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Abstract. In many countries, timber sleepers have been widely used in traditional 

railway networks. Over the time, timbers degrade and it becomes more difficult 

to seek cost-effective hardwood sleepers to replace the deteriorated timber sleep-

ers. To enable a short-term solution, many infrastructure managers adopt the in-

terspersing method of track maintenance. The interspersed pattern sleeper, a spot 

replacement of old timber sleeper with concrete or composite counterparts, of 

railway track is often used as a temporary maintenance for secondary railway 

lines such as yards, balloon loops or siding. It is observed that performance of 

interspersed tracks can quickly deteriorate when the tracks are exposed to heavy 

rains and floods. In many cases, ballast washaway can be often observed. This 

study is the world first to demonstrate the influences of ballast washaway on the 

vulnerability assessment of interspersed sleeper railway using nonlinear finite el-

ement simulations, STRAND7. Two moving point loads representing an axle 

load along each rail has been established to investigate the worst-case, potential 

instabilities for impaired performance of sleepers and differential settlement of 

the track. In this study, the emphasis is placed on the effect of ballast washaway 

on the dynamic displacement and acceleration of rails. The insight will help track 

engineers develop appropriate climate change adaptation method and policy for 

operations of interspersed railway tracks facing extreme rainfall and flooding 

conditions.  

Keywords: Vulnerability, Resilience, Railway, Interspersed Tracks, Ballasted 

tracks, Flood, Extreme Condition, Washaway 

1 Introduction  

Over two decades, railway tracks have been built using locally sourced materials 

such as steel rails, sleepers, fasteners, ballast, formation (capping layer over compacted 

soil), subgrade and foundation.  It is very well-known that the dynamic loading condi-

tions acting on railway tracks stemed from either passenger or freight trains can induce 

dynamic behaviour (amplified phenomena above simple static behavior) of a railway 

track. This dynamic behaviour is pronounced and can be observed when a train travels 
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over 60 km/h. It is vital to understand the track dynamic responses to diverse loading 

conditions [1] since excessive irregular responses can lead to train derailments. It is 

noteworthy that the dynamic loading conditions, which often cause structural cracks in 

brittle sleepers, densify and pulverise ballast suppport, are usually the large impact 

loads due to wheel/rail irregularities (e.g. wheel flats, out-of-round wheels, etc.). For 

example, a traditional transient waveform pattern of wheel impacts due to a dipped joint 

can be seen in Fig. 1. Vividly, the amplitude of the impact forces can vary from 200kN 

to 400kN while the duration may range from 2 to 10 msec. Based on a transient pulse 

concept (i.e. Duhamel’s integral), these impact pulses can be associated with the dy-

namic excitations with a frequency range from 100 Hz to 500 Hz (f = 1/T: f is the 

frequency and T is the period). This frequency range can excite the resonances of track 

components and lead to pre-mature damages, reducing the durability and service lives 

of track components. In the reality, wheel/rail interaction imposes dynamic forces act-

ing on rail seats. Noting that the dynamic load patterns are dependent on train speed, 

track geometry, axle load, vehicle type, and wheel/rail defects or irregularities. In prac-

tice, railway and track engineers must consider the frequency ranges of static and dy-

namic loadings to plan and realise the life cycle asset maintenance and management of 

railway tracks with respect to critical train speeds and bespoke operational parameters 

[1-10].  

 

 
Fig. 1.  Example of dynamic impact loading pattern 

 

Timber sleepers have been widely used in railway track systems all over the world, 

especially in North America, Africa, certain extent in Europe, Australia and Asia. Their 

life cycle is estimated to be around 10 to 15 years depending on their applications, 

service explosures, operation parameters, environmental factors and the level of 

maintenance quality. Over time, these timber sleepers degrade and require renewals. 

Partial replacement or spot replacement of timber sleepers by prestressed concrete 

sleepers is an interesting concept that has been adopted over the world. This temporary 

method is to maintain track quality and improve short-term solutions that could be agile, 

cheap, effective and quick. This kind of spot replacement is usually adopted for the 

second or third class timber tracks or in some countries in the first-class main line. This 

solution is called “interspersed track”. In general, restricted train speeds are regularly 

adopted when track deteriorates to the condition below the base operation conditions 

(BOCs) or a reasonably safe condition. By adopting the interspersed method, full oper-

ational speed can still be allowed. Moreover, this approach strengthens for enhance-

ment in ability to withstand high velocity operations or to restrain longitudinal rail 

forces preventing a track buckling [9-11].  
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Although the spot replacement of aged, rotten timber sleepers is clearly more eco-

nomical than a complete track renewal or reconstruction, the interspersed track poses 

some disadvantages. In practice, the spot replacement pay special attention only to old, 

rotten timber sleepers. The degraded timber sleepers will be removed and then the new 

stiff concrete sleepers will be inserted onto old and weakened foundation, which has 

been in services for a very long time. In fact, the track stiffness of the renewed track 

with spot concrete sleepers is inconsistent as the existing timber tends to be aging too. 

