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1. Introduction
A warming climate is expected to intensify the global water cycle with changes in the occurrence and se-
verity of extreme events like intense precipitations and floodings (Abbott et al., 2019; Lavell et al., 2012). In 
turn, the main components of flood risk (Crichton, 1999) are expected to increase: flood hazard (as a result 
of increased energy in the system and of an intensified water cycle), flood exposure of people and assets 
(owing to global population growth and cities becoming more urbanized) and flood vulnerability (especially 
in overpopulated regions with low preparedness and poor infrastructure; Oppenheimer et al., 2014). In this 
context, assessing changes in future floods is crucial to inform adaptation and mitigation strategies aimed 
at protecting human life, vulnerable ecosystems, human wellbeing, agricultural land, homes and other so-
cio-economic assets.

Projected increases in temperature and heavy precipitation imply regional-scale changes in flood frequency 
and intensity (Seneviratne et al., 2012). The projected impacts of floods depend on the change in climatic 
characteristics and on the change in the magnitude and seasonal distribution of precipitation, temperature, 
and evaporation (Cisneros et al., 2014). Changes in land-use, water management and abstraction resulting 
from human activities are also factors that influence the terrestrial phase of the water cycle and, in turn, 
flood characteristics (Prosdocimi et al., 2015). Two practical examples are the likely increase in pluvial flood-
ing, as a result of more frequent intense precipitation events under climate change (Pendergrass, 2018), and 
the reduction and shift in time of the annual spring flood in snow dominated catchments, as a result of 
reduced snow pack (Musselman et al., 2018).

Model-based climate change projections for different greenhouse gas emission scenarios are a valuable 
source of information about future extreme events (Goodess, 2012). Attempts to anticipate changes in fu-
ture flood risk have come forth in recent years both at the catchment scale by statistically post-process-
ing (e.g., downscaling) climate variables like rainfall and simulating runoff using a hydrological model 
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(Bosshard et al., 2013; Camici et al., 2014) and at continental to global scales, employing global model en-
sembles chains, usually using bias-corrected global climate model (GCM) runs feeding global impact mod-
els (GIMs) that simulate runoff at the land surface (e.g., Alfieri et al., 2015; Dankers et al., 2014; Hirabayashi 
et al., 2013; see François et al., 2019 for details on the two approaches). Regardless of scale, a consensus 
has grown in the hydrological community on the need to make the simulation of hydrologic processes 
less uncertain and consequently more useful for informing and guiding decisions (Clark et al., 2015; Merz 
et al., 2014). Concerning the focus of this study—global models—as the climate system is inherently cha-
otic, even using perfect models tuned with perfect observations we would still be dealing with uncertainty 
from natural variability (Deser et al., 2012). On top of natural variability, errors in model structure and 
parameterization undermine the estimate of future extreme events, notwithstanding the uncertainty com-
ing from emission scenarios (Hawkins & Sutton, 2009; Lehner et al., 2020), although Giuntoli et al. (2018) 
report that this source accounts for very little uncertainty in runoff projections compared to that of GCMs 
and GIMs. The aim of improving the simulation of climate and land-surface systems through the increase 
of spatial and temporal resolution and the inclusion of physical processes that were until recently over-
looked comes at a cost of increased complexity, likely to yield a wider spread of plausible outcomes, thus 
increased uncertainty. In this context, extremes should raise even more concern because of the catastrophic 
consequences of their occurrence and the difficulty in sampling and characterizing them even when using 
observed data. For flood hazard planning extreme value theory is generally employed (Goodess, 2012; Katz 
et al., 2013) to derive estimates of design events—that is, the flow magnitude that is expected to be exceeded 
on average with a certain fixed probability in any given year (under the assumption of independence be-
tween flows recorded in different years).

At the global scale, changes in mean flows from global models indicate an increase at high latitudes and in 
the wet tropics, and a decrease in most dry tropical regions, although some regions have high uncertainty 
in the magnitude and direction of change (e.g., Hagemann et al., 2013; Schewe et al., 2014). Conversely, 
changes in flood magnitude are less consistent, with contrasting results among studies depending on the 
region and the ensemble setup (Dankers et al., 2014; Giuntoli et al., 2015a; Hirabayashi et al., 2013). The 
lack of consistency in these changes is emphasized by Cisneros et al. (2014) reporting that studies of flood 
projections under different emission scenarios are still few, and highly uncertain, given the complexity of 
the mechanisms driving floods at the regional scale. In fact, studies using runoff projections have started 
trying, in addition to assessing future floods characteristics, to untangle the uncertainty originating from the 
different components of the modeling chain (e.g., Giuntoli et al., 2015a; Koirala et al., 2014).

The present work builds on Giuntoli et al., (2015a), who demonstrated the important role of GIMs in driv-
ing uncertainty in changes of future high flows globally (sometimes outweighing that of GCMs) and on 
 Giuntoli et al. (2018), who highlighted the small role of scenario uncertainty compared to that of global 
models along with how the choice of GIMs affects overall uncertainty in peak flows projections. We com-
bine findings from these works to go one step further overcoming the use of the ensemble mean (associated 
to e.g., the signal-to-noise to appraise model agreement) to characterize the signal of change of future floods 
and to quantify the uncertainty of the signal coming from GIMs and GCMs, provided that the RCP (Repre-
sentative Concentration Pathways) contribution is negligible compared to the first two sources.

In light of these research gaps, the overarching aim of this study is to apply a novel Bayesian model to the 
eastern USA to estimate space-time changes in future flood magnitude from multi-model ensembles and 
so improve the overall signal/pattern of change and identify sources of uncertainty in projections. In par-
ticular, we:

1.  Propose a statistical method for estimating changes in future flood magnitude that minimizes loss of 
information and allows for an interpretable partition of the sources of variability (uncertainty).

2.  Test the method over the eastern USA on a full multi-model ensemble identifying spatial patterns of 
flood magnitude changes and uncertainty.

3.  Compare simulated flood peaks to observed data for selecting more credible model runs for testing the 
method on a constrained ensemble and compare results.

