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Abstract: Over the past centuries, millions of bridge infrastructures have been constructed glob-
ally. Many of those bridges are ageing and exhibit significant potential risks. Frequent risk-based
inspection and maintenance management of highway bridges is particularly essential for public
safety. At present, most bridges rely on manual inspection methods for management. The efficiency
is extremely low, causing the risk of bridge deterioration and defects to increase day by day, reducing
the load-bearing capacity of bridges, and restricting the normal and safe use of them. At present,
the applications of digital twins in the construction industry have gained significant momentum
and the industry has gradually entered the information age. In order to obtain and share relevant
information, engineers and decision makers have adopted digital twins over the entire life cycle of a
project, but their applications are still limited to data sharing and visualization. This study has further
demonstrated the unprecedented applications of digital twins to sustainability and vulnerability
assessments, which can enable the next generation risk-based inspection and maintenance framework.
This study adopts the data obtained from a constructor of Zhongcheng Village Bridge in Zhejiang
Province, China as a case study. The applications of digital twins to bridge model establishment,
information collection and sharing, data processing, inspection and maintenance planning have
been highlighted. Then, the integration of “digital twins (or Building Information Modelling, BIM) +
bridge risk inspection model” has been established, which will become a more effective information
platform for all stakeholders to mitigate risks and uncertainties of exposure to extreme weather
conditions over the entire life cycle.

Keywords: inspection; bridge; BIM; life cycle; vulnerability; extreme condition; risk-based mainte-
nance; sustainable development

1. Introduction

As a key node of road traffics, bridges are lifelines of transport infrastructure systems,
ensuring smooth traffics, and playing an important role in the connectivity development of
regional transportation [1]. With the continuous strengthening of scientific research capa-
bilities and the continuous development of social economy, many countries have achieved
significant results in the fields of construction equipment, construction technology, and
building materials. However, the rapid development of transportation has also led to the
increasing number and types of freight vehicles on the road. As vehicle tonnage and truck
traffic are increasing, full-load operation of various bridges has become more common [2].
According to Ding et al. [3], various natural disasters and man-made influences have also
led to many bridges that have not been maintained in time, leading to increased risks.
Ensuring the safe operation of bridge structures has become an important issue of concern
to the government and the public worldwide.
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The increasingly mature application of Building Information Modeling technology
in the construction industry has opened up new ideas for bridge health monitoring [4].
Building information modeling (BIM) or referred to as ‘digital twins’ (DT) aims to digitize
and informatize various physical and functional characteristics of a construction project
throughout its life cycle [5–11]. BIM technology and its application belong to a new
academic field with great development space [12]. Since Chuck Eastman proposed it in the
1970s, BIM has gained a good reputation in the engineering field for its strong visualization
performance, high coordination, and convenient drawing [13]. At present, BIM technology
is widely used in the field of housing construction, and applied research in infrastructure
such as bridges is also gradually advancing.

At present, structural health monitoring system evaluates the safe performance of
bridges through real-time monitoring of the state of the bridge. This technology has been
applied in many countries [14]. However, current visual inspection methods are limited by
many conditions:

(1) Human visual inspection can be subjective and relies on inspectors to obtain all
information accurately.

(2) The entire manual process is expensive and time-consuming.
(3) When inspectors check risks, there will be many hidden safety hazards.
(4) The inspection requires experienced and well-trained personnel, and most bridge

authorities currently face the problem of lack of qualified inspectors [15–17]. At the
same time, various sensors in the bridge health monitoring system collect a large
amount of monitoring data every day. How to manage and use this monitoring
data scientifically and effectively is a prominent problem faced by the bridge health
monitoring system.

The content of this article has been developed around the above-mentioned practical
problems in real life, with the inspection of bridge risks as the main research focus. Com-
bining BIM visualization technology and its BIM model application, an unprecedented
“BIM + bridge risk inspection model” has been proposed for vulnerability assessment
and risk-based maintenance planning function, which realizes an integrated management
model of bridge inspection, monitoring and maintenance, and provides new ideas and
methods for the application of BIM technology in bridge risk inspection.

