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ABSTRACT 
 

The Use of Polarized Light for Biomedical Applications. 

(August 2003) 

Justin Shekwoga Baba, B.S., LeTourneau University 

Chair of Advisory Committee:  Dr. Gerard L. Coté 

 

Polarized light has the ability to increase the specificity of the investigation of 

biomedical samples and is finding greater utilization in the fields of medical diagnostics, 

sensing, and measurement. In particular, this dissertation focuses on the application of 

polarized light to address a major obstacle in the development of an optical based 

polarimetric non-invasive glucose detector that has the potential to improve the quality 

of life and prolong the life expectancy of the millions of people afflicted with the disease 

diabetes mellitus.  By achieving the mapping of the relative variations in rabbit corneal 

birefringence, it is hoped that the understanding of the results contained herein will 

facilitate the development of techniques to eliminate the effects of changing corneal 

birefringence on polarimetric glucose measurement through the aqueous humor of the 

eye.  

This dissertation also focuses on the application of polarized light to address a 

major drawback of cardiovascular biomechanics research, which is the utilization of 

toxic chemicals to prepare samples for histological examination. To this end, a 

polarization microscopy image processing technique is applied to non-stained 

cardiovascular samples as a means to eliminate, for certain cardiac samples, the 

necessity for staining using toxic chemicals. The results from this work have the 

potential to encourage more investigators to join the field of cardiac biomechanics, 

which studies the remodeling processes responsible for cardiovascular diseases such as 

myocardial infarct (heart attacks) and congestive heart failure. Cardiovascular disease is 

epidemic, particularly amongst the population group older than 65 years, and the number 

of people affected by this disease is expected to increase appreciably as the baby boomer 
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generation transitions into this older, high risk population group. A better understanding 

of the responsible mechanisms for cardiac tissue remodeling will facilitate the 

development of better prevention and treatment regimens by improving the early 

detection and diagnosis of this disease.  
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1

CHAPTER I 

INTRODUCTION 
 

The high cost and the widespread reach of diseases such as diabetes mellitus and 

cardiovascular disease is enormous. Hundreds of billions of dollars are spent annually in 

the US alone addressing these two health pandemics. Even more telling is the personal 

impact of these two diseases; few people are not somehow personally affected by at least 

one if not both of these two diseases. Much work is being done, in the case of diabetes 

mellitus, to help prevent or slow down the occurrence of secondary complications 

through the development of technologies that will make the monitoring of blood sugar 

levels a seamless procedure for diabetics.1-22 On the other hand, recent technological 

advances in endoscopic procedures have improved the diagnostic, sensing and 

therapeutic options for people suffering from cardiovascular disease (CVD).23-34 

However for CVD, there are still many unknowns in terms of the mechanisms that result 

in events such as myocardial infarction, i.e. heart attack, which lead to congestive heart 

failure (CHF). The focus of this dissertation is the application of polarized light methods 

for these specific medical challenges. 

 

1.1 Non-Invasive Glucose Detection 

1.1.1 An Overview of Diabetes Pathology 

Diabetes mellitus is a metabolic disorder that is characterized by the inability of the body 

to produce and or properly utilize insulin. This inability can cause both hyperglycemia: 

the prolonged elevation of blood glucose above the normal physiological level of 

100mg/dl, or conversely hypoglycemia: the prolonged depreciation of blood glucose 

below the normal physiological level of 100mg/dl. In diabetics, these two conditions 

over time result in secondary complications. The secondary complications adversely 
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impact the quality of life of a diabetic and are additionally fatal in most cases. There are 

two classes of diabetes based on whether or not there is a need for the patient to take 

supplemental insulin, namely, insulin-dependent diabetes (Type I diabetes) and non-

insulin dependent diabetes (Type II diabetes) respectively. Type II diabetes can be 

hereditary and is typically developed by adults. Obesity is also a major factor in the 

development of Type II diabetes because it limits insulin effectiveness by decreasing the 

number of insulin receptors in the insulin target cells located throughout the body. 

Therefore, Type II diabetes, can be effectively managed by proper diet and exercise.35-37 

 

1.1.2 The Impact of Diabetes and the Current Monitoring Needs 

As of the year 2000, it was estimated that the disease diabetes mellitus afflicted over 120 

million people worldwide. Of these, 11.1 million resided in the United States with an 

additional 6 million that were yet undiagnosed. In the U.S., this disorder, along with its 

associated complications, was ranked as the sixth leading cause of death based on 1999 

death certificates; a huge human cost.38 In terms of the monetary costs for diabetes, more 

recent US estimates for the year 2002 indicate a financial burden of over $132 billion for 

an estimated 12.1 million diagnosed diabetics.39 Despite this increasing trend in the 

annual number of diagnosed diabetics, there is good news about their prospects for a 

normal quality of life. It has been known since the release of the findings in the NIH-

Diabetes Control and Complications Trial in 199340 that the intensive management of 

blood sugars is an effective means to prevent or at least slow the progression of diabetic 

complications such as kidney failure, heart disease, gangrene, and blindness.40,41 As such, 

self-monitoring of blood glucose is recommended for diabetic patients as the current 

standard of care. 

However, the current methods for the self-monitoring of blood glucose require 

breaking the skin via a lancet or needle. Therefore, many patients find compliance with 

monitoring requirements difficult. The development of an optical polarimetric glucose 

sensor would potentially provide a means for diabetics to do this measurement non-

invasively. If successful, the ability to non-invasively make measurements will hopefully 
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encourage patients to make more frequency assessments, thus, enabling them to achieve 

tighter control of blood glucose levels. Consequently, a tighter control of blood glucose 

will retard if not prevent the development of secondary complications, which are 

typically fatal.  

 

1.1.3 An Overview of Non-Invasive Polarimetric Glucose Measurement 

The first documented use of polarized light to determine sugar concentration dates back 

to the late 1800’s where it was used for monitoring industrial sugar production 

processes.42-44 Surprisingly, it has only been in the last two decades that the use of 

polarized light has been applied to the physiological measurement of glucose. This 

initiative began in the early 1980’s when March and Rabinovich45,46 proposed the 

application of this technique in the aqueous humor of the eye for the development of a 

non-invasive blood glucose sensor. Their idea was to use this approach to obtain aqueous 

humor glucose readings non-invasively as an alternative to the invasively acquired blood 

glucose readings. Their findings and those of prior work done by Pohjola47  indicated that 

such a successful quantification of glucose concentration would correlate with actual 

blood glucose levels.  During the same period, Gough48 suggested that the confounding 

contributions of other optically active constituents in the aqueous humor would be a 

barrier for this technique to be viable. In the following decade, motion artifact coupled 

with corneal birefringence,49,50 low signal-to-noise ratio,51 and the potential time lag 

between blood and aqueous humor concentrations during rapid glucose changes51 were 

also identified as problems yet to be overcome for this technique to be viable. 

Throughout the 1990’s considerable research was conducted toward improving the 

stability and sensitivity of the polarimetric approach using various systems while 

addressing the issue of signal size and establishing the feasibility of predicting 

physiological glucose concentrations in vitro, even in the presence of optical 

confounders.17,19,52-55 

To date, the issues that have been successfully addressed for this technique are 

the sensitivity and stability of the approach in vitro, the measurement of the average time 



 

 

4

lag between blood and aqueous humor glucose levels in New Zealand White rabbits, and 

the confounding contributions of other chiral aqueous humor analytes in vitro. 

Consequently, this leaves one outstanding issue, namely motion artifact; specifically, 

how to compensate for the affect of changing corneal birefringence on the polarimetric 

signal. This work will present results that further the understanding of this last remaining 

obstacle for the development of a viable non-invasive polarimetric glucose detector for 

diabetics. 

 

1.2 Non-Staining Polarization Histology of Cardiac Tissues 

1.2.1 An Overview of Cardiovascular Heart Failure Pathophysiology 

Heart failure is characterized by the inability of the heart to properly maintain adequate 

blood circulation to meet the metabolic needs of the body. Heart failure can develop 

rapidly due to myocardial infarction: this is referred to as acute heart failure, or it can 

develop slow and insidiously: this is termed chronic heart failure. The normal heart 

functions as an efficient pump that essentially pumps out all off the deoxygenated blood 

that flows into the inlet port: the right atrium, to the lungs for oxygenation through the 

output pumping port: the right ventricle, via the pulmonary vein then back to the 

oxygenated blood inlet port: the left atrium, through the pulmonary artery and back out 

to the tissues through the systemic output pumping port: the left ventricle. Chronic hear 

failure is characterized by the fluid congestion of tissues, which can be pulmonary 

edema due to the inability of the heart to pump out all of the blood that is returned to it 

from the lungs: i.e. left vetricular failure, thus, creating a fluid back up in the lungs or it 

can be peripheral edema due to lower limb retention of fluid as a result of the failure of 

the right ventricle which causes a back up of  systemic blood flow from the vessels. 

Consequently, since chronic heart failure is characterized by tissue fluid congestion, 

hence, it is termed congestive heart failure (CHF).35-37,56  

Cardiac pathophysiological events such as myocardial infarction initiate the 

cardiac remodeling process, by killing myocytes: the cells that make up the myocardium, 

which do not regenerate. The remodeling: elongation and hypertrophy of the remaining 
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myocytes, occurs in an attempt to maintain normal cardiac output. The initial remodeling 

process results in ventricular enlargement, which causes the slippage of myo-lamina 

planes: i.e. planes contianing aligned myocytes separated by collagen sheets; thus, 

eventually leading to a  thining of the ventricular walls. This process significantly 

prempts the inception of CHF.57,58 

 

1.2.2 The Impact of Cardiovascular Heart Failure 

Currently about 5 million Americans suffer from congestive heart failure (CHF). In the 

year 2000, CHF accounted for 18.7 out of every 100,000 deaths.59 In the US, it is 

estimated that annually CHF accounts for over 2 million outpatient visits and for a 

financial burden of over $10 billion: of which 75% is spent on patient hospitalization.60 

Since more than 75% of CHF patients in the US are older than 65 years,36 this suggests 

that the increasingly aging population, due to the coming of age of the baby boomer 

generation, will create a crisis of sorts in terms of the increasing healthcare resource 

requirements and the increasing financial strain on the populace to address this growing 

medical need. As a result, there is an urgent need to better understand the processes that 

cause CHF so that more effective early prevention, detection, and treatment methods can 

be developed.  

 

1.2.3 A Look at the Current Emphasis on Studying Cardiac Remodeling Processes to 

Better Understand CHF  

The increasing health threat of CHF coupled with myocardial infarction has lead to 

much research geared toward understanding the biomechanics of the heart as it pertains 

to this disease.61-63 Unfortunately, the limitations of current imaging technologies restrict 

the ability to study dynamic changes in cardiac tissue in vivo without sacrificing the 

subject in the process. As a result, much of the current understanding comes from post-

cardiac-event biomechanical modeling of excised cardiac tissues using laboratory animal 

models, whereby mechano-biological measurements are taken and correlated to the 

experimentally induced CHF events. To this end, light and polarization microscopic 
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methods have been applied to stained cardiac tissues to image birefringent collagenous 

structures.64,65 

In particular, one of the recent biomechanical objectives has been to measure, 

using light microscopy, the sheet angle of myo-lamina or cleavage planes,66 as a means 

of characterizing the aberrant growth and remodeling processes67-72 that are implicated in 

congestive heart failure. Currently, this procedure requires utilizing caustic chemicals to 

stain the tissue, which is a hindrance because it makes it difficult for the preferred 

mechanical stabilization method of plastic embedding for quantitative histology (paraffin 

embedding causes too much distortion of myofiber sheet angle) in addition to being a 

medical risk for investigators.73 This dissertation presents an alternative, utilizing a 

polarization microscopy imaging method, which enables the determination of the sheet 

angle, β, of the cardiac cleavage planes, without requiring the use of caustic staining 

techniques. It also investigates the use of this method to provide sufficient contrast to 

enable the measurement of the muscle wall thickness of a non-stained cardiovascular 

vessel. 
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CHAPTER II 

THEORY OF LIGHT MATTER INTERACTIONS: THE BASIS FOR 

LIGHT TISSUE INTERACTIONS 

 

2.1 The Nature and Properties of Light 

The duality of light: the fact that it exhibits both wave and particle nature, makes the 

study of light-matter interactions a complex pursuit. The particle nature of light, as put 

forth by Newton, explains light interactions at the macroscopic level, using geometric or 

ray optics, and accounts for phenomena such as shadow formation while the wave nature 

of light explains light interactions at the micro and sub-micro level and accounts for 

photon interference and diffraction phenomena.74 In general, for studies that are 

primarily based on the propagation of light, Maxwell’s equations: the wave 

representation of light, govern such investigations; while for the interaction of light with 

matter, which primarily involves the absorption and emission of light, the quantum 

theory governs such investigations.75 In order to have a clearer understanding of the 

basis for the studies that are reported in the preceding sections, on the use of polarized 

light for biomedical applications, it will be essential to investigate both the wave and 

particle nature of light as it pertains to the measurements that will be necessary to enable 

the discrimination of the properties of matter that we are interested in. 

  

2.2 An Overview of Light Matter Interactions 

The interaction of light with matter depends primarily on the microscopic structural 

properties of matter. The quantity, arrangement, and interactions of electrons, nuclei, 

atoms, molecules, and other elementary particle constituents of matter determine these 

properties. In order to be able to extract all of the available information about the optical 

dielectric properties of matter, polarized light inputs are necessary. The reason for this is 

that the polarization of light has the measurable effect of increasing the discrimination 

ability of light interrogation of matter. This increased specificity is a direct consequence 

of the ordered and quantized behavior of the constituent elements of matter, and is best-
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investigated using quantum mechanics. However, even a macroscopic level investigation 

of the effects of polarized light on matter can reveal the average information about 

structural bonds, electronic states, and electronic alignments, which determine the 

measurable optical dielectric properties of matter.  

 

 

 

 

 

 

 

Figure 2.1: System diagram for the use of polarized light for determining the properties of 
matter. 

 
 
Simply put, from Figure 2.1, we are interested in determining the transfer 

function, G(s), which contains all of the optical properties of matter, when we use 

polarized light inputs, X(s), to interrogate a sample of matter and measure the output 

effects, Y(s). The nature of the measured output response can be determined, to a degree, 

by using a classical approach to light matter interactions. The classical approach is 

limited to discerning only the optical dielectric properties of the sample and cannot 

account for all of the measurable output effects. All of the optical dielectric properties 

can be discerned from one measurable parameter of matter, the complex dielectric 

constant∈, which is proportional to the measured refractive index. A classic harmonic 

oscillator model will be used to investigate this approach by applying a wave model of 

light. In contrast, the quantum-mechanical approach, which can discern every 

measurable output effect, which includes the optical dielectric properties, will also be 

investigated.  Finally, with an understanding of the underlying basis for the measurable 

output effects of matter, all of the optical dielectric properties, which are central to the 

various projects discussed in latter chapters, will be introduced.  
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Figure 2.2: Depiction of a monochromatic electromagnetic wave propagating along the z-
axis, k direction, with the electric field polarized in the x-direction and the magnetic field 
polarized in the y-direction. 
 
 
 
2.3 Basic Electromagnetic (EM) Wave Theory 

From Figure 2.2, the wave propagating along the z-axis, k vector, possessing a time 

varying electric field: with amplitude vibrations along the x-axis, E, and a time varying 

magnetic field with amplitude vibrations along the y-axis, B, can be represented by                                     

                  

         (2.1) 
 

where Ex and By are scalars that represent the field amplitudes respectively. From Eqn. 

2.1, the electric field has no components in the z and y directions, so 

 
          (2.2) 

 

In addition, from Figure 2.2, as the electric field propagates along the z-axis, it is 

apparent that its magnitude for any given z-value is a constant. This means 

              (2.3) 
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Now combining Eqns. 2.2 and 2.3 we get that the divergence of the propagating electric 

field is zero: 

                           (2.4) 
 
 
which is Maxwell’s equation for a propagating electric field in the absence of free 

charge and free current. Likewise, we get a similar result for the magnetic field, where 

the equation 

                        (2.5) 

 

is Maxwell’s equation for a propagating magnetic field in the absence of free charge and 

free current.  

Equations 2.4 and 2.5 demonstrate that the propagating electromagnetic fields are 

space (position) invariant. Conversely, because electromagnetic waves are emitted from 

continuous sources in packets of discrete quanta, they are time variant.76 Mathematically, 

this means that 

              (2.6) 
 

 
But a changing electric field generates a corresponding magnetic field and vice versa, 

which signifies that electromagnetic waves, once generated, are self-propagating. 

Mathematically this means: 

   
   

    
      

       (2.7) 
 

Expanding Eqn. 2.7 using vector algebra and substituting Eqns. 2.4 and 2.5 yields,  
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which are analogous to 
   

                                         (2.9) 
 

 

the wave equation; where f is a wavefunction propagating with a velocity v. Here µ0 and 

∈0  are the constants for permeability and permittivity of free space respectively. Thus 

the equations in Eqn. 2.8 indicate that electromagnetic waves travel through free space at 

the speed of light.77 

 

2.4 Basic Electro- and Magneto-Statics 

2.4.1 Overview 

All matter consists of atoms, which are made up of charged particles. The net interaction 

of these charged particles with that of the incident electromagnetic radiation accounts for 

the complex refractive index that inherently contains all of a sample’s dielectric 

properties. In essence, a sample’s dielectric properties can be said to be the response of 

its constituent elementary particles to electromagnetic radiation within the visible 

frequency range. In order to establish this concept, an investigation of the electrostatic 

properties of matter will be conducted before delving into the intricate details of how 

matter responds to the time-varying electromagnetic fields of light waves. 

 

2.4.2 Basic Electro-Statics  

Matter is composed of atoms, which contain a positively charged nucleus surrounded by 

negatively charged electrons.a The charges contained within the constituent atoms 

interact based on Coulomb’s law, which is 

        
                                                  (2.10) 
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where F is the force exerted on the test charge, q, by the point charge, Q, located at a 

distance, r, in the direction of the unit position vector, r̂ b: this is depicted in Figure 2.3. 

  

 

 

 

 

Figure 2.3: A depiction of the electrostatic force between a point charge, q, and a 
test charge, Q. 
 

For multiple test charges Eqn. 2.10 becomes  
 

(2.11) 
 

where F is the net force exerted on the test charge, Q, by a collection of single point 

charges, ,q,...,q,q n21  at the corresponding distances of ,,...,, 21 nrrr in the direction of the 

unit vectors .ˆ,...,ˆ,ˆ 21 nrrr  The net interaction force, generates an electric field, E, that acts 

along it.c This is possible because the affect of the test charge, q, is infinitesimally small 

such that the point charge, Q, does not move as a result of the generated force. 

Mathematically, 

   
(2.12) 

 

charges. stationaryfor  Analytically, Eqn. 2.12 means that the test charge, Q, possesses 

an electric field, E, that propagates radially and diminishes by the inverse square law.  In 

                                                 

b Note that r)⋅= rr  
c The electric field emanates at the negative charge and spreads radially outward 
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the Bohr model of the Hydrogen atom, the electric potential between the positively 

charged nucleus and the negatively charged electrons generates such an electric force 

which serves as a centripetal force that keeps the charged electrons revolving around the 

central nucleus at fixed radial distances called orbitals.  

Since all matter consists of atoms, it follows that matter possesses inherent 

electrical properties. Though the atoms that make up matter are electrically neutral, their 

positively charged nuclei and negatively charged electrons can be influenced by a 

sufficiently strong external electric field. Under the influence of such an external field, 

the atomic charge distribution is realigned such that the positively charged nucleus is 

moved to the end closer to the incoming field while the negatively charged electrons are 

moved to the end further away. Therefore, the net result is that the external field, which 

is pulling the oppositely charged nucleus and electrons apart, and the electrostatic atomic 

field, which is pulling them together, attain equilibrium with a resulting change in the 

position of the nucleus and electrons. This new repositioning of the nucleus and the 

electrons is termed polarization. The atom, though still neutral, now possesses an 

induced electric dipole moment, µind, which is aligned and proportional to the applied 

external electric field, E, that generated it. Essentially, 

        (2.13) 
 
where α is a constant unique to the specific specie of atom called the atomic or 

molecular polarizability. In the situation where the sample of matter is composed of 

polar molecules which already possesses a dipole moment, the affect of the external field 

will be to create a torque on the molecule that realigns it with the field. Thus, for a given 

object, which consists of numerous aligned and polarized dipoles: whether atoms or 

molecules, the dipole moment per unit volume, P, is defined as 

 

       (2.14) 

 

where N is the total number of atomic or molecular dipoles in the total volume, V, of the 

substance that possesses an electric susceptibility, eχ ; 0∈ is the permittivity of free space. 
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For linear materials, an applied external electric field, E, works with the already 

present dipole moment vector, P, to generate a net internal ‘displacement’ electric field 

within the object, D, which is related to the applied field by a constant,∈ , that is based 

on the dielectric properties of the object. This is represented by: 

     
 

     (2.15) 
 

where ( )eχ+∈≡∈ 10  is the dielectric constant of the material. 