This track stiffness inconsistency and different track decay rate can be a reason of un-

even settlement and foundation failure [9-13]. Based on differential track stiffness, de-

terioration processes, track component durability and operational parameters, many 

patterns of interspersed railway tracks have been introduced i.e. 1 in 2, 1 in 3, 1 in 4 

and so on (which mean that there is 1 concrete sleeper in every indicated number of 

sleeper, for instance, 1 in 4 mean 1 concrete sleeper in every 4 sleepers including the 

concrete itself). It is important to note that this type of railway track mainly exists in a 

rail network with low operational speeds. 1 in 4 interspersed track is commonly ob-

served and will be the focus in this study. A key reason is that this type of track has 

various flaws derived from how it is built. These can impair the long-term performance 

of interspersed railway tracks as shown in Fig. 2 [13]. Fig.2 shows the conditions of 

interspersed railway tracks in low-speed operation (<25 km/h). The tracks have been 

commissioned between 2006 and 2008 and have served as a main high-speed link to 

maintenance junctions.  

 

 
Fig. 2.  Example of 1 in 4 interspersed tracks (1 concrete sleeper after 3 timber 

sleepers – a set of four) 

 

Serviceability of a railway track has become the governing criteria for sleepers made 

of different material properties in the existing aged track systems. It is important to note 
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that a general recommendation (e.g. by Australian Office of Transport Safety Investi-

gations) is to perform concrete sleeper installation only ‘in-face’ (i.e. the practice of 

installing the same sleeper type continuously rather than interspersed with other sleep-

ers in between, also referred to as ‘on-face’) [11-13]. This in-face method is advised to 

improve vulnerability of the track systems. In reality, cost and time constraints have 

prohibited the in-face installation. Many railway networks have employed on-face in-

stallation (spot replacement of concrete sleepers) to retain operational services without 

disruption from degradations of materials, components and track systems.  

On the other hands, complexities of climate change and extreme weather conditions 

have raised an essential concern of risk and uncertainty for railway operators. Extreme 

weather conditions significantly affect railway operations and safety, such as fatalities, 

injuries and property damage. It is well known that climate change and extreme weather 

conditions incur serious challenges to infrastructure systems. However, most research 

(over 200 journal articles annually) have been focussed only on the development of 

high-level holistic frameworks for risk reduction, crisis responses, systems resilience, 

and top-down infrastructure management. There is very little research that has been 

conducted to understand the true capacity, to identify vulnerability to the transport in-

frastructures, or to implement real actions to prevent and recover the natural crisis. It 

has been widely recognized that there is an urgent need to integrate bottom-up consid-

eration of climate change, its vulnerability, its structural integrity, and its extreme 

weather impacts in policies, design, maintenance and reconstruction of infrastructure 

systems. Everyday decision makings do not take into account the consequences that 

could affect the new assets and infrastructures in the future. On this ground, this study 

is crucial for railway managers, maintainers, and regulators in order to embrace real 

insights for climate change adaptation and resilience-based measures that mitigate the 

risks and uncertainty derived from extreme climatic conditions. For example, the cli-

mate in South East Asia (such as in Thailand, Indonedia, Malaysia, Vietnam, etc.) is 

dominated by 2 monsoon regimes namely as northeast monsoon and southwest mon-

soon. The northeast monsoon circulates during the months of December, January and 

February, and the period frequenly posseses the most flooding conditions. Being in the 

equatorial zone and tropical country, the average temperature throughout the year is 

constantly high (e.g. 26 C) and has a very high humidity due to the high temperature. 

As a case study, Malaysia also can have a very heavy rainfall season, which is more 

than 2500mm per year. It is clear that ones of the most devastating natural disasters 

experienced in many continents (e.g. Europe, Asia, Africa, etc.) are floods and their 

consequential landslides, as illustrated in Fig. 3. These conditions can soften the soil 

formation underneath the tracks, and can also cause washaway when the ballast under 

the sleepers have been removed by rainfalls and runoffs. This study will thus pay spe-

cial attention to the risks associated with heavy rainfall and flood. 

