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ABSTRACT 
 

Essays in Monetary Policy Conduction and Its Effectiveness:  

Monetary Policy Rules, Probability Forecasting, Central Bank  

Accountability, and the Sacrifice Ratio.  (August 2004) 

Gabriel Casillas Olvera, 

B.A., Instituto Tecnológico y de Estudios Superiores de Monterrey, 

Campus Estado de Mexico 

Chair of Advisory Committee: Dr. David A. Bessler 
 
 
 

Monetary policy has been given either too many positive attributes or, in contrast, 

only economy-disturbing features. Central banks must take into account a wide variety 

of factors to achieve a proper characterization of modern economies for the optimal 

implementation of monetary policy. Such is the case of central bank accountability and 

monetary policy effectiveness. The objective of this dissertation is to examine these two 

concerns relevant to the current macroeconomic debate. The analyses are carried out 

using an innovative set of tools to extract presumably important information from 

historical data of selected macroeconomic indicators.  

This dissertation consists of three essays. The first essay explores the causality 

between the elements of the “celebrated” Taylor rule, using a Structural Vector 

Autoregression approach on US data. Directed acyclical graph techniques and Bayesian 

search models are used to identify the contemporaneous causal structure in the 

construction of impulse-response functions. Further analysis is performed by 
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evaluating the implications of performing standard innovation-accounting procedures, 

derived from a Structural Vector Autoregression on interest rates, inflation, and 

unemployment. This is examined whenever a causal structure is imposed vs. when it is 

observed. We find that the interest rate causes inflation and unemployment. This 

suggests that the Fed has not followed a Taylor rule in any of the two periods under 

study. This result differs significantly to the case when the causal structure is imposed.  

The second essay presents an incentive-compatible approach based on proper 

scoring rules to evaluate density forecasts in order to reduce the central banks’ 

accountability problem. Our results indicate that the surveyed forecasters have done a 

“better” job than the Monetary Policy Committee (MPC). 

The third essay analyzes the causal structure of the factors that are presumed to 

influence the effectiveness of monetary policy, represented by the sacrifice ratio. 

Directed acyclical graph methods are used to identify the causal flow between such 

determinants and the sacrifice ratio. We find evidence that, while wage rigidities and 

central bank independence are the two major determinants of the sacrifice ratio, the 

degree of openness has no direct effect on the sacrifice ratio. 
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CHAPTER I! 
 
 

INTRODUCTION 
 
 
 

Central banks have never been more powerful than now. Monetary 
policy has become the central tool of macroeconomic stabilization. 
               ― Richard Layard (1996), pg. ix 

 

Traditionally economists have divided macroeconomic policy into two lines of 

attack: fiscal and monetary policy. It is usually monetary and not fiscal policy that can 

be adjusted in a timely fashion to respond to macroeconomic events. Fiscal policy is 

typically subject to slow and uncertain legislative processes. However, the usefulness of 

monetary policy has been challenged as a stabilization mechanism. Uncertainties 

emerging from the degree of influence of monetary policy on output and inflation, as 

well as the possible adverse shocks the economy may face sets up an array of difficult 

intricacies that the central bank must overcome. In addition, the monetary authority 

must deal with the complexity of the lag structure of the monetary policy transmission 

mechanism, the choice of the relevant instruments and targets, and modeling issues, 

such as the characterization of the monetary authority’s objective function1. There is a 

large part of the modern macroeconomic literature, namely Real Business-Cycle theory 

(RBC), that presumes that monetary policy has no effect on real variables and, as a 

                                                           
! This dissertation follows the style and format of the American Economic Review. 

1 Usually the models use Kydland-Prescott (1977), and Barro-Gordon (1983)-style loss functions to 
represent the central banker’s utility function. As Blinder (1998) points out, central bankers have to 
generate their own welfare function build upon their legal mandate, due to the political authorities’ lack of 
precision when giving instructions to the central bank. 
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result, money should not been included in their models. However, several empirical 

studies, such as Sims (1992), conclude that monetary policy innovations account for 

substantial effects on real output and that recessions have been frequently preceded by 

unexpected rises in interest rates. Moreover, they claim that it is impossible for RBC-

style models to explain a major extent of the variations on the observed business cycles. 

Therefore, carrying out analysis on the conduction of monetary policy is a 

tremendously important research task to achieve an objective assessment on its 

effectiveness.  

Aiming to minimize the already diminishing gap2 between the academic and the 

policymakers’ view of monetary policy, the objective of this dissertation is to develop 

and apply tools to examine and improve the implementation of monetary policy and its 

effectiveness. A description of the proposed topics under study follows. 

Policy lags (Friedman, 1969a, and Phelps, 1967) and rational expectations (Lucas, 

1981b) led to the conclusion that there was no such thing as a long-run trade-off 

between output and inflation. This implies that monetary policy cannot affect output or 

unemployment in the long-run. But it can have an effect on inflation. In other words, 

activist monetary policy just disrupts the economy yielding a high inflation outcome. 

This “old” version of the “rules vs. discretion” debate left the use of any kind of 

discretionary rules out of the conduction of monetary policy. However, this is not the 

end of the story, this dispute evolved into a new version. 

                                                           
2 McCallum (1999) asserts that the split between academic and policymaker views on monetary policy 
conduction has been reduced in recent years.  
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The existence of a “time-consistency” problem –first noticed in the monetary 

literature by Auernheimer (1974)- also called “inflation bias”, is defined as the 

excessively high equilibrium inflation generated by the credibility problem that comes 

along when the central banks exercise their ability to temporarily boost the economy 

(Kydland and Prescott, 1977, Barro and Gordon, 1983), plays an important role in the 

more recent version of the rules vs. discretion debate (Persson and Tabellini, 1999). This 

“modern” version led some researchers to reconsider a less restrictive class of rules, 

motivating a plethora of research on monetary policy rules. This is the first topic 

addressed in this dissertation.  