For the first step, we propose an improved way to assess changes in flood magnitude using multi-model 
ensembles that goes beyond expressing changes through the ensemble mean (or median), which cancels 
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out information on model consensus (or lack thereof) and reduces the signal across multiple members to a 
single value. In fact, taking the mean of the ensemble, which is an approach commonly used to summarize 
the overwhelming amount of information from climate projections, serves only to conceal the uncertainty 
and negatively impact characterization of extremes, rather than actively incorporate that uncertainty into 
design (François et al., 2019). To this end, using a Bayesian hierarchical model, we consider all members at 
once within the same statistical model that provides not only the signal of the direction of change, but the 
entire distribution of the overall change, and therefore a comprehensive description of the uncertainty in 
the model outputs.

For the second step, using the ISIMIP multi-model ensemble—already employed in future high flows 
studies (Dankers et al., 2014; Dottori et al., 2018; Giuntoli et al., 2015a)—we focus on the eastern half of 
the United States where observed data (relatively free from anthropogenic disturbance) are available in 
catchments large enough to be compared to corresponding model grid-cells. On selected grid-cells over the 
domain of study, described in Section 2, we carry out an analysis of the annual maximum flow (extracted 
from daily data) using a Bayesian hierarchical model estimating changes in the future (2065–2099) flood 
peaks compared to the recent historical period (1971–2005) using the Gumbel distribution and expressing 
the uncertainty coming from the choice of GCMs or GIMs as the variation of the statistical model's random 
effects. It should be noted that the terminology “GIMs” used herein could also be referred to as “GHMs” 
that is, global hydrological models.

Lastly, for the third step, in addition to assessing changes in flood magnitude on all available runs of a 
multi-model ensemble experiment, we exploit model biases in present-day runoff peaks (against observed 
data) to constrain projected changes in flood design events (as in e.g., Yang et al., 2017). There is indeed a 
growing interest in the scientific community dealing with climate impact studies on the opportunity of go-
ing beyond the “one-model one-vote approach” (or “model democracy”; Knutti, 2010) and favoring model 
runs with a better historical performance in reproducing observations with the aim to reduce uncertainty 
(Padrón et al., 2019). The overall effort of model selection is to extract efficiently the information relevant 
to a given projection or impact question, beyond the naïve use of multi-model ensembles (e.g., CMIP5) 
in their entirety (Abramowitz et al., 2019). This approach is in line with the fact that, owing to different 
model performances against observations and the lack of independence among models, there is evidence 
now that giving equal weight to each available model projection is suboptimal (Eyring et al., 2019). Indeed, 
modeled data can show large discrepancies from observed data, especially in the tails of the distribution (Do 
et al., 2020). Thus, we apply this framework to the entire ensemble (oE) and to a constrained version (cE) 
in order to understand whether constraining model runs with observations can be considered beneficial to 
future peak flow changes analyses.

We present the data in Section 2 with an appraisal of how peak flow modeled data compares to observed 
data. In Section 3, we describe the statistical framework for estimating future changes in flood magnitude 
and then how the ensemble is constrained. Results are presented in Section 4 before discussing them in the 
final Section 5.

2. Data
Annual maximum flows (henceforth referred to as AMax) were extracted from 18 grid-cells daily runoff 
(simulated) and corresponding gauges' daily streamflow (observed) located in the eastern half of the United 
States (Figure 1).

Observed data were selected to match the size of model data grid-cells (0.5° × 0.5°, i.e., ∼50 km × 50 km at 
the equator), so those with catchment areas in the range of 2,000 – 2,500 (2,500 – 3,000) km2 north (south) 
of 36°N latitude and with daily discharge data covering the models' control period (1971–2005). This choice 
follows the approach of Giuntoli et al., (2015b) of selecting pairs catchment/grid-cells of comparable size to 
deal with the misalignment between model and observational data. Because no land use changes or water 
management interventions are accounted for in the modeled data, the streamflow gauges were selected 
from the Hydro-Climatic Data Network, the reference set of streamflow gauges with historical data respon-
sive to climatic variations, so relatively free of anthropogenic influences (Whitfield et al., 2012). The main 
characteristics of the streamflow gauges are presented in Table S1 in the Supporting information.

GIUNTOLI ET AL.

10.1029/2020WR027897

3 of 19



Water Resources Research

For global models AMax, we use daily runoff outputs from the ISI-MIP Fast Track (Warszawski et al., 2014) 
comprising an ensemble of nine GIMs forced with five CMIP5 GCMs' bias-corrected climate (Hempel 
et al., 2013) in their control (1971–2005) and future (2065–2099) periods under the RCP8.5 scenario (i.e., 45 
runs per grid-cell). The GCMs have been evaluated by McSweeney and Jones (2016). All GIMs were run at 
a spatial resolution of 0.5 decimal degrees (with the exception of JULES whose resolution is 1.25 × 1.875°). 
Models vary in structure (physical processes), parameterization, and time step; we provide a brief over-
view of the set of models and main characteristics in Table  S2 of the Supporting information. Giuntoli 
et al. (2018) provide detailed information on model characteristics and evaluation.

2.1. Appraisal of Simulated versus Observed Peak Flows

We compare observed and modeled peak magnitude (AMax) and timing (AMaxDate) at the 18 locations 
highlighting discrepancies between observed and modeled data. Observed-modeled differences are to be ex-
pected and point to the nontrivial task of reconciling the two worlds, especially when dealing with extremes 
(Seneviratne et al., 2012).

2.1.1. Peak Flow Distributions

We compared raw peak flow time series from observed and modeled data using non-parametric tests (no 
assumption is made on the type of distribution) assessing: (1) same distribution (Kolmogorov-Smirnoff, 
noted KS, (Massey, 1952)), (2) equal median (Wilcoxon rank-sum, noted W, (Wilcoxon, 1945)), and (3) equal 
variance (Ansari-Bradley, noted AB, (Ansari & Bradley, 1960)). There is little overlap between observed and 
modeled peaks in terms of distribution (KS, 9.3% of runs) and medians (W, 11.9% of runs), while for the 
variance there is good agreement (AB, 84.4% of runs). Interestingly, testing modeled data from historical to 
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Figure 1. Map of the 18 streamflow gauges noted with their USGS code (eluding the last two digits 00). On lower right, above the scalebar, the actual grid-cell 
size (0.5°×0.5°) is shown in green.
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future period (RCP 8.5) yields greater agreement across the three tests (KS 66%, W 69%, and AB 90%) than 
seen with the observed peak flows, as reported in Table S3 of the Supporting information.

