 234 

simply due to correlated effects of age (e.g. if younger individuals were independently likely 235 

to migrate and to have low breeding success) we fitted further multi-event models that included 236 

basic age structure in transitions to breeding state (ESM S6). 237 

 238 

Model analyses 239 

The model was built and analysed using Stan, a Bayesian probabilistic programming language 240 

using Hamiltonian Monte Carlo, with package rstan [27] in R v3.6.3 (code in ESM S2; [28]). 241 

Objective (“uninformative”) uniform priors were used for all parameters (ESM S2). Posterior 242 

predictive checks showed no major discrepancies between the data and posterior predictions, 243 

implying good model fit (ESM S3). Complete details on posterior samples, including for 244 

elementary model parameters, are in ESM S5 and [48]. 245 

We derived posterior distributions for compound quantities of biological interest that are 246 

not elementary parameters, thus synthesising key effects while propagating associated 247 

uncertainty. Annual survival probability (Φs) for possible phenotypic sequences (‘s’) of 248 

seasonal residence versus migration through the annual cycle (Fig. 1a) was calculated as the 249 

product of survival probabilities of focal migratory phenotypes π (R or M) across the five 250 

successive occasions within each year (ϕπ,o). For current purposes we focused on two 251 

stereotypical and biologically relevant sequences: “full-winter migration” (leaving the 252 

residency area by September and returning next breeding season, s=R-M-M-M-M, hence 253 

ΦRMMMM,y=ϕR,1ϕM,2ϕM,3ϕM,4ϕM,5), and “full-winter residence” (s=R-R-R-R-R, 254 

ΦRRRRR,y=ϕR,1ϕR,2ϕR,3ϕR,4ϕR,5). Model estimates show that these sequences are the two most 255 

frequently realised: across 2009–2018, the posterior mean of the probability of full-winter 256 
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residence ranged from ca. 20–50% (grand mean 30%) and full winter migration from ca. 10–257 

30% (grand mean 20%; [24]). Each alternative path was unlikely: grand mean range 0-7% [24]. 258 

The two stereotypical sequences also capture key biological variation because major 259 

differences in Φs among sequences are driven primarily by late-winter survival; all sequences 260 

ending as migrant (or resident) in late-winter occasion have similar survival probabilities [24]. 261 

Based on model estimates across years, approximately 35-75% of individuals were residents 262 

in the late-winter occasion (grand mean 60%) while 25–65% of individuals were migrants 263 

(grand mean 40%). There was no strong sex bias in the proportion of migrants, or hence of 264 

sexual dimorphism in late-winter location (female-male difference ranged -0.18–0.07, grand 265 

mean -0.04; [24]).  266 

To summarize the distribution of breeding success across all focal sex individuals 267 

(including defined breeders and early-failed/non-breeders) dependent on residence or 268 

migration in late-winter occasion, we derived the expected number of fledglings per individual 269 

(hereafter ‘expected breeding success’, E(BSπ) where π denotes resident or migrant phenotype): 270 

effectively E(BSπ)= ∑ ζπχπ,nn4
n=1  (ESM S5). Underlying full probability distributions of 271 

breeding outcomes are summarised in ESM S5. 272 

We computed annual fitness as the expected contribution to population growth (E(Cs)) 273 

of adult residents and migrants encompassing survival probability from year y to y+1 followed 274 

by breeding success in year y+1, for a given annual phenotypic sequence s ending with 275 

phenotype π, such that E(Cs)=Φs(1+½E(BSπ)). This measure represents the expected direct 276 

contribution of an adult alive following a given breeding season to the population immediately 277 

following the next breeding season (i.e. a post-breeding census), conditional on being resident 278 

or migrant. It comprises the expected contribution of an individual itself and half its expected 279 

number of offspring (given that all offspring have two parents), both conditional on annual 280 

survival. It is broadly analogous to the pre-breeding census formulation utilised elsewhere [14]. 281 
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To quantify sex-specific selection on residence versus migration, we computed full posterior 282 

distributions of the differences (∆) in Φs, E(BSπ) and E(Cs) between residents and migrants 283 

within each sex and year. We assessed evidence for each difference through the posterior 284 

probability that it was positive (Pr(∆>0)). Pr(∆>0) values close to 1 or 0 indicate substantial 285 

evidence for positive or negative differences respectively (and hence for selection in one 286 

direction or the other), while values close to 0.5 indicate no clear evidence for selection in 287 

either direction. To explicitly test for variation in components of selection between sexes and 288 

years, we computed the difference in the resident-migrant difference (∆∆, and corresponding 289 