McCallum (1988) and Taylor (1993) pioneered the development of these dynamic 

monetary policy rules. The latter, proposed another set of rules where the instrumental 

interest rate changes in response to any deviation of the inflation rate from a desired 

target value and to the output gap, defined as the difference between the real and 

potential GDP. The former suggested a family of rules that stands for an automatic 

reaction of the monetary base growth rate to any deviation of the nominal GDP growth 

rate from a desired target value. On the other side of the debate, while some authors, 

such as Gordon (1985), Meltzer (1987), and Hall and Mankiw (1994), support the 

money-base rule with nominal GDP targeting, Goodhart (1994), Fuhrer and Moore 

(1995) and Bryant, et al. (1993) argue that McCallum-type of rules has undesirable 

stabilization features, and that interest rate rules with are operationally better. 

Conversely, recent research has demonstrated that both rules are practically equivalent 

when the monetary base velocity is a stable function of the interest rate (Razzak, 2001). 
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Another debate that has become known is the robustness of the monetary policy 

rules under “model uncertainty”. In other words, how these rules perform when they 

are built upon different models. This, of course, is due to the well-known ambiguities 

that surface when it comes down to knowing the “true” structure of the economy 

(Levin, Wieland, and Williams, 1999). They conclude that the required information to 

set the interest rate efficiently is summarized by inflation, output gap, and interest rates. 

This indicates that a reduced-form vector autoregression (VAR) analysis on these 

variables could be a well suited tool for assessing this topic. For a monetary policy rule 

to be effective it has to be based upon a model that reflects accurately the economy. 

Consequently, it becomes crucial to analyze the causal structure of the variables that 

have been recognized as key factors that interact themselves to form the monetary 

transmission mechanism. Structural vector autoregressions (SVAR) were chosen to 

achieve this endeavor. 

Unfortunately, “activist” monetary policy rules impose certain undesirable 

restrictions to the policymaker, impairing them to optimally respond to adverse shocks.  

Hall and Mankiw (1994) argue that trying to maintain one variable under strict control, 

could bring volatility to other variables. As a result, there is near consensus that these 

rules should not be used as systematic mechanisms to act to stabilize the economy3. 

Taylor (1993) recommends using these rules as guidelines for policymaking decisions. 

This inherent restrictiveness comes from the fact that a commitment to a simple 

instrument rule is not considered as an appropriate description of current monetary 

                                                           
3 Actually, Taylor (1999) and Feldstein (1999b) maintain that policymakers should work with a reasonable 
portfolio of policy rules. 
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policy (Svensson, 2003). That is why, in order to find an “intermediate” monetary 

scheme between discretion and either fully mechanical or “activist” rules, institutional 

arguments emerged, such as central bank independence (CBI) and targeting 

frameworks, such as Inflation Targeting (IT). This constrained flexibility is desirable 

since despite monetary policy cannot systematically affect unemployment and output 

in the long-run, it might aid to stabilize inflation and unemployment around their mean 

market-determined levels (Fischer, 1977).  

CBI is described as the assignment of monetary policy to a central banker whose 

decisions cannot be rejected ex post by the policymaker (Lippi, 1999). Herrendorf and 

Neumann (1999) claim that a politically-detached independent central bank exhibits 

less incentives to care about the government’s reelection chances reducing the 

possibilities of using monetary policy to create surprise inflation4. But independence 

could be associated with a greater degree of “conservativeness” in the Rogoff (1985) 

sense. In other words, greater independence may imply less-active stabilization policies 

and, therefore, higher output variance. This suggests that the gains of having an 

independent central bank depend on the extent of the trade-off between the inflationary 

bias and the variance of the policy targets, as a result, in addition to CBI, stability of 

policy targets is desired to overcome the time-inconsistency problem (Lippi, 1999). In 

other words, CBI and targeting regimes are not viewed as substitutes, but 

complements.  

                                                           
4 The monetary policy credibility issues have been criticized because, in reality, usually policymakers do 
not try to create unexpected inflation to surprise the private sector. But these criticisms miss the point that, 
in equilibrium, despite the monetary authority’s wish to reduce the inflation rate, it abstains from doing it 
because the disinflationary policy could turn into a recession, due to its lack of credibility. 
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A mechanism that could be in the middle between full-discretion and restriction is 

Inflation Targeting (IT). But still, even an inflation targeting regime, being a constrained 

discretion regime country could show an inflation bias if there is no incentives to 

achieve the target. In other words, the ex-post measure that the IT regime provides as 

inflation and the target could still not fully get rid of the inflation bias since there could 

be moral hazard. The central banker in charge can always provide a somewhat “good” 

explanation of why she could not achieve the target. Hence, additional to the inflation 

targeting regime, these points raise the question of what can be done to eliminate the 

moral hazard that feeds the credibility problem.  

One way to deal with this problem is to hire a conservative central banker as Rogoff 

(1985) suggest. Lamentably, it is not easy to find out whether a central banker is 

sufficiently conservative or not (Barro, 1986). In that case, another asymmetric 

information problem surfaces: adverse selection at the time of deciding who to appoint 

as central banker. Yet, the moral hazard problem remains. Alternatively, another 

approach by Walsh (1995a), and Persson and Tabellini (1993) is to write a contract 

between the government (principal) and the central banker (agent) as an incentive-

compatible mechanism to achieve the desired results. In other words, build a gifts-

punishments scheme between the congress and the central bank. On this issue, 

Garfinkel and Oh (1993) assert that legislation punishing the monetary authority by 

reducing her salary of the central bank’s budget, if she deviates from the target could be 

used to enforce the regime. Unfortunately, the intrinsic complexity in modeling the 

government’s preferences causes serious difficulties to build a totally applicable 
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contract. Blinder (1998) criticizes this approach by stating that the principal, by having a 

reelection period ahead, could have more incentives to have an inflation bias than the 

agent, who is not supposed to be concern about the political election process. Another 

point of disapproval is that the perhaps the salary is not a good motivator for the 

central banker to do her job since she is already giving up salary for not being working 

in the private sector.  Another mechanism that has been talked about in the literature is 

reputation. Reputation seems like a good initiative once we now how to make the 

central bank accountable. Canzoneri (1985) proves that reputation as an inflation-bias 

elimination framework does not work in the presence of private information (such as 

their inflation forecast). Full disclosure of the inflation-forecast by the central bank is 

not intended to pass on information to the private sector, but to be accountable of her 

actions. As Blinder (1998) humorously points out, reputation is not unlike pregnancy –

either you have it or not-, therefore, inflation targeting should be accompanied by an 

inflation-forecast evaluation method, the second topic treated in this dissertation. 

