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Abstract. At present, railway track buckling, caused by extreme heat, is a serious 

issue that causes a huge loss of assets in railway systems. The increase in rail 

temperature can induce a compression force in the continuous welded rail 

(CWR). It is important that a greater expansion in CWR can induce a higher risk 

of track buckling, especially when track defects exist. It is important to ensure 

the lateral stability of railway track in order to tackle the extreme heat. However, 

in fact, railway track can be progressively degraded over time resulting in poorer 

track stability. This may reduce the lateral resistance of railway tracks resulting 

in increasing the risk of track buckling. In this study, 3D finite element models 

are first developed to investigate the buckling behaviour of ballasted railway 

tracks considering the large lateral track misalignment and component deteriora-

tions. This study also proposes the spot replacement method at the certain spans 

to be fully restrained laterally in order to improve buckling strength. The new 

findings firstly highlight the buckling phenomena of degraded railway tracks. The 

results suggest the proper spans that need to be fully restrained in the lateral 

plane. This method provides a cost-effective solution to improve track buckling 

strength as the number of spans has been optimised in this analysis. The insight 

derived from this study will underpin the lifecycle design, maintenance, and con-

struction strategies related to the spot replacement sleepers in degraded railway 

track systems. 

Keywords: Railway ballasted track, Track buckling, Extreme heat, Vulnerabil-

ity, Critical infrastructure 

1 Introduction 

At present, railway track buckling, cause by extreme heat, is one of the serious concerns 

in the railway system [1-4]. Railway infrastructure developments associated with ad-

aptation to future climate and heatwave are expected [5-8]. Note that high temperature 

can possibly induce rail buckling, catenary dilatation, signalling and the heating of roll-

ing stock components [4,9-11]. As for railway tracks, the summer heat can significantly 

increase the rail temperature and cause the rail to expand, causing high axial compres-

sion force in continuous welded rail (CWR). Despite CWR has a lower maintenance 
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cost and provides a smooth ride, it still suffers from drawbacks as the track tends to be 

buckled easily when the rail temperature reaches a certain limit [12-15]. Based on the 

evidences [16-19], it is important to note that track buckling is a major cause of train 

derailment and causes a huge loss of assets passenger lives. Note that track buckling 

around the world usually occurs in conventional railway ballasted tracks due to the poor 

track conditions and lateral misalignment in the rails. Track buckling analysis has been 

widely performed considering sensitivity analysis of major parameters influencing 

track buckling [20-23]. Previous studies show that lateral resistance plays the major 

role in buckling strength and prevention. Note that concrete, which is the most widely 

used construction materials, is increasingly adopted as sleeper in railway system since 

it can provide durability, resilience, low maintenance requirements and energy effi-

ciency [24-29].  The lateral resistance values, that can be used properly in buckling 

analysis, should be obtained from Single Sleeper (Tie) Push Test (STPT) [30,31]. This 

method provides the ballast-sleeper contact force encountering sleeper movement 

which can be represented as a track lateral resistance. It is important to note that con-

crete sleepers usually provide higher resistance than timber sleepers because of their 

higher density and dimensions [23,32]. The lateral force-displacement obtained from 

STPT can be used as an input for lateral spring element connected to sleeper ends for 

buckling analysis.  

In fact, railway track is progressively degraded with usage making the improvement 

of ballasted track necessary. Most importantly, a lack of ballast support can signifi-

cantly reduce the strength of railway tracks [33-35]. For instance, in a track with poor 

condition, large voids and gaps can easily be observed between sleepers and the ballast, 

usually caused by the wet track beds (highly moist ground) from natural water springs 

or poor drainage. The strength and drainage aspects of ballasted tracks are compro-

mised due to the increasing level of ballast fouling [36]. It is also noted that ballast 

breakage, due to impact loads [37,38], is a cause of ballast fouling leading to the loss 

of ballast support condition. This may lead to larger particle movement resulting in 

more severe loss of support conditions. Hence, fouling conditions and degraded ballast 

decrease lateral resistance of ballasted track. The previous study presented the influ-

ences of ballast degradation on ballasted track resistance considering coal dust as a 

fouling agent [39]. The lateral resistance of railway tracks under ballast fouling condi-

tions have been previously investigated using Discrete Element Modelling (DEM) sim-

ulations [40]. It is found that lateral resistance is progressively reduced when the ballast 

is progressively degraded. This study adopts the lateral resistance based on realistic 

behaviour of degraded ballast to the lateral spring to represent the sleeper-ballast lateral 

resistance to quantify the buckling phenomenon of ballasted tracks. This method has 

been previously used once considering the ballast layer geometries [41]. 

The advanced three-dimensional Finite Element Modelling (FEM) of ballasted rail-

way tracks subjected to extreme temperature is presented using LS-DYNA and ana-

lysed via nonlinear analysis. The clean and fouled ballast condition are taken into ac-

count. This paper investigates the buckling phenomena based on the assumptions that 

ballast fouling is accumulated and formed from the ballast base and built up to the top 

layer. The degradation of railway track also includes lateral misalignment of tracks. 