2.1.2. Peak Flow Magnitude

In addition to testing raw peak flows we compared observed and modeled peak flows Gumbel fits—with 
location and scale parameters estimated via joint maximum likelihood and confidence intervals via profile 
likelihood (Coles,  2001). Figure  2a depicts, for one of the sites (Bourbeuse River at Union, MO), a plot 
of return levels for the one in 30 years event and corresponding 95% confidence intervals: the horizon-
tal gray band shows the observed data, that is, the reference to which the historical period of the models 
(black lines) should tend to align, while the red colored lines correspond to the future period under scenario 
RCP8.5 (plots for all sites are in Supporting Information, Figures S1 and S2). While few models overlap the 
observed data confidence intervals, others lie well outside them (i.e., H08, MacPDM, and VIC combina-
tions). Interestingly, the return levels resulting from the models tend to cluster per GIM, indicating that the 
GCMs tend to follow the peak magnitude described by the GIMs.

2.1.3. Peak Flow Timing

Peak flow timing in all sites tends to be overestimated in the winter and underestimated in the spring and to 
a smaller degree in the summer. This is noticeable when sorting peak counts into four seasons, winter DJF, 
spring MAM, summer JJA, and autumn SON, as shown in Figure 2b. Generally, in northern sites the autumn 
is overestimated too, while in southern sites SON peak counts are in line with observed data (Figure S3 in 
Supporting information). Overall, MacPDM, PCRGlob-WB, and VIC are the GIMs that capture timing of peak 
flows best, while, H08, LPJmL (north, especially), and MPI-HM (south, especially) struggle to replicate the 
right timing of peak occurrences. Furthermore, models generally anticipate peak occurrence (in Figure S4 of 
the Supporting information colored vectors, showing the median of the peak's date per GIM, are constantly 
indicating earlier dates than the observed peaks i.e., the black vector). In particular, in the north peaks occur 
from March to May, whereas models show a systematic shift of approximately one month earlier, with peaks 
occurring from February to April. In the south peaks occur from February to March-April, whereas models 
systematically anticipate occurrences to February with a few exceptions. In addition to clear time shifts of one 
or two months, at some sites modeled peaks occur in absence of corresponding observed peaks.
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Figure 2. Comparison of observed-modeled magnitude (a) and timing (b) of annual maxima: (a) confidence intervals (95%) of observed data (gray band) and 
global climate-global impact model (GIMs-GCMs) combinations in their historical (black), and future (red) periods for the 30 years event; (b) Average peak flow 
occurrence per season. Bars indicate percentage of peak counts for observed (black) and modeled (gray) data. Horizontal black lines correspond to the observed 
peak counts (the reference). Each GIMs comprises five GCM runs. Blue (red) flags indicate over (under)—estimation of peak counts ≥ (≤) 20%.
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This modeled-observed comparison provides insight for creating a constrained ensemble version (cE)—de-
tailed in Section 3.2—obtained by excluding models that capture poorly the timing of observed peak flows, 
which proved to be a suitable discriminant factor.

3. Methods
3.1. Statistical Analysis Framework

This section describes the statistical framework used to assess changes in future floods and their uncertain-
ty. First (Section 3.1.1), we present the Bayesian hierarchical model used to analyze the flood peaks, and 
second (Section 3.1.2), we provide further detail on Bayesian inference and hierarchical models.

3.1.1. Modeling of Extreme Values

The relationship between the frequency and magnitude of high flows (Flood Frequency Analysis, FFA) is 
assessed often by estimating a statistical distribution for annual maxima. Although, extreme value theory 
indicates that the Generalized Extreme Value (GEV) distribution should be the limiting distribution of an-
nual maxima (see Coles, 2001), the suitability of specific distributions for a given peak flow record is a topic 
of active research, and different distributions are recommended as standard in different countries: for ex-
ample, LP-III for the United States (England Jr. et al., 2018), GLO for the UK (Institute of Hydrology, 1999), 
and more recently the Burr has been suggested for Canada (Zaghloul et al., 2020).

For the purpose of this investigation, runoff outputs of grid cells located at corresponding gauging stations 
are used as the variable of interest, thus mimicking an at-site analysis. For each grid-cell a Gumbel distribu-
tion with a specific time-dependent model presented below is employed. The Gumbel distribution, which 
corresponds to a GEV distribution when the shape parameter tends to 0, has a long history of application 
for the FFA and it is used routinely (Bertola et al., 2019; Castellarin et al., 2012). With the aim of identifying 
changes in the distribution of annual maxima, a simpler two-parameter distribution was preferred to avoid 
the hurdle of correctly estimating shape parameters, which are highly variable (Papalexiou & Koutsoyian-
nis, 2013) and arguably of little interest in the context of our analysis, especially considering that we do not 
wish to estimate actual design events of rare frequency. The Gumbel distribution was found to fit the data 
well (as in e.g., Hirabayashi et al., 2008; Lim et al., 2018) and was therefore adopted as the parent distribu-
tion for the grid runoff outputs. Its probability density function (pdf) is defined as:

 
  

        
   

1 exp expx x
 (1)

where ξ ∈ R denotes the location parameter and θ ∈ R  denotes the scale parameter.

Rather than fitting separate Gumbel distributions to each model run (as in e.g., Alfieri et al., 2018; Dankers 
et al. 2014), a hierarchical approach is employed in which data from all runs are modeled together. This 
allows for a clear partition of the variance of data into different components, thus highlighting the con-
tribution from the GCM and the GIM components and their interaction to total variability: this gives an 
indication of the major source of uncertainty in future high flows. Moreover, by modeling all data together, 
it is possible to obtain an estimate of the overall difference between the future runs and the historic runs 
across all model runs. Figure 3 outlines the key components and steps of the statistical framework used in 
this study: for the 45 time series of historical and future flow (resulting from the combination nine GIMs 
and five GCMs) a unique model is estimated and measures of future changes and of the contribution of 
the GCM and GIM components to the overall variability are derived. The model assumes that the data 
(both present and future) follow a Gumbel distribution in which the scale parameter is the same in both 
time windows while the location parameter is allowed to take two different values: one for the historical 
and one for the future periods—while it is assumed to be constant within each time period. This is in line 
with the non-stationary extreme value analysis literature where models in which the location, rather than 
other parameters, is allowed to change are common—see Salas et al. (2018) and references therein. Indeed, 
models that attempt to explain changes in the distribution of extremes by allowing higher order parameters 
to vary are rarer than models in which the location is allowed to change: higher order parameters tend to 
be more variable and therefore harder to estimate accurately, especially when the samples under study are 
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not very large. The accurate estimation of models, which allow for more structure in the scale parameters, 
would require very large samples and very sizable changes in the scale parameters. The model structure was 
determined by a model selection procedure outlined in Section S3.1 following Vehtari et al. (2017): while 
models of increasing complexity were used for both the location and the scale parameter, the final model 
presented below adopts a more complex model for the location parameter and a relatively simple form for 
the scale parameter.