Since the Timbergen (1952) and Theil (1961) framework of macroeconometric single-

equation estimation, up to Chris Sims (1980) and others, forecasting has been a very 

important issue not only for academic economists, but to influence a policy debate 

(Barrel, 2001). For the forecast to work as a reputation building mechanism in the 

Canzoneri (1985) sense, it should neither be private information nor a disturbance 

element. It needs to satisfy two conditions: (i). Have full disclosure of the forecast and 

how the forecasting methods, and (ii.) The forecast has to be a “good” forecast (Winkler, 

1986). By this, we mean that, on one hand it must reflect the banks’ true beliefs. In other 
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words, when outcomes are uncertain, planning must be based on forecasts quite often 

on forecasts submitted by others. Naturally, the planner wishes to ensure that these 

forecasts are prepare honestly and with an appropriate degree of care (Osband, 1989). 

On the other hand, it must be an accurate forecast as well. So not only should the 

central banker provide their true beliefs about their future expectations on inflation 

(and, if there is the case, on GDP as well), but also exert their best effort to provide a 

“good” forecast. If we want to really take into account the uncertainties that surrounds 

the forecast, it is recommended to be in probabilistic form (Samuelson, 1965, Bessler 

and Moore, 1979). 

Why distribution forecasting? Svensson (2003) points out, inflation-forecast 

targeting in a point-forecast sense only works under three assumptions: (i) Quadratic 

loss function, (ii) linear transmission mechanism, and (iii) additive uncertainty. The 

first assumption is reasonable and widely used, Kydland-Prescott (1977), Barro and 

Gordon (1983), as well as supported by more recent research led by Blinder (1998), 

Svensson, (2001, 2002), and others. The second assumption, linear transmission 

mechanism is a quite strong assumption, since it means that the future target variables 

depend on the current state of the economy and the instrument in a linear fashion and 

that is not usually the fact (Svensson, 2003). The third assumption, if there is 

uncertainty of policy multipliers. If assumptions (ii) and (iii) fail, then the certainty 
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equivalence paradigm does not hold5, then, distribution forecast is needed to account 

for unbalanced risks. 

Once we are convinced that probability forecasting is a much better way to 

approach macroeconomic problems (Bessler and Moore, 1979, Tay and Wallis, 2000, 

Granger, 2001), evaluation issues become a topic of concern (de Finetti, 1974, Winkler, 

1986), such as calibration (Bunn, 1984, Kling and Bessler, 1989). But there are other 

considerations such as how close the forecast is from the realized values (Yates, 1982, 

Bessler and Ruffley, 2003). We use the Brier Score (Brier, 1950) and the Yates’ 

Decomposition (Yates, 1982).  The Brier score is a proper scoring rule. It has been both 

theoretically and experimentally demonstrated to be an incentive-compatible 

mechanism (Nelson and Bessler, 1989). The third aspect is to compare, i.e. to make 

competitions between the central bank and other forecasters. A more general rationale 

to use probabilistic forecasting evaluation criteria is the fact that currently, the 

economists’ duty is to habitually explore economic systems in which agents interact in 

complex probabilistic environments (Chari, 1998). A final remark is that probabilistic 

forecast is possible. The Bank of England publishes their forecasts, as well as other 

surveyed forecasters’ numbers, on a regular basis in their quarterly Inflation Report, since 

1996. We use Bank of England’s and other forecasters inflation and output growth rate 

probabilistic forecasts, to illustrate the formidable and practical applications of the Brier 

                                                           
5 Although there are sophisticated models that deal with parameter uncertainty using optimal control 
models with learning mechanisms, Blinder (1998) points out that the intrinsic complexity of these methods 
have not caught both academics’ and policymakers’ attention. 
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score and its Yates’ partition as a building reputation mechanism to reduce the inflation 

bias in an inflation target regime. 

We turn now to the third essay in this dissertation. Monetary policy would not seem 

to be so important if we could not assess monetary policy’s effectiveness. A way to 

measure monetary policy effectiveness is by looking at the sacrifice ratio. Lawrence Ball 

(1994) studies methods to calculate the ratios. Questions related to what determines the 

sacrifice ratio, or what causes the sacrifice ratio, remain unanswered. Is it wage rigidity? 

Is it the monetary policy regime, such as inflation targeting? This is the third point of 

focus of the dissertation. 

There is almost consensus that disinflation policies generate output losses (Gordon, 

1982, Gordon and King, 1982, and Romer and Romer, 1989). But what is the cost of 

those monetary policy tightening policies in the real world? In an effort to measure 

those costs and their possible determinants, several authors have estimated the sacrifice 

ratio, generally defined as the quotient between the output gap and the percent change 

in inflation, and have drawn simple scatter diagrams or calculated simple correlations 

between the ratio and the variables that are assumed to most likely have an impact on 

it.  

According to Ball’s seminal paper (Ball, 1994), the factors that may determine 

the magnitude of the sacrifice ratios could be the length of the disinflation period, the 

initial inflation, the degree o wage rigidity –among others-.  Later on, also Ball asks if 

inflation targets matters. Bernanke, et al. (1999) perform a study on the sacrifice ratios. 

The theoretical argument on why a country adopting an inflation targeting regime 



 11

should have a smaller sacrifice ratio is that IT provides a framework that constraints the 

monetary authority and minimizes its incentives to exhibit an opportunistic behavior –

also called inflation bias- and this increases credibility and the public moderates their 

inflations expectations in a quicker fashion. 