2. Literature Review
2.1. Risk Inspection
2.1.1. Research Background

Since the beginning of the 21st Century, with the rapid development of highway
construction, China’s highway and bridge construction has continued to develop towards
large cross-border constructions, using new and high quality materials. According to data
from the Ministry of Transport of the People’s Republic of China, at the end of 2019, a total
of 878,300 road bridges had been built in China, with a total length of 60,634,600 m, an
increase of 26,800 and 4.9486 million meters from the end of the previous year, respectively.

However, as the number of bridges continues to increase, the proportion of dangerous
bridges and bridges with hidden risks is also increasing. According to the data source,
about 20% of the bridges in China’s highway network have been in use for more than
20 years, of which 30% are dangerous bridges with technical grades 3 and 4, and more than
100,000 bridges have been assessed as dangerous bridges. In recent years, bridge collapse
has occurred due to various factors in the construction and operation process, causing
serious casualties and property losses, as shown in Table 1.



Sustainability 2021, 13, 2051 3 of 18

Table 1. Global bridge collapse accident.

Date Name of the Bridges City Reason Casualties

15/06/2007 Jiujiang Bridge Foshan Ship crash 2 injuries
29/06/2009 Xida Bridge Tieli Bridge collapse 1 death and 4 injuries
14/07/2011 Gongguan Bridge Wuyishan Broken boom 1 death and 22 injuries
24/08/2012 Yangmingtan Bridge Harbin Overload 3 deaths and 5 injuries
09/07/2013 Panjiang Bridge Hongyou Conservation and flood 5 deaths and 7 missing
01/02/2013 Yichange Bridge Yichange Explosion of a vehicle transportation fireworks 10 deaths and 11 injuries
10/10/2019 Wuxi Bridge Wuxi Overload 3 deaths and 2 injuries

The above-mentioned incidents are all caused by a series of tragic accidents due to
inadequate supervision and untimely maintenance. In many countries around the world,
the failure of effective supervision and risk inspection during bridge operation has led to
many bridge collapse accidents. From 1989 to 2000, more than 44 bridges in the United
States failed due to poor maintenance and unsuitable inspection methods [18,19]. It can
be seen that bridge supervisors have not yet realized the importance of risk inspection to
bridge safety. Faced with these problems, we must adopt a modern inspection management
model. This article will try to apply advanced BIM technology to bridge risk inspections to
provide reference for the future development and application of BIM inspection systems.

2.1.2. The Purpose of the Risk-Based Inspection

According to the risk-based inspection of highway structures published by London
Bridges Engineering Group, the structural safety of most roads and bridges previously
required the following two factors to be assured:

(1) Design, assessment, and maintenance in accordance with codes or rules incorporating
empirical safety factors.

(2) Regular inspections to provide assurance that no accidental damage or unanticipated
deterioration has occurred.

However, the live load may exceed the design load, and as bridges are used for
longer and longer time periods, the safety factor of the road and bridge materials will also
decrease. Therefore, the inspector should conduct regular inspections to determine the
actual condition of the structural materials and take corresponding maintenance measures.

A risk-based inspection strategy overcomes the limitations of the time-based approach.
Not only does risk consider the possibility of failure, but it also considers the severity
of the consequences of failure. These may include consequences such as loss of profits,
maintenance and readjustment costs, casualties, reduced service levels, and environmental
costs. Such a strategy can optimize the costs and benefits of risk inspection work [20]. The
maintenance and inspection strategy is shown in Figure 1, which results in the development
of the next generation framework for vulnerability and risk-based maintenance planning
of bridge infrastructures.
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2.2. New Risk-Based Inspection System Using BIM

The traditional bridge management system (BMS) has mainly gone through three
stages [21]. With the development of information technology, the most widely used bridge
inspection system in the United States at present is the points system developed by the
Federal Highway Administration [22]. Highway asset owners face many problems when
obtaining bridge status data. The data available in many BMS does not meet the information
standards required for subsequent bridge repair, renovation, and reconstruction work. In
this case, the value of using BIM in asset management has become increasingly clear [23].
Although bridge health inspection systems are widely used around the world, it has been
found through this investigation that there are still many problems with traditional bridge
inspection systems:

(1) Self-diagnosis and processing of data.

