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Abstract. Turnouts are a part of modern railway tracks to divert railway traffic 

from one route to another route. Their complex geometry and structure impose 

significant dynamic track loads. Particularly, common crossings laid on ballasted 

tracks are well-known among the infrastructure managers for their drawbacks. 

Numerous studies have been devoted to analyze a railway turnout with a common 

crossing. Nevertheless, almost all of them considers that turnouts are working in 

a dry environment. In reality, railway tracks are exposed to extreme conditions 

such as flooding, which could damage the power supply, signaling systems, roll-

ing stocks and the infrastructure. The so-called phenomenon  ‘washed out’ or 

‘washed away’ ballast affects directly the dynamic behavior of rolling stock and 

can cause derailments with fatalities. In 2018, for instance, 25 people were killed 

in an accident in Turkey as a result of ‘washed away ballast’. Few studies analyze 

unprecedented events in railway tracks in terms of vehicle-track interaction. 

However, no studies on turnouts was encountered in the literature. Hence, it is a 

significant contribution to analyze a railway turnout in case flooding occurs. In 

this study, the beam oriented finite element model, validated previously, is ma-

nipulated to analyze the dynamic behavior of a turnout under dry and wet condi-

tions as well as washed away ballast scenarios. The outcomes of the study show 

that considering the effects of flooding on dynamic forces during operation and 

design phases could be a key to prevent undesired events. 

Keywords: Turnout, railway, flooding, dynamic, finite element method analy-

sis. 

1 Introduction 

Railways is a safe, secure and rapid transportation mode to convey a large amount of 

cargo and passengers. The technology behind it has been evolving over the centuries 

and has no boundaries to reach [1-6]. However, a large portion of the current network 

is established on ballasted track technology, relatively old technology in which support 

structure is a ballast-bed that is composed of crushed rocks. The ballasted tracks are 

inexpensive to construct and have superior properties in terms of noise and vibration 
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mitigation [7]. Furthermore, their porous structure exhibit natural drainage. The prob-

lem in ballasted tracks is resilience or insufficiency to provide long-term track stability 

due to the structure of ballast bed that is highly susceptible to dynamic forces and en-

vironmental factors, causing uneven track stiffness and requiring frequent maintenance 

to restore even track stiffness. Furthermore, providing an evenly distributed track stiff-

ness becomes more challenging at transition points on the track, such as turnouts owing 

to their asymmetrical and stiff structure that require special maintenance technology.  

Turnouts are imperative for railway tracks as they enable diversions of traffic flow 

from one track to another track. Their asymmetrical structure and complex geometry 

induce high-frequency impact forces and cause asymmetrical loading conditions, which 

frequently leads to ballast deterioration and rail damages [8]. Numerous studies have 

been conducted to analyze and develop a better understanding of the behavior of rail-

way turnouts[8-23]. Nevertheless, most of the studies consider an ideal mid-tempera-

ture dry weather condition and neglect the extreme events. Neglecting a few recent 

studies [24-31], a similar approach is also valid for normal track sections. The reason 

might be the low frequency of occurrence and the general tendency to stop any rail 

operations under extreme events [32]. Such an operation contains large uncertainties in 

terms of operational status and could be very dangerous and fatal. Nonetheless, in some 

cases, the extreme events are inevitable owing to their unforeseen nature. In 2018, it 

was reported that a deadly accident in Turkey was due to washed away ballast after an 

unexpected sudden downpour of rain [33]. Hence, it is crucial to investigate such un-

precedented events such as flooding to prevent financial and more importantly, human 

losses.  Despite several studies on railway tracks exposed to flooding, to the authors’ 

knowledge, no study has been encountered in the literature, which assesses the topic in 

terms of the dynamic behavior of railway tracks as well as turnouts. Consequently, this 

paper is the first to present the outcomes of the analysis on the dynamic behavior of a 

turnout system that is exposed to different flooding conditions.  

A validated finite element model that was used previously to analyze turnout behav-

ior under dry conditions [34] is modified to represent flood conditions. Two different 

flood scenarios are tested in the simulation environment. In the first scenario, the rela-

tive surface water level is considered, where it is assumed that the porous structure of 

ballast allows water flow and therefore, there is no washed away ballast. In the second 

scenario, the assumption is that the ballast bed lose its draining ability and become 

impermeable structure. Then, the water flow occurs from the weakest point on the bal-

last bed where water flow is strong enough to drag the ballast particles, leading to the 

loss of structural integrity. In that case, several bearers have no ground support. 