The purpose if to use the same methodology used on the Taylor rule analysis, 

namely, Directed Acyclical Graph theory and the PC algorithm to identify an 

empirically-based causal structure of the main determinants of the sacrifice ratio. 

The objective of this dissertation is to examine these three concerns relevant to the 

current macroeconomic debate. The analyses are carried out using an innovative set of 

tools to extract presumably important information from historical data of simple 

macroeconomic indicators, to examine and improve the implementation of monetary 

policy and its effectiveness. 

The interlinkages of inflation with agriculture have been well documented. The 

impacts of inflation on the agricultural lending institutions have been studied by 

Klinefelter, Penson, and Fraser, (1980) as well as by LaDue and Leatham, (1984) and 

Barnett, Bessler and Thompson (1983). Also, monetary policy decisions affect the 

exchange rates, as well as prices and price volatility. Moreover, in the case of the 

forecasts of main macroeconomic indicators, it has been shown that they have an 

important effect in the agricultural sector (Penson and Gardner, 1988). On the other 

hand, a study on how the disinflationary policies have affected the agricultural income 

in different countries can be a subject of study as well. 
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This dissertation consists of three essays. The first essay (chapter II) examines the 

causality between the elements of the celebrated Taylor rule, using Structural Vector 

Autoregressions on US data for the period between the first quarter of 1960 and the 

fourth quarter of 2000. Directed acyclical graph techniques and Bayesian search models 

are used to identify the contemporaneous causal structure in the construction of 

impulse-response functions. 

The second essay (chapter III) presents a probabilistic approach for inflation forecast 

evaluation that aims to integrate the academic version of “inflation bias” reduction 

mechanisms with some practical implementation issues.  This is illustrated by applying 

the Brier probabilistic forecast evaluation criterion on data of the UK.  

The third essay (chapter IV) analyzes the causal structure of the factors that are 

presumed to influence the sacrifice ratio on panel data of eleven OECD countries using 

Directed Acyclical Graphs to identify the causal flow of the sacrifice ratio and its 

determinants. Chapter V summarizes the results of this research and renders the 

concluding remarks. 
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CHAPTER II 
 
 

STRUCTURAL VECTOR AUTOREGRESSIONS AND THE TAYLOR RULE: 

IMPOSING VS. OBSERVING A CAUSAL STRUCTURE 

 
 
 

There are for man only two principles available for a mental grasp of 
reality, namely, those of teleology and causality. What cannot be brought 
under either of these categories is absolutely hidden to the human mind. 
An event not open to an interpretation by one of these two principles is 
for man inconceivable and mysterious. 
          ― Ludwig von Mises (1949), p. 24. 

 

A. Introduction 

 

While the “old” version of the rules vs. discretion debate6 led by Friedman (1969a), 

Phelps (1967), and Lucas (1981a) left out the use of any kind of discretionary rules on 

the conduction of monetary policy, its “modern” version7 (Kydland and Prescott, 1977 

and Barro and Gordon, 1983) led some researchers to reconsider a less restrictive class 

of rules. This motivated a plethora of research on monetary policy rules pioneered by 

McCallum (1988) and Taylor (1993). The former suggested a family of rules that stands 

                                                           
6 Because of policy lags (Friedman, 1969a, and Phelps, 1967) and rational expectations (Lucas, 1981b), the 
consensus dictate that there is not such a thing as long-run trade-off between output and inflation, 
implying that in the long-run, monetary policy cannot affect output or unemployment, but inflation only. 
In other words, activist monetary policy just disrupts the economy yielding a high inflation outcome. 

7 The existence of a “time-consistency” problem, first noticed in the monetary literature by Auernheimer 
(1974), or “inflation bias”, is defined as the excessively high equilibrium inflation generated by the 
credibility problem that comes along when the central banks exercise their ability to temporarily boost the 
economy (Kydland and Prescott, 1977, Barro and Gordon, 1983), plays an important role in the more recent 
version of the rules vs. discretion debate (Persson and Tabellini, 1999). 
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for an automatic reaction of the monetary base growth rate to any deviation of the 

nominal GDP growth rate from a desired target value. The latter, proposed another set 

of rules where the instrumental interest rate (such as the Fed Funds rate in the US or the 

repo rate8 in the UK) changes in response to any deviation of the inflation rate from a 

desired target value and to the output gap, defined as the difference between the real 

and potential GDP. Despite both the McCallum and the Taylor families of rules 

virtually satisfy Hall’s and Mankiw’s, (1994) four characteristics9 that a good monetary 

policy rule should exhibit, side effects could still surface. Trying to maintain one 

variable under strict control, could bring volatility to other variables (Hall and Mankiw, 

1994). On the other side of the debate, while some authors, such as Gordon (1985), 

Meltzer (1987), and Hall and Mankiw (1994) support the money-base rule with nominal 

GDP targeting, Goodhart (1994), Fuhrer and Moore (1995) and Bryant, et al (1993) argue 

that McCallum-type of rules has undesirable stabilization features, and that interest rate 

rules with are operationally better. Conversely, recent research has demonstrated that 

both rules are practically equivalent when the monetary base velocity is a stable 

function of the interest rate (Razzak, 2001). Another debate that has become known is 

the robustness of the monetary policy rules under “model uncertainty”. In other words, 

how these rules perform when they are built upon different models. This, of course, is 

                                                           
8 The repo rate is the interest rate at which repurchase agreements are set. Repurchase Agreements are 
frequently the main way in which the banks borrow from and deposit money in the central bank. In a 
repurchase agreement an individual acquires the temporary use of a security by buying it and, at the same 
time, committing herself to sell it back to the original owner on a particular future date, at a certain price 
that includes a premium based on the type of security lent. 

9 According to Hall and Mankiw (1994), monetary policy rules should be characterized by efficiency, 
simplicity, precision and accountability. 
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due to the well-known ambiguities that surface when it comes down to knowing the 

“true” structure of the economy (Levin, Wieland, and Williams, 1999). They conclude 

that the required information to set the interest rate efficiently is summarized by 

inflation, output gap, and interest rates.  