Pr(∆∆>0)) between females and males within each year, and between every pair of years 290 

within each sex (ESM S4). Because ordering of years within pairwise comparisons and 291 

resulting directionality is arbitrary when summarising across several comparisons, we report 292 

values as the distance from the [0,1] boundaries rather than as the absolute values (Pr(∆∆)’; 293 

ESM S4). Accordingly, Pr(∆∆)’ values close to 0 indicate substantial evidence for a 294 

difference in selection between two focal years (in a given direction), while values close to 295 

0.5 indicate no clear evidence in either direction. These measures of differences in selection 296 

combine differences in magnitude and direction. To explicitly test for fluctuating selection 297 

(i.e. differences in direction), we calculated the posterior probability of a sign change in 298 

selection between every pair of years within each sex (ESM S4; [4]). Pr(∆∆±) values close to 299 

1 indicate strong evidence that selection acted in opposite directions between two focal years, 300 

whereas values close to 0 indicate no evidence that selection differed in direction. 301 

Results 302 

Annual survival selection 303 

Estimated annual adult survival probabilities (Φs) were notably lower in 2012-13, 2013-14 and 304 

2017-18 than in the other six study years (Fig. 2). There were clear episodes of strong survival 305 
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selection against full-winter residence in two of these years (2012-13 and 2017-18; Fig. 2). 306 

Here, Φs was approximately 0.2 higher for full-winter migrants than residents in both sexes 307 

(Fig. 2; ESM S5). These episodes of mortality and survival selection were previously noted to 308 

coincide with late-winter ECEs comprising severe storms [24]. 309 

In contrast, there was no evidence of substantial differences in Φs between migrants and 310 

residents, or hence of survival selection, in the other seven years (Fig. 2; grand mean ∆ was 311 

0.00 in females and 0.02 in males; ESM S5). Survival selection in 2012-13 and 2017-18 312 

exceeded that in the other years in both sexes (Fig. 2), as confirmed by pairwise comparisons 313 

(Pr(∆∆)’ was <0.03 and <0.11 for 2012-13 and <0.01 and <0.12 for 2017-18, in females and 314 

males respectively; ESM S5). Further, survival selection in 2012-13 did not differ from that in 315 

2017-18 (Pr(∆∆)’ was 0.45 in females and 0.20 in males; ESM S5). There were no marked 316 

differences in selection among the other seven years, except for some evidence that selection 317 

against resident males differed between 2015-16 and other years apart from 2009-10 and 2010-318 

11 (Fig. 2, Pr(∆∆)’ ranged 0.05–0.09; ESM S5). 319 

There was no evidence of strong or consistent sex-specific survival selection in any year 320 

(Fig. 2; Pr(∆∆>0) ranged 0.11–0.81 across years; ESM S5). Hence, overall, there was strong 321 

among-year variation in survival selection, driven by two extreme years with low survival and 322 

strong selection against residents in both sexes. However, there was little definitive evidence 323 

of fluctuating survival selection, defined as sign changes, in either sex (Pr(∆∆±) ranged 0.04–324 

0.80 in females and 0.04–0.89 in males across all pairs of years; ESM S5).  325 

 326 

Reproductive selection 327 

Expected breeding success (E(BSπ)) varied substantially among years, and there was evidence 328 

of strong reproductive selection against late-winter migrants in multiple years (Fig. 3, recall 329 
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that for E(BSπ), phenotype π reflects location in late-winter occasion o=5; Figure 1). 330 

Specifically, there was strong evidence of selection against migrants in both sexes in 2011, 331 

2012 and 2014, and in females in 2016. For these years, posterior means of ∆ ranged 0.26–0.64 332 

and 0.28–0.45 fledglings in females and males respectively (Fig. 3, ESM S5). 333 

Evidence of reproductive selection was weaker in other years, but estimated effects were 334 

typically in the same direction (i.e. against late-winter migrants, Fig. 3). However, there was 335 

weak evidence for reversed selection (i.e. against late-winter residents) in females in 2013 and 336 

2018 (Fig. 3; ESM S5), which are the two years that also showed strong survival selection 337 

against residence (Fig. 2). Consequently, pairwise comparisons confirmed that reproductive 338 

selection varied among years in females. In particular, there was strong evidence that selection 339 

was different in 2013 and 2018 compared to other years (Fig. 3; Pr(∆∆)’ ranged 0.00–0.14 and 340 

0.01–0.26 respectively; ESM S5), but not to each other (Pr(∆∆)’=0.37). Among the other seven 341 

years, there was some evidence that selection was different in 2011 and 2012 compared to later 342 

years (Pr(∆∆)’ ranged 0.05–0.26), but not otherwise (Pr(∆∆)’ ranged 0.22–0.45). However, 343 

there was only weak evidence of fluctuating reproductive selection in females; Pr(∆∆±) ranged 344 