This paper aims at investigating the vulnerability of the interspersed railway tracks 

exposed to flooding conditions. Dynamic responses of the interspersed railway tracks 

under moving train loads will be considered as the precursor to identify the level of 

serviceability. Based on critical literature review, this research has never been presented 

in open literature [14-21]. A class of two-dimensional interspersed track models was 

created using Timoshenko beams in a finite element package, STRAND7. Dynamic 
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displacement have been evaluated to understand the geometric behaviors of rail over 

sleeper, rail at midspan, cross level, and twists. The insight into the interspersed track 

vulnerability will help rail track engineers to manage risks and uncertainty due to flood-

ing conditions and to enable a truly predictive maintenance and improve the reliability 

of infrastructure asset maintenance and management.  

 

 
Fig. 3.  Washway of railway tracks occurred in Malaysia East Coast Line railway 

bridge, which cross Nenggiri River in Kemubu, Kelantan had totally lost due to mas-

sive flood in December 2014. (Courtesy: Malaysian Department of Public Works) 

2 Methodology and Data 

2.1 Track Modeling 

Interspersed track models have been established and validated using field data. These 

models have been adopted in this study. In the model, a two-dimensional Timoshenko 

beam model has been employed and found to be one of the most suitable options for 

modeling rails and concrete sleepers [21]. Using the numerical and experimental modal 

parameters [22], the finite element models of railway tracks can be fully calibrated. Fig. 

4 illustrates the finite element models in three-dimensional space for an in-situ 1:4 in-

terspersed railway track with different types of sleepers. Using a general-purpose finite 

element package STRAND7, the numerical model included the beam elements, which 

take into account shear and flexural deformations, for modeling the sleeper and rails. 

Each sleeper consists of 60 beam elements and each rail consists of 200 beam elements.  

The 60kg rail cross section and sectional parameters (Area: 17,789.9 mm2; Second 

moment of Area: 43.2 x106 mm4) were used [21]. The trapezoidal cross-section  was 

assigned to the concrete sleeper elements in accordance with the standard medium duty 
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sleepers (204 mm top-wide x 250 mm bottom-wide x 180 mm deep) [22]. The rectan-

gular cross-section was assigned to the timber sleeper elements in accordance with the 

standard timber sleepers (230 mm wide x 130 mm deep) used in Australia [22]. The 

rail pads at railseats were simulated using a series of spring-dashpot elements. The nov-

elty in this study is the realistic model of the support condition, which has been simu-

lated using the nonlinear tensionless beam support feature in STRAND7. This attribute 

allows the beam to lift over the support while the tensile supporting stiffness is omitted, 

especially when the support is deteriorated unsymmetically. The tensionless support 

option can correctly stimulate the ballast characteristics in real-life tracks [21].  

 

 
Fig. 4.  Validated 1:4 interspersed track model (blue: concrete sleepers; and purple: 

timeber sleepers). The model is subjected to a moving train axle (two wheel sets).  

 

2.2 Engineering properties 

Engineering properties of each element are tabulated in Table 1. Table 1 shows the 

geometrical and material properties of the finite element model. All dimensions are 

given in millimeters. The partial support condition, which has been reported to be more 

suitable for standard gauge tracks, has been adopted for this study. Spring – dashpot 

model of rail pad is used. For the envelope study, four separated forces with a constant 

magnitude of 100kN have been used to imitate the loading condition of a passenger 

train bogie (2 per each rail, 2 meters apart). This load magnitude has been used for 

benchmarking purpose [21-23]. The non-dimensional analyses have then been carried 

out to investigate the dynamic responses in terms of maximum displacements and cross 

level (infering track twists) over train speed and over frequency domain.  

Table 1. A summary of engineering parameters in the model 

Parameters  Range  Unit  Remarks  

Length  lr=10.8 m  *standard gauge is 1.435m. 

Gauge g=1.5 m  *1.5m is distance between wheel loads. 

Modulus Er=2.0000e5 MPa   

Poisson’s ratio vr=0.25 -   

Rail pad stiffness pk = 17 MN/m   
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2.3 Risk explosures to flood and washaway conditions 

When a railway track is exposed to flood and washaway conditions, the formation 

strength and capacity will be undermined. The severity of strength reduction depends 

on the duration of rainfalls and runoffs. In most cases when water ponding exists, total 

track inspection cannot be adequately conducted, making it a very dangerous situation 

to operate any train. In an event of heavy rainfall (e.g. 2 hours continuously), a flash 

flood can incur. Any flashflood along railway corridors can weaken the formation, re-

sulting in a very low to nil track modulus. The location with low level of terrains will 

often suffer this problem and sometimes lead to track mud pumping overtime. In prac-

tice, engineers may not be able to observe this problem until the severity and damage 

scale is large. 