 

2.4.3 Basic Magneto-Statics  

In addition to rotating around the nucleus, electrons also spin around their axes, 

therefore, generating tiny magnetic fields. A moving: i.e. orbiting and or spinning, 

electron generates a current, which induces a corresponding magnetic field as described 

in Eqn. 2.7. For most matter in the natural state, the magnetic fields generated by the 

revolving and spinning electrons create magnetic dipole moments, m’s, that are 

canceling. They are canceling because the orbital dipole contributions are normally 

randomized and the spin dipole contributions are eliminated due to the orbital pairing of 

electrons with opposite spins in atoms possessing an even number of electrons: a direct 

result of the Pauli exclusion principle,d or by the randomizing local current variations 

that are due to thermal fluxes in atoms possessing an unpaired electron.  

However, when an external magnetic field, B, is applied to matter, the 

constituent magnetic dipoles align themselves with the external field: anti-parallel to the 

applied field in the case of electron orbital generated dipoles (diamagnetism), and 

parallel to the applied field in the case of electron spin generated dipoles 

(paramagnetism), thus, creating an internal net magnetic displacement field, H. This 

displacement field arises from the magnetic polarization of the material due to an 

                                                 

d The Pauli exclusion principle is a postulate in quantum mechanics.  

( )
 ,

 1 0000

ED
EEEPED

=∈∴
+=∈∈+=∈+=∈ ee χχ



 

 

15

induced net magnetic dipole moment, mind, which is dependent on the magnetic 

susceptibility, mχ , of the material and is described by the following equations:   

                                (2.16) 
  

and 
 

        (2.17)  
 

where M and mµ  are the corresponding magnetic dipole moment per unit volume and   

the permeability of the specie.   

For linear magnetic materials: paramagnetic and diamagnetic materials, once the 

external magnetic field, B, is removed, the magnetic dipole moment, M, disappears as  

the magnetic displacement vector, H, loses its source. From Eqn. 2.17, this means that 
 

(2.18) 
 

Furthermore, for ( )mm χµµ += 10 , where 0µ  is the permeability of free space, Eqn. 2.17 
becomes 
 

              (2.19) 
 

This establishes that the external magnetic field is directly proportional to the internal 

magnetic field that it induces in the material. 

Likewise, as in the case of the relationship established for the electric dipole 

moment in Eqn. 2.14, the magnetic dipole moment, M, is similarly related to the induced 

magnetic dipole moment, mind, by the following expression 

 

 

       (2.20) 
 

 
where N represents the total number of atomic or molecular dipoles in the material, and 

for a unit volume, V; N =N/V.       
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2.4.4 The Classic Simple Harmonic Oscillator: A Macroscopic Model for the 

 Complex Refractive Index  

From the discussion of electro- and magneto-statics in the previous two subsections, two 

intrinsic, but macroscopic, dimensionless electromagnetic parameters were introduced, 

which determine the polarizability of matter: namely, the dielectric constant,∈ , and the 

magnetic susceptibility, mχ . In this section, the classic harmonic oscillator model will be 

used to investigate the frequency dependence of these two parameters and, thus, 

elucidate how the dielectric properties of matter can be extracted from them, albeit, 

without an actual understanding of the underlying quantum-mechanical mechanisms that 

determine the actual light tissue interactions.  
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.4: The depiction of the classic harmonic oscillator of a mass suspended by a 
spring. 
 
 

In the classic harmonic oscillator, Figure 2.4, a suspended mass, m, oscillates 

along the x-axis generating a sinusoidal wave, of amplitude, A, which propagates along 

the z-axis with a wavelength, λ. For this investigation, we can consider the mass, m, to 

be an electron bond to the nucleus with a binding force, Fbind of magnitude Fbind in the x-
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direction that is represented by the spring of force constant k that oscillates about its 

equilibrium position by an amount ±x. Then from Newton’s second law, we get 

 

                                   (2.21) 

where  2

2

dt
xd is the acceleration in the x-direction. Solving Eqn. 2.21, yields 

       
                 (2.22) 

 

Substituting Eqn. 2.21 into 2.22, we get 

                (2.23) 

where 
m
k

=0ω  is the natural oscillation frequency of the electron, ( )tAtx ⋅= 0sin)( ω , 

and ).sin(-   0
2

02

2

tA
dt

xd ωω=  Over time, the electron returns back to equilibrium due to a 

damping force, Fdamp of magnitude Fdamp that acts to oppose the displacement in the x-

direction. This damping force is represented by 

          
       (2.24) 

 
where ξ is the opposing velocity generated by the damping force.  

When the bond electron is introduced to an EM wave, with the E-field polarized 

in the x-direction, it is subjected to a sinusoidal driving force, Fdrive of magnitude Fdrive 

given by 

                             (2.25) 
 
where q represents the charge of the electron, Ex represents the magnitude of the x-

component of the electric field, propagating with a radian frequency ω, at the electron 

location. Combing Eqns. 2.23, 2.24, and 2.25 using Newton’s second law, yields 

       
 

                                         (2.26) 
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Rearranging Eqn. 2.26 and using exponential notation to represent the sinusoidal driving 

force, leads to   

(2.27) 
 

where ’notation indicates a complex variable. 

Now, considering the steady state condition of the electron, which will vibrate at 

the frequency of the driving field:  

       
(2.28) 

and substituting Eqn. 2.28 into 2.27, leads to 

        
           (2.29) 

 

Recalling Eqn. 2.13, this implies that  

     
       (2.30) 

 

where the real part of µ'ind is the magnitude of the dipole moment and the imaginary part 

contains information about the phase relationship between the driving electric field and 

the dipole response of the electron. The phase is computed using tan-1[Im/Re]. Given a 

sample of material with N molecules per unit volume that is made up of nj electrons per 

molecule possessing their own unique natural frequencies, ωj and damping coefficients, 

ξj, then the net µ'ind is given by: 

 

 
          (2.31) 

 

Recalling Eqns. 2.14, 2.15, and 2.30, we get the following relationships for the complex 

dielectric constant, ∈΄: 
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    (2.32) 

 

 
Similarly, we can derive the relationships for the complex magnet dipole moment, but 

since the electric force exerted by incident photons are much much greater than the 

magnetic force, making it insignificant, henceforth, the magnetic dipole moment will be 

ignored.   

Based on the introduction of a complex dielectric constant, Eqn. 2.32, which 

describes the electric field, now becomes dispersive: i.e. it expresses wavelength 

dependence, yielding: 

              (2.33) 

 

that possesses a solution of the form:  
 

                        (2.34) 

where k΄ is the complex wave number given by: ;0 κµω ikk +=∈′≡′  here the wave 

number is k=2π/λ and κ is the corresponding wave propagation attenuation factor. Now 

substituting for k΄, gives 

      (2.35) 

 By definition, the refractive index is the speed of light in a medium relative to 

that in a vacuum. Recalling that 
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the refractive index, η, from Eqn. 2.36, and the absorption coefficient, α, are plotted in 

Figure 2.5.  
 
 
 

 

 

 

 

 

 

 
  
Figure 2.5: Plot of the magnitude and phase of molecular polarizability in the absorption 
(anomalous dispersion) region of the molecule.e 
 
 
From Figure 2.5, the peak in the absorption curve, i.e. magnitude of α,  corresponds to 

the zero point crossing of the refractive index component. This phenomena is termed 

anomalous dispersion,f because, typically, the refractive index varies slightly without a 

complete reversal from m to± . The exception, as depicted in the figure, occurs only in 

the vicinity of a resonant frequency, i.e. when ω = ω0 . At resonant frequency, the 

driving source energy is dissipated by the damping force counteracting the electron 

vibrating at or near its maximum restorable amplitude: a heat generating process. Due to 

the dissipation of energy, it follows, therefore, that matter is opaque in the region of 

anomalous dispersion. Consequently, normal dispersion occurs in the regions outside the 

vicinity of an absorption band. 

                                                 

e David J. Griffiths, reference 77, Figure 9.22. 
f Also known as the “Cotton effect” for the complete reversal in the refractive index.   
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 From Eqn. 2.36, the damping effect is negligible in the region of normal 

dispersion. Using the 1st term of the binomial expansion of Eqn. 2.32, which assumes the 

2nd term is very small, Eqn 2.36 becomes 

 
    (2.38) 

 
which yields 

 
   
       

(2.39) g 
      
  

 
i.e. when accounting for the UV absorption bands of most transparent materials, 

implying that ω < ω0, and thus, 

  
  (2.40) 

 
 

2.4.5 Concluding Remarks on the Complex Refractive Index  

It is evident from the use of the classic harmonic oscillator to model electronic 

oscillations that a requirement for light matter interactions is that the polarization of the 

incident beam be aligned with the axis of the molecular oscillations. Essentially, 

considering the electric field vector, only the portion of incident EM radiation that is 

aligned with the molecular oscillations: the dot product of the E-vector with the 

molecular oscillation unit vector; will interact. This physical requirement suggests that 

utilizing multiple input polarization states to interrogate a sample will reveal molecular 

structural information, albeit gross. Therefore, the aforementioned processes is the 

underlying basis for the application of polarized light to probe matter for the purpose of 

                                                 

g This is known as Cauchy’s formula, with A=coefficient of refraction and B=coefficient of dispersion. 
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revealing various anisotropies that are based on the structural and molecular 

arrangements in a representative sample. 

Using the complex refractive index, information about the average absorption 

and the average phase relationship between the natural harmonic oscillations of the 

elementary constituents of matter and a driving EM-light wave can be extracted. 

Consequently, this establishes that the refractive index contains information about the 

gross molecular structure of a material, which is represented by the complex dielectric 

constant. In summary, at the microscopic level, the complex refractive index is an 

integration of all of the molecular light tissue interactions, thus revealing the absorption 

and phase anisotropic properties that will be discussed in the later sections of this 

chapter. 

       

2.5 Basic Quantum Mechanics 

2.5.1 Overview 

The quantum theory is a modified particle theory of light put forth by Einstein, Planck, 

and others that deals with elementary light particles called photons.  The quantum theory 

addresses phenomena like blackbody radiation, the Compton effect, and photoelectric 

effect, among others: these are not explainable by the wave theory of light;74 such 

processes are best modeled by quantized, packets, of energy called photons. 

Though the dual application of the wave and particle natures of light to explain 

physical phenomena still appears to be a quandary, de Broglie resolved this issue long 

ago, when he postulated that light exhibits both properties always but its apparent nature 

is determined by the constituents of matter that it interacts with. An analysis of the 

physical dimensions of the objects that produce the measured spectroscopic signals for 

the investigations addressed in this dissertation indicate that the wavelength of light is 

orders of magnitude larger than the objects of interaction, as summarized in Table 2.1. 

From Table 2.1, the size disparity between the wavelengths of the probing light beam 

and the interaction particles is evident. The great size disparity enables the use of a plane 

wave propagation theory where the incident electric field appears to arrive in planes of 
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equal phase, perpendicular to the direction of light propagation, that vary in amplitude, 

spatially, as sinusoidal functions of time with rates corresponding to the light 

frequency.74,78 It also makes it possible to apply the classic wave theory of light to 

explain absorption and emission processes, which are quantum-mechanical atomic and 

electronic processes, without accounting for changes in state due to spontaneous 

emission.74 Furthermore the sinusoidal wave representation lends itself to the power 

expansion of the probing EM radiation, thereby, enabling an analysis of the 

contributions of various field components to the measured interactions.74  

 
 
Table 2.1: An overview of the dimensions of UV-VIS light as compared to the size of the 
light interaction constituents of matter.h 

TRANSITION SIZE OF 
ABSORBER [nm] 

RADIATION 
SOURCE 

WAVELENGTH 
OF LIGHT [nm] 

Molecular vibration ~1 IR ~1000 
Molecular electronic ~1 VIS, UV ~100 

 
 
 
2.5.2 Quantum Mechanical Formulations 

In classical physics, matter is treated as being composed of harmonic oscillators, 

therefore, all light matter interactions are explained as wave phenomena. The absorption 

and emission of light by matter are based primarily on the interactions, at the atomic and 

molecular level, between valence electrons and the photons that make up the light wave. 

Planck discovered, based on classic harmonic oscillators, that the physical harmonic 

oscillators (electrons, atoms, molecules, etc.) all absorb and emit light in discrete 

amounts governed by the following relationship.79 

        (2.41) 

 

                                                 

h Adopted from David S. Kilger, et al., reference 74, Table 1-1. 

    ,hvE =
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where E is the quantized energy [J], h is Planck’s constanti [J·s], and ν is the harmonic 

oscillator frequency [s-1].  Figure 2.6 illustrates the allowed energy states of an electron, 

which are integer multiples of the lowest, i.e. ground, energy state.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.6: Energy diagram depicting the quantized energy levels for a harmonic 
oscillator.j 
 

Building on this concept, Bohr proposed that the ability of electrons to absorb and emit 

(scatter) photons is governed by the quantum model for electron angular momentum, 

which states that the angular momentum of an electron is quantized, therefore, restricting 

an electron to certain quantum energy states. He utilized this idea to deal with the 

discrete line spectra emitted by hot Hydrogen atoms reported by Rydberg. His 

assumption that the angular momentum of the electron was quantized explained the 

inexplicable lack of collapse of the negatively charged electron of Hydrogen into the 

positively charged nucleus as predicted by electrostatic charge attraction. It turns out that 

the lowest energy orbit for an electron is given by 

(2.42) 
 

                                                 

i h = 6.626×10-34[J·s] 
j This figure was adopted and modified from David S. Eisenberg, et al., reference 79, Figure10-4. 
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where n=1 is the lowest energy level for an electron to exist in an atom;  

h=6.626×10-27[erg] (Planck’s constant); me=9.10939×10-28[g] (resting mass of electron); 

e=4.80×10-10[esu] (charge of electron); 

 

 

 
Based on these discoveries, de Broglie proposed that all of matter exhibits both 

wave and particle character dependent on the following relationship 

        
        

 

where h=Planck’s constant (6.626 × 10-34 [Js]), m=mass of particle, ν=velocity of 

particle, p = mν (the particle momentum), and λ is called the de Broglie wavelength. For 

macroscopic objects, the mass is exceedingly large compared to Planck’s constant, 

therefore, the de Broglie wavelength is very small and the object displays no detectable 

wave character. Electrons, on the other hand, have an extremely small mass compared to 

Planck’s constant (me=9.1094×10-34 [kg]), therefore, they exhibit noticeable wave 

character and even though they are modeled (or described) primarily by quantum 

mechanical methods, they can also be modeled using EM wave theory. For illustrative 

purposes, the following example is presented: 

Given: h = 6.626×10-34 [J·s]; me= -34109.10939×  [kg] (moving mass of electron); 

mt = 50x10-3[kg]; νe =2.9979E8 [m/s]; νt =120 [mi/h]; where: t = tennis ball 

served at 120[mi/h]. Calculating the de Broglie wavelength for the moving 

electron and the tennis ball yields: 
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Essentially, the answers indicate that an electron will exhibit wave nature if acted upon 

by visible light, which has a wavelength comparable to its de Broglie wavelength, but a 

served tennis ball will not exhibit any notable wave nature. So interactions of visible 

light and electrons will be explainable using the wave nature of light whereas the 

interactions of light with the served tennis ball will only be explainable by Newtonian 

geometric optics.  

 

2.5.3 Schrödinger’s Wave Equation: The Underlying Basis of Quantum Mechanics  

Since all of the investigations conducted for this dissertation utilized polarized light, it is 

important to understand how the polarization of light creates interactions at the quantum-

mechanical level that result in the measured signals, which are indicative of the sample 

dielectric properties. It turns out that the previously modeled simple harmonic oscillator 

from classic physics (Figure 2.4) is also a useful tool for understanding the quantum-

mechanical formulations.79  
Schrödinger’s wave equation is the basis of quantum mechanics. Inherent in this 

equation are both the wave and particle nature (quantization) of energy in matter. 

Therefore, any solution of his equation contains concurrent information about both 

aspects. Furthermore, a basic postulate of quantum mechanics is that the solutions of a 

wave function must provide all of the measurable quantities of matter when it interacts 

with a light wave.80 For any particle, the solution of the equation is a wave function ψ, 

which depicts the amplitude of the particle’s de Broglie wave: presented in Eqn. 2.43. 

The wave function describes the probability of the spatial (position) and energy 

(momentum) information of the particle. The properties of ψ, the wave function have no 

physical meaning, but |ψ|2=ψ•ψ*, where * denotes the complex conjugate is proportional 

to the probability density of the particle, ρ. It follows, therefore, that ψ•ψ* is both real 

and positive. Since the wave functions ψn’s completely describe a particle quantum-

mechanically, they must be well behaved, i.e. they must posses certain mathematical 

properties: 1. be continuous 2. be finite 3. be single-valued and 4. be integrate over all of 

space to equal unity: i.e. ∫ψ•ψ*dτ = 1, where the differential volume is dτ. 
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It is important to note that the interpretation of wave functions is based on the 

Heisenberg uncertainty principle, simply put: “it is impossible to know definitively both 

the position and velocity of a particle at the same time.” Therefore, this limits the 

analysis to the probability that a particle will exist in some finite element of volume. 

This means that for a given particle location (x,y,z), the probability that the particle 

exists in some finite differential volume given by dx·dy·dz is determined by ρ dx·dy·dz. 

For the particle to exist, then the probability of locating it somewhere in all of space is 

unity, which means that 

      (2.43) 

        

where V is the volume element V=dx·dy·dz. This leads to the expression for the 

probability density function  

       (2.44) 

 

where the wave function is normalized if the denominator is equal to the relationship 

defined in Eqn 2.43 above. 

The limitations on the interpretation of ψ•ψ* are based on the properties of the 

probability density function, that is, it must be real, finite, and single valued. This means 

that only certain discrete values of energy will be suitable solutions for the 

aforementioned boundary conditions.  

Simply put, Schrödinger’s wave equation for the movement of a particle in the x 

direction under the influence of a potential field U, which is a function of x, is given by 

     
   (2.45) 

 
in which ψ is the particle, time-independent, wave function, m is the particle mass, U(x) 

is the particle potential energy as a function of its position, E is the total system energy. 

This equation becomes 

 

  (2.46) 
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for a three-dimensional motion of a particle where U is a function of x, y, and z. When 

we rearrange Eqn. (2.46) we get 

     (2.47) 

 

where the kinetic energy of the particle is given by 

     (2.48) 

  

Rearranging Eqn 2.47 and expressing in terms of the Hamilton, energy operator, we get 

       
    (2.49) 

 

and recalling that the Hamilton operator in quantum mechanics is defined by 

       
       (2.50) 
 

which yields the following relationship when substituted into Eqn 2.49 

     (2.51) 

 
This essentially means that applying the Hamilton of any system on a wave function 

describing the state of the system will yield the same function multiplied by the 

associated energy of the state. This expression in Eqn. 2.51 is an example of an 

eigenvalue equation of a linear operator. In this case, the energy operator, namely, the 

Hamilton (H) operates on a vector function, the wave function (ψ), yielding a scaled 

version of the original wave function (ψ), by a factor E, termed the eigenvalue of the 

eigenvector (ψ). In summary, the quantum-mechanic energy operator, the Hamilton 

(H), has a set of eigenvalues (En) for each particular wavefunction (ψ), which are 

discrete values corresponding to the allowed energy levels. Though there are more 

concise methods for deriving quantum-mechanical formulations using advanced matrix 

algebra methods, in the interest of understanding the underlying physics, a brute 

derivation of the concepts is the method of choice here.  
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Recalling the classical harmonic oscillator in Figure 2.3, it has oscillations along 

the x-axis; therefore, the potential energy function of the particle is given by 

        
      (2.52) 

 
Substituting into Eqn. 2.45, Schrödinger’s wave function, yields 

      
    (2.53) 

 

which by rearranging variables and several steps later leads to 

       
     (2.54) 

 
    
The solution of the harmonic oscillator model, of Eqn. 2.54 could have more easily been 

obtained by simply applying the Hamilton operator as shown below by direct inspection 

of Eqn. 2.51. 