0.72–0.82 when comparing 2013 with other years excluding 2017 and 2018, but ranged 0.01–345 

0.64 otherwise (Fig. 3; ESM S5). 346 

Evidence of among-year variation in reproductive selection was weaker in males. Here, 347 

selection against migrants differed between 2012 and later years (Fig. 3; apart from 2014, 348 

Pr(∆∆)’ ranged 0.07–0.10; ESM S5), but did not differ between any other years (Pr(∆∆)’ ranged 349 

0.14–0.48; ESM S5). There was consequently no strong evidence of fluctuating reproductive 350 

selection in males (Pr(∆∆±) ranged 0.04–0.51). Finally, even though there was stronger 351 

evidence of among-year variation in reproductive selection in females than males, there was 352 

no strong evidence of sex-specific reproductive selection on residence versus migration in any 353 

year (Fig. 3, Pr(∆∆>0) ranged 0.13–0.91; ESM S5). 354 
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 355 

Selection through annual fitness  356 

Analyses of the composite measure of annual fitness (E(Cs)) showed clear evidence of episodes 357 

of strong fluctuating selection on full-year residence versus migration (Fig. 4). Specifically, 358 

there was strong evidence of sign changes in selection in 2012-13 and 2017-18 compared to 359 

several other years: 2009-2010, 2010-2011 and 2011-12 in females, and 2011-12 and 2013-14 360 

in males ((Pr(∆∆±) for these pairwise years ranged 0.92–0.99 in females and 0.94–1.00 in 361 

males; ESM S5). However, 2012-13 and 2017-18 did not differ from each other (Pr(∆∆±) was 362 

0.01 in both sexes; ESM S5). There was no strong evidence of sex-specific overall selection 363 

on residence versus migration within any year (Pr(∆∆>0) ranged 0.22–0.89; Fig. 3; ESM S5). 364 

Variation and fluctuations in selection were consequently broadly synchronised across both 365 

sexes. 366 

The fluctuations were caused by the underlying episodes of strongly opposing survival 367 

and reproductive selection that occurred in different years. Specifically, E(Cs) was substantially 368 

higher in migrants than residents in both sexes in the two years with strong survival selection 369 

(2012-13 and 2017-18; Fig. 4; ESM S5). Conversely, E(Cs) was substantially higher in 370 

residents than migrants in years with strong reproductive selection, most notably in 2009-10 to 371 

2011-12 and 2015-16 in females and in 2011-12, 2013-14 and 2014-15 in males (∆ ranged 372 

0.15–0.34 and 0.15-0.32 in females and males respectively; Fig. 4; ESM S5).  373 

 374 

Discussion 375 

Eco-evolutionary dynamics will partly depend on the magnitude and between-sex synchrony 376 

of temporal variation in the strength and direction of selection on key ecologically-relevant 377 
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traits that shape spatio-temporal population dynamics. We demonstrate episodes of strong, and 378 

strongly fluctuating, selection on one such key trait, seasonal migration versus residence, 379 

through annual fitness in adult European shags (Fig. 4). Fluctuations were broadly 380 

synchronised across males and females, and arose because strong reproductive selection 381 

against migration in several years contrasted with episodes of strong survival selection against 382 

residence in two other years, coupled with weakened reproductive selection in the subsequent 383 

summers (Figs 2 & 3). While the underlying components of both survival and reproductive 384 

selection varied substantially among years, including episodes of approximate neutrality, 385 

neither fluctuated strongly (strictly defined as a change in direction). Other empirical studies 386 

testing for fluctuating selection commonly consider only one component or the other, or do not 387 

quantitatively combine them into a single annual fitness measure [e.g. 2,4,6]. Our analyses 388 

demonstrate the value of doing so, since the presence of overall strong fluctuating selection 389 

would not otherwise have been evident. Predictions regarding micro-evolutionary outcomes 390 

based on single-component estimates of selection might consequently be misleading. 391 

In our system, the two notable episodes of strong survival selection against residence 392 

were associated with ECEs that occurred during late winter in 2012-13 and 2017-18 [24]. Here, 393 

prolonged periods of strong onshore wind, rain or cold, which reduce foraging efficiency and 394 

incur high thermoregulatory costs in shags [29], primarily impacted the residency area, likely 395 

causing increased mortality in residents [24]. Location, and hence migrant versus resident 396 

phenotype, would then directly affect survival probability, constituting direct selection. 397 