The data acquired by the bridge monitoring system has characteristics of massiveness,
multidimensionality, complexity, and randomness. A lot of invalid data will lead to
deviations in the test results.

(2) Visualization for monitoring data.

The data for monitoring bridges has the characteristics of 4Vs: Volume, Velocity, Vari-
ety, Value, and therefore a special kind of “big data”. However, for some non-professionals,
there are too many charts and graphs obtained from data detection, which are difficult to
understand.

(3) The real-time nature of bridge safety warnings.

In the decades of bridge operation, accidents such as collisions of vehicles and ships,
typhoons, and earthquakes are inevitable [24]. In addition, various risks will gradually
appear on the bridge, leading to the continuous deterioration of the structure and posing a
threat to the safety of a bridge. In order to meet the long-term service requirements of the
bridge, it is necessary to carry out timely risk warning for the key nodes of the bridge [25].

(4) Cover up risk.

When one bridge board is at risk instead of all components, it can be attributed to
many problems, including defects in design and construction. Taking the bridge deck
in Figure 2 as an example, the bridge head and the middle part of the bridge deck have
different stress modes, when they produce the same failure form. In the manual recording,
they may be recorded as a type of risk element, and the same maintenance measures will
be taken. However, after a few weeks, their shape may be quite different [26].
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2.3. Traditional Risk Inspection System
2.3.1. Building Information Modeling

The BIM originated in the United States in the 1970s. The National Building Informa-
tion Model Standard (US) defines it as follows: BIM is not only to build a three-dimensional
model, but also to build an information integration platform, which includes all the life
cycles of the project, and realizes the storage and sharing of data. BIM technology can
not only realize the dynamic link between the plan and the engineering profession, but
also the main means to manage engineering data information [27]. With the improvement
in construction technology and information transmission technology, BIM has become
another new topic explored by the construction industry. It has applications in many
fields such as housing construction, road drainage, water, urban rail, roads and bridges.
This article mainly explores the application of BIM technology to risk-based inspection,
vulnerability assessment and risk-based maintenance planning.

2.3.2. Characteristic of BIM

(1) Visualization

BIM technology can express each part of a construction project in an informationized
way, and this informationized expression enables the attributes of each substance to be
accurately displayed. In this way, a sound platform for the joint coordination and commu-
nication of all participants can be established to better promote decision-making and make
project construction more efficient.

(2) Coordination

Coordination ability determines efficiency. For construction engineering, which in-
volves a large number of personnel and projects, a strong ability to coordinate is even more
necessary. To a certain extent, BIM technology provides such a platform that can place
participants on the same platform, realize resource sharing and information complemen-
tation, and maximize the strength of all parties, thereby forming a powerful platform for
advancing project progress.

(3) Simulation

BIM can carry out relevant simulations at all stages of a construction project, and this
kind of simulation helps to promote a solution to various problems during each stage of
the project. This can prevent problems before they happen, and promote the solution of
specific problems. BIM can simulate the lighting, ventilation, and load of the construction
site to ensure the scientific nature of every decision. At the same time, in the initial stages
of the construction process, the site layout can be simulated, and the project schedule can
also be simulated to ensure a reasonable construction schedule.

(4) Optimized

The characteristics of BIM optimization are concentrated in two aspects, one is the
optimization of the scheme, and the other is the optimization of the design. The optimiza-
tion of the plan is mainly reflected in the ability to link the plan design with the cost. In
terms of design optimization, places with complex processes such as roofs and walls can
be simplified and, so that the engineering volume is reduced, the economic benefits are
greater, and the building environment is more livable.