       

      

   

The solutions for Eqn. 2.54 are of the form79 

     (2.55) 

 

where in this case, n is an integer that represents the vibrational quantum number and not 

the lowest quantum level as n is sometimes used. It is important to note that this solution 

is based on the requirement for the existence of a particle that the lowest quantum level 

be n=1 where the particle possess a residual, zero-point, energy. Essentially, for the 

harmonic oscillator to have zero energy would violate the Heisenberg uncertainty 

principle; because both the momentum and position would have to be simultaneous 

known to be equal to zero.81 Therefore, in agreement with this condition, when n=0 in 

equation (10), the particle has residual vibrational energy E=hν/2 termed the zero-point 

energy.  
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2.5.4 Modeling Molecular Systems Using a Semi-Classical Approach 

Here, light will be described as a classic EM wave while matter will be described 

quantum-mechanically using the tools already established in the preceding section. 

Molecules will be represented by wavefunctions that are eigenfunctions of the energy 

Hamilton operator with energy states defined by the eigenvalues. The energy states will 

represent different stable molecular configurations, consisting of a system of charged 

particles in the absence of applied external EM fields. In this context, the spectral 

transitions responsible for measured dielectric phenomena, due to the action of the time 

varying EM field of the probing light wave, will account for the transformation of the 

molecular system from one stable state to another.  

The time-dependent Schrödinger equation describes the wave function, (ψ), of a 

molecular system and is represented by the following relationship  

     (2.56) 

      

 

 

which, in terms of the Hamilton operator, reduces to 

     (2.57) 

 

and has a solution of the form 

     (2.58) 

 
Here H(t) denotes the time-dependent Hamilton operator. The stable, unperturbed 

molecular system, is defined by the wave function, ψ(t), operated on by the Hamilton 

operator H0 . Therefore, when the system is perturbed, then the overall system is 

defined by  

    (2.59) 
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(2.60) 

 
 Substituting Eqn. 2.60 into 2.58 gives 

(2.61) 

 

Recalling that for the unperturbed state,  

 

 
and inputting into Eqn. 2.61, leads to 
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one coefficient, i.e. 
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only interested in two states, we can reformulate the state of the molecular system to 

encompass both possibilities as such, 
  

   (2.64) 
 

By theory, the system only has two states, at t=0 when cn(t)=1: requiring cm(t)=0, and at 

t >0 when cm(t) =1: requiring cn(t)=0. Mathematically, this means that 

     
 

(2.65) 
 

  
Since we have limited our investigation to only two states of the system, this means that 

all other coefficients cn>1(t)=0, therefore, leaving us with only one non zero term,  

   
   (2.66) 

 

which is the first order term, yielding 

     (2.67) 

 

       
This integral represents the probability of the mth state as a function of time based on the 

system originally existing at the nth state for t = 0. This approximation means that the 

probability of the mth state is dependent only on the strength of its interaction with the 

initial state, n, and with no other states.   

Now, since we are aware that the perturbation is due to a time varying EM field, 

we can introduce this into the perturbation Hamilton, H(t), to arrive at a solution for 

Eqn. 2.67. Considering only the Electric field contribution to the perturbation, since 

achiral absorption due to magnetic induced dipoles is extremely small,80  

 
(2.68) 
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By setting the center of gravity of the molecule as the origin of the coordinate system, γ 

can be expanded as the power series 

     (2.69) 

    

   

and applying the preceding approximation, Eqn. 2.69: termed the electric dipole 

approximation, to Eqn. 2.67, yields 

     (2.70) 
 

This polarized electric field applies a perturbation creating a dipole moment such that the 

perturbation Hamilton is a dot product of the dipole moment and the Electric field   

   (2.71) 

 
Substituting into Eqn. 2.67, yields 

 

  

                                

                  (2.72) 

       

Here, ωmn ≈ ω in order for the original perturbation assumption to hold. This implies that 

the first fraction in the denominator is negligible with respect to the second term which 

is considerable larger. Therefore the expression reduces to  

         

(2.73) 

      

In order to determine the probability that the system is in the mth state at time t, we 

square |cm(t)| leading to 
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(2.74) 

 

       

From Eqn. 2.74 and recalling Eqn. 2.13, it is clear that the probability of a transition due 

to an Electric field generated perturbation depends on the alignment of the polarization 

vector of the incident electric field with µ: the electric dipole moment, and is 

proportional to |µ|2: the square of the dipole moment. Further note that as t→0, the 

system transition rate equation tends toward a delta function, leading to the following 

relation: 

  
 

(2.75) 

 

 

Where, Rmn is the probability per unit time that a system transition is induced from the 

nth to the mth state, with a net result of absorption when Em=En+ω, and of emission when 

Em=En-ω; this was derived by applying Eqn 2.41 for an extremely tiny perturbation at 

optical frequency. 

Note: a more direct method utilizing normalized wavefunctions would have 

readily arrived at the same solution by applying the properties of normality, and 

orthogonality to generate the same orthonormal eigenstates. 

 

2.5.5 Concluding Remarks on the Quantum-Mechanical Approach to Light Matter 

Interactions versus the Classic Approach 

With the quantum-mechanical approach the probability of light photons interacting with 

matter, can be determined a priori: i.e. without having a physical model already built to 

guide the investigation, whereas a physical model is necessary for the classic approach. 

In the case of the harmonic oscillator, having a working knowledge of the physical 
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model made it easier to make sense of the physical significance of the quantum-

mechanical formulations but was not necessary to determine the processes of the 

absorption and emission of light, which account for all of the measurable output effects 

that yield all of the measurable physical parameters when polarized light is used to 

interrogate a sample of matter. Put more concisely, the final solution of the wave 

function indicates that the absorption and emission of light, the only two cases possible 

from the solution, are the only two measurable parameters that tell us everything we 

need to know about the interaction of light with matter. Therefore, all of the measurable 

output effects when light interacts with matter, which includes the optical dielectric 

properties of matter, can be determined from just two parameter measurements, namely, 

the absorption and emission of light. This was not apparent in the classic model because 

it did not determine the emission of light that accounts for such optical phenomena as 

fluorescence and phosphorescence, but was limited to the emission of light that accounts 

for transmission and dispersion. In conclusion, the absorption and reemission of photons 

by electrons is primarily responsible for the observable measurable output effects of 

light interaction with matter, which reveals the optical dielectric properties of matter, 

albeit bulk optical properties. 

 

2.6  Dielectric Properties of Matter 

2.6.1  General Overview 

In the preceding sections it was established that all of the dielectric properties of matter 

are determinable from the measurement of two optical parameters, namely, the 

absorption and emission of light intensity. It follows, therefore, that all of the optical 

dielectric properties will be a direct consequence of anisotropies in the absorption and 

emission of light. Jones in his landmark paper, “A New Calculus for the treatment of 

optical systems VII,82 identified eight independent optical dielectric properties; he 

termed “differential matrices” that are all based on the absorption and reemission of light 

of varying polarizations. The following sections are an investigation of the mathematical 
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descriptions of polarized light and how they pertain to the eight measurable differential 

dielectric properties of matter.  

 

2.6.2  Polarized Light  

As in classical Mathematics in which the geometric shapes such as the straight line, 

circle, parabola, and hyperbola are all special cases derived from the application of 

certain constraints to an ellipse, similarly in the field of polarization, all possible 

polarization states of a light wave are derivable by instituting constraints on the 

fundamental elliptical polarization state, 

      
   (2.76) 

 
 

where 

        
     (2.77) 

 
 
and Eox and Eoy  represent the magnitudes of the electric field vector along the orthogonal 

Ex and Ey axes as the light wave propagates along the z-axis with a phase difference of   

ε = εy - εx between the Ex and Ey components. The necessary constraints on Eqn 2.76 to 

drive all of the basic polarization states are presented in Table 2.2. Figure 2.7, is a 

pictorial depiction of the polarization ellipse and its parameters as the electric vector is 

seen to subscribe an ellipse, with a major axis angled at α with respect to the horizontal 

x-axis, as the light wave propagates out of the page towards the reader. Finally, a 

pictorial representation of the basic polarization states is presented in Figure 2.8. 
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Figure 2.7: An ellipse demonstrating the parameters for a polarized light wave.  

 
 
 
Table 2.2: Summary of the derivation of the standard polarization states from the general 
elliptical polarization.k 

CONSTRAINT POLARIZATION 
STATE [Symbol] Phase Amplitude 

EQUATION 

Horizontal [H] ε = ±nπ 
n=0, 1,... 

Ey= 0 
Eo= Eox 

E = Ex+ Ey = Ex 
Ex(z,t) = î Eocos(kz-ωt) 

Vertical     [V] ε = ±nπ 
n=0, 1,... 

Eox= 0 
Eo= Eoy 

E = Ex+ Ey = Ey 
Ey(z,t) = ĵ Eocos(kz-ωt) 

Plus 45 deg. [P] ε = ±nπ 
n=0, 1,... 

Eoy= Eox 
= Eo 

E = Ex+ Ey 
E(z,t) = (î + ĵ) Eocos(kz-ωt) 

Minus 45 deg. [M] ε = ±nπ 
n=0, 1,... 

Eoy= Eox 
= Eo 

E = Ex+ Ey 
E(z,t) = (î - ĵ) Eocos(kz-ωt) 

Right Circular [R] ε = ± nπ/2 
n=1, 2,... Eoy= Eox E = Eo[î Eocos(kz-ωt)+ ĵ Eosin(kz-ωt)] 

Left Circular   [L] ε = ± nπ/2 
n=1, 2,... Eoy= Eox E = Eo[î Eocos(kz-ωt)- ĵ Eosin(kz-ωt)] 

 

                                                 

k Summarized from Eugene Hecht, reference 78, chapter 8. 
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Figure 2.8: Pictorial representation of the pattern subscribed by the vibration of the E-field 
of a polarized light wave that is propagating out of the page toward the reader. 
 

 

2.6.3 The Measurement of the Intensity of a Light Wave 

The intensity of the a light wave is calculated by the time averaged value of the Poynting 

vector, given by 

,
2

)(cos
T
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22
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EcE
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tcSI 0
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=−•×∈=≡ ωrkBE 00      (2.78) 

i.e. the intensity of an EM wave is proportional to the square of the E-field vector, where 

〈   〉T denotes the time averaged value, and × denotes the vector cross product.  

 

2.6.4  The Stokes Vector Representation of Light 

The intensity of the polarization vector of a light beam can be completely described 

using the 4×1 Stokes vector:78 

 

  

  (2.79) 

 

 

where, I denotes the measured intensity value, S0 is the total detected light intensity, of 

which S1 is the portion that corresponds to the difference between the linear horizontal 
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〈Eox
2〉T and vertical 〈Eoy

2〉T polarization states, S2 is the portion that corresponds to the 

difference between the linear +45° and –45° polarization states, and S3 is the portion that 

corresponds to the difference between the right circular and left circular polarization 

states.74 The Stokes vector formulation can handle both polarized and unpolarized light 

states, where the degree of polarization, DOP, is determined by  

         

      (2.80) 

 

        
The DOP ranges from 0 ≤ DOP ≤ 1, since the normalized total intensity can never 

exceed a value of 1, where the normalization of the Stokes vector is accomplished by 

dividing all of the elements by the S0 element.   

 

2.6.5  Mueller Matrix Representation of Light 

The Mueller matrix is a mathematical representation, based on intensity measurements, 

of the dielectric polarization properties of a given sample such that the detected Stokes 

vector of the output beam is based on the combination of the input beam Stokes vector 

with the sample Mueller matrix. Thus, from Eqn. 2.81, knowing the input light 

polarization state, [S]IN, and the detected light polarization state,  [S]OUT, the sample 

Mueller matrix, [M], can be determined from 

    

   (2.81) 

    

using the derivations presented in Table 2.3.   
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Table 2.3:  The Mueller matrix derivation equations (a) using 16, (b) using 36, and (c) using 
49 polarization images, where the first and second terms represent the input and output 
polarization states respectively, which are defined as: H = Horizontal, V = Vertical, 
P = + 45°, M = -45°, R = Right circular, and L = Left circular, O=Open, i.e. no polarization.   

M11 
=HH+HV+VH+VV 

M12 

=HH+HV-VH-VV 

M13 

=2PH+2PV-M11 

M14 

=2RH+2RV-M11 

M21 

=HH-HV+VH-VV 

M22 

=HH-HV-VH+VV 

M23 

=2PH-2PV-M21 

M24 

=2RH-2RV-M21 

M31 

=2HP+2VP-M11 

M32 

=2HP-2VP-M12 

M33 

=4PP-2PH-2PV-M31 

M34 

=4RP-2RH-2RV-M31 

M41 

=2HR+2VR-M11 

M42 

=2HR-2VR-M12 

M43 

=4PR-2PH-2PV-M41 

M44 

=4RR-2RH-2RV-M41 

(a) 
 

M11 =HH+HV+VH+VV M12 =HH+HV-VH-VV M13 =PH+PV-MH-MV M14 =RH+RV-LH-LV 

M21 =HH-HV+VH-VV M22 =HH-HV-VH+VV M23 =PH-PV-MH+MV M24 =RH-RV-LH+LV 

M31 =HP-HM+VP-VM M32 =HP-HM-VP+VM M33 =PP-PM-MP+MM M34 =RP-RM-LP+LM 

M41 =HR-HL+VR-VL M42 =HR-HL-VR+VL M43 =PR-PL-MR+ML M44 =RR-RL-LR+LL 

(b) 
 

M11 = OO M12 = HO−VO M13 = PO−MO M14 = RO−LO 

M21  = OH−OV M22 = HH−HV−VH+VV M23 = PH−PV−MH+MV M24 = RH−RV−LH+LV 

M31  = OP−OM M32 = HP−HM−VP+VM M33 = PP−PM−MP+MM M34 = RP−RM−LP+LM 

M41  = OR−OL M42 = HR−HL−VR+VL M43 = PR−PL−MR+ML M44 = RR−RL−LR+LL 

(c) 
 

 

The requirements for a theoretical realizable Mueller matrix are 

      (2.82) 

 
       (2.83) 

( ) 2
11

T M4≥MMTr

ij11 MM ≥
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(2.84) 

 

(2.85) 

 

where Tr is the trace of the matrix and MT is the transpose of M, the sample Mueller 

matrix. In practice, since the matrices for ideal polarizers, retarders, and other non-

depolarizing components lie on the boundary for theoretical realizability, it is possible to 

get results that slightly exceed these requirements in an experimental system.83 

 

2.6.6 Jones Matrix Representation of Light 

The Jones matrix formulation can be used to represent all of the dielectric properties of a 

non-depolarizing sample, i.e. DOP=1. This is based on  

              
(2.86) 

 
 

 
where the measured light intensity is given by 

 
   (2.87) 

 

and Ex and Ey are the components of the vertical and horizontal components of the E-

vector, having corresponding scalar amplitudes of Eox and Eoy, with phase components of 

Øx and Øy.78 Therefore, the Jones matrix formulation is based on the measurement of the 

amplitude and phase of the electric vector and not directly based on intensity 

measurements.     

The Jones vector formulation for an arbitrary unknown sample has the advantage 

of requiring only 7 independent measurements, disregarding the absolute phase, versus a 

minimum of 16 independent measurements for the Mueller matrix formulations. 
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2.6.7 A Comparison of Mueller and Jones Matrix Representation of Dielectric 

Properties 

This section outlines the eight dielectric properties and some methods for determining 

them using polarized light. It is clear from Table 2.4 that all of the dielectric parameters 

are indeed measurements of the absorption and emission of polarized light, which is the 

basis for the experiments that will be discussed in the coming chapters. Furthermore, the 

dielectric polarization properties of matter can be more clearly understood when viewed 

in the context of the different methods for generating polarized light using various 

samples of matter; this is presented in Section 2.6.8.  

 
 
Table 2.4: This table is a summary of the 8 dielectric properties, their symbols as used in 
this text, and their experimental measurements, where A = standard absorbance, η = 
refractive index, l = sample path length, c = molar concentration, λ = wavelength of light,  
α = the observed polarimetric rotation, k = extinction coefficient, and the subscripts 
indicate the state of polarized light for the measurement.84, 85  

 

 

                                                 

l Modified from H. P. Jensen, reference 84, Table II. 

[mi] Physical Parameter 
Phenome- 
nological 
symboll 

Experimental 
Measurement 

Jone’s 
Formulation82 

[Θi] per unit length 

1 Isotropic absorption Ae or  p 
 

l)cln(10 ⋅⋅⋅ ε    
 λ

πκ k⋅
=

2  

2 Isotropic refraction 
(arbitrary phase) η 

λ
π ln ⋅⋅2  

λ
πη n⋅

=
2  

3 Linear 
Birefringence 1 0LB  

λ
π ln ⋅∆⋅ 02

 ( )xyp κκ −=
2
1

0  

4 Linear 
Birefringence 2 45LB  

λ
π ln ⋅∆⋅ 452

 ( )454545 2
1 κκ −= −g
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Table 2.4: Continued 

 

  
In contemporary literature, LD0, LD45, and CD are commonly referred to as 

diattenuations83,86 because they are based on the asymmetrical absorption of orthogonal 

polarizations of light, which results in the differential attenuation of polarized light. The 

term dichroism refers to the earlier means of detecting asymmetrical absorption in 

crystals, which was based on observing two, ‘di’, different colors (‘chrois’)m determined 

by the crystal axis that was used for viewing.87 Similarly, CB, LB0, and LB45 are referred 

to as retardances instead of birefringence83,89 because the matrix value is the actual 

retardance; a function of the sample birefringence, which is a constant. The sample 

birefringence is based on the differential speed of propagation of two orthogonal 

polarization states of light, a direct result of the existence of more than one refractive 

index of light in a birefringent sample. 

 

 

 
 

                                                 

m English chrois originates from Greek khros 

 
[mi] 

Physical Parameter 
Phenome- 
nological 
symboll 

Experimental 
Measurement 

Jones 
Formulation82 

[Θi] per unit length 

5 Linear Dichroism 1 0LD  l/2)cln(10 0 ⋅⋅∆⋅ ε  ( )xyg ηη −=
2
1

0  

6 Linear Dichroism 2 45LD  l/2)cln(10 45 ⋅⋅∆⋅ ε  ( )454545 2
1 ηη −= −g

7 Circular 
Birefringence CB 

90
απ ⋅  ( )lr ηηω −=

2
1  

8 Circular Dichroism CD l/2)cln(10 ⋅⋅∆⋅ lrε  ( )rl κκδ −=
2
1  



 

 

44

Table 2.5: Corresponding Mueller matrix formulation for the 8 dielectric properties, for a 
non-depolarizing anisotropic sample.n 

 
 
 
2.6.8 An Investigation of Dielectric Polarization Properties from the Perspective of 

Polarized Light Production  

Keeping in mind that all of the dielectric properties of matter can be determined from the 

absorption and emission of light, this means that a sample of matter exhibiting 

anisotropies in the absorption and emission of light, will exhibit polarization properties. 

The polarization properties are depolarization: the ability to depolarize incident 

polarized light, diattenuation: the dependence of light transmission on the incident 

polarization state, polarizance: the ability to polarize unpolarized incident light, and 

retardance: the ability to generate a phase shift in the electric vector of the incident 

polarized light, therefore, possibly changing its state of polarization (SOP). 

 

2.6.8.1 Depolarization Property 

For a sample of matter to exhibit the property of a depolarizer, this requires a 

homogenous and isotropic structural arrangement of matter such that all of the incident 

                                                 

n Adopted from T. T. Tower and R. T. Tranquillo, reference 88, Eqn. 3. 

M11 =HH+HV+VH+VV 

(p) 

M12 =HH+HV-VH-VV 

-(LD0) 

M13 =PH+PV-MH-MV 

-(LD45) 

M14 =RH+RV-LH-LV 

(CD) 

M21 =HH-HV+VH-VV 

-(LD0) 

M22 =HH-HV-VH+VV 

(p) 

M23 =PH-PV-MH+MV 

(CB) 

M24 =RH-RV-LH+LV 

(LB45) 

M31 =HP-HM+VP-VM 

-(LD45) 

M32 =HP-HM-VP+VM 

-(CB) 

M33 =PP-PM-MP+MM 

(p) 

M34 =RP-RM-LP+LM 

-(LB0) 

M41 =HR-HL+VR-VL 

(CD) 

M42 =HR-HL-VR+VL 

-(LB45) 

M43 =PR-PL-MR+ML 

(LB0) 

M44 =RR-RL-LR+LL 

(p) 
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polarized light is scattered and depolarized equally in all directions.  Practically, this can 

only be determine experimentally with a transmission or backscattered light 

measurement scheme where the surface reflected light would not be registered, because 

surface light, i.e. specular reflection, still retains its polarization with a helicity flip for 

incident the cases M, P, R, and L. 