The effects of unconstrained length representing the area of degraded ballast in the 
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longitudinal direction are considered. This paper thus provides the buckling tempera-

ture and allowable temperature of railway tracks under different ballast conditions. The 

insights will help track engineers to improve track buckling prevention methods for 

conventional ballasted tracks. 

 

2 Railway Track Buckling 

In general, if the rail temperature is higher than the neutral temperature, the compres-

sion axial force in the rails builds up. The rails may buckle when the compression force 

reaches its limit or the buckling resistance. The relationship between the rail tempera-

ture and the lateral displacement of rails can be typically plotted as shown in Fig. 1. It 

can be seen that there are two types of buckling failure modes: sudden buckling and 

progressive buckling, depending on the failure mechanism and buckling paths. In the 

pre-buckling stage, the rails are exposed to a higher temperature than the neutral tem-

perature and the axial force is linearly increased. As for the sudden buckling mode (also 

called ‘snap-through’), the track buckles explosively with no external energy after 

reaching its maximum temperature (upper critical temperature, Tmax) and becomes un-

stable in its post-buckling stages. Tmin represents the lower bound, which can buckle 

the track if sufficient energy is supplied. It can also be defined as a safe temperature, as 

the track cannot buckle if it experiences a temperature below this temperature. Moreo-

ver, progressive buckling can occur when Tmin cannot be differentiated from Tmax, as 

the peak cannot be seen clearly. In this case, the track’s lateral displacement gradually 

increases after buckling, and the critical temperature is defined as TP. It is recommended 

to evaluate the corresponding buckling axial force as an indicator in case of progressive 

buckling as the buckling temperature cannot be detected clearly.  

 

Fig. 1. Buckling path. 
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3 Methodology 

Ballasted railway tracks with the standard gauge, that have been previously built and 

validated in LS-DYNA, are used in this study, as shown in Fig. 2a. Steel rails UIC60 

and sleepers are modelled using beam elements, which take into account shear and 

flexural deformations. Rails and sleepers are built using SECTION_BEAM and 

MAT_ELASTIC. The rail pads and fasteners are modelled as a series of spring ele-

ments using SECTION_DISCRETE and SPRING_ELASTIC in the connections be-

tween sleepers and rails. At rail seat, rail pad and fastener, three translational springs to 

represent pad stiffness in three directions and one rotational spring to represent the fas-

tener resistance, are applied. For ballast, the tensionless support spring should be con-

sidered and connected to each sleeper ends instead of the normal spring since it allows 

the beam to lift and move over the support while the tensile support is neglected. This 

presents realistic behaviour of the ballast. The lateral spring representing the ballast 

layer confronting sleeper movement is shown in Fig. 2b. Note that the lateral spring 

properties for clean and fouled conditions have been derived previously [40]. 

As for the boundary conditions, the fully fixed supports are applied to the end nodes 

of the rails. Note that, normally after buckling, tracks can be divided into two regions: 

buckled and adjoining regions. The roller supports are applied longitudinally on the 

rails to generate a stiff track area representing adjoining regions so that the rails are 

constrained and not allowed to move transversally. Hence, the unconstrained length is 

presented as a weaker track and thus the buckled region is expected in this area. In this 

study, the track is originally made of 60 m in length with buckled regions of 30m as 

track buckling length is always roughly from a very short to 30m [42]. It is noted that 

the unconstrained length of 30m is a control case and chosen for nonlinear analysis. 

Then, the unconstrained length is reduced to study its effects on improving buckling 

strength.  

 

 

a)  
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b) 

Fig. 2. a) Simplified finite element modelling of ballasted railway track b) Lateral ballast spring 

representing sleeper-ballast lateral resistance [40]. 

The properties and dimensions of conventional railway tracks are presented in Table 

1. while the lateral spring properties are derived in accordance with the lateral force-

displacement of sleepers obtained in the past study. It is noted that the properties are 

considered on the basis of the nominal values used widely in normal track conditions. 

It is important to note that the lateral force-displacement curves are linked to the lateral 

spring mapping of ballast performances in lateral plane.  

In the nonlinear buckling analysis, the solution method uses the nonlinear approach 

with the BGFS quasi newton algorithm in LS-DYNA. This iterative method is used for 

solving unconstrained nonlinear optimisation problems. A temperature of 200 °C is ap-

plied to the system using the keyword LOAD_THERMAL_LOAD_CURVE in LS-

DYNA. The thermal expansion is applied to the rails using the keyword 

MAT_ADD_THERMAL_EXPANSION. 

Table 1. Material properties. 