However, because these phenotypes are only expressed during the non-breeding season, any 398 

reproductive selection against migration must constitute time-lagged indirect selection. This 399 

could reflect ‘carry-over’ effects, for example if an individual’s migrant versus resident 400 

phenotype affects its condition and/or capability to acquire or retain a breeding site, which then 401 

affects its subsequent breeding success [30–32]. Reproductive selection against migrants was 402 
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also weakened, or perhaps even reversed in females, in the summers following the ECE winters 403 

(2013 and 2018), particularly in older individuals (ESM S6). Such patterns could arise if 404 

residents that survived through selective events were in poorer condition (e.g. due to poorer 405 

foraging conditions; [33]).  This effect could be more pronounced in females, because females’ 406 

foraging efficiency is more negatively impacted by strong winds than that of males [29]. 407 

Temporal variation in selection may therefore predominantly reflect underlying environmental 408 

conditions. However, formally demonstrating such links, and the intermediate physiological 409 

and/or behavioral mechanisms, is generally challenging and rarely achieved [2,7,8,34]. Our 410 

results set up valuable opportunities to attempt such analyses once longer timeseries, including 411 

multi-dimensional environmental data at appropriate spatio-temporal scales, can be assembled 412 

[24]. Nevertheless, our current results indicate that environmental variation including ECEs 413 

can generate major reversals of the direction of net selection in annual fitness, encompassing 414 

both direct and time-lagged indirect components. Depending on the frequency of ECEs, and 415 

on underlying environmental versus additive genetic (co)variances and forms of phenotypic 416 

plasticity, such fluctuations may contribute to maintaining additive genetic and phenotypic 417 

variation [3], yet alter the optimal genotype and phenotype and constrain rates of adaptive 418 

micro-evolution [35–37]. 419 

Classic examples of strongly fluctuating selection on other traits in other systems have 420 

also been linked to extreme environmental variation. For example, drought-induced changes in 421 

food supply changed the direction of selection on beak morphology in Darwin’s finches [38]. 422 

Seasonal migration versus residence is a good candidate trait for such effects because 423 

sympatric-breeding migrant versus resident phenotypes are, by definition, completely spatially 424 

segregated in the non-breeding season and hence subject to different environmental conditions. 425 

However, although studies across diverse taxa have now quantified differences in components 426 

of survival and/or reproduction between such residents and migrants [18,22], none have 427 
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explicitly quantified selection through composite measures of annual fitness. Further, some 428 

previous studies pooled data across years to generate sufficient sample sizes, precluding 429 

estimation of temporal variation in selection (e.g. elk (Cervus elaphus) [39], moose (Alces 430 

alces) [40], European blackbird (Turdus merula) [41]. Others showed little or no temporal 431 

variation and no strong evidence of fluctuating selection, albeit across few years and 432 

individuals (e.g. red-spotted newt (Notophthalmus viridescens) [23], skylark (Alauda orvensis) 433 

[42], pronghorn (Antilocapra americana) [43]). Our findings (which encompass the whole 434 

adult population) broadly concur with earlier analyses in the same study system, which used a 435 

subset of resighted individuals with known winter locations during 2009–2012 to show that 436 

resident shags had consistently higher breeding success than migrants (Fig. 3; [30]). Our longer 437 

time-series now shows temporal variation in selection in subsequent years. In general, very 438 

short timeframes are a common limitation across studies of variation and fluctuations in 439 

selection (median 3 years; [2]) and may miss biologically important fluctuations caused by 440 

infrequent environmental perturbations. 441 

 442 

Estimation and implications 443 

In general, estimates of selection can be biased by missing or error-prone phenotypic and/or 444 

fitness data [44,45], and evidence of varying and fluctuating selection should be evaluated 445 

given sampling variance [4]. These challenges are ubiquitous but commonly ignored, and come 446 

to the fore when focal phenotypes are not always directly observed with certainty [46]. 447 

Uncertainty is inevitable for resident versus migrant phenotypes inferred from resighting data. 448 