More formally, let yi,j,k,h be the hth annual maximum flow value obtained from the ith GCM combined with 
the jth GIM, which results in the kth GCM-GIM combination. Since all GCMs feed every GIM there are 
5 × 9 = 45 combinations of GCM-GIM output.

It is assumed that yi,j,k,h follow a Gumbel distribution: yi,j,k,h ∼ Gumbel (ξi,j,k,h,θi,j) where the following model 
structures have been assumed for, respectively, the location and scale parameter:

    

 
i j k h i j k

i

, , , , , ,

, ,

    

     

gcm gim comb

gcmI h I
36 70 366 70 36 70 36 70, , , , ,     

         h hj k gim combI I h
 (2.a)

      , gcm, gim,expi j i j (2.b)

with i = 1,…,5, j = 1,…,9, k = 1,…,45, and h = 1,…,70. I[36,70] (h) is an indicator variable that takes value 0 when 
the data point is in the historical period (i.e., 1 ≤ h ≤ 35) and 1 in the future period (i.e., 35 < h ≤ 70). The α 
parameters indicate the intercept for the location, the β parameters indicate the time-effect for the location 
and the γ parameters indicate the intercept for the scale.

The parameter α in Equation 2.a represents the overall population-level value for the intercept parameter 
of the location across all model combinations. To accommodate the variability across the different models 
three group-specific terms have been included: αgcm,i to allow for the variability across the GCMs; αgim,i to 
allow for the variability across the GIMs; and αcomb,k to allow for the variability across each GCM and GIM 
combination. By comparing the different values of σ2

α,gcm, σ2
α,gim, and σ2

α,comb, it is possible to assess which 
grouping variable explains the largest proportion of variability (i.e., uncertainty) in the AMax values. Notice 
that the factor describing the combination of GCM and GIM is only included for the location parameter 
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Figure 3. Flowchart of the statistical analysis framework. In the first two graphs from the left colours refer to 
the AMax time series of the GIM-GCM combinations (for explanatory purposes, five out of 45 are shown) and 
corresponding continuous (historical) and dashed (future) Gumbel fits.
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model. The inclusion of this factor has been found to improve the fit of the model prediction to the data, 
and was deemed useful to describe the interaction between different GIMs (applied to different areas of the 
continent and which might require different input variables) and the GCMs, which reproduce the different 
climate components in a very different fashion. The interaction between the two factors can be already 
guessed in Figure 2a, in which clusters of estimated design events are not fully explained by the GIM or the 
GCM under which the data were generated, but exhibit some further variability.

The parameter β represents the overall population-level change in location parameter when moving from 
the historic period time window to the future time window. The parameter quantifies the overall average 
difference between the location parameter in the two time periods across all model combinations. The  
βgcm,i, βgim,j, and βcomb,k are group-specific effects that allow for each GCM and GIM and combination to have 
a different slope (i.e., a different location value in the two time windows) from the overall population-wide 
time-window effect β. The relative contribution of each component on the time effect for the location of 
the distribution is assessed by comparing the variance of the group-level slopes. The model structure for 
the scale parameter in equation 2.b is simpler than the one for the location parameter as it considers only 
the intercept (while the location also considers the slope) and two group-level parameters γgcm,i and γgim,j 
that allow for the group-wise variation around the overall population-level γ. Note that an exponential link 
function is employed in the scale parameter model to ensure that the function only takes positive values. 
The population-level parameters (in this model α, β, and γ) can be referred to as fixed effects, while the 
group-level parameters (in this model αgcm,i, αgim,j, αcomb,k, βgim,i, βgcm,j, βcomb,k, γgcm,i, and γgim,j) can be referred 
to as random effects, assumed as normally distributed and with common variance. We use a Bayesian ap-
proach to the estimation of the model parameters (see Section  3.1), in which all model parameters are 
viewed as random variables therefore the terminology of population-level and group-level parameter is 
preferred (Gelman et al., 2013).

3.1.2. Bayesian Hierarchical Model

The model structure presented in Equations 2 is that of a multilevel model in which the annual maxima 
within a level (group) of a grouping variable (e.g., peak flows generated with the same underlying GIM) 
shares a common feature and have greater within-group similarity with respect to peak flows from the other 
groups. Thus, the variation in the data are decomposed into the individual observation variation and the 
variation of the levels of each grouping variable. These types of models are called hierarchical models, mul-
tilevel models or random-effect models and have enjoyed a great success in several fields of application (see 
Gelman & Hill, 2006). For instance, Northrop and Chandler (2014) proposed the use of multilevel model to 
quantify the sources of uncertainty in climate projections, highlighting the connection between the multi-
level approach and the ANOVA approach used in for example, Yip et al. (2011).

A Bayesian approach allows for a straightforward estimation of multilevel models in which all uncertainties 
can be properly taken into account (see Gelman et al., 2013). A schematic form of the hierarchical structure 
of the statistical model employed is outlined in Figure 4.

Taking y  =  (y1,1,1,1,…,y5,9,45,70) to represent the vector of all annual maxima and η  =  (α,β,γ,αgcm,αgim, 
αcomb,βgim,βgcm,βcomb,γgcm, γgim) to represent the vector of all model parameters, by virtue of Bayes' rule we 
have:
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Figure 4. Structure of the Bayesian hierarchical model.
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        | y | ,p y p p (3)

where p (y|η) is the model for the distribution of the data conditional on the parameter η (i.e., the Gumbel 
distribution with a model structure specified in Equations 2.a and 2.b) and p(η) is the prior distribution of 
η that needs to be specified and which encodes the beliefs about the distribution of the model parameters 
before any data is taken into account. Finally, p(η|y) is the posterior distribution of η conditional on the 
annual maxima y: this represents the understanding of the distribution of the model parameters after the 
available data has been taken into account and is typically the quantity of interest in Bayesian inference.