Parameter list Characteristic value Unit 

Rail (UIC60) 

Modulus 2 x 105 MPa 

Density 7850 kg/m3 

Poisson’s ratio 0.25  

Thermal expansion 1.17 x 10-5 1/°C 

Mono-block concrete sleeper [260x235x2600mm] 

Modulus 3.75 x 104 MPa 

Shear modulus 1.09 x 104 MPa 

Density 2740 kg/m3 

Poisson’s ratio 0.2  

Torsional fastening resistance 75 kNm/rad 

 

According to previous STPT simulations on ballast lateral resistance, load-displace-

ment curves have been obtained. It should be noted that the original curves can be fitted 

well with bilinear curves as presented in Fig. 3 for concrete sleepers placed on clean 

and fouled ballast layers. The displacement limit, which is the inflection of stiffness, is 

set as 0.5mm as it can be clearly detected as a yield point. The original curves are fitted 

with bilinear curves using the linear polynomial fit method. 

 



6 

 

Fig. 3. Lateral resistance of ballasted railway track.  

4 Results and Discussions 

Fig. 4 illustrates the rail axial force against the increase in rail temperature of railway 

tracks with clean and fouled ballast considering its unconstrained length 30 m. The 

axial forces of rails in railway tracks with the misalignment amplitudes from 8 mm to 

32 mm are compared. The maximum axial force represents the buckling force which 

can be used to evaluate the corresponding buckling temperature. As for track with 30 

m unconstrained length, the buckling failure mode is likely to be snap-through buckling 

mode. When railway tracks have bigger size of misalignment (24 mm and 32 mm), 

buckling failure mode is still snap-through but likely to be more progressive mode when 

the misalignment increases in size.  

It should be noted that, rail axial force drops immediately after buckling and track 

enters the post-buckling stage as presented. In post-buckling stages, there is a lateral 

excitation in the beginning and then track becomes stable showing the progressive re-

duction trend of axial force. When projecting a trend line of axial force in post-buckling 

toward the pre-buckling stage, the line intersects the axial force in the pre-buckling 

stage. The intersection point represents the minimum axial force that can buckle the 

track. The projection of this point to the x axis represents the minimum temperature 

over neutral or safe temperature. In this case, it is found that rail axial forces for all 

cases are likely to be the same within the similar ballast condition once the tracks be-

come stable after buckling. It means that the safe temperature is not affected by initial 

track misalignment amplitudes.  
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Fig. 4. Rail axial force due to temperature change. 

The buckling and safe temperatures over neutral for railway tracks are presented in Fig. 

5. It is clearly seen that fouled ballast can significantly reduce the buckling and safe 

temperatures, which obviously increases the likelihood of track buckling. Moreover, 

high misalignment coupled with fouled ballast that occurs in the larger area can greatly 

reduce the buckling temperature leading to more risk to buckling. For tracks with fouled 

ballast layer, the safe temperature can be lower than 30 °C which can be usually expe-

rienced in summer. For this reason, train speed on degraded railway tracks should be 

limited in summer to avoid the additional energy that can increase the risk of track 

buckling.  

 

 

 

Fig. 5. Buckling and safe temperatures. 
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Considering the unconstrained length, the buckling temperatures are compared. It is 

clear that the buckling temperature of tracks with unconstrained length of 6m and 12m 

under the same ballast condition are clearly distinct from others, as seen in Fig. 6. While 

the railway tracks are generally buckled within the same ranges when the unconstrained 

length is larger than 18 m. The results suggest that decreasing unconstrained length to 

12m can obviously improve track buckling strength resulting in much higher buckling 

temperature 

 

Fig. 6. Buckling temperature over neutral considering unconstrained length and track misalign-

ment. 

5 Conclusions 

This study presents the 3D finite element models to investigate the buckling behaviour 

of ballasted railway tracks considering ballast degradation. The lateral force against 

sleeper displacement curves obtained from previous simplified DEM results are used 

as a lateral resistance for ballast lateral spring in track buckling modelling. The key 

findings are revealed as follows. 

- In general, snap-through buckling normally occurs especially for the bal-

lasted track with new clean ballast. However, in the same track, buckling 

failure mode is likely to be shifted from snap-through to progressive buckling 

when the track is degraded including poorer track lateral misalignment and 

ballast fouling conditions. It can be obviously seen that the different between 

buckling temperature and safe temperature is much smaller when the buck-

ling failure mechanism is shifted to progressive buckling mode. 

- The risk of track buckling is far greater for railway tracks with fouled ballast 

conditions. This shows that buckling strength of ballast track is reduced over 

time due to the progressive degradation of ballast leading to prone to 
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buckling. Note that ballast fouling condition coupled with larger track misa-

lignment can significantly reduce the allowable temperature. 

- Reducing the unconstrained length to 12 m or 20 spans can potentially reduce 

the risk of track buckling for all ballast conditions. This outcome will help 

optimise the proper cost-effective strengthening method for buckling 

strength by restraining the sleeper at optimised spans. 
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