This indicates that a reduced-form vector autoregression (VAR) analysis on these 

variables could be a well suited tool for assessing this topic. And it is precisely this 

specific raison d'être that triggered our interest on this first topic of our discussion. For a 

monetary policy rule to be effective it has to be based upon a model that reflects 

accurately the economy. Consequently, it becomes crucial to analyze the causal 

structure of the variables that have been recognized as key factors that interact 

themselves to form the monetary transmission mechanism. Structural vector 

autoregressions (SVAR) have been chosen to achieve this endeavor. 

Sims’ seminal paper (1980), dictated the general norm on “modern” 

macroeconometric modeling estimating vector autoregressions (VAR) from data on the 

major macroeconomic variables. Within Sims’ modeling framework, a descriptive 

mechanism called impulse-response function was also introduced to analyze the 

reaction of each variable in the model to a shock in each equation of the system. Aiming 

to be able to show the dynamic patterns for each variable, these shocks must satisfy 

orthogonally conditions. In order to achieve this desired provision, a Choleski 

decomposition was used. Cooley and LeRoy (1984) noticed that by applying this 

factorization method, one might have imposed some undesirable restrictions on the 

model in terms of causal behavior.  
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In response to this claim, Blanchard and Quah (1989), Blanchard (1989), and Stock 

and Watson (2001) –among others- have approached the problem by building means to 

impose structure to the so-called “atheoretical VARs”. Bernanke (1986)10 handled the 

problem using an alternative decomposition that allows for nonlinear restrictions on the 

off-diagonal elements of what they call pattern matrix.  

However, only theoretical restrictions have been imposed in VAR analyses of 

monetary policy rules, and it would be interesting not only to know if the data supports 

the major theories on how monetary policy affects the economy, but also to evaluate the 

usefulness of monetary policy rules in the implementation of monetary policy.  

If we want to test if this is the empirical underlying causal structure, the Directed 

Graph paradigm is able to analyze how the variables are causally related in 

contemporaneous time. In order to perform this task, since the data is dynamically 

related, it would be we useful (almost imperative) to “pre-filter” the data using a vector 

autoregression. Then we would be able to use the PC algorithm on the residuals before 

actually run the impulse-response functions. We decided to use Stock and Watson’s 

(2001) VAR as a starting point since it was inspired by the Taylor rule. 

As in Bessler and Lee (2002) and Bessler and Yang (2003), this is achieved by 

identifying a causal structure of the estimated contemporaneous innovations derived 

from an unrestricted VAR, and then restricting it using a Bernanke ordering (Bernanke, 

1986, and Doan, 2000). 

                                                           
10 The focus here is on how Sims (1986), Bernanke (1986), and Blanchard (1989) theories influenced the 
causal ordering of the variables for the computation of the impulse-response functions and the forecast-
error variance decomposition. For a more general treatment on structural VARs please see Amisano and 
Giannini (1997) 
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We want to answer the question if the US has (or has not) followed a Taylor-style 

monetary policy rules in the period between first quarter of 1960 and the fourth quarter 

of 2000. The other contribution of this paper is to analyze the consequences of analyzing 

policy actions when a causal structure –namely the Taylor rule- is imposed, rather than 

observing what the monetary authority has done. 

The remainder of this chapter is divided in three sections. Section B portrays both 

theoretical and empirical-based discussions about the Taylor rule. We describe the 

directed acyclical graph models of causality in section C. Section D shows our results. 

Finally, we reserved the last part for conclusions. 

 

B. The Taylor Rule 

 

The Taylor rule (Taylor, 1993) expresses the central bank’s instrument, namely, the 

interest rate as an explicit function of inflation and output gap11. Taylor seminal paper 

proposed the following rule for the US: 

( )1  ( ) ( )( ) 221ˆ21 * +−++= πππ yr  

where r  is the Federal funds rate, π  is the inflation rate over the previous four 

quarters, *π  is the inflation target (Taylor proposes a target of 2 percent), and ŷ  is the 

output gap. The output gap is defined as ( ) **100ˆ yyyy −= , where y  is the real gross 

domestic product (GDP) and *y  is the trend real GDP. 

                                                           
11 Please see McCallum (1999), Taylor (1999), and Svensson (2003) for a complete revision on this topic. 
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Several empirical studies have emphasized the usefulness of instrument rules, such 

as the Taylor rule, to describe the central banks’ behavior (Judd and Rudebusch, 1998; 

Clarida, Galí and Gertler, 1998; Stock and Watson, 2001). Although Taylor’s original 

exposition of the rule did not emerge from a rigorous theoretical model, Svensson 

(1997) and Walsh (1998) show that the Taylor rule can be derived from the first-order 

conditions from a model of optimizing agents, as a central bank’s reaction function. 

Different models with their respective assumptions, structure, and monetary policy 

channels of transmission can yield optimal policy rules similar to the Taylor rule. In this 

regard, Levin, Wieland, and Williams (1999) examine the robustness of the Taylor rule 

under model uncertainty. They conclude that the output gap, the four-quarter average 

inflation rate, as well as lagged values of the Federal funds interest rate summarize 

almost all the information relevant to describe the Fed’s behavior. 

This section will provide a theoretical derivation of the Taylor rule, closely 

following several sections of Walsh (1998), in order to emphasize the underlying 

assumptions and model structure that this policy rule encompasses. Then, an empirical 

treatment of the Taylor rule based on a structural vector autoregression (SVAR) is 

described.  Finally we present and replicate a vector autoregression (VAR) by Stock and 

Watson (2001), inspired by the Taylor rule.  
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1. Derivation of the Taylor Rule from a Model of Optimizing Agents 

Assume a Money-in-Utility-Function (MIU) model12 (Sidrauski, 1967, and Brock, 

1974). A representative agent has to choose the streams of consumption, leisure, and 

money balances to maximize her time-discounted preferences, subject to an 

intertemporal budget constraint. Her preferences are represented by a constant relative 

risk aversion (CRRA) utility function13, with money and consumption as arguments. 