2 Numerical Model 

The finite element model in [34] is based on a 48m standard turnout with 1:9 crossing 

angle, including a small section of normal track. The model uses an equivalent profile 

for rails to downgrade the complexity of 3D model due to computational limitations. A 

descriptive figure is presented in Fig. 2.  
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Fig. 1. A flooded turnout. The picture courtesy of East Midlands Railways. 

The model is a composition of the beam and spring-dashboard elements. 77 bearers 

ranging from 2.4m to 4.7m length are modelled with an average spacing of 0.71m. 

Fastening systems are simplified as a rubber rail pad and implemented into the model 

as spring elements. Additionally, damping properties of rail pads are neglected due to 

the insignificant contribution of pad stiffness into total track damping in comparison to 

ballast bed. A common concept of ‘beam on an elastic foundation’ is adopted in the 

model. Therefore, the ballast bed is represented by spring-dashboard couples.  The 

number of the spring elements is adjusted against the length of the bearers. The ground 

below the elastic foundation is assumed rigid to be able to define boundary conditions. 

Boundary conditions allow components to move in their vertical planes. Material prop-

erties are inherited from the previous model with an exemption for ballast properties. 

The ballast properties have been selected with reference to [24], where the effects of 

different water levels are investigated. Selected water levels and ballast properties are 

presented in Table 1 as well as other fundamental parameters. For the second scenario, 

in the case of washed away ballast, the spring elements representing ballast bed was 

removed for two critical sections ( i.e. switch and crossing panels).  

The vehicle in the model, consisting of a bogie and two wheelsets, is represented by 

rigid bodies and springs. The geometry of the car body is neglected owing to the negli-

gible influence on dynamic forces but the weight of the car body is distributed over the 

bogie. The mass per wheel is 10 tons. The boundary conditions for the vehicle enable 

longitudinal and vertical movements as well as pitch and roll motion. The travel direc-

tion of the vehicle is the facing direction on through route of the turnout and travelling 

speed is 25 kph. The vehicle speed is selected based on the experience of the second 

author. Last but not least, the contact between track and vehicle is defined by Hertzian 
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contact theory in which the contact forces are calculated based on the virtual penetration 

and contact stiffness in FEM environment. 

 

Fig. 2. The used layout of a standard turnout 

The solver settings are also obtained from the previous model, where an explicit time 

integration, well-known for its stability, used to solve equations of motions. Further-

more, preloading is applied to avoid unrealistic vibrations due to gravitational forces. 

The model has sufficient detailing to obtain accurate results with high resolution in an 

acceptable calculation time. The original model was validated by field measurements. 

Here, it is assumed that the validity of the model will not change with the manipulation 

of the ballast bed properties. This assumption has been done due to lack of field meas-

urements that can be used as a reference point. 

  

Table 1. Dynamic material properties used in the numerical model. 

Element 
No. 

 Elements 
Properties Value 

Rail 1980 

𝜌1 

E2 

PR3 

7800 

210 

0.3 

Bearer 3070 

𝜌1 

E2 

PR3 

2500 

38 

0.2 

Rail Pad 245 k4 1300 

Ballast 

(0%, 29%, 57%, 100%, 114%) 
5900 

k4  

c5  

14.6, 13.7, 13.4, 11.3 ,6.5 

1.16, 1.77, 1.82, 2.37, 3.3 

Primary Suspension 8 
k4 

c5  

1.15 

2.5 

1 Density (kg/m3). 2 Modulus of elasticity (GPa). 3 Poisson Ratio. 4 Stiffness 

(MN/m) 5 Damping coefficient (kNs/m).  