The normalized Mueller matrix for a depolarizer sample is  

 

          (2.88)

        

        

which can be derived from Table 2.5 by setting all of the detected intensity values to the 

same value because a homogeneous isotropic depolarizing sample will register the same 

intensity regardless of the probing incident polarization state. Physically, depolarization 

of light by a sample of matter can be a reusult of multiple scattering of photons, or a 

rapid or random change in the phase or wavelength of the emitted photons that result in a 

scrambling of the output polarization of the emitted light beam such that it does not 

favor any polarization state over the others. Practically, all matter depolarizes light to a 

degree established by its asymmetric and inhomogeneous makeup.The depolarizance of 

a sample can be determined by comparing the Eucledian distance of its Mueller matrix 

to that of an ideal depolarizer using: 

       
           (2.89) 

     
 
  

where i and j are the index integers for the elements of the Mueller matrix sans the M11 

element,  DPI is the Depolarization index varying in value from 0 for a perfect polarizer  

or retarder  to 1 for an ideal depolarizer.83 Most matter falls somewhere between the two 

ideal cases, i.e. 0 < DPI < 1.  It is worth noting that the Stokes vector of the light 

detected from any depolarizing sample can be separated into two parts, a depolarized 

portion, SD, and a 100%  polarized portion, SP,  based on the DOP, i.e.83 
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     (2.90) 

   

  

2.6.8.2 Diattenuation (Dichroism) Property 

For a sample to exhibit diattenuation, the structural arrangement must be one that creates 

differential absorption of different polarization states of light. From the sample Mueller 

matrix, in Table 2.5, the average transmitted light intensity Tavg = M11 and the maximum 

and minimum transmitted light intensities Tmax and Tmin are given by83  
 

(2.91) 
 

which yield the maximum and minimum Stokes vectors, Smax and Smin, 

 
 

(2.92) 
 

 

 
The diattenuation, D, of the sample Matrix, M, is determined by 
 

 
(2.93) 

 
 

where the Linear Diattenuation, LD, component is determined by 

 

(2.94) 

 
 

and the Circular Diattenuation, CD, component by 

 

(2.95) 

.

)(
)(
)(

1

0
0
0
1

)1(

03

02

01
00

3

2

1

0



















⋅
⋅
⋅

⋅+



















⋅−=



















=+=

DOPSS
DOPSS
DOPSSDOPSSDOP

S
S
S
S

SSS PD

,MMMM  and   MMMM 2
14

2
13

2
1211min

2
14

2
13

2
1211max ++−=+++= TT

.

M-
M-
M-

MMM

    and   

M
M
M

MMM

14

13

12

2
14

2
13

2
12

min

14

13

12

2
14

2
13

2
12

max

















 ++

=

















 ++

= SS

,
M

MMM
)M(

11

2
14

2
13

2
12

minmax

minmax ++
=

+
−

=
TT
TT

D

11

2
13

2
12

M
MM

)M(
+

=LD

.
M
M)M(

11

14=CD



 

 

47

 
The diattenuation, D, varies from a value of 1 for an ideal polarizer to 0 for an ideal 
retarder, ideal depolarizer, or other nonpolarizing sample.83 
 

2.6.8.3 Polarizance Property 

For a sample to exhibit polarizance, it has to have a structural arrangement that enables it 

to reflect, absorb and re-emit, light at oblique angles, or one that results in either the 

differentially absorption of orthogonal polarization components of light or in the 

differentially absorption of linear versus circularly polarized light. Polarizance, P, can be 

determined from a sample Mueller matrix by83 

     
(2.96) 

 

where P varies from a value of 1 for an ideal polarizer to a value of 0 for a nonpolarizing 

sample, such as an ideal waveplate or depolarizer. Hence, the complete asymmetric 

absorption of a polarization state by a sample, while simultaneously passing the 

orthogonal polarization state, can be a practical means for generating polarized light, 

which is the case for wire grid and Polaroid sheet polarizers.89, 90 

On the other hand, if the polarizance is reflection based, the maximum 

polarizance will occur at Brewster’s angle: the 100% linear polarizing angle. 

Unpolarized incident light that is reflected, absorbed and reemitted, at oblique angles 

other than Brewster’s angle will create partial linear polarized reflected and transmitted 

beams. For reflection at Brewster’s angle, you get approximately 8% of the total incident 

energy reflected as 100% linear polarized reflected light with a polarization state 

perpendicular (per) to the plane of incidence, while the transmitted beam contains 

approximately 92% of the incident energy and is partially linearly polarized primarily 

parallel (par) to the incident plane of incidence. Thus, asymmetric reflection from the 

surface of a sample generates polarizance, which can be used as a means of producing 

polarized light as in the case of pile-of-plates polarizers.89, 90 
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Another process that generates polarizance is the asymmetric refraction of light.o 

When unpolarized light is incident on a birefringent crystal at other than along the optic 

axis, the beam is double refracted and separated into two observable beams propagating 

with two different wave velocities, which are 100% polarized with states orthogonal to 

each other. The polarizations produced by a birefringent crystal can be linear circular or 

elliptical, therefore, leading to the corresponding sample characterization of linearly, 

circularly, or elliptically birefringent. By blocking one of the polarized beams, using 

total internal reflection and or absorption, a 100% polarized beam is outputted.89,90 

Therefore, the asymmetric refraction of light generates polarizance, and this process can 

be applied to produce polarized light using birefringent crystals. 

Asymmetrical scattering can also generate polarizance particularly that due to 

Rayleigh scatter. When the size of the scatters is much smaller than the wavelength of 

unpolarized light, the Rayliegh scattering, absorption and re-emission of light due to 

generated dipole oscillations, generates polarized light of varying DOP in all directions 

except in the forward direction, where the ensuing light beam is unpolarized.p  

 

2.6.8.4 Retardance Property 

For a sample to exhibit retardance, it has to have a structural arrangement that enables it 

to retard the transmission, i.e. the absorption and re-emission, of light of orthogonal 

polarization orientations relative to each other.  Physically, Retardance can be generated  

by the process of reflection or by sample birefringence. In the case of reflection, the 

phase shift generated by dielectric samples differs for external and total internal 

reflections. Figures 2.9 (a) and (b) are the plots for the phase shift generated for internal 

and external reflections at a glass/air interface for a glass sample of refractive index 1.5, 

                                                 

o This was the original means used by Huygens to discover polarization due to the double refraction of 
   light by a calcite crystal 
p This process accounts for the polarization effects of skylight observed due to the Rayliegh scatter of the  
   light rays from the sun by tiny atmospheric particles, such as dust particles. 
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which yields a critical angle for TIR of 41.8° and a polarization, Brewster’s, angle of 

56.3°.91 

From Figure 2.9(a) it is evident that for a given input polarization state different 

states of polarized light can be produced based on the number of internal reflections of 

the beam before being re-emitted from the glass crystal. In fact, incident linear polarized 

light can be converted into circular polarized light by two internal reflection events 

before being re-emitted. On the other hand, from Figures 2.9(b) through (d), for incident 

unpolarized light only linear polarized light of varying DOP and azimuthal orientation, 

which are based on the percentage of the reflected light of par and per polarization 

orientation, can be produced from external reflection events because the phase shift 

between the two orthogonal components, i.e. the perpendicular and parallel to the plane 

of incidence components, is always 0 or pi which corresponds to a linear polarization 

state.q 

Retardance changes that are a result of birefringence are a primary hindrance for 

the non-invasive detection of glucose using polarized light transmission through the 

aqueous humor of the eye in which the light beam twice traverses the birefringent cornea 

of the eye.  As such, a more detailed treatment of the theory for the generation of 

retardance as a consequence of light traversing a birefringent sample is presented later in 

Chapter III, which deals with non-invasive polarimetric glucose detection. Nevertheless, 

the asymmetric retardation of orthogonal polarization states, whether due to reflection 

effects or inherent sample birefringence, produces retardance, which is evident in the 

M44 element of the sample Mueller matrix. 

 

 

                                                 

q Recalling Table 2.2 for ε = ± nπ, where n=0,1, ... 
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Figure 2.9: Depiction of retardance, i.e. phase difference between the Par and Per 
component of incident unpolarized light, for a air glass interface where ηglass =1.5, θc=41.8°, 
and θp=56.3° for (a) total-internal-reflection; (b) external reflection. 

 

 
(a) 

 

 
(b) 
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Figure 2.9: Continued; (c) normal scale and (d) log scale. 
 
 

 
(c) 

 

 
(d) 
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2.6.8.5 Summary of the Dielectric Polarization Properties from the Perspective of 

Polarized Light Production  

In summary, a dielectric sample of matter can exhibit polarization properties due to 

structural asymmetries that lead to one, some, or all of the aforementioned polarization 

characteristics.  
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CHAPTER III 

THE APPLICATION OF POLARIZED LIGHT FOR THE 

RELATIVE  MEASUREMENT OF RABBIT CORNEAL 

BIREFRINGENCEr 
 

As stated in the Chapter I, there is a need for a non-invasive blood glucose measurement 

device to aid diabetics. Numerous groups have investigated the polarimetric approach and 

several problems have been addressed.2,16,17,19,20,45-49,52-55 However, there is still one major 

problem remaining to make this method a reality, namely, how to compensate for the 

changes in the polarimetric signal that are generated by movement of the eyeball which 

brings in to play the spatial variations in corneal birefringence.  

This chapter will begin with a quick overview of the problems and the solutions to 

the polarimetric glucose sensing modality through the eye as implemented by our group. 

Then it will address the challenges associated with using the polarimetric system for in 

vivo studies, which is the basis for conducting the study, described in the later parts of 

this chapter, on the measurement of the relative rabbit corneal birefringence. 

  
3.1 An Overview of the Problems of Polarimetric Glucose Detection through 

the Eye and the Investigated Solutions 

3.1.1  The Time Lag between Blood and Aqueous Humor Glucose Levels    

Determining the time delay between changes in blood glucose levels and those of the 

aqueous humor is fundamental to establishing the practicality of the proposed sensor.  

For the glucose concentration readings of the aqueous humor to be useful to a diabetic, 

the delay needs to be short enough to enable the patient to make the necessary                   

                                                 

r Part of this chapter is reprinted with permission from Journal of Biomedical Optics, reference 20. 
  J. S. Baba, B. D. Cameron, S. Theru, and G. L. Cote, “Effect of temperature, pH, and corneal birefrin- 
  gence on polarimetric glucose monitoring in the eye.” J Biomed Opt. 7(3), 321-328 (2002). 
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intervention to maintain their blood glucose levels within that of normal. More critically 

for the diabetic patient is the ability to detect the onset of a hypoglycemic condition, 

such that corrective actions can be taken to avoid short-term affects such as fainting or 

more dangerously the onset of a coma, which can be a potentially fatal condition. Hence, 

it is essential that the readings are accurate and attainable within a short time span.36,37 

     In 1982, a preliminary experimental study conducted by March et al.45,46 using 

New Zealand White rabbits provided some insight on the time delay and the correlation 

between blood and aqueous humor glucose levels.  Although preliminary, their study 

indeed demonstrated a correlation.  However, because only two data points were 

collected from each rabbit, at two hour intervals, it could only be speculated that the 

order of the time delay was under two hours though it was indicated that it should be 

considerably less under more normal circumstances.  More recently, Chou et al.9,54 using 

a preliminary non-invasive single wavelength optical polarimetric technique had 

published that the time delay seemed to be on the order of thirty minutes. However, their 

results have not been duplicated and our discussions with this group identify that future 

studies still need to be conducted to verify that it was indeed aqueous humor glucose 

being measured by their system. Based on these varying published reports and on our 

private communications with others on the potential time delay, it became necessary to 

conduct a more complete and conclusive measurement of the delay. 

  In our recently published report, five New Zealand White (NZW) rabbits were 

used to directly measure the delay between the blood and aqueous humor glucose 

levels.16 The average time delay from all animals was found to be within five minutes.  

This experiment was conducted using normal nondiabetic animals by withdrawing time 

corresponding aqueous humor and blood samples over a course of weeks and then using a 

 standard bench top electrochemical approach (Yellow Springs Instruments) to determine 

the glucose concentrations.  The elevation of glucose concentrations in the rabbit model 

was attained using a Ketamine/Xylazine anesthesia protocol. The time lag, Tdelay, was 

determined once we fit the data and determined the peak locations for blood, Tpeak_blood, 

and aqueous humor, Tpeak_aqueous, as bloodpeakaqueouspeakdelay TTT __ −= . 
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A plot showing the elevated blood and aqueous humor normalized glucose 

concentrations, and depicting the time lag for one animal is presented in Figure 3.1. 

 
 

 

 

 

 

 

 

 

 
 
Figure 3.1: Time-delay results for a single NZW rabbit based on measurements made with 
an YSI glucose analyzer. The time lag determined here is less than five minutes. 
 

 
3.1.2 Low Signal-To-Noise Ratio for the Polarimetric Measurement of Physiolo-

gical Concentrations of Glucose  

 

 

 

 

 

 

 

 

Figure 3.2: Block diagram of the designed and implemented digital closed-loop controlled 
polarimeter, where the sample holder is used for in vitro samples and the eye-coupling 
device, which is filled with saline, is used for in vivo studies. 
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Figure 3.3: (a) The top sinusoid is the Faraday modulation signal (ωm) used as the reference 
for the lock-in amplifier and the bottom sinusoid is the double modulation frequency (2ωm) 
signal detected for a perfectly nulled system. (b) This sinusoid is the detected signal when 
an optically active sample, like glucose, is present. 
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To address this issue, in an earlier approach, depicted in Figure 3.2, we designed and 

implemented a single wavelength polarization modulated closed-loop polarimetric 

system.53 Mathematically, the operation of the system is based on Eqn. 3.1, where θm is 

the depth of the Faraday modulation, ωm is the modulation frequency, and φ represents 

the rotation due to the optically active sample subtracted by any feedback rotation due to 

the compensation Faraday rotator.  From Eqn.  3.1, it is evident that, without an optically 

active sample and with the DC term removed, the detected signal only consists of the 

double modulation frequency (2ωm) term, represented by the bottom signal in Figure 

3.3a. However, when an optically active sample is present, such as glucose, the detected 

signal then becomes an asymmetric sinusoid, represented in Figure 3.3b, which contains 

both the fundamental (ωm) and the 2ωm modulation frequency terms.  

The previously obtained results from the sample calibrations for four individual 

runs of glucose doped water are presented in Table 3.1.53 These results demonstrate the 

system robustness and establish that the system has the sensitivity to accurately resolve 

physiological concentrations of glucose.  The plots for the best results in validation (i.e. 

using a previously formed calibration model and an independent set of data for 

prediction) are shown in Figure 3.4. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
  
Figure 3.4: Predicted versus actual glucose concentrations for the hyperglycemic glucose 
doped water experiments, where the line represents the error free estimation (y=x).  
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Table 3.1: Summary statistics for four individual data sets collected for water doped 
glucose samples.  

 
Medium 

 
Run 

Correlation
Coefficient 

(r) 

Standard Error of 
Prediction in 

Calibration [mg/dl] 

Standard Error of 
Prediction in 

Validation [mg/dl] 
1 0.99888 9.24 7.26 
2 0.99909 8.30 8.64 
3 0.99956 5.77 9.69 

Glucose 
and 

Water 
4 0.99975 4.34 9.76 

 
 
 
3.1.3  Confounding Effects of Other Chiral Constituents in Aqueous Humor to 

Polarimetric Glucose Measurement  

Since the basis of polarimetric glucose concentration determination is the amount of 

rotation of a linearly polarized incident beam by glucose, the presence of other chiral 

molecules within the aqueous humor creates the potential for confounding this 

measurement. To address this problem, Gough et al.48 investigated the contributions of 

potential aqueous humor confounders to glucose measurement within the wavelength 

range of 365nm to 589nm.  More recently, our group20 extended this work to include the 

full visible spectrum for the two primary optical confounders to glucose measurements 

in the eye namely, albumin and ascorbic acid.  These results are illustrated in Figure 3.5 

and summarized in Table 3.2.  It can be seen that the contributions of albumin and 

ascorbic acid are negligible, particularly at higher wavelengths. It is worth noting that 

the effect of albumin and ascorbic acid in Table 3.2, are evaluated for their average 

physiological levels. This is based on the assumption that any fluctuations in their 

concentrations within their full physiological ranges will be minimal and slow in the 

aqueous humor compared to those of glucose. In addition, these two components are 

contra-rotatory and thus will partially cancel each other.  Therefore, it is not likely that 

these optically active substances in the eye will significantly affect the glucose signal. 

However, if necessary, a multi-wavelength system should enable the compensation of 

any confounding effects due to other chiral analytes. These conclusions are supported by 

the results from prior work done by this group (King et al.92 and Cameron et al.2) all of 
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which indicate a significant decrease in glucose prediction errors, in the presence of 

confounders, utilizing a multi-wavelength system as compared to the results obtained 

using a single wavelength system.  Lastly, due to the temperature and pH dependence of 

optical activity, we investigated the potential effects of varying temperature and pH on 

glucose measurements. Our results suggest that temperature and pH effects will be 

negligible in vivo due to the small changes in optical activity within their physiological 

ranges of variation.93    
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Figure 3.5: Observed optical rotations for physiological concentrations of aqueous humor 
analytes, glucose, albumin, and ascorbic acid for a 1cm pathlength. 
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Table 3.2: This presents the contributions of physiological concentrations of albumen, 6 
mg/dl, and ascorbic acid, 20mg/dl, to the detected observed rotation when glucose is 
present and varies within physiological concentrations: extreme hypoglycemic 40mg/dl, 
normal 100mg/dl, and extreme hyperglycemic 600mg/dl. 

% MAXIMUM CONTRIBUTION TO OBSERVED ROTATION
  

Glucose 40mg/dl 
 

Glucose 100mg/dl 
 

Glucose 600mg/dl 
 

Wavelength 532nm 635nm      532nm     635nm       532nm         635nm        
Albumen   5.48   6.13  2.48  2.81  0.45  0.51 
Ascorbic Acid 13.69 15.30  6.19  7.02  1.11 1.28 

 

 

3.1.4  The Confounding Effects of Motion Artifact Coupled With the Spatial 

Variations in Corneal Birefringence 

Corneal birefringence becomes a problem when there is motion artifact because the 

affect of birefringence masks the glucose signature. For our in vivo measurement system, 

motion artifact has been a recurrent problem. In order to understand this issue, the source 

of the noise needed to be isolated.  Using the single wavelength system depicted in 

Figure 3.2 and an anesthetized rabbit, a spectral analysis of our detected signal was 

obtained. As depicted in Figure 3.6, the artifact was found to be a result of changes the 

location of eyeball with respect to the stationary input laser beam due to respiratory 

motion and, to a limited extent, the cardiac cycle. This motion brought into play the 

spatial variations in corneal birefringence, thus causing a change in the measured signal 

that was not due to glucose. Based on the reason that this was a direct response to the 

respiratory and cardiac cycles and not to some random eye motion, i.e. it is a systematic 

and not a systemic error, this means that it cannot be entirely removed (for instance in a 

human by asking the person to focus their vision straight ahead). Thus, this finding 

necessitates the development of a robust method for measurement in the presence of 

birefringence.  

 

 

 



 

 

61

 

 

 

 
 
 

 

 

 

 

 

Figure 3.6: The fft of the detected signal from an in vivo study aimed at measuring glucose 
optical rotation in an anesthetized rabbit. This shows the presence of motion artifact due to 
respiration and, to a lesser degree, the cardiac cycle in our detected signal. 

 

In order to develop a robust polarimetric glucose detection system, it is necessary 

to quantify the degree of the relative spatial variations in corneal birefringence, which 

confounds polarimetric glucose measurements through the eye. The birefringence of the 

eye is well documented in literature and numerous investigators have studied and 

developed models for corneal birefringence.94-107 However, these models are based on the 

transmission of light through excised and fixated cornea in vitro, 94-98,101-103 or by in vivo 

imaging of back reflected light that has traversed the apex of the cornea and reflected off 

the inner structures, e.g. iris, retina, lens.99,100,104-107 For our geometry (see Figure 3.7), 

where we couple light laterally to traverse the anterior chamber of the eye from the tear 

duct to the opposite edge where the upper and lower eyelids meet, these models are 

insufficient. The rest of the discussion in this chapter will address the specific task of 

mapping the spatial variations in corneal birefringence as seen by the aforementioned in 

vivo polarimetric glucose system.  
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3.2      Birefringence Theory 

3.2.1 Quantum-Mechanical Explanation for Inherent Birefringence 

 
 

 

 

 

 

 

 

 

 

 
 
Figure 3.8: Diagram illustrating electron binding force spatial asymmetry. 
 