(5) Graphability

At present, construction according to drawings is a common practice of various
companies, and the use of BIM software can generate drawings of various angles of a
building, saving a lot of time and energy among relevant personnel. In a sense, the
application of BIM technology has also brought profits to enterprise development and
improved work efficiency.
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2.3.3. Risk-Based Inspection System of “BIM+” Mode

In today’s “Internet+” world, industrial informatization is the general trend, and
vigorous promotion of BIM technology will help the transformation and upgrading of the
construction industry. The concept of “BIM + Bridge Risk Inspection Mode” proposed
in this article combines technologies such as models and spatial positioning to provide
complete information solutions for risk data collection, data analysis, data sharing, and
other services. Combined with BIM technology, a BIM collaboration platform for risk
inspection of bridge engineering was constructed. It provides timely, accurate, and unified
risk monitoring services for management personnel of various professions, departments,
and entities.

The “BIM + Bridge Risk Inspection Mode” system includes a monitoring module, a
data analysis module, and a data sharing module. The stress, displacement, and other
information obtained from the detector monitoring and manual inspection are transmitted
to the computer data center for analysis. The results of the analysis will be sent to the
inspectors in the form of data or charts, etc., and there are methods for them to judge the
risk treatment. The module structure is shown in Figure 3 and its operation method will
be explained in Section 3. From Figure 3, the module structure is organized by using the
numbering system. For the first six rows, the first digit represents the categories of the risks
and the second digit represents the step of the assessment. For 7–10, every category of the
risks shares the same process. Therefore, there is only one digit representing the step of the
assessment process.
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3. Methodology
3.1. BIM Modeling

Based on the Computer Aided Design (CAD) drawings of the Zhongcheng Village
Bridge, Revit 2018 software has been used to construct a three-dimensional model. The
family system of bridge piers, bridge abutments, and T-beams are established first, and
then poured into the project for reinforcement, and finally combined as the main body of
the project.

The project discussed is the Zhongcheng Village Bridge in Zhejiang Province, China.
The project drawing is shown in Figure 4. The design grade of the bridge is Class 1, and the
design service life is 100 years. The Zhongcheng Village Bridge is a prestressed concrete
bridge with a total length of 210 m. The half width of the bridge deck is 16.25 m, and the
longitudinal slope of the longitudinal section is 2%. The bridge consists of 17 spans with a
total length of 400 m. The upper structure of Zhongcheng Village Bridge adopts prestressed
concrete (post-tensioning method) T-beams, which are first simply supported and then
continuous. The lower part of No. 0 abutment adopts a slab platform, the No. 1-3~3
abutment adopts a ribbed platform, the pier adopts a column pier, and the pier adopts a
pile foundation.
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3.2. Risk Analysis and Inspection Methods

The main content of bridge real-time risk inspection is the safety, applicability, and
durability of the structure. The research content is mainly to scientifically detect the
durability of reinforced concrete bridges and record them in the BIM database in order to
take correct measures.

3.2.1. Internal Risk

The internal risks of a bridge are mainly related to the environmental exposures and
the area where the bridge is located, and whether a bridge is exposed to various quality
levels of water conditions. The internal risks arise during the exploitation of bridges and
components, such as concrete which are independent from other external factors. This
study mainly considers the following points:

1. Chloride ion erosion

Chloride ion erosion is the main cause of steel corrosion. Chloride ions have a strong
corrosive effect. When they enter the steel bars, a series of complex chemical reactions will
occur, which will damage the passive film of the steel bars and corrode them [28]. When
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the chloride ion enters the concrete, after the concentration reaches a critical value, it will
cause the corrosion of the steel bar. Therefore, it is necessary to strictly control the chloride
ion content in the concrete. Therefore, the chloride ion content in concrete has clear limits
that are shown in Table 2.

Table 2. The limits of chloride ion content in concrete.

Working Environment Chloride Content (Weight Ratio)

Prestressed concrete 0.06%
Moist and containing chloride/ordinary reinforced concrete 0.10%

Moist but no chloride/ordinary reinforced concrete 0.15%
On the dry ground Unlimited

Since the chloride ion content needs to be measured through experiments, most of the
current methods of chloride ion risk inspection still rely on manual completion.