In a case that the gradient or vertical slope of railway tracks and corridor is steep, 

the runoffs can cause erosion of formation and cause ballast washaway. This event will 

completely eliminate the ballast and track formation that support the track systems. The 

severity of this incident depends on the volume and the speed of runoff and whether 

any water-borne debris exists. If the railway corridor has been properly designed (e.g. 

with a crossfall tapering towards the dranage), the ballast washaway might occur par-

tially (e.g. only half of track support) but the scale of damage might be large (e.g. a 

large number of sleepers are effected). If the flood condition exists, rail engineers may 

not be able to observe the affected zone until major damages incur such as land slide, 

detailments, etc. For instance, land slip could also occur as illustrated in Fig. 5.  

 

 
Fig. 5.  Risks of heavy railfalls and runoff, and flood conditions. Initially, loss of 

track support will occur, followed by tension cracks and land slips. Track engineers 

are generally unable to observe or notice occurrences of the loss of track support.  

 

 
Fig. 6.  Cross runoff causing ballast washaway 

Loss of support 

Cross flow 
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When a railway track is located in an inclined plane of terrain, cross water runoffs 

can also cause ballast washway, as illustrated in Fig. 6. The cross flow can infiltrate the 

ballast and erode the ballast particles (and potentially formation), causing the ballast 

washaway (loss of track support), and eventually land slips. When the track system is 

exposed to a large area with ballast washaway, any operation of a train is reckless.  

In this study, a special attention to the initial flood condition when it undermines the 

track support is considered. This is because, under this situation, engineers and opera-

tors cannot inspect the track and observe any problem. In some extent, a service train 

is operated on the flooded track systems. This study will identify the vulnerability and 

potential risks when the train services are exposed to such conditions. The emphasis is 

placed on the interspersed railway tracks since these interspersed methods are often 

adopted in vulnerable railway corridors and networks. 

3 Results and Discussions  

Based on the track models, the dynamic responses of the railway tracks (without any 

damage) under moving train loads can be seen in Fig. 7. It is clear that the train speed 

influences the dynamic displacements of the track systems. When the train speed in-

creases, the dynamic displacement generally increases. The variance of the dynamic 

displacement can be observed and is because the dynamic properties or structural peri-

ods of track systems can respond differently to different excitation frequencies (i.e. v = 

f   or f = 1/T). 

 

 
Fig. 7.  Dynamic displacements of rails subjected to moving train loads (for track sys-

tems with a good track support condition) 

 

For the track systems with a good track support, the symmetry of dynamic displace-

ments on both rails (left and right rails) can be observed. The movement of trains with 

large rail displacements on interspersed tracks would affect simply the ride comfort of 

passengers or goods. The symmetrical large rail displacements will commonly cause 

higher roughness of track geometries, which in turn generally induce higher vibrations 

(e.g. on-board vibration), louder noises (e.g. rolling noises), and poorer ride comfort. 
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The analyses into the vulnerability of the 1:4 interspersed track systems have been 

conducted in comparison with timber-sleepered track systems. Fig. 8 illustrates the dy-

namic response envelopes of track systems exposed to small-scale and large-scale 

losses of support conditions. In this study, only half of sleeper support is considered for 

the effect of floods and washaway condition on the loss of support conditons as the case 

study.  

 

 
 

a) timber-sleepered track with full support condition 

 

 
 

b) timber-sleepered track with small-scall loss of support condition 

 

Fig. 8.  Dynamic responses to 120km/h moving train loads of track systems exposed 

to flood and washaway conditions 
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c) timber-sleepered track with large-scall loss of support condition 

 

 
d) 1:4 interspersed track with full support condition 

 

 
e) 1:4 interspersed track with small-scall loss of support condition 

 

Fig. 8.  Dynamic responses to 120km/h moving train loads of track systems exposed 

to flood and washaway conditions 
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f) 1:4 interspersed track with large-scall loss of support condition 

 

Fig. 8.  Dynamic responses to 120km/h moving train loads of track systems exposed 

to flood and washaway conditions 

 

 
Fig. 9.  Maintenance limits of track twists (adopted from Base Operating Condition, 

BOC, from Transport for NSW, Australia). Note: N is normal condition; P3 is a situa-

tion needed to repair within 3 months; P2 is a situation needed to repair within 28 

days; P1 is a situation needed to repair within 7 hours; E2 is a situation needed to re-

pair within 24 hrs; E1 is a situation needed to repair immediately. Courtesy: Transport 

for NSW. 
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It is clear from Fig. 8 that the train loads incur the difference in dynamic rail dis-

placements on left and right rails. This difference at a positoion is often referred to as 

‘cross level’. When a train bogie or a train body travels over the differential cross levels, 

the twists in the train body or bogie can incur. These twists can cause train derailments. 