Figure 3.7: Diagram depicting glucose detection eye-coupling geometry. 
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Applying Section 2.5.4 to Figure 3.8 yields 

              
                    (3.2) 

 
 (3.3) 
 

 
(3.4) 

 
which leads to an absorption and emission of light that are based on the polarization 

orientation of the incident EM field. From a classical mechanics point of view, applying 

Eqn 2.23 to Figure 3.8 gives 
    

(3.5) 

 and Eqn 2.30 now becomes a dot product represented by 

    (3.6) 

which yields  
    (3.7) 

 
Recalling Eqn 2.33, where 

 
 
                           ; 
   
 
this means that 

     

  (3.8) 

 

Birefringence is a phase retardation of emitted light from a sample due to the 

incident EM radiation encountering principle axes asymmetries. From section 2.4.2, 

Eqn. 2.13 suggests that the induced electric dipole moment, µind, is always aligned with 

the applied external electric field, E, that generated it. This is true for an isotropic 
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sample, but for a birefringent sample, anisotropies exist between the principle axes of the 

sample, which can lead to the misalignment of the dipole moment with the plane of 

polarization of the incident field. Hence, birefringence is a phase retardation of emitted 

light from a sample due to the incident EM radiation encountering principle axes 

asymmetries that leads to a non-coplanar induced dipole moment. As illustrated in 

Figure 3.8, the binding forces on an electron in the structural arrangement can vary 

spatially along the x, y, and z directions. Recalling Eqn. 2.14, this implies that the 

electric susceptibility, eχ , is a 3×3 tensor, as is the complex dielectric constant, ∈΄. For a 

non-absorbing medium, only the diagonal elements, corresponding to the three principle 

axes, are non-zero. Therefore, when an incident EM wave interacts with such an 

electron, the displacement of the electron, thus the induced dipole moment, becomes a 

function of the spatial orientation of the incident polarization. The net result is that the 

induced dipole moment is not aligned with the plane of the incident field polarization. 

In the case where the plane of the linear polarization vector of the incident light 

wave aligns with one of the principle axes, the induced dipole moment generated is 

aligned with the incident plane of polarization. From Eqn. 3.8 given a Horizontal 

incident SOP for a wave propagating along the z-axis, i.e. Ey=Ez= 0, yields a dipole 

moment, |µ'ind|∝Ex·χ'11= a, with a direction given by: ,ˆˆ ir xE=  which is aligned with the 

incident field SOP. Because of this alignment, the incident and scattered light will have 

the same SOP because the phase retardation between the fields will be an integer 

multiple of π (refer to Table 2.2).  However, in the case where the plane of the linear 

polarization vector of the incident light wave does not align with any of the principle 

axes, i.e. Ez= 0, and Ex ≠ Ey ≠ 0, the induced dipole moment is not aligned with the 

incident plane of polarization. This misalignment introduces a phase retardation between 

the incident and emitted: transmitted, fields that is not an integer multiple of π, therefore, 

the field of the scattered light will be out of phase with the incident field, thus, changing 

the incident linear SOP polarization to an elliptical SOP.80 This can be explained further, 

using Table 3.3 in conjunction with Eqn. 3.8.  
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Table 3.3: Classification of birefringence based on the number of principle axes lacking 
symmetry for non-absorbing media.s 
CLASSIFICATION 
    -Crystalline Arrangement 

ELECTRIC 
SUSCEPTIBILITY 

REFRACTIVE 
INDEX / INDICES 

Isotropic 
    -Cubic 
 













=















′
′

′

a
a

a

00
00
00

00
00
00

33

22

11

χ
χ

χ
)1()( ao +=∈′≅ωη  

Uniaxial 
    -Trigonal 
    -Tetragonal 
    -Hexagonal 














=















′
′

′

b
a

a

00
00
00

00
00
00

33

22

11

χ
χ

χ )1()( ao +=∈′≅ωη  

)1()( be +=∈′≅ωη  

Biaxial 
    -Triclinic 
    -Monoclinic 
    -Orthorhombic 














=















′
′

′

c
b

a

00
00
00

00
00
00

33

22

11

χ
χ

χ
 

)1()(1 a+=∈′≅ωη  

)1()(2 b+=∈′≅ωη  

)1()(3 c+=∈′≅ωη  
 

 
From Table 3.3 and Eqn. 3.8, an optic axis exists for the case of a uniaxial crystal 

such that if the incident light beam propagates along the z-axis: the 33χ  principle axis - 

which is the optic axis, the polarization of the output beam will be retained;  
 

jirµ ˆˆˆby   given direction  a  with 22211ind yxyx EEaEE +==′⋅+′⋅∝′ χχ . 
 

Eqn 3.8 suggests that the incident polarization state is retained because the incident 

electric field encounters the same electric susceptibilities, as if the sample were 

isotropic, as it traverses the sample because a== 2211 χχ . In the case where the incident 

beam does not propagate along the optic axis, then from Eqn 3.8, the incident 

polarization state is not retained because it encounters asymmetric orthogonal 

susceptibilities. Likewise if the structure of the matter represents a biaxial crystal, then 

the incident SOP is always changed due to the interaction with the sample80 and 

.EEbaEE zxzx kirµ ˆˆˆby   given direction  a  with 3311ind +=+=′⋅+′⋅∝′ χχ  

                                                 

s Adopted from Grant R. Fowles, reference 75, pp. 175. 
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3.2.2 Phenomenological Explanation for Birefringence 

 

  

 

 

 

 

 

 

 

 

 

 

Figure 3.9: Birefringent sample effect on an input linear polarized light beam. The beam is 
decomposed into two orthogonal components of differing wave velocities, νo and νe, one 
aligned with the optic axis and the other perpendicular to the optical axis. The output light 
is converted into an elliptical polarization by the phase shift introduced between the 
normal and extraordinary velocity waves during propagation. 

 
  
Birefringence describes the phenomena where an incident light beam experiences two 

refractive indices for light, the ordinary refractive index ηo (along the slow axis) and the 

extra-ordinary refractive index ηe (along the fast axis), as it propagates through a 

medium. This process can be characterized by the separation of an incoming ray of light 

into two orthogonal polarization components traveling at differing phase velocities. 

Figure 3.9 illustrates this phenomenon; where a normal incident linearly polarized light 

beam at time t=0 propagates with two different phase velocities within the birefringent 

medium, νo (slower, ordinary) and νe (faster, extra-ordinary). At a later time, t=1, the 
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phase angle between the orthogonal components, has changed from the initial odd 

integer multiple of nπ . Finally, when detected at some later time, t=n, after propagating 

through the medium length l, the polarization is no longer linear but elliptical.  This 

change in the input SOP, due to birefringence, confounds the rotation of the azimuthal 

angle of a linearly polarized input light beam by glucose.  

    Figure 3.10 is a MATLAB® generated simulation of the effects of linear 

birefringence. This is confirmed experimentally in Figure 3.11 for a birefringent glass 

eye-coupling device. The birefringence values used for the simulation are within the 

range based on the measured refractive index variations available in literature for the fast 

and slow axes of rabbit cornea.108 As measured, (ηo - ηe) varies within the range of 0-5.5 

x 10-03, thus causing a net change in the retardance, δ, experienced by a propagating 

linearly polarized light beam which traverses a corneal thickness, t; as a function of its 

wavelength, λ, where 

       (3.9) 

 
   

Figures 3.10 and 3.11 substantiate the changes of a horizontal linear SOP into an 

elliptical SOP whose ellipticity changes with variations in the sample birefringence 

when the input SOP is neither aligned with the slow or fast axis of birefringence, i.e. one 

of the principle axes. In Figure 3.11, the fast axis was aligned at 5° with respect to the 

horizontal linear input. Therefore, it can be assumed that the glass device has a 

birefringent effect similar to that of the location on a rabbit cornea that results in a net 

retardance,δ, of 101.5°, as depicted in Figure 3.10.  It is worth noting that the 

documented range for corneal birefringence in human subjects is much smaller.108 This 

suggests, that birefringence changes due to motion artifact will have less of a 

confounding affect on glucose measurements in human subjects. 

 

( ).2
eo

t ηη
λ
πδ −

⋅
=
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Figure 3.10: These MATLAB derived simulations illustrate the effect of changing birefringence,   
(ηo - ηe), on the detected intensities for H and V polarization state detectors. These plots were 
derived by rotating the analyzers with respect to the polarizer to determine the effect of a 
birefringent sample placed in between them. (a) For a linear horizontal (H) polarization input, both 
the aligned polarization (H-blue) and perpendicular, vertical (V-red), polarization detected 
intensities vary sinusoidally as the polarizer/analyzer plane is rotated through 180°. It is evident that 
birefringence has the affect of introducing a phase shift and a change in the magnitude of the 
detected intensities. (b) This plot, which was produced by plotting the detected intensities for each 
detector versus the normalized theoretical detection intensity for a polarizer/analyzer combination 
without a sample, shows the conversion of the linear polarization into elliptical polarization states of 
varying ellipticity and azimuthal angle of the major axis as birefringence changes.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.11: This is the experimental result obtained from a birefringent eye-coupling device, using 
a single detector. These results demonstrate the conversion of a linear input SOP into an elliptical 
SOP as a result of linear bire-fringence and matches the simulated case for δ =101.5° in Figures 3.10 
(a) and (b). 

(a) 
 

(b) 
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For in vivo glucose measurements, the cornea is subject to motion during 

respiration as a result of pressure changes in the nasal cavity, which is connected to the 

eye orbital cavity, thus, the variation of birefringence over the corneal surface interferes 

with the glucose measurement. In order to develop a suitable solution, there is a need to 

determine the degree to which this affects the glucose measurements.  

 

3.3      Phenomenological Measurement Approach  
3.3.1 Assumptions of Methodology  

The stated goal is to successfully recreate and measure the affect of a moving eyeball on 

an incident polarized light beam due to corneal birefringence variations using an intact 

excised rabbit eyeball. For the proposed method, several assumptions have to hold: 

1. Minimal scattering of light by the eyeball cornea such that the polarization and 

intensity of the probing light beam is not changed. This is a reasonable 

assumption because the eyeball is transparent to visible light. 

2. The interactions of the polarized light with the eyeball are linear. This is a 

reasonable assumption because the total intensity of the light at the eyeball is in 

nanowatts, therefore, not sufficiently strong enough to generate noticeable 

nonlinear effects. 

3. The effects of absorption and dichroism are homogenous throughout the beam 

path across the eye and any relative changes in the state of the polarized beam are 

due only to variations in corneal birefringence.109 It is important to note that for 

this study, it is not necessary for the path length of the individual rays, which 

represent different corneal positions for an incident point source laser beam in 

the in vivo experiments, to be constant; nor is necessary for the corneal thickness 

to be uniform. The magnitude of relative changes is the goal of this study and not 

the quantification of the actual birefringence and fast axis location. This method 

is not sufficient to accomplish the later goal. 
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4. The use of saline solution for refractive index matching of the cornea enables the 

rays of the light beam to propagate with extremely little or no refraction;110 

therefore, each input and output ray combination completely mimics a location 

on the eyeball for the narrow: pencil beam size, laser input for the in vivo glucose 

polarimetric system. This assumption is reasonable based on the analysis of 

Cameron110 that indicates minimal refraction of the input beam for the saline 

solution coupled system.   

5. The affect of reflections off the surfaces of the glass eye holder, and the cornea 

are minimal and do not appreciable change the SOP of the input beam. For the in 

vivo system, this is not an issue because any loses due to reflection do not 

noticeably affect the SNR for a linearly polarized incident beam. In the imaging 

system, this can become an issue, because the process of measuring the 

birefringence and fast axis locations requires using SOPs that are affected by 

reflection due to helicity. This can create some depolarization in certain cases, 

therefore, resulting in error in the Mueller matrix computations. Computing the 

Mueller matrix of the empty sample cell holder with saline and no eyeball, and 

using this to remove the sample cell holder effect, will still not account for the 

reflections off both input and output sides of the cornea and the possible light 

reflection oscillations this generates within the sample cell holder. This is an 

inherent problem of this method, only when correlating the results to the in vivo 

system. Since this study considers only the relative changes, the results still 

provide a reasonable picture for the in vivo system. 

6.  The birefringence of the cornea can be modeled by a linear retarder.  

 

3.3.2 Methodology  

The Mueller matrix is a mathematical representation of the optical polarization 

properties of any given sample.111 In order to experimentally measure the Mueller matrix 

for an unknown sample, a minimum of 16-independent polarization images are required. 
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For this report, we use 36 polarization images to generate the 16-element Mueller matrix 

(Figure 3.12), the benefit being less noise in the computed matrix,112 and normalize by 

the M11 element. We can map the apparent relative birefringence of the eye and the 

apparent position of the fast axis, i.e. as seen by our light-coupling geometry, by 

utilizing certain elements of the Mueller matrix, e.g. M43 and M44 elements of Table 

2.3(b). From Eqns. 3.10 through 3.14, the birefringence, ηo - ηe, is related to the 

retardance in the M44 component, δ in Eqn. 3.10, as a function of the sample length, l, 

and the wavelength of the propagating light beam, λ.  Once δ is computed from the M44 

component using Eqn 3.11, then the location of the fast axis, φ, can be computed using 

the M43, M34, M24, and M42 components using Eqns. 3.11-3.14 respectively. We utilize a 

MATLAB program to compute these values for each pixel of the image. 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

Note: this approach assumes that the eyeball is a non-depolarizing anisotropic sample 

 

3.4     Materials and Methods 

3.4.1 System Setup 

The optical polarimetric imaging system, shown in Figure 3.12, contains 4 electro-

optical liquid crystal devices, which are used in conjunction with two fixed polarizers, to 

set the input, and output polarization states used for deriving the 16-element Mueller 

Matrix. As depicted in Figure (4), the output beam from a white light source, component 

(1), (Navitar, Rochester, NY) passes through a red 635nm filter (Melles Griot Electro-

optics, Boulder, CO) coupled with a collimating lens, component (2), (Newport 

Corporation, Fountain Valley, CA) before being linearly polarized, oriented at +45 ° (P-

state), by a Glan Thompson 100,000:1 polarizer, component (3), (Newport Corporation, 

LLLRRLRRM)cos( 44 +−−==δ

MLMRPLPRM)sin()2cos( 43 +−−==⋅− δρ

VLVRHLHRM)sin()2sin( 42 +−−==⋅ δρ

LVLHRVRHM)sin()2sin( 24 +−−==⋅− δρ

LMLPRMRPM)sin()2cos( 34 +−−==⋅ δρ
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Fountain Valley, CA). The ensuing P-state polarized beam passes through an electro-

optical variable polarization rotator, component (4), and a variable retarder, component 

(5), (Meadowlark Optics, Frederick, Colorado) that are used to produce the different 

input polarization states necessary for imaging the rabbit cornea, component (7). The 

lens, component (6), expands the beam to cover the whole corneal surface. The 

traversing beam then propagates through the detection optical train, components (8)-

(10), which consist of the same components as in the input optical train but in reverse 

order, with the polarizer, component (10) set at -45 ° (M-state), before being imaged by 

a 14 bit, 509×511, TE-cooled CCD camera (Apogee, Auburn, CA). For further details of 

the automated Mueller matrix imaging system used, the reader is referred to an earlier 

publication (reference 112). The data presented in the results section was collected on a 

rabbit eyeball within 24 hours of excision; using 10 Mueller matrix imaging runs.  

 
 

 

 

 

 

 

 

 

 

 

Figure 3.12: Block diagram of experimental setup. 
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3.4.2  System Calibrationt 

The system was calibrated for air, and then checked for known polarizer and QWP 

sample orientations. In Table 3.4, only the QWP results for a vertical fast axis 

orientation are presented. However, Figure 3.12 does contain the results for the fast axis  

orientations from –90° to 90°, investigated in 10° increments.   

 

3.5 Results and Discussion 

3.5.1 System Calibration Results 

 
 
 
Table 3.4: Mueller matrix imaging system calibration results for different polarizer sample 
orientations, and for a QWP oriented with a vertical fast axis.u 

RESULTS 
 SAMPLE 

                  EXPERIMENT        THEORY 

AIR 


















0.943  0.005  0.010  0.006-
0.013  0.989  0.031-0.008  
0.001  0.003  0.975  0.028  
0.001-0.004-0.008  1

  



















1000
0100
0010
0001

 

H-Polarizer 


















0.007  0.003-0.010-0.010-
0.013-0.002-0.019  0.020  
0.001-0.018  0.965  1.001  
0.002-0.018  0.966  1

  



















0000
0000
0011
0011

 

V- Polarizer 


















0.000  0.002-0.015-0.015  
0.002  0.003-0.029  0.029-
0.006-0.013  0.995  0.998-
0.006  0.013-0.998-1

  



















000  0  
000  0  
001  1-
001-1  

 

 

 

 
                                                 

t The system characterization results are presented in Table I-1a of Appendix I. When compared to the 
   ideal values in Table I-1b, these results indicate that the system possesses some residual error after  
   calibration, which enables the generation of slightly non- realizable matrices as discussed earlier in       
   Section 2.6.5. 
u The standard deviation results for these samples are presented in Table I-2 of Appendix I.  
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Table 3.4: Continued. 
RESULTS 

 SAMPLE 

                  EXPERIMENT        THEORY 

P- Polarizer 


















0.018  0.011  0.002-0.004  
0.020-0.995  0.037-1.022  
0.015  0.008-0.005-0.019-
0.193-0.997  0.025-1

  



















0000
0101
0000
0101

 

M- Polarizer 


















0.016-0.006  0.004  0.004-
0.022-0.998  0.028-0.990-
0.008-0.017-0.008  0.016  
0.201  1.013-0.028  1 

  



















00  00  
01  01-
00  00  
01-01  

 

QWP-V 


















0.215  1.002  0.019  0.001
0.997-0.079  0.203-0.106
0.032-0.022-0.976  0.018
0.004-0.003-0.002-1 

  



















0  100
1-000
0  010
0  001

 

  

 

The results, presented in Table 3.4, indicate that the system does not have sufficient 

accuracy and sensitivity to enable the absolute quantification of birefringence and fast 

axis location. Notwithstanding, the results will be very useful qualitatively, in 

determining how much of a variation the in vivo glucose detection system laser will see 

due to motion artifact as the eyeball changes its position. 

 The results in Figure 3.13 indicate an angular dependence of retardance, which 

should not be the case for a pure QWP sample imaged at normal incidence. Furthermore, 

these variations exceed what would be considered reasonable for slightly off normal 

incidence. A careful analysis of this angular dependence produced the following 4th 

order polynomial model: 
  

(3.15) 
 

where M44 is represented by ‘y’ in this model. 

966.0   0.1385; 0.0002) ((0.0001)  3)10(2  )108( y 22-084-09 =−−+×+×−= rxxxx
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Figure 3.13: Calibration results for the M44 component, retardance measurement, of a 
QWP sample as the fast axis angle is rotated through 180 degrees. 
 
 

  Upon further investigation, it was discovered that the graph in Figure 3.13 can 

essentially be reproduced by plotting the following relationship [tan(M44)/cos(M44)] 

versus the QWP fast axis location. Considering small angle approximation, this 

relationship then reduces back to M44, thus, suggesting that the M44 value variations with 

fast axis location are equivalent to very small radian angle changes. Though this analysis 

did not solve the systemic angular dependence on the fast axis position of a birefringent 

sample, it did, however, shed some light on the nature of the variations. 