2. Concrete carbonization

The essence of concrete carbonization is the phenomenon by which hydration products
in cement interact with carbon dioxide in the atmosphere to produce calcium carbonate
and other substances [29,30]. When carbon dioxide in the atmosphere penetrates into
the concrete body through its pores, it will chemically react with the water-containing
mineral particles in the air, resulting in a decrease in alkalinity, and the PH value can be
reduced to below 9. When the carbonization depth reaches the surface of the steel bar,
the steel bar will begin to corrode and ultimately affect the durability of the structure.
The prerequisite for corrosion of the steel bar in the general atmospheric environment is
concrete carbonization [31].

3. Cracks

Cracks mainly cause corrosion of bridge steel bars and damage to the bridge structure.
Under the action of initial tension and stress, the concrete cracks have little effect on the
beam. According to the durability requirements, if the width of the concrete crack is not
greater than or slightly more than 0.2 mm, and the width tends to be stable, the strength of
the beam will not be significantly affected. When the width of cracks become larger, the
stiffness of the beam will decrease, the steel bar will be susceptible to corrosion, and the
service life of the structure will be reduced [32–34].

In the “BIM + bridge risk inspection mode”, the concrete cracks and carbonized area
are scanned and uploaded by the scanner. This article uses the concrete multi-function tester
(SCC-MATS) produced by Sichuan Shengtuo Testing Technology Co., Ltd. (in Chengdu,
China). The risk checking steps are as follows (as shown in Figure 3, step 0):

1. Scan the concrete to obtain disease information;
2. Analyze data through software to obtain disease information such as cracks.
3. Upload the disease information to the database and mark the specific position of the

BIM three-dimensional model component, so that the corresponding concrete, steel
bar model, or reproduced component can be checked during future maintenance. At
the same time, it can be compared with the standard value and finally outputs the
inspection result.

3.2.2. Natural Hazard Risks

Natural hazard risks must consider the risk loss that may be caused to the project
by factors such as the geographical environment, geology, hydrology, and meteorological
conditions where the bridge is located. One can check the frequency and level of local
natural disasters such as floods, earthquakes, hurricanes, etc., to evaluate risk indicators. In
this article, CSI-Bridge 2015 will be used to simulate the deformation of the bridge (Figure 3,
step 2). In this step, all collected parameters are used to calculated specific variables such as
deformation, force, and stress. Calculated variables are to be compared with defined values
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to assess the risks of the bridge. Based on the data reported by the Ministry of Transport
of the People’s Republic of China, the risks and vulnerable assets can be identified for
road networks in Zhejiang Province. The hazard risk analysis based on expert interviews
(Highways department, Zhongcheng office) can be illustrated in Table 3. This hazard risk
can be updated to help engineers prioritize inspection, repair, and maintenance tasks as
shown in Table 4, which underpin the digital twins framework in Figure 3. Note: the risk
analysis and planning prioritization are based on the Zhongcheng Village Bridge (at the
infrastructure level).

Table 3. Potential risks and vulnerable assets of road networks in Zhejiang, China.

Climate Impact Group Vulnerable Asset Infrastructure Group Ranking

Intense rainfall

Embankments
Geotechnical

1
2
3

Rock cuttings
Earth cuttings

Drainage Civil 4
5Bridge scour

Earthquake Structural system Civil 6
Pier and pavement Civil 7

Flash flood/Storms/Intense rainfall Embankments Geotechnical 8
Culverts Civil 9

Collisions/Accidents
Bridge support system (under pass collision, over-height) Civil 10

11
Road assets (head-on collision) Civil 12

Signaling systems Electrical/Signals 13
Extreme temperatures (heat and cold) Structural system (thermal expansion, deterioration, damage) Civil 14

Pavement condition, Asset deterioration (freeze-thaw, etc.) Civil 15
16

Intense rainfall Road accidents Operation 17
Water-borne debris Civil 18

Storms
Road accident Civil 19

Wind-borne debris Civil 20
Formation erosion Geotechnical 21

Sea level rise
Road network Operation 22

23Traffics
Bridges and viaducts Civil 24

Table 4. Proposed planning process for risk-based maintenance for road bridges.