The twist on train body is often called ‘long twist’ while the twist on train bogie is 

called ‘short twist’. These twist limits can be illustrated in Fig. 9 (adopted from a 

maintenance standard of Transport for NSW, Australia). If the track twists reach E2 

and E1, this situation is at danger and requires emergency actions. The train could derail 

when travel over E2/E1 conditions.  

The dynamic twists of the interspersed track systems considering the losses of sup-

port conditions are shown in Table 2. The short twist is determined using 2m cord, 

while the long twist is based on 14m cord. The twist results have been correlated with 

the risk colors shown in Fig. 9 (green is normal, light blue is P2, dark blue is P1, yellow 

is E2, red is E1). 

Table 2. Dynamic twists of 1:4 interespered track systems exposed to flood and washaway con-

ditions (unit in mm.). Color backgrounds are correlated with risk profiles defined in Fig.9. 

Train speed (km/h) 
 Small-scale loss Large-scale loss 

  Short twist Long twist Short twist Long twist 

Class 1: 20 km/h 

  

3.0 6.1 10.5 60.1 

Class 2: 40 km/h 3.6 6.9 20.0 62.4 

Class 3: 60 km/h 4.0 7.0 29.1 63.0 

Class 4: 80 km/h 5.7 7.8 25.8 62.8 

Class 5: 100 km/h 6.4 8.0 30.2 65.1 

Class 6: 120 km/h 6.6 8.1 31.6 66.0 

From Table 2, it should be noted that N is normal condition; P3 is a situation needed 

to repair within 3 months; P2 is a situation needed to repair within 28 days; P1 is a 

situation needed to repair within 7 hours; E2 is a situation needed to repair within 24 

hrs; E1 is a situation needed to repair immediately. This implies that when the 1:4 in-

terspersed track is exposed to large scale loss of support condition, it could be very 

dangerous to operate a train above 40 km/h. In fact, it will still be at risk when a train 

travels at 20 km/h since the long twist defect could derail the train, especially when the 

train could also have certain defects (e.g. stiff bogies, deflated suspensions, etc.). On 

this ground, it is clear that rail operators should be very careful in train operations when 

the railway tracks become vulnerable due to flood and washaway conditions. In order 

to mitigate this issue, engineers should consider to apply ballast bond solutions to ena-

ble free drainage whilst reinforce the ballast particles [24, 25]. This insight will help 

track engineers develop appropriate climate change adaptation method and policy for 

operations of interspersed railway tracks facing extreme rainfall and flooding condi-

tions. 
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4 Conclusion  

This study identifies the vulnerability in the railway infrastructures exposed to flood 

and washaway conditions. This study is the world’s first to determine the capability of 

operating trains over vulnerable track systems. A special track system, called the inter-

spersed track, is used as case studies. Nonlinear finite element analyses of interspersed 

track systems have been established. A clear novelty in the model is the adoption of 

tensionless support condition that can mimic the actual ballast condition. It is very im-

portant to realistically simulate the actual ballast condition when the track is vulnerable 

and the asymmetric instabilities occur. This study considers the loss of support condi-

tions as the consequence of flood and washaway conditions stemmed from extreme 

weather and climatic events.  

The dynamic responses of the interspersed track systems exposed to the extreme 

weather events have demonstrated the vulnerability of the operations. By considering 

the risk profiles, the dynamic responses can be instrumental in identifying risks with 

respect to the operations and track conditions. Dynamic track twists can be derived and 

employed as the catalyst in vulnerability determination. It is clear that track conditions 

exposed to flood conditions cannot be easily determined from traditional inspections or 

observations by engineers, maintainers or operators. On this ground, it is at risk to op-

erate a train over vulnerable track systems. Considering the 1:4 interspersed track sys-

tems, it is found that a train should not be operated above 40 km/h when it is suspected 

that the track suffers from flood and washaway conditions. In an emergency, a train 

might be able to travel at a low speed (e.g. less than 20 km/h) but vigilant monitoring 

and control is mandatory. Note that low speed trains could derail in a fail-safe situation 

if careful monitoring and control is set. However, in general, it is not advisable to op-

erate a train over a vulnerable interspersed track, especially when there is no appropriate 

monitoring and control measures. A temporary solution to mitigate this issue has been 

proposed. When heavy rainfalls or extreme weather conditions (e.g. storm, herricane, 

or typhoon) are anticipated, engineers and maintainers should develop a solution to 

reinforce the support condition, for example, by using ballast bonding agents. 
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