3 Results and Discussions 

Several track parameters are taken into account to assess the performance of a railway 

track whether a corrective action is necessary or not. These parameters are measured 
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by determining the position of rails. One should bear in mind that the rails could be 

subjected to a vehicle loading or no loading. Hence, two different measurement con-

cepts are applied in practice. In this study, the concept of measurements under vehicle 

loadings is assumed to calculate the track parameters. Indeed, only one track parameter, 

cross-level, is considered due to the aim of the study and boundary conditions applied 

in the simulation. The basic definition of the cross-level is the height difference between 

two rails, which must be kept in certain limits. The limits could vary among the coun-

tries as they are decided by the experience of the Infrastructure Managers. Here, the 

maintenance manual [35] is followed to evaluate the degree of the cross-level.  In the 

manual, it is recommended to take measurements at two different intervals to identify 

short and long twist defects. The twist value is obtained by subtraction of adjacent 

measurement points, which should be below the maintenance threshold values in the 

manual. The threshold value of short twists at 25 kph is between 17-18 mm whereas it 

is 50-55 mm for long twists. Above threshold values, the maintenance is compulsory. 

It is noteworthy that there are a few more threshold values above the maintenance 

thresholds which is applied to determine maintenance priority. The occurrence of long 

twist is neglected at this point, considering the length of turnout and its rigid structure. 

Besides, there could be discrepancies in other practices such that only one specific in-

terval, 3m, is used to measure cross-level [36]. Thus, the cross-level values are obtained 

in the simulations at every 2m, in parallel to the manual, to detect short twist defects. 

However, it should be emphasized that the thresholds defined in [36] are referenced 

while discussing the results. This is because the thresholds are not only expressed as 

millimetric values but also as gradient values. For instance, twists with a gradient be-

tween 1 in 127 and 1 in 200 must be repaired in 10 days following the detection. Finally 

yet importantly, the right rail that is aligned with the crossing nose is selected as a 

reference rail. If the cross-level have a positive value, it means that the left rail is at a 

higher position from the ground in comparison to the right rail. 

3.1 The Effect of Surface Water Level on Cross-Level at Turnouts 

Surface water levels could show variations in different flood scenarios. As indicated in 

[24], the level of surface water affects the stiffness and damping properties of ballast 

structure that have an impact on the dynamic behavior of vehicle and track system. 

Since the available information on ballast structure under flood condition is limited, 

similar idea applied in [24] is adopted in this study. Here, it is assumed that the ballast 

structure is exposed to four different surface water levels. The level representation is 

normalized where water level that covers all structure is considered as %100 flooding. 

Similarly, the reference case, the dry condition, is indicated as 0% flooding.  

The results of different surface water levels are presented in Fig. 2. As can be seen 

from the figure, the level of surface water is decisive on the magnitude of cross-level. 

The higher water level means the higher cross-level. The discrepancy seems to be in-

significant from 0 to % 100 flooding,  whereas 10% above the reference point doubles 

the cross-level value. The figure also present the asymmetrical stiffness distribution 

along the turnout due to its geometry. The turnout structure generally acts stiffer at 

sections under the rail on the crossing side (Fig. 2 top), which seems to lead to negative 
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cross level. Similarly, track stiffness increase towards the longest bearer and the upward 

trend continues in the direction of the longest bearer. The bearer with no.20, laid at 

switch panel, has a similar length to a standard bearer whereas the bearer with no.60 is 

far longer and provide higher track stiffness. Another evidence of the effect of high 

stiffness on the cross-level is the sudden decrease in the magnitude of the cross-level 

after no.60 bearer, which results from the transition between turnout structure and nor-

mal track section. Lastly, it seems that the cross-level values are in the range of permis-

sible limits and the turnouts could maintain their functions under flooding conditions 

at low speeds if their structural integrity is protected.  

 

Fig. 3. A graphical demonstration of vertical displacement in the vicinity of the bearer with 

no.30, where blue color represents the lowest (top). Cross-level values in different surface wa-

ter levels(bottom) 
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3.2 The Effect of Washed Away Ballast at Switch Panel 

As mentioned previously, railway track could be suffered from washed away ballast in 

the event of flooding. In that case, the bearers lose ground support and hang on the rails.  

It should be reminded that in this scenario, it is assumed that all ballast particles at 

washed away section are dragged and therefore, no partial support is observed for the 

bearers on the contrary to the reality where partial support at some bearers could be 

observed. Here, three different scenarios have been considered in the simulation such 

that the length of the washed away section is 3, 5 and 10 bearers.  