The budget constraint involves the stock of capital transition equation assuming a 

Cobb-Douglas (Cobb and Douglas, 1928) neoclassical production function of labor and 

capital. 

The first-order conditions characterizing the steady-state of the MIU model can be 

represented as a set of six expectational linear difference equations (production 

function, a resource constraint, the relationship between marginal product of capital 

and the expected rate of return, expected consumption equation, a Fisher equation, 

relating the nominal and real interest rate, and a money supply equation), as shown by 

Campbell (1994) and Uhlig (1995). 

The model described above is still not useful for monetary policy analysis since it 

exhibits the classical dichotomy (Modigliani, 1963; Patinkin, 1965). In other words, money 

and monetary shocks do not affect real variables (output, consumption, and real 

interest rate). his is because prices are assumed to be perfectly flexible. Walsh (1998, pp. 

                                                           
12 MIU models have been criticized on the grounds that they are a reduced-form model of a fully-specified 
model of transaction costs. Brock (1974) explains that money can yield utility by reducing transaction costs. 
However, Feenstra (1986) finds certain conditions under which a transaction cost model, such as a cash-in-
advance model (Clower, 1967), and the MIU’s maximization problem are equivalent. 

13 King, Plosser, and Rebelo (1988) claim that CRRA preferences are consistent with steady-state growth. 
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190-195) shows that the linear approximation of the MIU model (described above) can 

incorporate a one-period nominal wage rigidity a la Taylor (1979, 1980). This is achieved 

by assuming that the nominal wage rate, set to produce a real wage to clear the labor 

market, is determined before the start of the period. Therefore, the real wage “target” is 

a function of the expected price-level. 

McCallum and Nelson (1997) treat capital as exogenous in the context of the 

dynamic optimizing general equilibrium model described along this section. Capital 

grows steadily at its trend rate. This precludes the model to examine issues concerning 

capital accumulation. In addition, they assume that employment oscillates about a fixed 

level due to an inelastic labor supply. Nevertheless, these simplifying assumptions help 

to characterize an economy with four simple equations: aggregate supply, aggregate 

demand, a money demand equation, and a Fisher equation. 

The money demand equation is dropped from the system if we assume that the 

central bank conducts monetary policy using the interest rate as the instrument. Thus, 

the money demand is determined endogenously according to that equation. Monetary 

policy shocks affect real variables directly via the interest rates. 

The remaining system of three equations involves an aggregate demand, function of 

expected output and interest rate, an aggregate supply, function of expected inflation 

and expected output, and a Fisher equation connecting the nominal and the real interest 

rate. The following part of the model is a variant of Walsh (1998, pp. 468-470). 

With no capital and, consequently, no investment, output equals consumption (this 

is the new aggregate resource constraint). Moreover, the introduction of Taylor’s 
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staggered price model defines prices as a constant return over wages. A price-

adjustment equation characterizes the adjustment of wages. Taylor also assumes that 

the expected real average contract wage is an increasing function of the level of 

economic activity. Hence, the equations relevant for the determination of output and 

the price level are the aggregate demand, and the Taylor’s price-adjustment equation. 

From here, we carefully follow Walsh (1998, pg. 468-470) model, with the exception 

that we include just one lag in the aggregate demand equation. Walsh claims that if we 

disregard the role of expected future inflation14, the US economy can be characterized 

by the following three linear equations: 

( )2  tttt uRyy +−= −− 1211 αα  

( )3  tttt y ηγππ ++= −1  

( )4  tttt ERr π111 −−− +=  

where ty  and 1−ty  are the output at time t  and one-period before, respectively, 1−tR  is 

the lagged value of the real interest rate, tπ  and 1−tπ  stand for the current and lagged 

inflation rates, and 1−tr  is the nominal interest rate at time 1−t .  tu  and tη  are ... dii  

random variables not known at time 1−t , with zero mean and variances uσ  and ησ , 

and the α ’s and γ  are positive parameters. In addition, 1α  is assumed to be less than 

unity. 

                                                           
14 Svensson (1997) proposes a variant of this model recognizing the role of expected inflation. His results 
are not dramatically different in terms of what we want to show, i.e. that the Taylor rule can be derived 
from a theoretical model of optimizing agents. This is backed by Fuhrer’s (1997) findings emphasizing the 
unimportance of the forward-looking expectations, based on an empirical study of the U.S. 
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Equations ( )2 , ( )3 , and ( )4  correspond to the aggregate demand, a price-

adjustment (or inflation) equation, and the Fisher equation, respectively.  

Contrary to the utility maximization framework, the model above puts together 

lagged variables that will help to capture the observed dynamics of the data, but it is 

important to state this difference since it is a major source of criticisms such as 

McCallum (1999) -among others- regarding the (still) ongoing debate among 

economists about which is the “right” model upon which we should build the central 

bank optimization representation. 

Suppose that changes in the nominal interest rate ( tr ) affect inflation and output 

with one-period lag15. The monetary authority sets the nominal interest rate r  at time t  

when ty  and tπ  are already known, and setting tr  affects 1+tπ  and 1+ty . 

If we insert the inflation equations ( )3  and ( )4  (once we solved it for 1−tR ) into the 

aggregate demand equation ( )2 , for period 1+t , we are left with: 

( )5     ( ) 11211 +++ +−−−= ttttttt uyEryy γπαα  

 Taking expectations to both sides of equation ( )5 , conditional on information at 

time t , and solving it recursively, yields the following expression: 

( )6     ( )[ ] ( )[ ] 12121 11 ++ +−−−= ttttt uryy πααγα  

For convenience, let’s define 11 ++ −≡ ttt uyθ . Therefore, we can re-express equations 

( )2  and ( )3  for the period 1+t  in the following way: 

                                                           
15 The Taylor rule in equation (1) is build upon quarterly data. A model dealing with more than one or two 
lagged periods can easily become intractable. Thus, along the same lines, this assumption can be thought as 
a model for annual data. 
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( )7     11 ++ += ttt uy θ  

( )8     11 ++ ++= tttt υγθππ  

where 111 +++ += ttt u ηγυ . 