Given the hierarchical multilevel structure of the model, a further layer of hyper-parameters (ϕ) that char-
acterizes the prior distribution p(η) needs to be specified so that p(η) ∝ p(η|ϕ)*p (ϕ). Here ϕ is the vector of 
the variances of the random effects: ϕ = (σα, σβ, and σγ). By applying again Bayes' rule we have that:

         ( , | ) ( | , ) ( | )p y p y p p (4)

where p(η,ϕ|y) denotes the posterior joint distribution of the model parameter and the hyper-parameters, 
which is the quantity of interest in Bayesian multilevel models. The posterior distribution p(η,ϕ|y) cannot 
be obtained in a closed form and therefore needs to be estimated, typically using Montecarlo approaches 
in which the distribution is derived using a computer-simulation. In particular Stan (Stan Development 
Team, 2018), a state of the art probabilistic programming language for statistical modeling, was used to 
derive the posterior distribution for the parameters of the model presented in equation 2.a and 2.b and the 
hyperparameters defining their distributions. A sample Stan code employed in the estimation procedure is 
provided in Section S3.3 of the Supporting Information—the code was derived from the brms R package 
(Bürkner, 2017).

Following the recommendations in Gabry et al. (2019) informative priors were used for the hyper-parame-
ters in the model and their suitability was verified via prior-predictive checks: using very wide, that is, unin-
formative, priors can results in excessively variable data. In particular, prior distributions were determined 
using information on the time series of each grid cell (i.e., sample mean and standard deviation). The sensi-
tivity of the model estimates to the prior was investigated by attempting to estimate the models under study 
using several prior specifications. The model estimation was found to be mostly insensitive to different 
prior choices, provided that informative priors, which limit the potential variability of the data generating 
process, are used. The specification on the prior distributions can be found in Section S3.2.

Although, the use of multilevel models to partition the variability of modeled climate variables (Northrop 
& Chandler, 2014) has already been proposed, the uptake of these methods in the literature has been minor. 
In this work, we advocate that their use can deliver key information using a unified model: the overall di-
rection of change and the information of which component of the modeling chain contributes the most to 
the signal variability. The computational burden connected to the implementation of these models has been 
greatly reduced by the availability of general purpose efficient probabilistic programming languages such as 
Stan, allowing for a fast and stable implementation of more informative models.

3.2. Constraining the Ensemble

As stated in Section 1, we create a constrained ensemble (cE) at each site by excluding models that simulate 
observed peak flow characteristics poorly. Forming this ensemble requires a level of informed subjectivity 
and is hindered by the striking discrepancies between observed and modeled values. Indeed, in Figure 2a, it 
would be expected that model data in the historical period (in black) overlaps the confidence interval (gray 
band) of the observed data, whereas in the majority of cases this hardly occurs (see Figures S1 and S2 in 
the Supporting Information). A model selection based on return levels rejects the vast majority of models 
and constitutes, perhaps, an overly stringent criterion. It should be noted that this ground-truthing effort 
is carried out on total (surface plus subsurface) unrouted runoff, so models cannot be expected to replicate 
accurately the actual quantities observed at the streamflow gauges (Giuntoli et al., 2015b; Gudmundsson 
et al., 2012). Furthermore, it has been emphasized how the model's capacity to simulate flood timing is 
an important metric to represent flood generation processes (Collins, 2019; Do et al., 2020). Therefore, we 
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constrain the ensemble on the basis of how well peak flow timings are simulated in the control period. 
To do this, we use two metrics to compare observed and modeled peak counts: (1) the distance between 
the proportion of seasonal counts of observed and modeled peaks (2) RMSE (root mean squared error) of 
counts. The steps for identifying and excluding GIM-GCM combinations (45) at each site are detailed below.

1.  Observed peak timings are sorted into four seasons (DJF, MAM, JJA, and SON), and constitute the ref-
erence. For example, the site in Figure 5 over the 35 years the peaks amount to: 10 in DJF, 19 in MAM, 
five in JJA, one in SON.

2.  Same as step 1 for simulated peak timings. For example, the site in Figure 5, for the JULES GIM fed by 
the HadGEM2-ES GCM peak counts are: seven in DJF, seven in MAM, 12 in JJA, nine in SON. Note that 
the comparison is done on the GIM-GCM combination output.

3.  Counts in step 1 (observed) and step 2 (modeled) are expressed in percentage. A negative score is as-
signed to those GIM-GCM combinations whose proportion is more than 20% apart from the observed 
proportion. For example, counts of step 1 are: DJF = 28.6%, MAM = 54.3%, JJA = 14.3%, SON = 2.9%; 
while counts of step 2: DJF = 20%, MAM = 20%, JJA = 34.3%, SON = 25.7%. In this case there are three 
negative scores with distances above the 20% threshold: MAM-dist = |54.3–20| = 34.3, JJA-dist = |14.3–
34.3| = 20, SON-dist = |2.9–25.7| = 22.8.

4.  Negative scores described in step 3 are counted for all combinations (i) in row for excluding GIMs when 
the negative score is assigned to at least 10 out of 20 season count records (i.e., half of the cases); (ii) in 
column for excluding GCMs when the negative score is assigned to at least 18 out of 36 season count 
records (i.e., half the cases).

5.  We consider the RMSE (root mean squared error) comparing the vector of seasonal peak counts (step 2) 
for each GIM in row (of length 5) and each GCM (of length 9) to a vector formed by the observed data 
counts (step 1) replicated to match the vector length to be compared to.

6.  The threshold value of acceptance for the RMSE is set to the 90th percentile of all comparisons (11.1); 
model combinations above it in any of the seasons are thus excluded from the constrained ensemble.

Meeting any of the two conditions, that is, distance between the proportion of seasonal counts and RMSE, 
yields exclusion of the model from the ensemble.