No. Planning Component Purpose

1 Critical weather events Knowledge and understanding of impact on road infrastructures
and networks

2 Critical components of road infrastructures Knowledge and understanding of structural, systems and elemental
response and vulnerability to critical weather events

3 Prediction of risk and climate change impact Methodology for predicting the impact of specific critical weather
events on components of the bridge infrastructure

4 Development of adaptation options Permits evaluation of different adaptation policies that are practical,
cost-efficient and suitable to localised issues

5 Design standards Identification of changes to design standards to mitigate the impact of
climate change

6 Management policy Identification of changes to management policy to mitigate the impacts
of climate change

3.2.3. Human Risk

Human risk (or man-made hazard risk) mainly considers collision (including vehicle
collisions and ship collisions), load (including vehicle overload and bridge structural
fatigue), arson, terrorist attack, explosion, and other intentional damage by humans [35,36].

At present, for the overload phenomenon, the “BIM + Bridge Risk Inspection Mode”
can perform the following inspections (Figure 3, step 1):

1. Place load sensors on the bridge and nearby roads at strategic locations.
2. The load of the vehicle is judged according to the stress parameters read when the

vehicle passes the corresponding sensor and compared with the verified load of
the vehicle.
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3. Analyze and process the data. If overloading is destructive to the bridge, the system
will deal with it immediately and warn passing vehicles the risks of bridge. This
study uses CSI-Bridge to simulate overload conditions.

In this step, it mainly focuses on data collection. Data collection is done using installed
sensors at the bridge. The early safety warning system of bridges generally adopts a multi-
neural network model and establishes the multi-element mapping mathematical model of
wind, temperature, and vehicle load and bridge frequency, strain, and deformation [37–40].
According to the correlation characteristics of different environmental loads and structural
responses, Bayesian regularization technology is used in this study to optimize the weights
of coupled environmental load fields. On the basis of this method, combined with BIM
technology, the performance tracking and real-time safety warning of each component of
the full bridge are carried out [41–50].

4. Results and Discussions
4.1. Build the 3D Model of the Bridge

Based on the 2D plan drawing of the project, Revit2018 is used to build the 3D model
of the project, as shown in Figure 5. The establishment of the model includes not only the
3D geometric model, but also the corresponding module and link information. Among
these, the method of information implantation and construction splitting of the modules in
the establishment of the three-dimensional model is very important. If the splitting is too
fine, the number of components will be large. The database will be occupied by a large
amount of low-value data, which increases the cost of data storage and system operation.
Inadequate splitting will result in a lack of key information and limit operational analysis.
At the same time, the link between components and various sensors must be accurate,
which is essential for the accurate mapping of bridge diseases in the 3D model. The 3D
model of the bridge structure and related components of in project are shown in Figure 5.

4.2. The Results of Risk Inspection
4.2.1. Internal Risk

Compared with the traditional manual method of measuring crack width and the
carbonized area, it is more efficient and convenient to use the concrete multi-function
detector (SCC-MATS) to measure concrete diseases. The scanned concrete surface data will
be stored in the computer, and the image can be analyzed and processed. The software
interface is shown in Figure 6.

After selecting the crack treatment method, the corresponding components should be
located in the 3D model and relevant information obtained, as illustrated in Figures 7 and 8.
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In order to confirm what type of concrete and steel bar type, other sets of information
are used. After data processing, the following measures should be taken to reduce or
eliminate risks:

1. Chloride ion erosion

• If the carbonization depth is too large and the steel bars are corroded, the compo-
nents should be replaced immediately.

• The components with low carbonization depth and which are less than the
thickness of the steel protection layer should be sealed with high-quality paint.

• The depth of carbonization is greater than the depth of the protective layer,
and components whose carbonized layer easily falls off should be painted with
high-strength mortar or concrete.

2. Concrete carbonization

• The thickness and quality of the concrete protective layer should be improved
to extend the time for chloride ions to penetrate into the concrete to reach the
surface of the steel bar.

• The concrete surface should be painted. In order to prevent the penetration of
corrosive media such as chloride ions, applying a coating on the surface of the
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repaired concrete structure or new concrete structure is a simple, economical and
effective auxiliary protective measure.

3. Cracks

• For cracks that do not exceed the allowable value, in order to prevent them from
being affected by atmospheric factors, the method of painting water glass or
epoxy resin can generally be used to seal the cracks.