 

 

Fig. 4. A graphical demonstration of vertical displacement in the vicinity of the bearer with no.18, 

where blue color represents the lowest (top). Cross-level values for 3, 5 and 10 bearers at switch 

panel subjected to washed away ballast (bottom). 
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As presented in Fig. 3, the number of washed away ballast have negative impacts on 

the cross-level values significantly at the switch section.  Interestingly, the cross-level 

have a positive value first (Fig. 3 top) and then a negative value. To explain that, the 

working principles of a turnout should be considered. When a vehicle is directed to a 

certain route, one switch blade is opened. Simultaneously, the other is closed and stuck 

to the stock rail. Hence the support conditions of railway track change with the location 

of switchblades. The open switchblade is positioned away from the left rail and produce 

a new support point that affects load distribution. Consequently, the left rail is relatively 

stiffer first and have positive cross-level. However, the stiffness value becomes higher 

at the right rail side, later and negative cross-level value becomes significant.  

The number of unsupported bearer due to washed away ballast has a direct contri-

bution to the magnitude of cross-level. Maximum cross-level, around 10 mm, is ob-

served when ten bearers are unsupported. It is important that vehicle might become 

unstable at that point since the direction cross-level suddenly changes from positive to 

negative and bearers are unsupported. In other cases, there is a small disturbance be-

tween bearers with the numbers of 15 and 25. The rest of turnout have similar behavior 

to the supported scenario as mentioned previously. In general, the cross-level parame-

ters are still in the permissible range concerning twist calculation in the manual [35]. 

3.3 The Effect of Washed Away Ballast at Crossing Panel 

The crossing panel is the point where high-frequency high magnitude impact forces 

occur at the crossing nose, a position on the right rail. These forces present challenges 

in term of track and vehicle safety and integrity of the system.  As indicated in [34], 

these forces could be up to 3 times higher than normal static wheel load. Interestingly, 

in previous sections, the cross-level value in this section exhibits negligible behavior. 

It seems that the contribution of impact forces into cross-level values seems to be lim-

ited. Hence, in Fig. 4 below, the cross-level values, the highest among all scenarios, are 

believed to result from the stiff structure of the crossing panel (Fig. 4 top). In other 

words, the loss of ballast support has a less negative impact on the right rail at crossing 

panel, particularly in comparison to the case of washed away ballast at switch panel. 

As a consequence, the left rail has a relatively larger displacement which produces more 

cross-level.   

Fig. 4 also illustrates that the contribution of the number of unsupported bearers is 

evident as the highest magnitude is presented in the case of 10 unsupported bearers. In 

that case, the cross-level values are acceptable in [35]. However, it should be repaired 

in 10 days according to [36]. 
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Fig. 5. A graphical demonstration of vertical displacement in the vicinity of the bearer with no.50, 

where blue color represents the lowest (top). Cross-level values for 3, 5 and 10 bearers at crossing 

panel subjected to washed away ballast (bottom). 

4 Conclusions 

This study provides new insights into the understanding of the dynamic behavior of a 

turnout system during an unprecedented event of flooding. The outcome of the study 

could be summarized as follows. First of all, the asymmetric topology of a turnout 

causes a negative cross-level even in a dry environment, showing that the loading con-

ditions on rails are not balanced. A further investigation is recommended to evaluate 

whether it is beneficial to increase the ballast stiffness under the left rail/ stock rail or 

not. Secondly, the effect of unsupported bearers on cross-level due to washed away 

ballast is obvious. An expansion of washed away section causes the more severe cross-

level difference. Hence, based on the current simulation and its limitations, it could be 
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concluded that the risk of a derailment is highly likely with the expansion. Therefore, 

it is recommended that train operation be terminated instantly with any suspicion of 

washed away ballast, particularly at crossing panel, for safety concerns. Thirdly, the 

impact of surface water levels seems to be indistinctive below the normalized water 

level. In other words, the ballast structure seems to provide significant support unless 

the ballast bed is not fully under water. However, the validity of this conclusion is 

strongly related to the validity of the study from which the ballast parameters were 

collected. 

Finally, outcomes of this study indicate that turnouts could inherently suffer from 

twist defects under vehicle loading owing to its asymmetrical structure, a potential 

cause of a derailment. Particularly taking the amplification characteristic of high speeds 

into account, further studies should be conducted at different vehicle speeds in different 

scenarios to improve the understanding of dynamic behavior of a turnout system in the 

case of flooding.    
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