 

3.5.2 System Modeling Results 

A program was written in MATLAB® 5.3 to investigate how the computed fast axis 

location changes as a function of actual fast axis position. Figure 3.14(a) is a plot of the 

computed fast axis location based on Eqns. 3.10 through 3.14. This indicates that the 

model equations cannot uniquely resolve angles greater than 90º.   
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(a) 

 

 
(b) 

Figure 3.14: Plots indicating the response of the analytical model for Fast Axis Position in (a) the 
theoretical model using Eqns. 3.10-3.14 and (b) the aqueous humor polarimetric in vivo glucose 
detection system.v  
                                                 

v The results used to derive this figure are presented in Table I-3 of Appendix I. 
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Figure 3.14(b) was generated based on Eqn. 3.16, 
 
 

 

 

            Output              Analyzer          Birefringent   Input 
     90 degrees to Input        Eyeball 
  
for the nulled in vivo system, the input is linearly polarized H or V, therefore, yielding 

the following relationships: 
 

   a = 1;  b = e = 0;  f = cos(4ρ)sin2(δ/2)+cos2(δ/2),                      (3.16) 
 
 which can be used to compute the output from the nulled polarimetric in vivo glucose 

detection system. The plot indicates that once the fast axis angle exceeds 90º the affect on 

the system reverses itself, i.e. it is a recursive sinusoidal function, therefore, any angle 

(90º + theta) has the same affect on the system as the angle (90º - theta). As such the 

inability to resolve angles greater than 90º based on the Mueller matrix model equations 

is not a problem in the context of the experimental implementation. 

 Additionally, the range of published birefringence values for rabbit cornea was 

used to investigate the amount of retardation that would be expected experimentally.108  

Figure 3.15 is a linear plot of the retardance due to published rabbit corneal 

birefringence values. From the plot the value for retardance is seen to vary as high as 

126º. However, recalling the 90º max retardance limitation of the nulled in vivo system, 

90º should be the expected maximum retardation encountered by the input light beam. 
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Figure 3.15: Plot of Retardance versus birefringence based on published values for rabbit 
cornea (reference 108).  
 
 
  
3.5.3 System Precision Results 

The precision of the system was computed by taking the standard deviation for each 

pixel across 10 repetitions (images) from the Figure 3.16 subplots (b) and (d).  Based on 

these, the retardance value can be determined within ±2.7º and the fast axis location 

within ±1.1º. There are noteworthy: greater than system variability in Figures (b) and 

(d), changes in the apparent relative corneal retardance and in the apparent relative 

location of the fast axis of corneal birefringence as seen in Figures (a) and (c).  
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Figure 3.16: Corneal map results computed from ten repetitions for (a) average apparent 
retardance, (b) standard deviation of average apparent retardance image. 

 
(a) 

 

 
(b) 
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(c) 

 

 
(d) 

Figure 3.16: Continued; (c) average apparent fast axis position (the zero degree reference) is 
the standard positive x-axis). and (d) standard deviation of average apparent fast axis 
position image 
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3.5.4 Experimental Results 

Figure 3.17 (a) represents the sample Mueller matrix and (b) is the raw white light image 

of the cornea. Recalling the results presented in Table 2.5 for the eight dielectric optical 

properties for a non-depolarizing sample, from (a), it is evident that the sample possesses 

LB for both the V-H and the P-M planes, which correspond to Mueller matrix elements 

M34-M43 and M24-M42 respectively. The sample exhibits very little CD, Mueller matrix 

elements M41-M14, and very little LD, Mueller matrix elements M12-M21 and M13-M31.  

 

 

 
(a) 

Figure 3.17: Experimental results for a rabbit eyeball collected within 6 hours of excision. 
Dimensions are width 13.5[mm] and height 5.25[mm]. 
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(b) 

(c) 
Figure 3.17: Continued. 
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(d) 

 

 
(e) 

Figure 3.17: Continued. 
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(f) 

 

 
(g) 

Figure 3.17: Continued. 
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(h) 

 

 
(i) 

Figure 3.17: Continued. 
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(j) 

Figure 3.17: Continued. 
 
  
 The major results of importance to this study are reported in figures (e) through 

(m). Figure (c) and (d) demonstrate the affect of baseline correction on the retardation 

image. The baseline correction was done by subtracting out the minimum value of (c) 

from (d). The baseline correction essentially scales the observation to a start point of zero 

degrees, by removing the system background retardance offset, thus, confirming the 

system theoretical measurement limit of 90°, i.e. the actual maximum retardation 

measured did not exceed the theoretical limit of 90°. Figures (e) and (f) represent the fast 

axis position as determined based on the M24 and M42 components of the sample Mueller 

matrix. It is clear here that they are mirror images of each other as the theory suggests. 

Likewise, Figures (g) and (h) are also mirror images of each other based on their 

derivations from the M34 and M43 Mueller matrix components. The range of retardance 

values for (e) and (f) versus (g) and (h) shows almost a 1:2 ratio, which is also in 

agreement with the theoretical expectation based on Figure 3.14(a). Finally Figures (i) 
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and (j) are the average retardances based on averaging the two complementary 

derivations: averaging of M24 and M42 for (i) and the averaging of M34 and M43 for (j).     

 

3.6 Conclusion 

In this chapter the use of polarized light in the aqueous humor of the eye has been 

described as a potential means of non-invasively quantifying blood glucose levels.  It has 

been shown that the time lag between blood and aqueous humor glucose levels is within 

five minutes, and that a system can be built that has the sensitivity to measure the milli-

degree rotations observed for physiologic glucose concentrations. The information that 

we have garnered from the ORD characterizations of the other primary chiral components 

in the aqueous humor of the eye has shown that their contributions are potentially 

negligible. But, if necessary, the prediction errors for glucose can be improved 

considerably if a multi-wavelength system is utilized. Finally, by modeling and 

characterizing the effect of changing birefringence on our glucose measurements in vivo, 

this information will enable us to design and implement a closed loop multi-wavelength 

system that we anticipate will facilitate the accurate and repeatable measurement of 

glucose in vivo. It will be a challenging feat based on the many variations evidenced by 

the coloration of the figures, which indicates an effect of relative birefringence changes 

that produce a retardation of greater than 60º, which when factored into Eqn. 3.7, is a 

considerable glucose measurement artifact. 

The retardance and fast axis position are seen to vary significantly as you travel 

from the corneal apex (at the top) to the lens (at the bottom).  In this direction, a light 

beam would be seen to traverse many retardation and fast axis isochores. From side to 

side, however, the variations observed are very minimal, as the isochores primarily 

follow the cornea contour. For glucose monitoring it may make sense to keep the beam 

within a reasonable contour area or perhaps try different light profiles such as a laser line 

instead of the typical circular beam. Furthermore, due to expected variations in corneal 

birefringence between eyeballs,113 it may be necessary to have a calibration system that 

takes into account the unique optical properties of the eyeball that is utilized. This can 
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potentially be done by scanning in the spatial distribution of the corneal birefringence 

and fast axis location and building a complex calibration model or incorporating a 

simultaneous imaging system to record the path of the probing light beam through the 

eye and accounting for this in the glucose measurement. Once, a reasonable sample of 

human eyeball cornea birefringence and fast axis position data is accumulated, it is 

possible that the noted variations will necessitate a combination of all of the 

aforementioned ideas to ensure a robust sensor.   
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CHAPTER IV 

THE APPLICATION OF POLARIZED LIGHT FOR 

NON-STAINING CARDIOVASCULAR HISTOLOGY 
 

Whereas birefringence is problematic for the polarimetric determination of glucose 

through the aqueous humor in vivo, birefringence is essential for polarization 

microscopy. In fact, birefringence is the basis for the contrast in some forms of 

polarization microscopy. The molecular structure of proteins, lacking a symmetry axis, 

makes them optically active and gives them inherent birefringence. In addition, their 

ordered arrangement in the cellular structures, such as is the case for muscle and 

collagen fibers, results in form birefringence.114-117 Hence, this is the reason that 

polarization microscopy is very useful in imaging protein structures. 

Having previously introduced the need for non-caustic tissue staining techniques 

in Chapter I, this chapter examines the basis for this and also introduces a polarization 

microscopy imaging technique that provides sufficient contrast for certain cardiac tissue 

biomechanical measurements, without requiring the use of staining. But first, the chapter 

will begin with a brief overview of the current histological techniques applied for 

studying cardiac tissue and the problems associated with these techniques. Then it will 

examine the theory behind the contrast enhancement of cardiac tissue due to polarization 

microscopy. Finally it will present the studies conducted using polarization microscopy 

to provide contrast for biomechanical measurements on cardiac tissues.  

 

4.1  Overview of the Current Polarization Microscopy Tissue Preparation 

Histological Techniques  

Amongst histologists, it is widely known and accepted that the process of sample 

preparation for analysis introduces measurement artifacts. Therefore, the goal of any 

histologist is to minimize and to know the exact measurement artifacts that they have 

introduced during the sample preparation process. Albeit this is easier said than done 
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because all sample preparation techniques introduce their own set of artifacts, which are 

sometimes unique. 

 

4.1.1 Tissue Sectioning for Histological Analysis 

The standard technique for tissue preparation for histological investigation typically 

involves chemical fixation: for sample preservation purposes, and mechanical 

stabilization: for providing rigidity to enable microtome sectioning of thin samples for 

viewing using microscopic techniques. Frequently, the sample is also stained to enhance 

the contrast of various tissue structures.  

 

4.1.1.1 Sample Chemical Fixation 

Current tissue preparation techniques for cardiac myofiber studies, involve utilizing 

Bouin’s fluid to chemically fixate the sample.64-66,118 Bouin’s Fluid is a fixative used for 

routine procedures that contains formaldehyde: for cytoplasmic fixation, picric acid: for 

chromatin fixation, and glacial acetic acid. 119 The chemical fixation process prevents the 

lyses of the tissue by enzymes or bacteria, thus, preserving the physical structure for 

analysis. This process is accomplished by the action of formaldehyde or glutaraldehyde 

that are typically used because they react with the amine groups of tissue proteins and 

create crosslink bonds between the proteins, thus, effectuating the structural fixation of 

the tissue sample.120  

 

4.1.1.2 Sample Mechanical Stabilization  

For light microscopy studies, paraffin embedding is the preferred mechanical 

stabilization method. The process of paraffin embedding requires initially dehydrating 

the tissue, usually using concentration gradations of ethanol, then using xylene - which is 

miscible with paraffin, to remove any traces of alcohol. Dehydrating the tissue sample 

with a different chemical that is not miscible with paraffin prevents successful paraffin 

embedding. On the other hand, the process of treating the tissue sample for proper 

paraffin embedding, i.e. with xylene, absorbs the tissue lipids, thus, introducing systemic 
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artifacts, which prevent tissue lipid analysis. Other techniques such as the freezing 

microtome have been developed to prevent this chemically induced lipid artifact by 

freezing the sample, instead of using paraffin, for mechanical stabilization before slicing 

the sections. For paraffin embedded samples, after slicing the tissue, the sections are 

treated to remove the paraffin so that the tissues can be stained to enhance the various 

structures for imaging. Alternatively, frozen microtome sliced sections can be stained 

immediately on a glass slide and preserved by applying mounting media before applying 

the cover slide. The frozen microtome procedure, though relatively quick, introduces 

cracks in the tissue, thus, also creating its own set of systemic measurement artifacts.120 

Furthermore, though the preferred embedding method, paraffin embedding is not 

suitable for use when investigating myofiber sheet angles because it introduces systemic 

artifacts by distorting the fiber positions and alignments. Plastic embedding, with say 

JB-4 plastic, causes much less fiber position and alignment distortion but the JB-4 

plastic is not removable from the sample to enable proper tissue staining because it cross 

links with the tissue structure. Therefore, using plastic embedding requires utilizing 

methods other than staining for tissue structure contrast enhancement. In situations 

where the tissue fiber position and alignment is the measured parameter, paraffin 

embedding is the least desired option for mechanical stabilization.73 

  

4.1.2 Health Risks Associated with the Techniques 

The chemicals contained in the fixative agent, Bouin’s solution, and in the staining 

solutions are rather toxic. Some of the hazards for the constituents of Bouin’s solution, 

as listed by OSHA’s website,121-124 are summarized in Table 4.1.  
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Table 4.1: A summary of some of the hazards associated with using Bouin's solution for 
staining and chemical fixating tissue samples. 
CHEMICAL HAZARDS 

picric acid 

Class A explosive agent: must be stored appropriately. 

 

Health risks, short and long term due to exposure:  

Skin irritant and sensitizer; Leads to cumulative liver, kidney, and red blood 

cell damage; Mutagenic leading to increased cancer risk: linked to lung, 

nasopharynx, oropharynx, and nasal passage cancers in humans; Prolonged 

exposure can lead to structural changes in human nose epithelial cells. 

glacial acetic 
acid 

Health risks:  

Exposure to fumes causes irritation of eyes, nose, throat, and skin; Prolonged 

exposure can lead to asthma and lung damage. 

formaldehyde 

Health risks:  

It is a suspect human carcinogen (carcinogenic); Accidental spill exposures 

have resulted in bronchitis or asthma. 

 

 
4.1.3 Sample Contrast Enhancement Techniques 

4.1.3.1 Sample Staining Techniques 

Currently, most samples are stained to enhance the contrast of the structures of interest. 

There are many different staining techniques utilizing various chemical recipes of which 

a majority of them involve toxic chemicals. For cardiac tissue investigations, Picrosirius 

solution is used to enhance the sample collagen birefringence. The enhancement is 

facilitated by the bonding of Sirius Red dye elongated molecules with the collagen fibers 

such that their long axes are parallel with that of the collagen, therefore, enhancing the 

collagen form birefringence; typically 120 molecules of dye bind per collagen 

molecule.64 The collagen form birefringence is discussed in greater detail in the 

upcoming Section 4.2. 
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4.1.3.2 Non-Staining of Sample Techniques  

Cardiac tissues contain a large amount of ordered birefringent and optically active 

protein structures, and as such, they have long been studied by applying polarization 

microscopy to stained cardiac tissue sections. However, to our knowledge, it is only 

recently that polarization microscopy has been applied to image unstained cardiac tissues 

for the purpose of biomechanical measurements (Tower et al.).88,125 For samples that are 

not stained, the structural contrast has to be enhanced by the imaging126 and data analysis 

techniques.127-129 The later parts of this chapter, present a polarization microscopy 

technique, which utilizes a data analysis algorithm that generates a polarization contrast 

enhancement, that is used to investigate birefringent collagen and muscle fibrous 

structures in cardiac tissue for the purpose of making biomechanical measurements. 

 

4.2 Form Birefringence Theory 

Inherent birefringence has been covered in depth in Chapter III, so this chapter will  

focus primarily on form birefringence, which is responsible for the majority of the 

polarization contrast in cardiac tissue polarization images. The form birefringence of the 

collagen myofibers in cardiac tissue provides the necessary polarization contrast to view 

the fibers embedded within a ground matrix and in clear plastic. 
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4.2.1 Quantum-Mechanical Explanation for Form Birefringence 

From Section 3.2: Table 3.3, the arrangement of collagen fibers, as depicted in Figure 

4.1, represents a uniaxial crystal with a vertical, z-axis, optic axis. Similar to the 

discussion in the preceding chapter, if the incident EM wave propagates in the direction 

of the long axes of the fibers, z-axes, the incident state of polarization (SOP) will be 

maintained. However, in this case unlike that of the preceding chapter, there will be 

significant absorption, evidenced by the off- white color of collagen fibers, but the 

asymmetric absorption will not have any affect in the x-y symmetry plane. If the sample 

is rotated or the incidence plane of the input EM field is rotated such that the beam no 

longer propagates along the optic axis, then the incident SOP will be changed as it 

traverses the fibers, thus, creating an elliptical SOP. Essentially form birefringence refers 

to the probing volume direction dependence of an EM wave for an arrangement of 

aligned anisotropic structures. For aligned anisotropic structures, the electric 

susceptibility, eχ , 3×3 tensor is the average value across the probing volume direction. 

This value is relatively constant for probing directions aligned with the axis of the fiber 

alignments, i.e. the z-axis, regardless of the incident SOP. However, all other probing 

directions create variations in eχ  as a function of the incident SOP, which lead to the 

misalignment of the dipole moment with the polarization orientation of the incident E-

field, thus, creating a non integer multiple of π retardation that leads to an elliptical 

SOP.w    

 

 

 

                                                 

w Note: if the incident field propagates perpendicular to the optic axis, z-axis, i.e. in the x-y plane say  
   along   the y-axis, and has a polarization orientation parallel to either the z-axis, or x-axis, it will retain  
   its SOP,   and  there will be no birefringence effect because Ey =0 and either Ex =0 or Ey =0 respectively. 
 



 

 

95

 Figure 4.1: Illustration of form birefringence for aligned structures. The connected 
electrons represent protein molecules that possess symmetry in the x-y plane, i.e. the short 
axis, and have an optic axis aligned with the long axis, represented by the z-axis, of the 
fibers.  
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4.2.2 Phenomenological Explanation for Form Birefringence 

Aligned asymmetric samples, such as collagen fibers, introduce phase retardation in the 

electric vector of linearly polarized light, when it does not travel along the alignment 

symmetry axis, which varies with the orientation of the incident SOP. As such an 

introduced phase change, due to form birefringence, converts the state of polarization of 

the incident light beam from linear to elliptical.  

 

4.2.3 Sources of Contrast for Polarization Microscopy 

Not all of the sources of polarizance discussed in Section 2.6.8.3 are sources of 

polarization contrast for this method. The numerical aperture of the light delivery 

microscope objective, which typically limits the angle of incidence to that much smaller 

than the Brewster’s angle, inhibits polarizance due to Brewster’s reflection. Polarizance 

due to the asymmetric refraction of light is not a factor because the inherent 

birefringence for biological tissues, i.e. due to the difference in the refractive index for 

the ordinary and extraordinary ray, is not large enough to create a physical separation of 

an incident ray into two orthogonally linear polarization states. However, the inherent 

birefringence does contribute to the polarization contrast in addition to scattering effects. 

If a biological sample is composed of structures with varying polarization anisotropies, 

then a polarization contrast image can be obtained that discriminates between the 

different structures. This is the basis for utilizing polarization microscopy to help 

elucidate biological structures. 

 

4.2.3.1 Inherent Birefringence Effects 

Inherent birefringence contributes to polarization contrast due to its affect of changing the 

input SOP, thus, highlighting birefringent structures within a crossed polarization image. 

For a nulled polarization imaging system, the introduction of a non-birefringent sample 

produces no image because the crossed polarized analyzer blocks all of the light 

backscattered from the sample. Conversely, the introduction of a birefringent sample will 



 

 

97

yield a polarization image. This is illustrated and further explained in Figure 4.2 of 

Section 4.3.2.2. 

 

4.2.3.2 Optical Activity Effects 

Similar to the affect of a birefringent sample, an optically active sample will yield a 

polarization image in a nulled polarization system. Optical activity is due to a lack of an 

axis of symmetry at the molecular level, thus, generating a rotation of the azimuthal angle 

of linearly polarized light. The affect of optical activity in the polarization imaging 

system is to rotate the incident light such that it is no longer crossed polarized to the 

analyzer setting, therefore, yielding a bright illumination for the areas that posses this 

property. This is illustrated and further explained in Figure 4.3 of Section 4.3.2.2. 

 

4.2.3.3 Scattering Effects 

The polarizance effect of asymmetric scattering was discussed earlier in Section 2.6.8.3; 

this was primarily due to the Rayleigh scatter of the incident light by the structures much 

smaller than the wavelength. This polarizance effect also generates polarization contrast 

by enhancing or nulling the incident linear polarization state, therefore, showing up as 

brighter or darker regions respectively in a bright field polarization image.   

 4.3 Phenomenological Measurement Approach  
4.3.1 Assumptions of Methodology 
Since the objective of the application of this technique is qualitative and not quantitative, 

the only assumptions made is that the birefringence and optical activity of the protein 

structures of interest within the tissues that will be imaged, will be sufficiently large 

enough to provide adequate contrast to enable their elucidation. 

 

4.3.2 Methodology  
4.3.2.1 Polarization Images 

Polarization images are acquired for a particular orientation of the input polarizer and 

analyzer as previous discussed (see Table 2.3 in Section 2.6.5). A quick overview of the 
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linear polarization cases, used to image the samples used for the studies discussed in the 

later parts of this chapter, and their practical significance for polarization microscopy of 

biological tissues is contained in the preceding Table 4.2. 

 
 
Table 4.2: An overview of the standard linear polarization cases and their practical 
significance for polarization microscopy. Here the polarization symbols are defined as 
H=horizontal, V=vertical, M=minus 45°, and P=plus 45°.  
CASE PRACTICAL SIGNIFICANCE 

HH,VV 

PP,MM 

These aligned, parallel (par), polarization images detect light that has retained its 

polarization. Typically, these images alone do not contain much information 

about the polarization properties of the sample because the sample information 

contained is swamped by the huge contribution from the specular, surface glare, 

reflection, which retains the original incident polarization state. 

HM,HP 

VM,VP 

PH,PV 

MH,MV 

These  ± 45° polarization images detect some light that has changed its 

polarization orientation, but also contains a huge background component from 

the majority that has not. In biological tissues the net birefringence and optical 

rotation effects are typically not large enough to provide much information in 

any of these images alone. 