Our multi-event analyses accounted for key uncertainties by modelling missing phenotypic and 449 

survival data due to resighting failure (including due to migration outside surveyed locations), 450 

and missing reproduction data due to non-breeding and unobserved nest outcomes. The 451 
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Bayesian implementation allowed straightforward computation of posterior distributions of 452 

between-sex and among-year differences and sign changes that evidence varying, fluctuating 453 

and cross-sex synchrony in selection. This approach differs somewhat from standard regression 454 

approaches to estimating selection, and recent extensions, designed for readily observable 455 

continuous traits. For example, we did not estimate variance in selection through temporal 456 

random effects [4,8]. Such estimation is not straightforward in our case, since annual survival 457 

and expected breeding success and annual fitness are all derived parameters. Further, variances 458 

may be poorly estimated across relatively few years, and assumptions regarding Gaussian 459 

distributions may be violated (ESM S5). Our analyses illustrate how variation and fluctuations 460 

in selection can be robustly quantified in such (common) circumstances. 461 

The variation and fluctuations in selection on the defined migrant versus resident 462 

phenotypes estimated in adult shags could appreciably affect phenotypic dynamics and 463 

underlying additive genetic variation. Since both phenotypes are frequently expressed, there is 464 

considerable phenotypic variance on which selection can act. Indeed, such variance could be 465 

partly maintained by fluctuating selection, and the apparent lack of sexual dimorphism in 466 

migration is consistent with the cross-sex synchrony in selection. Nevertheless, further steps 467 

that consider how the effects of fluctuating selection are propagated across years and life-468 

history stages are required to fully consider the eco-evolutionary consequences. In a moderately 469 

long-lived species such as shags, selection through adult survival is likely to impact strategy-470 

specific population growth rates at multi-year scales more than selection through reproduction. 471 

However, such effects will also depend on the degree of phenotypic plasticity following 472 

selection episodes, and on forms of selection acting before recruitment, which remain to be 473 

quantified in our system. Moreover, while our focus on individual full-winter migration versus 474 

residence captures considerable annual phenotypic and fitness variation, subtle forms of 475 

selection might act on the full diversity of possible phenotypic sequences of seasonal residence 476 
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versus migration [24,47] and on the joint phenotypes of breeding pairs [30]. Future analyses 477 

with further data and methodological developments, including analyses of paired capture-478 

resighting histories, will allow us to quantify these components and thereby reveal the full form 479 

and consequences of varying and fluctuating selection on liability for migration.  480 
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 630 

Figure 1: Multi-event capture-recapture model structure. Panel (a) illustrates the full annual 631 

cycle, indicating possible transitions of surviving individuals between ‘resident’ (R) and 632 

‘migrant’ (M) states across five defined occasions (o=1 April–June; o=2 September; o=3 633 

October; o=4 mid-November–mid-December; o=5 mid-January–mid-February). Different 634 

possible annual paths through the annual cycle could be followed, such that surviving 635 

individuals are resident or migrant in late-winter occasion (o=5). From o=5 to the next breeding 636 

season (o=1), focal sex individuals transition to different breeding states conditional on 637 

previous state (i.e. phenotype R or M in o=5. Panel (b) illustrates possible fates of focal sex 638 

individuals at this time step (see [24] for other time steps and non-focal sex individuals). Circles 639 

denote states, defined in o=1 as early-failed/non-breeder (B), breeder with n fledglings (Bn; 640 

n∈⟦0,4⟧), or dead (D). Squares denote observation events, defined as seen as early-failed/non-641 

breeder (B), seen as breeder with known success (Bn), seen as breeder with unknown success 642 

(B?), or not seen (Ø). Arrows indicate possible paths in the state-transition and observation 643 

steps, with corresponding probabilities as indices; dashed arrows indicate multifurcations (see 644 

bottom box). Parameters are elementary probabilities: ϕ for survival, ζ for breeding, χn for n 645 

fledglings conditional on breeding, p for resighting, and α for recording a breeding outcome. 646 

Additional subscripts indicate state-dependence.  647 
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Figure 2: Annual survival probabilities (Φs) for full-winter resident (red) and full-winter 648 

migrant (orange) females and males in each biological year from 2009-10 to 2017-18. Points 649 

show posterior means, and inner and outer line segments show 50% and 95% credible intervals. 650 

Posterior probabilities that each resident-migrant difference is positive are shown (values close 651 

to zero or one indicate strong evidence of selection). 652 

  653 
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 654 

Figure 3: Expected breeding success (E(BSπ), number of fledglings) for late-winter resident 655 

(red) and migrant (orange) females and males in each summer during 2010–2018. Points show 656 

posterior means, and inner and outer line segments show 50% and 95% credible intervals. 657 

Posterior probabilities that each resident-migrant difference is positive are shown.   658 
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 659 

Figure 4: Annual fitness (E(Cs), expected demographic contribution, number of genes 660 

copies) for full-winter resident (red) and full-winter migrant (orange) females and males in 661 

each biological year from 2009-10 to 2017-18. Points show posterior means, and inner and 662 

outer line segments show 50% and 95% credible intervals. Posterior probabilities that each 663 

resident-migrant difference is positive are shown. 664 