In the spirit of Kydland and Prescott (1977), assume that the central banker’s 

preferences are represented by a quadratic loss function L , with the output gap 

( )*yyt − , and the difference between the inflation rate and a target ( *π ) as arguments: 

( )9     ( ) ( ) ( )( )2*
1

2*
1 2121 ππλ −+−= ++ ttt yyL  

where 0>λ  is the weight on output stabilization.  

The policymaker’s optimization problem is choose tθ  at each t  so that she 

minimizes the sum of discounted squared future deviations from the output and 

inflation targets. Without loss of generality, assume that 0** == πy . Hence, the central 

banker is faced with the following dynamic optimization problem: 

( )10     ( )( ) 10,21min 22
1

<<+ ++
∞

=∑ βπλβ
θ ititi

i
t yE

t

 

subject to the description of the economy, i.e. equations ( )7  and ( )8 . β  is the standard 

discount factor. Since the objective function is a real-valued continuous quadratic 

function, the restrictions are linear and continuous, and the only state variable at time t  

is tπ , the choice of θ  in period zero will determine the level of inflation in period 1. 

Moreover, the discount factor is bounded between zero and one, therefore we are able 

to use Bellman’s principle of optimality (Bellman, 1957). Thus, using dynamic 

programming, we can express ( )10  as a Bellman equation: 
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( )11     ( ) ( )( ) ( ){ }1
2

1
2

121min +++ ++≡ ttttt VyEV
t

πβπλπ
θ

 

where ( )⋅V  is the value function. 

The first-order conditions are: 

( )12     ( ) ( ) 01
2 =+++ +tttt t

VE πγβγπθγλ π  

From the envelope theorem (Benveniste and Sheinkman, 1982), i.e. taking the derivative 

of expression ( )11  with respect to tπ  yields, 

( )13     ( ) ( )1+++= ttttt tt
VEV πβγθππ ππ  

 If we multiply both sides of expression ( )13  by γ , solve it for ( )1+tt t
VE πγβ π , 

substitute it in equation ( )12 , and solve it for ( )tt
V πγ π , we are left with: 

( )14     ( ) ttt
V λθπγ π −=  

 Plugging expression ( )14  for one-period ahead, into equation ( )12 , and solving for 

tθ  yields, 

( )15     ( )[ ] ( )[ ] tttt E πγλγθγλλβθ 2
1

2 +−+= +  

Given that λ  and γ are parameters, it is reasonable to assume that tθ  is a linear 

function of 1+tθ  and tπ . Therefore, we can apply the method of undetermined coefficients16 

to provide a conjectured general form of the solution and determine the specific 

coefficients. 

                                                           
16 See Romer (2001), pp. 289-91, and Turnovsky (2000), pp. 89-91. 
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Suppose the optimal decision rule is of the form tt ψπθ = . This implies that 

11 ++ = tttt EE πψθ  and, introducing equation ( )8 , it also implies that ( )ttttE γθπψθ +=+1 . 

Substituting these two expressions into equation ( )15  yields, 

( )16     ( ) 022 =−−−+ γψγλβλβλγψ  

In order to obtain the negative root for equation ( )16  and, as a result, the precise 

parameters, we could use the quadratic formula17. However, we are far more interested 

in obtaining the general form of the central bank’s reaction function, i.e. the interest rate 

equation that minimizes the loss function at each period of time t . 

Recall that we defined 11 ++ −≡ ttt uyθ , and that we assumed the optimal decision 

rule has the form tt ψπθ =  thus, substituting it into equation ( )6  and solving it for tr , 

yields the following expression: 

( )17     ( ) ( )[ ] tttt yr παγψααπ 221 1−++=  

 This is the central bank’s optimal reaction function for the economy described in 

equations ( )2 - ( )4  with the monetary authority’s preferences characterized by the loss 

function ( )9 .  

 For simplicity we assumed that 0** == πy  in equation ( )9 . Let’s relax this 

assumption assuming that both targets are fixed across time. In addition, suppose that 

that ( ) ( )[ ] 211 221 =−= αγψαα , equation ( )17  can be re-expressed: 

( )18     ( )( ) ( )( )** 2121 πππ −+−+= tttt yyr  

                                                           
17 The negative root is the relevant solution since the stability of the inflation process requires that 

11 <+γψ . This is due to ( ) 11 1 ++ ++= ttt υπγψπ .  
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Except for the lack of a number 2 adding to the right-hand side of the equation, this 

equation is exactly the same as the equation ( )1 , i.e. the original version of the Taylor 

rule (1993).  

 In order to obtain the same parameter numbers of Taylor (1993), the “deep” 

parameters18 are 58.01 =α , 16.12 =α , and 26.0=γ  for a discount factor of 96.0=β  

(appropriate for annual data), and an output-stabilization weight of 1=λ , i.e. equal 

weight on output and inflation. Therefore the original version of the Taylor rule entails 

a strong response of spending to changes in interest rate ( 2α ) as well as inflation to 

variability on output (γ ). 

 

2. An Empirical Approach of the Taylor Rule: Structural Vector Autoregressions 

We have painstakingly shown a way to derive the canonical form of the Taylor rule 

from a model of optimizing agents. Now we turn to more practical concerns. In an 

empirical research paper on robustness of monetary policy rules under model 

uncertainty, Levin, Wieland, and Williams (1999) argue that the required information to 

set the interest rate efficiently is summarized by inflation, output gap, and interest rates. 

Therefore, from an empirical point of view, this suggests that a reduced-form vector 

autoregression (VAR) analysis on these variables could be a well suited tool for 

assessing this topic.  