HV,VH 

PM,MP 

These crossed, perpendicular (per), polarization images only detect light that has 

changed its polarization orientation, and thus, singularly supply the most 

information about sample birefringence or optical activity: provided that the 

combination picked most greatly highlights the samples axial asymmetries.  

 

4.3.2.2 Investigated Algorithms for Enhancing the Polarization Contrast of a Sample 

An algorithm that is applied to enhance polarization contrast works by highlighting the 

sample anisotropies by the process of cleaning up the image and eliminating the 

contributions of non-anisotropic structures. Two algorithms were investigated for the 

purpose of enhancing the polarization contrast of ex vivo biological samples that were 

imaged and are later presented in Section 4.5.3. 

 



 

 

99

  The first algorithm investigated was the Mueller matrix, which has the inherent 

property of separating out the polarization anisotropies of a sample, albeit a non-

depolarizing sample as required by the Mueller matrix formulations discussed in Section 

2.6.7 and succinctly presented in Table 2.5. Because the samples that were investigated 

are known to be de-polarizing, there was not much expectation for attaining polarization 

contrast enhancement using this method. That notwithstanding, there were some rather 

insightful results attained for one of the samples that are presented in Section 4.4.3. The 

second algorithm investigated is one that is known to be effective in filtering out light 

reflected by non-birefringent and non-polarization active structures by employing 

several polarization images.  The algorithm, which is presented in Eqn 4.1, is based on a 

ratio involving the aligned and crossed polarization images  

 

                  (4.1) 

 

 

Where: H=Horizontal polarization; V=Vertical polarization; P=Plus 45° polarization; 

M=Minus 45° polarization. 

 

 

 

The ratio-metric method, described by Eqn. 4.1 has proven to be very effective in 

removing the effects of surface glare from tissue images. The results using this method 

are also presented in Section 4.4.3. 

The following two examples serve to illustrate how the ratio-metric method 

described by Eqn. 4.1 works to enhance the sample polarization contrast. In Figure 4.2, 

an incident horizontally polarized light beam is changed to an elliptical SOP. From 

Section 2.6.3, recalling that the detected intensity is proportional to the square of the 

electric field, this implies that the relative intensity components in Figure 4.2 can be 

computed by: 
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and implementing these values into the ratio yields the result IH,V = 0.924. This really 

means that the polarization anisotropy responsible for the ellipticity illustrated in Figure 

4.2 is (1-0.924) = 0.076: a 7.6% linear polarization anisotropy. 

 

 Figure 4.2: The effect of sample birefringence in creating an elliptical SOP and the 
polarization contrast enhancement obtained using the ratio-metric method described in 
Eqn. 4.1. 
 
 
  

In Figure 4.3, an incident horizontally polarized light beam is rotated azimuthally but 

still retains its SOP. Again, from Section 2.6.3, the relative detected intensities can be 

computed by: 
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Ey
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and implementing these values into the ratio yields the result IH,V = 0.924. This really 

means that the polarization anisotropy responsible for the optical rotation,α, illustrated 

in Figure 4.3, is (1-0.924) = 0.076: a 7.6% linear polarization anisotropy. x 

  

 

 

 

 

 

 

 

 

 

 

Figure 4.3: The effect of sample optical activity causing an azimuthal rotation of the plane 
of polarization by an amount α and the polarization contrast enhancement obtained using 
the ratio-metric method described in Eqn. 4.1. 
 

 4.4 Materials and Methods 

4.4.1 System Setup 

The experimental setup used for the backscattered-light-collection polarization imaging 

of a cardiac myocardium sample is illustrated in Figure 4.4. As depicted, a Leica DMLM 

microscope was modified to perform polarization microscopy by inserting two Leica 

custom-made, rotatable polarizers in the appropriate accessory slots, and installing a red 

                                                 

x Note that for the illustrations, I chose the values for the components Eox and Eoy such that the polariza- 
  tion contrast enhancement would be the same; but in biological tissue, the effect of birefringence far  
  outweighs that due to the effect of optical rotation because of the low concentrations for the pathlength  
  of the tissue structure that the collected back-scattered light traverses. 
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650nm interference filter, 03 FIV 048, (Melles Griot, Carlsbad, CA). An Apogee 

KX260E (Apogee Instruments Inc., Auburn, CA), TE cooled 14 bit 509×510 pixel 

imaging area camera was mounted using a C-mount adapter camera attachment on the 

top of the microscope. The light extinction ratio of the system was limited by the 

dynamic range of the camera, with an average pixel intensity value of 104 for a dark 

field image and a 16348 value for a saturated image pixel.  For analysis purposes, the 

image area was cropped to eliminate lines of dead pixels that were introduced by the 

optical system. 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4:  Block diagram of polarization microscope setup.  
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4.4.2 System Calibration 

The system was calibrated using air and two known polarizer samples: a vertical and a 

horizontal axis sheet polarizer (Edmund Industrial Optics, Barrington, NJ). 

 

4.4.3 Sample Methods 

The septum from an excised rat heart was dissected, and treated with phosphate buffered 

formaldehyde to chemically fixate the structure. The unstained fixated sample was 

embedded in JB-4 plastic (Polysciences, Inc., Warrington, PA) for mechanical 

stabilization. The stabilized sample was centered in a rotatable optical mount and 

mounted on the microscope sample stage in a special adapter machined from Delron®. 

Sequences of polarization images were then taken of the sample, by rotating the 

polarizer and analyzer to the appropriate polarization setting. For this study, it was 

necessary to maintain a static sample in order to provide a reference for the calculation 

of the lamina divergence angle. As a result, the experimental plane was rotated but with 

an increment of 45-degrees due to the rotation limitation of the input polarizer. All 

possible input and output H, V, M, P combinations were investigated, 16 total, to 

determine which combination provided the best polarization contrast. The previously 

discussed ratio-metric method was investigated as a contrast enhancement technique. 

Each polarization case was imaged 5 times.  

The second sample was a porcine lymphatic vessel cross-sectioned and treated 

with phosphate buffered formaldehyde to chemically fixate the structure. No mechanical 

stabilization was done for this sample, as such, the sample was placed on top of a glass 

slide that had the underside covered with a black paper and imaged without a cover 

slide.  

 

4.5 Results and Discussion 

4.5.1  System Precision Results 

A set of ten consecutive bias frames were acquired to be used for bias correction. The 

mean of these ten images was applied as the correction for all subsequent images 
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acquired. Table 4.3 displays the results that show the reduction in the mean standard 

deviation for twenty-five consecutive images. The table also demonstrates the legitimacy 

of using 5 repetitions when collecting sample data; the lack of an improvement in using 

5 images versus 25 means that the use of 5 images will not result in any considerable 

loss in signal-to-noise ratio (SNR). 

After bias correction, the uniformity of the images was investigated. Figure 4.5 

shows the irregularities in the pixel intensity values, for the case with maximum 

variation, i.e. HH case, and Table 4.4 contains results for all of the maximum intensity 

cases. These results demonstrate a lack of uniformity in the system illumination of the 

pixels for the different polarization combinations. 

 

  Table 4.3: Table indicating the improvement in average standard deviation of successive 
images due to the application of bias correction. 

NON-BIAS CORRECTED BIAS CORRECTED 

N Mean Std 
%Mean 

Deviation 

25 14460 109.5 0.631 

20 14457 113.2 0.667 

15 14466 106.3 0.583 

10 14472 118.9 0.678 

5 14500 124.6 0.631 

4 14505 143.2 0.731 

3 14484 166.9 0.875 

2 14579 39.1 0.190 

Average 14490 115.2 0.623 
 

N Mean Std 
%Mean 

Deviation 

25 13977 96.5 0.587 

20 13963 85.2 0.528 

15 13955 76.5 0.457 

10 13952 78.5 0.467 

5 13918 69.3 0.381 

4 13914 79.2 0.445 

3 13928 90.6 0.456 

2 13976 52.7 0.267 

Average 13948 78.6 0.449 
 

 

 
Table 4.4: Results for intensity variations across the image for the maximum intensity cases.  

MEASUREMENTS MEAN VALUE [×104] STANDARD DEVIATION 



















PPPMPVPV
MPMMMVMV
VPVMVVVH
HPHMHVHH

 



















1.0760.09660.44490.7184
0.08761.08590.47450.6677
0.45790.42920.86770.0654
0.70590.73770.6571.2907



















684.1223.125300.259428.754
19.860717.473316.420410.585
292.66294.08615.322.8917
408.85473.94812.7888851.80
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Figure 4.5: Mesh plot illustrating the lack of uniformity in the system illumination. 

 
 
 
4.5.2   System Polarization Calibration Results 

Though for this application, i.e. enhancing tissue features, quantification of optical 

parameters was not the goal; the polarization of the system was still calibrated using sheet 

polarizers, oriented at V and H, and air: via reflection off a silicon wafer, as the samples. 

The results in Table 4.5 show good agreement with theory with a maximum error of 22% 

for air and 5% for the polarizer samples.  A careful analysis of the system did not reveal 

why the error for air was considerably larger. It is highly possible that the silicon wafer 

that was used as a reflecting surface for the backscattered light exhibited some 

polarization properties, therefore, accounting for the abnormally high values for the M12 

and M21 values, which are indicators for polarizance and linear diattenuation based on 

Table 2.5.  
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Table 4.5: Polarization calibration results for the system. 
 
 

 

 

 

 

 

 

 

 

 

 

 

4.5.3 Experimental Results 

Two sets of results are presented for this sample; without a red lens filter and with a red 

lens filter. When the two sets of results are compared, it is evident that there is 

considerable contrast enhancement utilizing the red lens filter. This makes sense for three 

reasons: 

1.  The tissue penetration depth is an inverse function of the wavelength of light. 

 Recalling Eqn 2.35,  

       

where κ is the corresponding wave propagation attenuation factor and applying to 

Eqn. 2.78 yields, 
zeEEI ⋅−′=′∝ κ22

0
2  

which leads to Beers Law for the attenuation of a propagating EM wave along the 

z-axis: 
zeIxI ⋅−= α

0)(  

where the wavelength dependence is given by
λ
πκα 4

=   (reminiscent of Eqn 2.37) 
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and the penetration depth
α
1

≅l . 

Therefore, as the wavelength increases, the penetration depth, l, increases because 

the attenuation coefficient α decreases in value.  

For a white light source, the relative penetration depth can be roughly 

estimated based on the λ by ignoring the UV and IR portions of the emission 

spectra and using the median wavelength value for the visible spectrum. A more 

precise estimate involves using the weighted average of the complete light source 

emission spectra to find the mean wavelength and then using it to compute the 

tissue penetration depth based on the λ factor.  Using the rough estimate, the 

relative difference in penetration depth for a halogen white light source with 

median λ=550[nm] and a red λ=650[nm] filtered light source is in the order of 

0.1[µm]. Based on this alone, this implies that the filtered light contains more 

tissue information than the non-filtered light. 

2.  The narrower frequency range of the filtered light source produces a more defined 

higher resolution image, i.e. less blurred image, because there is less overlaying of 

information from differing depths due to the relatively significantly smaller 

number of constituent λ’s, which each penetrate the tissue to varying depths, as 

established in explanation number 1, and contribute to the total intensity making 

up the image. In the case of the filtered light source, the λ’s are essential all 

probing the same depth.   

3.  The reduction in the total number of λ’s for the λ=650[nm] filtered case enables 

increasing the input light intensity to maximize the collection of output light that 

has equally and more deeply penetrated the tissue and, therefore, contains more 

sample information: i.e. this increases the system SNR.   
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4.5.3.1 Rat Myocardium Results 

 

 
 

 

 

 

 

 

 

 

 

 
 

(a) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a′) 
Figure 4.6: Rat myocardium results; the non-primed and the primed cases represent the 
images collected without and with the red lens filter in the system respectively.  (a)-(a′) 
Normal bright field images of rat myocardium showing the collagen lamina interface due to 
a large refractive index mismatch.  
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(b) 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

(b′) 

Figure 4.6: Continued; (b)-(b′) are the linear anisotropy images based on Eqn. 4.1.  
 
 



 

 

110

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c′) 
Figure 4.6: Continued; (c)-(c′) are the software color contrast enhancements of images (b)-
(b′) respectively.  
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Figure 4.6: Continued; (d) shows the method used to compute the myofiber sheet angle, β, 
of the cardiac cleavage planes. 
 
 
The following discussion is based on the images in Figure 4.6, where the non-primed and 

the primed cases represent the images collected without and with the red lens filter 

respectively.  

During the sample experiments, there was not much variation noticed in the 

individual polarization images other than the obvious refractive index mismatch at the 

cleavage planes, which were introduced by the plastic embedding process as the cleavage 

plane gaps were widened and filled with plastic, thus, accounting for the refractive index 

mismatch between the normal tissue and the plastic filling the spaces in between.  Both 

(a)-(a′) images depict the aforementioned refractive index mismatch. A careful review of 

the polarization images later, revealed that they were very noisy as evidenced by the non-

uniformities in the light illumination and the numerous black dots and spots evident in the 

(a)-(a′) images. Next, a Mueller matrix analysis was performed, which yielded nothing of 
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significance and is not presented because of the lack of significant contrast in the sample, 

as evidenced by the small color variations in the (a)-(a′) images.  

Next an analysis of linear anisotropies was conducted using Eqns 4.1. This 

yielded some useful results presented below in images (b)-(b′) and (c)-(c′). The results 

show that by using the ratio-metric method, indeed surface glare and noise, dots in the 

images, were removed from the images. For the implementation of the system without a 

red lens filter, there is no enhancement of the contrast of the underlying structure as 

would be expected from the theory presented prior in the opening remarks of Section 

4.5.3. However, it is apparent by comparing the set of images generated with the filter 

with those generated without the filter that there is a noticeable enhancement of the 

underlying tissue structure in the former images. Again this is expected from the 

aforementioned theory.  

The (c)-(c′) images are the MATLAB® software color contrast enhancement 

images of the (b)-(b′) images respectively. These color contrast enhanced images are 

supposed to show more color variation in the ratio-metric generated linear anisotropy 

images. In the case of image (c), i.e. system with no red filter, there is no noticeable 

improvement in the color contrast as compared to the original image of (b). However, in 

the case of image (c′), i.e. system with red filter, there is a noticeable improvement in the 

color contrast as compared to the original image of (b′).  

Finally, images (b)-(b′) and (c)-(c′) illustrate the usefulness of the linear 

anisotropic images, by eliminating system effects and reducing noise in the polarization 

contrast image, when compared to the normal bright field images (a)-(a′), which contain 

system noise, non-uniform illumination effects, and surface glare. The myofiber sheet 

angle, β, of the cardiac cleavage planes is calculated to be 17.74° based on Figure 4.6 (d) 

presented below which is an exploded view segment of image (c′).  
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4.5.3.2 Pig Lymphatic Vessel Results 

Another Cardiovascular sample was imaged, this time a cross-section of a porcine 

lymphatic vessel. The goal was to enhance the features of the muscular wall, since 

muscle fibers are known to be optically active and birefringent, to enable a measurement 

of the wall thickness without having to resort to the usual staining and embedding 

procedures. The opaque hollow sample was placed on a glass slide that had a black paper 

cover placed underneath. The sample was imaged in backscatter mode using the setup 

described in Section 4.3.1 with the red interference filter installed and the results are 

presented in Figure 4.7. 

 

 
 

(a) 
Figure 4.7: Porcine lymphatic vessel results acquired with a red filter installed in the 
system, where  (a) is the 3×3  Mueller matrix of the vessel. 
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(b) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(c) 
Figure 4.7: Continued; (b) is the M11 image from the Mueller matrix, (c) is the linear 
anisotropy image using PP and MP polarization images. 
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(d) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.7: Continued; (d) is the linear anisotropy image using MM and PM polarization 
images, (e) shows the method used to compute the thickness of the vessel muscular layer. 
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Figure 4.7 (a) is the normalized 3×3 sample Mueller matrix, normalized by 

dividing all of the elements by the M11 element. A look at the Mueller matrix indicates 

that the sample is expressing all of the 3×3 dielectric properties. Image (b) represents the 

bright field image, which is mostly fuzzy and does not clearly elucidate the vessel wall 

layers. On the other hand, the linear anisotropy images (c) and (d), which were derived 

using Eqn. 4.1, clearly reveal the muscular wall. These anisotropy images establish that 

Eqn 4.1 can also be applied to enhance the polarization contrast of the muscular wall and 

its features: the anchoring structure is visible in the right bottom edge of the vessel image 

in both (c) and (d).   Image (e) is an exploded view segment from image (c) that is used to 

calculate the thickness of the vessel muscular layer, which is determined to be 0.05[mm]. 

 

4.6  Conclusion 

Polarization microscopy combined with the right data analysis technique can be used to 

successfully determine the lamina divergence angles in myocardium by filtering out 

unwanted noise from the sample image, even without staining the sample. Likewise, it 

can be used for the contrast enhancement of protein and muscular structures, therefore, 

enabling biomechanical measurements without the need for caustic and sophisticated 

preparation and staining procedures. This finding has the potential to reduce the 

exposure risk of investigators to caustic chemicals and to further the work in the field of 

cardiac histology and biomechanics. 

 Future work includes implementing circular polarizers in the system to 

investigate other data analysis algorithms involving circularly polarized light. It is 

speculated, based on the retardance images of the rabbit cornea in the preceding chapter- 

known to be due to the birefringence of the collagen lamina that make up the cornea, that 

using the ratio-metric system to derive circular anisotropy images will generate images 

with greater polarization contrast than was achievable with the linear anisotropy images 

for the samples reported in this chapter.   
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CHAPTER V 

SUMMARY  
 

5.1 The Application of Polarized Light for Non-Invasive Glucose Detection 

The work presented in Chapter III investigated the use of polarized light in the aqueous 

humor of the eye as a potential means of non-invasively quantifying blood glucose levels.  

In summary, it has been shown that the time lag between blood and aqueous humor 

glucose levels is within five minutes, and that a system can be built that has the 

sensitivity to measure the milli-degree rotations observed for physiologic glucose 

concentrations. The information that we have garnered from the ORD characterizations 

of the other primary chiral components in the aqueous humor of the eye has shown that 

their contributions are potentially negligible. But, if necessary, the prediction errors for 

glucose can be improved considerably if a multi-wavelength system is utilized. Finally, 

by modeling and characterizing the effect of changing birefringence on our glucose 

measurements in vivo, this information will enable us to design and implement a closed 

loop multi-wavelength system that we anticipate will facilitate the accurate and 

repeatable measurement of glucose in vivo. It will be a challenging feat based on the 

many variations evidenced by the coloration of the figures, which indicates an effect of 

relative birefringence changes that produce a retardation of greater than 60º, which when 

factored into Eqn. 3.7, is a considerable glucose measurement artifact. 

The retardance and fast axis position are seen to vary significantly as you travel 

from the corneal apex (at the top) to the lens (at the bottom).  In this direction, a light 

beam would be seen to traverse many retardation and fast axis isochores. From side to 

side, however, the variations observed are very minimal, as the isochores primarily 

follow the cornea contour. For glucose monitoring it may make sense to keep the beam 

within a reasonable contour area or perhaps try different light profiles such as a laser line 

instead of the typical circular beam. Furthermore, due to expected variations in corneal 

birefringence between eyeballs,113 it may be necessary to have a calibration system that 

takes into account the unique optical properties of the eyeball that is utilized. This can 
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potentially be done by scanning in the spatial distribution of the corneal birefringence 

and fast axis location and building a complex calibration model or incorporating a 

simultaneous imaging system to record the path of the probing light beam through the 

eye and accounting for this in the glucose measurement. Once, a reasonable sample of 

human eyeball cornea birefringence and fast axis position data is accumulated, it is 

possible that the noted variations will necessitate a combination of all of the 

aforementioned ideas to ensure a robust sensor.   

 

5.2 The Application of Polarized Light for Non-Staining Cardiovascular 

Histology 

In Chapter IV, it was established that polarization microscopy combined with the right 

data analysis technique could be used to successfully determine the lamina divergence 

angles in myocardium by filtering out unwanted noise from the sample image, even 

without staining the sample. Likewise, it can also be used for the contrast enhancement 

of protein and muscular structures, therefore, enabling biomechanical measurements 

without the need for caustic and sophisticated preparation and staining procedures. This 

finding has the potential to reduce the exposure risk of investigators to caustic chemicals 

and to further the work in the field of cardiac histology and biomechanics. 