In Figure 5 peak timing distances and exclusions are shown for station n. 70165: negative (positive) over-
shoots, denoted as “U/O” (under/over) are depicted in red (blue). Upon threshold crossing, model exclu-
sions are denoted with “X” on the lower left the GIMs, on the lower right the GCMs. For instance, the 
JULES GIM is excluded because its series have seasonal proportion of peaks that are distant from that of 
observations more than 10 times (one time in DJF, five in MAM, one in JJA, and five in SON); it also crosses 
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Figure 5. Departure (%) from average observed peak flow (AMax) occurrences per season. Individual global impact 
(GIMs) and global climate (GCMs) models are expressed in row and column, respectively. Red (blue) tones indicate 
under (over)–estimation (“U/O”) of peak counts ≥ (≤) 10%. Model exclusions (GIMs lower left, GCMs lower right) are 
denoted with X.
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the RMSE threshold in MAM and SON. At the same time, the MIROC-ESM-CHEM GCM, is not excluded 
for distance counts but because it has a RMSE above threshold in MAM. Plots for all sites are shown in 
Supporting Information Figures  S5 (northern sites) Figure  S6 (southern sites), and Figure  S7 (two sites 
excluded), with the cE composition summarized in Table S4.

4. Results
The at-site changes in magnitude of future annual maxima (as outlined on the right-hand side of Fig-
ure 3) are illustrated in Figure 6 as changes in the estimate location parameter of the Gumbel distribution, 
that is, the difference between the future (2065–2099) and the historical (1971–2005) periods. Second, Fig-
ure 7 illustrates the corresponding uncertainty contribution coming from GIMs (green), GCMs (yellow), 
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Figure 6. Posterior distribution of β (the parameter that describes the change in the location parameter in the future) of the full ensemble, oE. Shaded blue 
(red) depicts positive (negative) values; solid vertical line corresponds to 0, dashed lines correspond to the 95% credible intervals. The fluorescent green pdf 
refers to the constrained ensemble, cE. Inset plots with star “*” indicate same results as oE, while plots with “NA” indicate no cE results available.
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and their interaction (gray), shown as boxplot of the random effects' standard deviation posterior sample. 
Table 1 summarizes overall direction of changes in magnitude and the corresponding dominant source of 
uncertainty (based on details in Figures 6 and 7). Finally, we discuss results using a constrained ensemble 
(cE) obtained by reducing the full ensemble (oE) having compared modeled and observed metrics—as de-
tailed in the previous Section 3.2.

4.1. Full Ensemble

Our finding demonstrates clear spatial variability that characterizes changes in the annual maxima (Fig-
ure 6). As it is the case for other extremes like precipitations, changes in AMax are unlikely to be uniform 
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Figure 7. Standard deviation of the random effects expressing main contributions to uncertainty in the changes due to GCM (yellow), GIM (green), global 
climate-global impact model (GCM-GIM; gray) for the ß (time-window effect) of the location parameter. Lower three boxplot refer to the oE, while the upper 
three boxplot to the cE (fluorescent green). The higher the boxplot value, the higher the contribution to uncertainty. Inset plots with star “*” indicate same 
results as oE, while plots with “NA” indicate no cE results available.



Water Resources Research

across even small geographic areas (Schoof & Robeson, 2016). Nevertheless, the changes in flood magnitude 
(Figure 6) over the 18 sites considered herein do show some consistent regional patterns. Starting from the 
South, with the exception of one location (21320) with no predominant sign of change, all nine southern lo-
cations (south of parallel 36°N) show a negative change, with one that is significant (95% credible intervals 
all lie below zero). This indicates a consensus of the models on a general decrease in future flood magnitude 
over the southeast United States, a result that is consistent with other regional studies using global model 
projections (Naz et al., 2016). Conversely, for the other nine locations in the northern half of the domain, 
there is no clear pattern of change, although a consensus exists among models at some locations like sites 
68115 in the west and 31595 in the east, which exhibit spiked pdfs with higher π (β) values.

Wider pdfs in the southern and northernmost locations, may be the result of increased model spread that 
can be explained by the difficulties in simulating evaporation and recharge processes in semi-arid zones 
and wetlands of the south (Trigg et al., 2016); and by the high uncertainty in simulating ice and snowmelt 
processes, the GIMs especially, in the North (e.g., the sites in the northern Midwest; Giuntoli et al., 2015b).

The uncertainty in the changes coming from the GIMs, the GCMs or the interaction between both are 
shown in Figure 7, while in Table 1, as a summary, the major source of uncertainty is colored depending 
on the distance from the other sources, that is bright (pale) colored when there is low (high) overlap. A 
striking feature is that if there is a clearly dominant source (i.e., little overlap with a boxplot distinct from 
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Notes. Changes are positive (negative) if the interquartile range, i.e. middle 50%, lies above (below) zero, and grey that is, no 
change otherwise. The dominant source of uncertainty, (seen in Figure 7) is coloured depending on the distance from the 
other sources, that is pale (bright) coloured when there is high (low) overlap—its interquartile range does (not) overlap that 
of the other sources of uncertainty.

Station num

(from N to S)

Location change (F–H) Uncertainty major contributor

oE cE oE cE (out of 9 GIM, 5 GCMs)

1. 54260 GIM GCM 6 GIM 4 GCM

2. 66005 GIM GCM 4 GIM 2 GCM

3. 54810 NA GIM NA 1 GIM 1 GCM

4. 68115 + GIM GIM 8 GIM 4 GCM

5. 31595a GCM All

6. 70165 GCM GCM 6 GIM 3 GCM

7. 55970 GCM GCM 6 GIM 3 GCM

8. 70715 GCM GCM 7 GIM 4 GCM

9. 71890 GIM GIM 8 GIM 4 GCM

10. 71965 GIM GCM 8 GIM all GCM

11. 34515 GCM GCM 6 GIM 3 GCM

12. 21320 GIM GCM 7 GIM 3 GCM

13. 24240a GCM All

14. 22255 GIM GIM 7 GIM 3 GCM

15. 80320 – GIM GIM 8 GIM 4 GCM

16. 23290a GIM All

17. 80415 GIM GCM 7 GIM 3 GCM

18. 23225 NA GIM NA None

Legend

Location change Dominant uncertainty source

Negative no ch. Positive Prominence GIM GCM

Overall ch. Low

Significant ch.b – + High

b The credible intervals of beta lie all below or above zero.a Full and constrained ensembles are the same.