• When the crack is greater than the allowable value, the crack is generally filled
with epoxy resin.

• When the crack is larger than 0.4–0.5mm, the crack should be cut open, brushed
clean, and then filled with epoxy mortar or high-strength cement mortar. If the
volume is large, small gravel concrete can be used to fill the cracks.

• If the cracks greatly exceed the values listed in the above table, the components
should be reinforced or replaced, but the cause of the cracks should be found
through calculations.
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4.2.2. Natural Hazard Risk and Human Risk

In the risk-based inspection, the unique functional advantages of BIM technology, such
as simulation and visualization, should be fully exploited to simulate the structural safety
of the bridge under conditions such as severe overload, ship collision, and explosion. BIM’s
4D technology should be used to conduct bridge safety assessments under emergency
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events such as overload, earthquake, and explosion. The system compares and analyzes
the various sensor monitoring data of the bridge after the emergency occurs with the
monitoring data under daily conditions, and judges the current working conditions of the
bridge and makes corresponding responses.

For overload conditions, a load detector can be used. When a vehicle is seriously
overloaded, it will be destructive to the bridge. It will warn drivers of overloaded vehicles
and passing vehicles to reduce damage to the bridge and reduce human risks. The system
structure is shown in Figure 9. In this study, CSI-Bridge 2015 is used to simulate the
deformation of the bridge, and the safety assessment is carried out under the conditions of
overloaded vehicles passing as shown in Figures 9 and 10.
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Through the deformation simulations stemming from extreme conditions, a series of
data can be established and stored in the BIM database for the comparison process of real-
time data in steps 1.6–7, as shown in Figure 3. In this way, online data self-diagnosis can
be realized, and the accuracy and efficiency of risk inspection can be improved. Another
example of an extreme condition is flooding which caused by heavy rain. Rainwater
information can also be stored in the BIM model as the 4D and measured by using a
sensor. When the amount of rainwater exceeds a defined level, the use of the bridge is
not allowed. In addition, time-series information can be tracked along the time to see a
trend of rainwater. When the trend is increasing, a plan for improving the bridge shall be
made to ensure that the bridge is applicable. This concept can be applied to other extreme
conditions due to other extreme conditions such as wind, temperature, or earthquake.
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4.3. Discussion

Many countries, including China, have made significant progress and leap in the
technical level of bridge construction, but bridge builders always emphasize construction
and neglect risk, uncertainty, and hazard management. Managers do not realize the
importance of risk checking. At the same time, because the entire life cycle of the bridge is
nearly a hundred years, it is easy to lose data (and/or perhaps motivation) and the bridge
cannot be maintained in time, which is also the cause of the accident. The application
of BIM can help solve these problems because BIM can contain data taking place along
the project in the model. To exploit BIM, related components have to be defined at the
beginning of the project such as the level of detail, parameters required to store in BIM, or
categories of parameters used by different parties. This definition clarifies required tasks
and provides the background of the project for each party. The workflow is then smooth.

However, there is currently no unified bridge information modeling standard for the
bridge industry in the world as data support, which means the popularity of BIM in the
bridge industry has lagged behind the construction industry for many years. This is a
challenge for applying BIM to other functions for all stakeholders in the bridge industry.
There are still many unknown areas in the application of BIM in the bridge industry that
need to be explored. Moreover, BIM software nowadays does not fully support the bridge
industry. Designers have to create each bridge element manually which different from
buildings that software more supports.

The results of this study show that if BIM can be fully integrated with the bridge
industry, BIM can provide a number of benefits to the industry and indeed inclusiveness to
all stakeholders, for example, to enhance risk management, sustainability, vulnerability
assessment, inspection planning, cost management, or maintenance aspects. The risks
demonstrated in this study consist of internal, natural, and human risks. Each risk profile
can be fully integrated with BIM using an associated support software that related to each,
such as scanners to investigate cracks or simulations to simulate the bridge behavior when
load applies. More information and aspects can also be included in the BIM model for more
comprehensive consideration. The BIM model then can be used to monitor the condition
of the bridge and manage the risks related to the bridge. All of these lead to efficient asset
management. However, the information integration in BIM should be conducted efficiently
because if the information is not integrated properly, the BIM model contains too much
information which may obstruct the utilization due to the size and complexity of the model.
From the study, the functions of BIM are extended to asset management not only the design
and construction that traditionally used nowadays.