 Future work includes implementing circular polarizers in the system to 

investigate other data analysis algorithms involving circularly polarized light. It is 

speculated, based on the retardance images of the rabbit cornea in Chapter III- known to 

be due to the birefringence of the collagen lamina that make up the cornea, that using the 

ratio-metric system to derive circular anisotropy images will generate images with 

greater polarization contrast than was achievable with the linear anisotropy images for 

the samples reported in Chapter IV.   
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Table I-1a: Automated Mueller Matrix Polarization Imaging System (AMMPIS) sample 
characterization results. These results indicate post-calibration residual system 
polarization error.  

SAMPLE DEPOLARIZATION
INDEX POLARIZANCE DIATTENUATION 

AIR 
10 reps 0.0304 0.0297 0.0090 

H-Polarizer 
3 reps 0.0245 0.9984 0.9647 

V- Polarizer 
3 reps 0.0028 0.9981 0.9977 

P- Polarizer 
3 reps -0.0115 1.0124 1.0044 

M- Polarizer 
3 reps -0.0076 0.9897 1.0289 

QWP-V 
3 reps -0.0104 0.1195 0.0088 

 

 
 
The theoretical values for a perfect physical realizable Mueller matrix generating system 

are presented in the following Table. 

 
 
 
Table I-1b: Theoretical results for Automated Mueller Matrix Polarization Imaging 
System (AMMPIS) sample characterization results.  

SAMPLE DEPOLARIZATION
INDEX POLARIZANCE DIATTENUATION 

AIR 
 0.0000 0.0000 0.0000 

H-Polarizer 
 0.0000 1.0000 1.0000 

V- Polarizer 
 0.0000 1.0000 1.0000 

P- Polarizer 
 0.0000 1.0000 1.0000 

M- Polarizer 
 0.0000 1.0000 1.0000 

QWP-V 
 0.0000 0.0000 0.0000 
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Table I-2: Calibration results: the standard deviation values for experimental values 
presented in Table 3.5 
 

SAMPLE STANDARD DEVIATION OF MATRIX VALUES 

AIR 
10 reps 

 
 
 
 
 
 

H-Polarizer 
3 reps 

 
 
 
 
 
 

V- Polarizer 
3 reps 

 
 
 
 
 
 

P- Polarizer 
3 reps 

 
 
 
 
 

 

M- Polarizer 
3 reps 

 
 
 
 
 

 

QWP-V 
3 reps 

 
 
 
 
 
 

 

 

 



















0141.00043.00056.00040.0
0049.00097.00039.00050.0
0025.00060.00001.00076.0
0062.00034.00075.00



















0077.00039.00036.00036.0
0036.00029.00022.00021.0
0072.00034.00006.00000.0
0072.00034.00006.00



















0048.00012.00045.00045.0
0042.00046.00037.00037.0
0083.00014.00001.00000.0
0083.00013.00000.00



















0017.00099.00034.00012.0
0060.00047.00068.00108.0
0019.00081.00063.00038.0
0055.00118.00039.00



















0053.00072.00024.00029.0
0066.00106.00109.00041.0
0032.00012.00097.00029.0
0077.00092.00053.00



















0020.00020.00050.00040.0
0060.00060.00090.00180.0
0060.00000.00000.00060.0
0060.00040.00060.00
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Table I-3: Testing analysis program: results for QWP (δ = π/2) where ρ = fast axis location 
with respect to the horizontal x-axis. 

Real 
ρ 

Mueller 
Matrix ρ(M24) ρ(M42) ρ(M34) ρ(M43) 

0° 
(H) 



















01-00
10  00
00  10
00  01

 
0° 0° 0° 0° 

45° 
(M) 



















001-0
010  0
100  0
000  1

 
-45° -45° 45° 45° 

90° 
(V) 



















0  100
1-000
0  010
0  001

 
0° 0° 90° 90° 

135° 
(P) 



















0  010
0  100
1-000
0  001

 
45° 45° 45° 45° 

180° 
(H) 



















01-00
10  00
00  10
00  01

 
0° 0° 0° 0° 
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APPENDIX II 

NOMENCLATURE FOR THE MUELLER MATRIX OPTICAL 

DIELECTRIC PROPERTIES 
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EXTRACTING PHYSICAL PARAMETERS FROM THE MUELLER MATRIX 

 
Clark Jones in his paper on “A New Calculus for the treatment of optical systems VII. 

Properties of N-Matrices,” proposed that the dielectric properties of a thin non-

depolarizing sample, contained in its matrix M, are a summation: line integral, of the 8 

optical dielectric properties represented as homogeneous matrix elements, m, of equal 

infinitesimal thickness that are interchangeable in order. Consequently, each of these 

elements, m, represents a differential matrix element such that: 



















−
−−−

−
−−

=

pLBLBCD
LBpCBLD

LBCBpLD
CDLDLDp

m

)()()(
)()()(
)()()(

)()()(

045

045

450

450

 

and 
me−=M . 

Here M is the sample matrix and m is the differential matrix containing all of the 

dielectric properties of the sample. Applying the exponential Taylor series expansion for 

m<<1, which implies that all other terms greater than 1st order can be ignored, yields: 

dmd
dm
dm −=⇒−=⇒−= M1M1M . 

Letting , and M imdmMd =∆= leads to 

 
8

1

8

1 0
∑∑∫

==

=∆=Μ
i

i
i

z

mM  

where  
∫ ∆=
z

ii Mm
0

  

represents the differential matrices that correspond to the 8 measurable optical dielectric 

properties of matter. These 8 differential matrices obtainable from the Mueller matrix of 

the sample, based on the Jones matrix requirement that the sample does not depolarize 

light, are summarized in the following table.  
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Table II-1: Summary of the Jones-Mueller matrix derivation for the 8 optical dielectric 
properties based on the requirement that the sample be non-depolarizing.  
 

Measurable Dielectric Property 
(Symbol) 

Differential Polarization Matrix 
 [mi] 

Isotropic refraction 



















=

0000
0000
0000
0000

1m  

Isotropic absorption 



















=

p
p

p
p

m

000
000
000
000

2  

Circular dichroism (CD) 



















=

000)(
0000
0000

)(000

3

CD

CD

m  

Circular birefringence (CB) 



















−
=

0000
00)(0
0)(00
0000

4 CB
CBm  

Linear dichroism (LD)0 


















−

−

=

0000
0000
000)(
00)(0

0

0

5
LD

LD

m  

Linear dichroism (LD)45 



















−

−

=

0000
000)(
0000
0)(00

45

45

6 LD

LD

m  

Linear birefringence (LB)0 



















−
=

0)(00
)(000

0000
0000

0

0
7

LB
LBm  

Linear birefringence (LB)45 



















−

=

00)(0
0000

)(000
0000

45

45
8

LB

LBm  
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EXPLANATION OF Table II-1 

 

1.   Isotropic Refraction 

As indicated in Table II-1, a sample that exhibits only pure isotropic refraction yields no 

measurable quantities in the Mueller matrix. Practically speaking, pure clear liquids are 

the media that demonstrate close to pure isotropic refraction even though they also 

absorb some of the light. 

 

2.   Isotropic Absorption 

Again pure liquids and or homogeneous suspensions of isotropic particles demonstrate 

close to near pure isotropic absorption, thus, yielding the m2 matrix: 



















p
p

p
p

000
000
000
000

 
where p2 is the transmittance, i.e. the M11 element of the Mueller matrix = I/I0.74  

I = measured output intensity, I0 = input light intensity; an example of an isotropic 

absorber is pure water. All other matter exhibits absorption that can be determined from 

the following matrix for a non-isotropic absorber.  

General Non-isotropic Absorbers 



















++−+−
−+++−

−+

2/1
21

2/1
21

2
21

22/1
212121

2/1
2121

2/1
21

2
21

2
21

2121

)(2000
0))(θ2(cos2))(θ2(sin])(2)[θ2sin()θ2cos())(θ2sin(
0])(2)[θ2sin()θ2cos())(θ2(sin2))(θ2(cos))(θ2cos(
00))(θ2cos(

2
1

pp
pppppppppp

pppppppppp
pppp

 

where p1
2 is the maximum transmittance, p2

2 is the minimum transmittance, and θ is the 

angle between the horizontal x-axis and the axis of p1. 

 

3.   Circular Dichroism (CD) 

Optically active samples exhibit the asymmetric absorption of Right and Left circularly 

polarized light, thus demonstrating a differential circular absorption coefficient as 

presented in Table 2.4, which yields the m3 matrix.  
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4.  Circular Birefringence (CB) 



















−−−
−

−−

)2/(sin)2(cos21sin)2cos()2/sin()4sin(0
sin)2cos()cos()sin()2sin(0

)2/sin()4sin()sin()2sin()2/(sin)2(sin210
0001

22

22

δωδωδω
δωδδω

δωδωδω

 
This represents the general matrix for a sample that exhibits circular birefringence, CB, 

e.g. a Right or Left Elliptical Retarder (REP or LEP),74 where ρ is the azimuth angle of 

the fast eigenvector of the retarder, tan|ω| is the retarder ellipticity, and δ is the 

retardance (ηR - ηL);  here ρ = 0° and δ = π for a REP or LEP. If  tan|ω| = 1, i.e.  ω = 45°, 

you get a circular retarder for any given δ: 

RetarderCircular Right 

1000
0)cos()sin(0
0)sin()cos(0
0001

=



















−

RCR

δδ
δδ

                       RetarderCircular Left 

1000
0)cos()sin(0
0)sin()cos(0
0001

=


















−

LCR

δδ
δδ

 

 

5,6.  Linear Dichroism (LD) 

The following represent the general matrices for samples that exhibit Linear Dichroism, 

LD,74 where θ is the angle between the horizontal x-axis and the axis of maximum 

transmission, p1
2 is the maximum transmittance, and p2

2 is the minimum transmittance. 

Case for θ = 0°: Linear Dichroism (LDH), yields: 
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Case for θ = 90°: Linear Dichroism (LDV), yields: 
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Case for θ = 45°: Linear Dichroism (LDP), yields: 
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Case for θ = -45°: Linear Dichroism (LDM), yields 
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7,8.  Linear Birefringence (LB) 
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This represents the general matrix for a sample that exhibits Linear Birefringence, LB, 

e.g. a Linear Retarder,74 where ρ is the fast axis location and δ is the retardance (ηe - ηo).  

For an example δ = π/2, for a QWP, results in the following matrix general matrix for 

any fast axis location, ρ: 
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Furthermore, a QWP with a fast axis position of horizontal where ρ = 0° yields: 

Note: clean air is an example of a non-dichroic sample, i.e. p1= p2, therefore, it yields the 

following Mueller matrix when the system is run with air as the sample,  

 

 

  

which is the Mueller matrix for an isotropic, non-absorbing, non-reflecting medium 

collected in transmission. 
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APPENDIX III 

THE JONES AND STOKES VECTORS FOR STANDARD INPUT 

LIGHT POLARIZATION STATES 
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            INPUT                                                STOKES           JONES  

            POLARIZATION                                   VECTOR                                    VECTOR 
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APPENDIX IV 

NOMENCLATURE  FOR ABBREVIATED REFERENCE 

JOURNALS 



 

 

143

 
JOURNAL ABBREVIATION COMPLETE       JOURNAL       NAME 
Acta. Ophth. Acta Ophthalmologica 
Am J Card Imaging. American Journal of Cardiac Imaging 
Am J Pathol. American Journal of Pathology 
Am. J. Cardiol. The American Journal of Cardiology 
Am. J. Physiol. The American Journal of Physiology 
Ann Thorac Surg. The Annuals of Thoracic Surgery 
Ann Vasc Surg. Annals of Vascular Surgery 
Appl Optics Applied Optics 
Arq Bras Cardiol. Arquivos Brasileiros de Cardiologia 
Basic Res Cardiol. Basic Research in Cardiology 
Biophys J. Biophysical Journal 
Braz J Med Biol Res. Brazilian Journal of Medical and Biological Research 
Brit. J. Ophtha.. British Journal of Ophthalmology 
Cir Res. Circulation Research 
Clin Chem. Clinical Chemistry  
Comp.  Biochem. Physiol. Comparative Biochemistry and Physiology 
Diabetes Metab Res Rev. Diabetes/Metabolism Research and Reviews 
Diabetes Technol Ther. Diabetes Technology & Therapeutics 
Eur Heart J. European Heart Journal 
Exp Clin Endocrinol Diabetes. Experimental and Clinical Endocrinology & Diabetes 
Exp Physiol. Experimental Physiology 
Exp. Eye Res. Experimental Eye Research 
Histochem. J. The Histochemical Journal 
IEEE Trans. on Biomed. Eng. IEEE Transactions on Bio-Medical Engineering 
Invest Ophthalmol Vis Sci. Investigative Ophthalmology & Visual Science 
J  Nutr. The Journal of Nutrition 

J Am Acad Nurse Pract Journal of the American Academy of Nurse 
Practitioners 

J Am Geriatr Soc. Journal of the American Geriatrics Society 
J Biomed Opt. Journal of Biomedical Optics 
J Card Fail. Journal of Cardiac Failure 
J Card Surg Journal of Cardiac Surgery 
J Lab Clin Med. Journal of Laboratory and Clinical Medicine  
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JOURNAL ABBREVIATION COMPLETE       JOURNAL       NAME 
J Mol Cell Cardiol Journal  of Cellular and Molecular Cardiology 
J. Am. Coll. Cardio. Journal of the American College of Cardiology 
J. Clin. Eng. Journal of Clinical Engineering 
J. Exp Biol. The Journal of Experimental Biology 
J. Opt. Soc. Am. A Journal of the Optical Society of America 
JAMA The Journal of the American Medical Association  
Lasers Surg Med. Lasers in Surgery and Medicine 

Ophthalmic Physiol Opt. Ophthalmic & Physiological Optics : The Journal of 
the British College of Ophthalmic Opticians 

Proc. SPIE Proceedings of the International Society for Optical 
Engineering 

Semin Laparosc Surg. Seminars in Laparoscopic Surgery 
Surg Clin North Am. The Surgical Clinics of North America 
Zentralbl Chir. Zentralblatt fur Chirurgie 
 



 

 

145

APPENDIX V 

SIMULATION CODE 
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CORNEAL BIREFRINGENCE SIMULATION CODE 

 
%Written by Justin Baba in MATLAB® 5.3 
clear all 
%user inputs are the fast axis orientation of the cornea: of the 
retarder; wavelength of light used  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Creating User Interface 
format short e; 
prompt = {'Enter fast axis location [degrees]:','Enter wavelength of  
     light [nm]; Example: For Red diode laser: 635',}; 
title  = 'Inputs for computing Changes in detected Intensity with  
    sample birefringence'; 
lines = 1; 
def   = {'5','635'}; 
answer = inputdlg(prompt,title,lines,def); 
rho1=sscanf(answer{1},'%f'); %read rho1 as a double precision value 
lambda1=sscanf(answer{2},'%f'); %read lambda1 as a double precision 
value 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
deltan1=0:1.2:5.8;%stepping through human corneal birefringence range 
      (based on literature values) 
      %(difference in the refractive indices(n1-n2) 
 
for  s=1:1:length(deltan1); 
lambda=lambda1*(10^-9);%converting wavelength to meters 
deltan=deltan1(s)*(10^-4);%birefringence is of the order of 10^-4 
lc=2*.407*(10^-3);% the thickness of the corneal layer of the rabbit  
        eye (multiplied by two as the light traverses the  
        cornea twice on either end of the eye 
delta=(2*pi*lc*deltan)/lambda;%calculating the phase difference in  
           degrees 
%delta=(delta*pi)/180;%converting the phase difference to radians 
rho=(rho1*pi)/180;%converting azimuthal angle to radians 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%calculating the parameters for the calculation of the mueller matrix    
 of the birefringent material (cornea) 
c2=cos(2*rho); 
s2=sin(2*rho); 
c4=cos(4*rho); 
s4=sin(4*rho); 
c=cos(delta/2)*cos(delta/2); 
d=sin(delta/2)*sin(delta/2); 
e=cos(delta); 
f=sin(delta); 
%mueller matrix for the birefringent material (modeled as a linear 
retarder) 
mc=[1 0 0 0;0((c4*d)+c)(s4*d)(-s2*f);0(s4*d)(-(c4*d)+c)(c2*f);0(s2*f) 
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  -(c2*f) e]; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
in=[1;1;0;0];%Input polarization state:Horizontal polarization  
%in=[1;-1;0;0];%Input polarization state:Vertical polarization  
%in=[1;0;1;0];%Input polarization state:+45 degree polarization 
%in=[1;0;-1;0];%Input polarization state:-45 degree polarization  
 
for alpha1=0:5:180; %step through input polarizer angles from o degrees  
       to n degrees in 5 degree increments 
 alpha=alpha1*pi/180; % converting alpha to radians 
 %Mueller matrix of the polarizer modeled as a rotator 
 rotator=[1 0 0 0;0 cos(2*alpha) sin(2*alpha) 0;0 -sin(2*alpha)  
    cos(2*alpha) 0;0 0 0 1]; 
 rotator1=[1 0 0 0;0 cos(2*alpha) -sin(2*alpha) 0;0 sin(2*alpha)  
     cos(2*alpha) 0;0 0 0 1]; 
 input=rotator1*in;%calculating the stokes vector of the input light 
 mueller=mc*input;%calculating the stokes vector of the light after  
       it passes through the birefringent media 
 Eox=.5*rotator*[1 1 0 0;1 1 0 0;0 0 0 0;0 0 0 0] 
 %Mueller matrix of the horizontal analyzer 
 Eoy=.5*rotator*[1 -1 0 0;-1 1 0 0;0 0 0 0;0 0 0 0]; 
 %Mueller matrix of the vertical analyzer 
 out_H=Eox*mueller;%Stokes vector of the output of the horizontal  
        analyzer 
 out_V=Eoy*mueller;%Stokes vector of the output of the vertical  
        analyzer 
 D_H=out_H(1,1);%extracting the intensity information(first element) 
 D_V=out_V(1,1);%extracting the intensity information(first element) 
 evalc(['D_H' num2str(alpha1) '=D_H']); %Saves D_H as a string with a  
               suffix of alpha1 
 evalc(['D_V' num2str(alpha1) '=D_V']);%Saves D_V as a string with a  
              suffix of alpha1 
 evalc(['alpha' num2str(alpha1) '=alpha']);%Saves alpha1 as a string  
                with a suffix of alpha1 
end; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Combining the results for each analyzer  
 
H=[D_H0,D_H5,D_H10,D_H15,D_H20,D_H25,D_H30,D_H35,D_H40,D_H45,D_H50,D_H5
5,D_H60,D_H65,D_H70,D_H75,D_H80,D_H85,D_H90,D_H95,D_H100,D_H105,D_H110,
D_H115,D_H120,D_H125,D_H130,D_H135,D_H140,D_H145,D_H150,D_H155,D_H160,D
_H165,D_H170,D_H175,D_H180]; 
V=[D_V0,D_V5,D_V10,D_V15,D_V20,D_V25,D_V30,D_V35,D_V40,D_V45,D_V50,D_V5
5,D_V60,D_V65,D_V70,D_V75,D_V80,D_V85,D_V90,D_V95,D_V100,D_V105,D_V110,
D_V115,D_V120,D_V125,D_V130,D_V135,D_V140,D_V145,D_V150,D_V155,D_V160,D
_V165,D_V170,D_V175,D_V180]; 
B=[alpha0,alpha5,alpha10,alpha15,alpha20,alpha25,alpha30,alpha35,alpha4
0,alpha45,alpha50,alpha55,alpha60,alpha65,alpha70,alpha75,alpha80,alpha
85,alpha90,alpha95,alpha100,alpha105,alpha110,alpha115,alpha120,alpha12
5,alpha130,alpha135,alpha140,alpha145,alpha150,alpha155,alpha160,alpha1
65,alpha170,alpha175,alpha180]; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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alpha1=0:5:180; %Redefining the angle of rotation for plotting purposes 
figure(1) 
hold on  
%plot(alpha1,H,'b',alpha1,V,'r') 
plotyy(alpha1,H,alpha1,V)%plot with two different y axes on either side 
 
x=cos(B).*cos(B);%theoretical intensity for non-birefringent sample  
      based on Maulus’s Law 
 
figure(2) 
hold on 
%plot(x,H,'b',x,V,'r') 
plotyy(x,H,x,V) %plot with two different y axes on either side 
 
clear rho lambda deltan delta H V alpha alpha1 Eox Eoy mueller D_H D_V  
  mc out_H out_V input rotator  
end; 
hold off 
hold off 
 
clear all 
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