a a

a a

a a

Table 1 
Summary of the Changes in the Magnitude of AMax (Seen in Figure 6) and Corresponding Dominant Source of Uncertainty in 
the Full (oE) and the Constrained (cE) Ensemble

Station num 
(from N to S)

Location change (F–H) Uncertainty major contributor

oE cE oE cE (out of 9 GIM, 5 GCM)
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the other two), this source is always the GIMs and it happens there where the changes have the largest 
spreads (i.e., wide pdf). This may be explained both by the aforementioned difficulties of the GIMs in 
simulating runoff and by the GCMs' uncertainty being at least partly attenuated by the bias correction 
they all underwent prior to feeding the GIMs (Hagemann et al., 2013). Also, the presence of a GCM un-
certainty dominated southwest-northeast band indicates that the locations situated more inland, are less 
driven by GIM uncertainty, perhaps for being less exposed to ice-cold winters as in the north or atmos-
pheric circulation patterns originating in the Atlantic as in the southeast. Overall, the major effects are 
mostly explained by the GCM and GIM sources while the remaining effects are explained, at least partly, 
by the combination between the two sources (in gray), which is smaller in the majority of cases. This is 
to be expected and points to the validity of the statistical model employed. In fact, with an inadequate 
model the combination source might explain most of the random effects, leaving little uncertainty to the 
main sources (GIMs and GCMs).

Given the complexity of the mechanisms driving floods at the regional scale, unraveling the causes 
of the different magnitudes or the directions of change in different models remains elusive. If on the 
one hand GCMs are responsible for regional runoff biases due to uncertainties in the representation 
of precipitation and sub-grid soil infiltration and flow; on the other hand the GIMs' total runoff in-
clude contributions from surface runoff—function of saturation (SE) and infiltration excess (IE)—and 
subsurface runoff—function of impermeable area and water table depth (Kooperman et al., 2018). For 
instance, throughout the domain of study portions of Texas, Louisiana, Kansas, Missouri, and Iowa 
are more likely dominated by IE runoff; on the other hand SE runoff is more likely in the southeast 
(e.g., Florida, south Georgia) and coastal areas of the Great Lakes region (Buchanan et al., 2018). The 
prevalence of IE or SE excess runoff depends on the type of soil and its capacity to become saturated/
infiltrate. A sandy soil in the southeast will yield a higher flux (i.e., will transmit water faster) than a 
clayey soil under a given hydraulic gradient, reducing the effects of high-intensity precipitation. While 
runoff generation plays a role in flood generating processes and therefore in models simulation spread, 
it should be noted that all nine GIMs consider SE only, except three (PCRGlobWB, MATSIRO, and JU-
LES) that also consider IE in their runoff schemes (as noted in Table S2 of the Supporting Information). 
Over the eastern half of the United States, this may represent a limitation provided that a considerable 
share of the area is IE dominated, therefore capturing the precipitation intensity dependence does 
matter in generating floods.

4.2. Constrained Ensemble

As seen in Section 2.1, runoff annual maxima from global models differ systematically from observed data 
in terms of distribution and medians. With only few exceptions, the majority of the models struggle to 
reproduce return period point and confidence estimates of observed AMax even at time spans for which 
extrapolations are relatively small, that is, return period of 30 years. For this reason, the constrained ensem-
ble (cE) was based on model adequacy in simulating timing of peak flows throughout the year. Thus, model 
selection was carried out at-site excluding GIMs and GCMs with considerable departures from observed 
seasonal peak counts. This yields constrained sets that comprise on average 55% of the members of the full 
ensemble (see Table S4). It should be noted that while three sites have equal oE and cE configurations as 
they underwent no member exclusions, two sites have no cE version as they were left with too few members 
(zero or one, as shown in Figure S7).

In constraining the ensemble, the exclusion of GCMs is generally widespread across the domain of study, 
with the MIROC-ESM-CHEM and NorESM1-M models being excluded more often. GIMs are excluded 
more in the northern stations than in the southern ones (approximately 2 vs. 3 exclusions average, respec-
tively out of 9), this can be explained by the increased difficulty in simulating cold climates processes like 
snowmelt and ice formation. More specifically, the H08 and JULES GIMs are the more often excluded 
across the whole domain, and LPJmL in the northern stations. Interestingly, H08 and JULES are GIMs that 
try to close the energy balance and have shown, under a different setup, larger temporal lags in timing of 
peak flows compared to GIMs that do not close the energy balance (Giuntoli et al., 2015b). Also, JULES 
and LPJmL simulate CO2 dynamics while the other models do not (Davie et al., 2013) and their runs show 
a wet bias along with an over (under) -estimation of flood peaks in the winter (spring) period in the north 

GIUNTOLI ET AL.

10.1029/2020WR027897

14 of 19



Water Resources Research

of the United States. Indeed, simulating plant physiological responses to rising CO2 can yield considerably 
different results as higher CO2 can reduce stomatal conductance and transpiration, which may lead to in-
creased soil moisture and runoff in some regions, favoring flooding even without changes in precipitation 
(Kooperman et al., 2018).

Are results affected by the different composition in the GIM/GCM matrix of the cE with respect to the oE? 
Changes in flood magnitude obtained with the cE (Figure 6, in fluorescent green) are similar to those of oE 
with a consensus on negative change in the south of the domain, while the few positive changes actually 
increase (e.g., the stations in the northwest of the domain). Constraining the ensemble at-site yields essen-
tially the same results as using the whole ensemble, although using almost half the runs. A slight change is 
noticeable in the shape of the pdfs, which tends to be less concentrated (smoother peaks), as if more mem-
bers of the oE increase confidence in the estimate.

If the changes in magnitude remain similar in oE and cE, as the cE is composed by fewer members, this is 
reflected in the different contributions to uncertainty, with boxplot that tend to become wider, especially 
the GCM ones (Figure 7). In the oE, the northern and southern sites are GIM dominated (Figure 7 and 
Table 1); while for cE, this predominance tends to lose strength in favor of the GCM, especially in the very 
north of the domain, consistent with Giuntoli et al. (2018). Interestingly, never do GCM dominated sites 
become GIM dominated indicating that constraining the ensemble tends to reduce more the GIM than the 
GCM contribution to uncertainty, although the boxplot are often quite wide, resulting perhaps from fewer 
runs employed on average.