5. Conclusions

According to World Green Building Council, the activities related to building and
construction are responsible for 39% of all carbon emissions in the world, with operational
emissions (from energy used to heat, cool, and light buildings) accounting for 28%. The
remaining 11% stems from embodied carbon emissions, or ‘upfront’ carbon that is directly
related to materials, construction, and maintenance processes throughout the whole build-
ing lifecycle. This has led to the drastic concern for better, greener, and more sustainable
development (including building, construction, and maintenance stages) of critical infras-
tructures, including bridge infrastructures and their assets along the corridor. This paper
mainly studies the application of BIM technology in the risk inspection of bridge operations.
First, it briefly introduces the necessity of risk inspection, and compares the traditional risk
inspection mode with the application of BIM for risk inspection and maintenance planning,
as well as proposes the “BIM + bridge risk inspection model”. The advantages of this
model are mainly reflected in the following aspects:

1. Breaking the inherent two-dimensional risk management model, making the content
more intuitive and specific.
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2. The risk can be used as information points and directly mapped onto the three-
dimensional model to obtain component material information and repair them imme-
diately also the preventive maintenance.

3. Through various sensors, real-time monitoring of bridge operation status can be
achieved by integrating with BIM or digital twin.

4. Through computer model simulation, a “safety value” can be established for the
bridge that can be compared with real-time data. The safety values can be based on
defined standards which used in specific countries or defined engineering codes.

5. The database can store all information of the entire life cycle of the bridge, which is
convenient for managers to view and use the data at any time.

6. It provides new ideas for the application of BIM to bridge risk inspection, vulnerability
assessment and maintenance planning. In conclusion, the inspection model proposed
in this study provides new ideas and techniques for bridge risk inspection, making it
more convenient and greatly improving work efficiency.

7. Risks in different aspects can be tracked and managed efficiently using the proposed
technique in this article which consist of internal risk, natural risk, and human risk.
All risks can be assessed in real-time and combined to determine the overall risk level
and prepare an appropriate plan to manage the risks.

At present, there is no BIM standard applying to bridges’ inspection and risk-based
planning, although the popularity of using BIM in this industry tends to increase sig-
nificantly. The standard should be considered carefully and launched to make the BIM
applications in the construction industry as comprehensive as other industries which is a
challenge for relevant agencies. In addition, there are research gaps in this area that need to
be explored. Similarly, the software that does not fully support BIM in the bridge industry.

In the near future, operational staff (e.g., engineers, inspectors, maintainers, etc.)
should adopt this new framework and tailor the developed model to be more suitable
for their practice. Comprehensive field data will further extend the use of digital twin
to robust asset management, with a model that contains all information, along with the
dynamic risk profiles throughout the entire project life [51].

6. Recommendations

From the study, the recommendations for future work can be concluded as follows:

1. Although this study proposes the concept and method of “BIM + bridge risk inspec-
tion model”, it has not conducted in-depth exploration into the automated interaction
of data. In the future, the automation of data analysis using Dynamo Script will be
carried out.

2. Although BIM can promote speed and efficiency in bridge inspection, for many
bridges in reality, drawing their 3D models manually requires a lot of manpower
and time. Therefore, how to model quickly is an urgent problem to be solved. This
aspect requires the development of spatially and semantically correct digital twins
for infrastructure maintenance and monitoring.

3. Other types of risk could be included in a BIM model for the comprehensiveness of
risk assessment and benefit of asset management. In the future, man-made hazards
will be considered. Risks in internal, natural, and human aspects will be extended
to other kinds of risks and studied in detail such as storm surge and other human
activities in the human risk.

4. Support information will be further integrated into a BIM model for the benefits of
assessment. For example, the weather forecast can be used to assess the natural risk
or real-time traffic information can be used to assess human risk.
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