5. Discussion and Wider Implications
The inherent tendency to disagree on the absolute value or on the sign of projected changes of climate 
variables like precipitation and runoff in global model runs adds to the fact that generally these runs do not 
match observations well (Do et al., 2020). Therefore, estimates of future precipitation and runoff changes 
suffer from large uncertainty and from a signal that may be canceled out as different model simulations are 
averaged to generate a final value that is often taken as the ensemble mean (e.g., Dankers et al., 2014; Ragno 
et al., 2018; Wobus et al., 2017).

The aim of this paper was to propose a novel framework that allows for estimating the changes in future 
flood magnitude with the signal of the direction of change expressed as the distribution of the overall 
change rather than the ensemble mean. We quantified these changes by modeling the extreme values pa-
rameters using all multi-model ensemble simulations (GCM-GIM) at once and characterizing the uncer-
tainty from both GCMs and GIMs as the variations of the random effects. Our approach was tested for 
selected locations of the eastern half of the United States: a region chosen to assess modeled and observed 
data effectively because catchments are relatively free from anthropogenic disturbances and basin sizes are 
comparable with those of the model grid-cells.

We revealed spatial patterns of change in future flood magnitudes over the eastern half of the U.S., showing 
a general decrease in the southeast. We found that with our data set the extreme value distribution's pa-
rameter that changes between historical and future periods is the location, while the scale can be left fixed.

Although an increase in flooding has been documented in parts of the Midwest and from the northern Ap-
palachian Mountains to New England, overall there is no clear sign of change in the area of study over the 
last few decades (Archfield et al., 2016; Berghuijs et al., 2016; Hodgkins et al., 2017; Mallakpour & Villar-
ini, 2015; Villarini & Smith, 2010). All the while, model projections indicate a reduction in flood magnitude 
toward the end of this century in the southeast of the United States. The signal remained the same even 
using fewer runs (∼45%) deemed more credible, with the ensemble constrained using historical runoff, cE 
(as in e.g., Yang et al., 2017).

There is a clear pattern southwest-northeast in which GCMs dominate uncertainty, while in the north-
west and the southeast GIMs are the predominant factor reflecting their increased challenge in repro-
ducing runoff under more complex storage-release processes (like ice-cold conditions in the north and 
increased evaporation and aquifer dynamics in the south). The uncertainty depicted by our results indi-
cates that the composition of multi-model ensembles should be tailored to the region of analysis, favor-
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ing a rich set of GIMs while assessing floods in the south of the domain, and a rich set of GCMs in the 
central part of the domain. Constraining the ensemble produced similar partitions of uncertainty, with 
a few sites becoming GCM-dominated (from GIM-dominated in the full ensemble). Prioritizing better 
models does not necessarily reduce the uncertainty in the projections, but it does increase our confidence 
when results are based on models that simulate relevant aspects of the current climate more realistically 
(Knutti et al., 2017).

While global models are not expected to reach the same level of accuracy of for example catchment-cali-
brated models in reproducing flood characteristics, devising rules for selecting them helps to improve their 
credibility. Among the many possible rules, in this instance we opted to constrain the ensemble measuring 
the ability of models to reproduce the seasonality of flows. This choice was in part dictated by the fact that 
flow magnitude are mostly not well reproduced in the model outputs, therefore prioritizing models by this 
characteristic would yield an ensemble with too few members. In fact, we argue that global model evalu-
ation against observed data is an essential step while carrying out continental to global scale studies. This 
is important because global models are increasingly challenged to provide information for planning and 
decision making, as reported by the EDgE Project (Samaniego et al., 2020), which has shown promise in the 
application of water-related climate services for decision making.

The difficulty of interpreting complex non-linear multi-model combinations in physical terms cannot 
be overemphasized. There are indeed multiple flood generating mechanisms in the domain of study 
and it is beyond the scope here to associate results in the occurrence of major floods at each site of 
the domain as seen with context-specific hydrological processes. Discerning which models simulate 
best which type of floods would require an in-depth study treating one model at a time and the va-
lidity of an assessment at a given catchment size may not apply to smaller or larger sizes (Wasko & 
Sharma, 2017).

Bayesian hierarchical models (like the one we apply herein) provide a valuable alternative to make use of 
numerous model runs in a robust and transparent way. Unlike previous studies, our methodology explicitly 
describes the overall signal of all runs, as opposed to the ensemble mean, thus minimizing loss of informa-
tion and allowing at the same time a seamless partitioning of the uncertainty.

Work in the direction of making the best use of ensemble runs will benefit from exploiting newer runs from 
ensemble experiments and from assessing historical performance using additional observation data sets (i.e., 
ground measurements like streamflow data or satellite and reanalysis data). Improving projections of future 
flood risk will happen also through the improvement in the representation of plant processes like plant growth 
and stomatal conductance response to CO2. Finally, a coveted step toward flood projections improvement—
though a difficult step to implement everywhere due to lack of data—is the inclusion of water management 
and abstraction into global model simulations. An example of the importance of this aspect is the decrease 
over the last few decades in water retention capability (i.e., the fraction of precipitation lost by evapotranspi-
ration decreased in favor of runoff) observed over eastern North America (among other regions of the world) 
that was not reflected in CMIP5 model runs, highlighting the importance of direct human intervention im-
pacts, which strongly affects runoff estimates (Abbott et al., 2019; Yang et al., 2018). The inclusion in global 
models of human interventions on water resources like irrigation, new dam construction, and stream chan-
neling is a necessary step to improve the simulation of current and future hydrological processes over a great 
portion of the planet and would certainly benefit the estimates of hydrological extremes.

Importantly, research efforts should go into finding ways to make the best use of the global model runs 
in order to produce the best possible estimates of future changes (Brunner et al., 2019), adopting sta-
tistical frameworks that retain effectively the information and the representativeness of all model runs 
employed.

Data Availability Statement
The ISI-MIP Fast-Track data set is available upon request following the instructions provided at the url 
www.isimip.org/gettingstarted/data-access/. The observed (streamflow gauges) data are openly available 
via the url: http://waterdata.usgs.gov/nwis/sw.
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