For a given vector of historical observations tX , a VAR can be expressed as: 

                                                           
18 These values are in line with Ball (1997). 



 27

( )19     t
k

i itit XX ε+Φ+Φ= ∑ = −10  

where tX and tε  are 1×m  random vectors, 0Φ  is a vector of constants, and iΦ , 

ki ,,1 …=  are matrices of coefficients with the appropriate dimensions. The vector of 

disturbance terms, or innovations, tε is assumed to be i.i.d. with zero mean and a mm×  

variance-covariance matrix εΣ . Innovations are assumed to be serially uncorrelated, 

but contemporaneous correlations among elements of tε  is allowed. 

Sims’ seminal paper (1980), dictated the general norm on “modern” 

macroeconometric modeling estimating vector autoregressions (VAR) from data on the 

major macroeconomic variables. Within Sims’ modeling framework, a descriptive 

mechanism called impulse-response function was also introduced to analyze the 

reaction of each variable in the model to a shock in each equation of the system. Aiming 

to be able to show the dynamic patterns for each variable, these shocks must satisfy 

orthogonally conditions. In order to achieve this desired provision, a Choleski 

decomposition was used. Cooley and LeRoy (1984) noticed that by applying this 

factorization method, one might have imposed some undesirable restrictions on the 

model in terms of causal behavior.  

For a monetary policy rule to be effective it has to be based upon a model that 

reflects accurately the economy. Consequently, it becomes crucial to analyze the causal 

structure of the variables that have been recognized as key factors that interact 

themselves to form the monetary transmission mechanism at a contemporaneous level. 
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In response to the already mentioned allegations by Cooley and Leroy (1984), 

Blanchard and Quah (1989), Blanchard (1989), and Stock and Watson (2001) –among 

others- have approached the problem by building means to impose structure to the so-

called “atheoretical VARs”, giving birth to the structural vector autoregressions 

(SVARs). Bernanke (1986)19 handled the problem using an alternative decomposition 

that allows for nonlinear restrictions on the off-diagonal elements of what they call 

pattern matrix.  

The observed innovations te  are combinations of “structural” driving sources of 

variation in the data. Following Amisano and Giannini’s (1997) K -model, based on 

Bernanke (1986), these driving sources of variability are orthogonal and can be written 

as: 

( )20  tt Ke ε=  

Assuming invertibility of the K  matrix, identification is achieved if K , evaluated at 

the “true” vector 0K , has full column rank of ( ) 21−mm . In other words, K  will be 

identified if we leave ( ) 21−mm  free parameters in K  (Amisano and Giannini, 1997, 

pp. 35; Doan, 2000, pp. 8-10). 

Innovation accounting procedures such as impulse-response functions and forecast-

error variance decomposition can be performed on the SVAR: 

( )21  ∑ = − +Φ+Φ= k

i titit KXKKKX
10 ε  

                                                           
19 The focus here is on how Sims (1986), Bernanke (1986), and Blanchard (1989) theories influenced the 
causal ordering of the variables for the computation of the impulse-response functions and the forecast-
error variance decomposition. For a more general treatment on structural VARs please see 
Amisano and Giannini (1997) 
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However, theoretical restrictions have been imposed in VAR analyses of monetary 

policy rules, and it would be interesting not only to know if the data supports the major 

theories on how monetary policy affects the economy, but also to evaluate the 

usefulness of monetary policy rules in the implementation of monetary policy. Even 

Stock and Watson (2001, pg. 103) define a structural vector autoregression in the 

following way: “A structural VAR uses economic  theory to sort out the 

contemporaneous links among the variables…”  

Later in this paper, we will retrieve the causal structure from the set of data using a 

fairly recent methodology called Directed Acyclical Graph (DAG) theory on causality, 

developed by Pearl (2000) and Spirtes, Glymour and Scheines (1993, 2000) to assess the 

usefulness of instrument-based (Taylor-style) monetary policy rules for the US 

economy.  

 

3. Stock and Watson’s Model and Replication 

Stock and Watson (2001) present a three-variable VAR for the US macroeconomy 

inspired by the Taylor rule for the 1960:I-2000:IV period. They pick output, inflation, 

and unemployment as their set of variables20. The first two are practically “natural” 

variables, but the third one differs from the original version of the Taylor rule (output 

gap). Stock and Watson limit their explanation to note the difference between the 

original Taylor rule and their approach (footnote no. 5, pg. 103). At a theoretical level, 

                                                           
20 Data on 

tu  and 
tr  are the quarterly averages of the monthly values of the civilian unemployment rate and 

the Federal Funds interest rate, respectively. Inflation is defined as: ( )1ln400 −= ttt ppπ , where p  is the 
chain-weighted GDP price index. t  is the time subindex. 
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Friedman (1994) states that both measurements are practically equivalent if the rates of 

productivity growth, labor-force participation, and population growth are constant. 

Friedman also argues that US productivity growth improved at the beginning of the 

1983-1990 expansion, compared to the seventies. This comment suggests that these two 

measures are not equivalent in practice. Nevertheless, this difference is usually 

overlooked because of the widely-accepted notion that when output grows more slowly 

than full employment output, unemployment rises because the utilization of productive 

factors falls. 

Stock and Watson present the impulse-response functions and the forecast-error 

variance decompositions for an “unrestricted” VAR ordered π , u , r . We obtained 

Stock and Watson’s original data set, replicate their unrestricted VAR and its 

corresponding innovation accounting standard procedures.  

Table 1 shows our results from the model replication. We obtained almost the same 

forecast-error variance decompositions with trivial differences. This was not the case for 

the Granger causality tests. We were unable to replicate Stock and Watson’s four-

lagged Granger Causality tests p-values quantitatively. Qualitatively, all results were 

practically the same, except for the π  does not Granger-cause r  (lower left corner of 

first panel in table 1), and u  does not Granger-cause π  tests, where Stock and Watson’s 

p-values indicate failure to reject at 27 and 31 percent confidence levels, respectively. In 

our case we reject both hypotheses with 1 percent confidence level. Despite that we 

found different outcomes, we will see in our Directed Graph results in section D, that 

Stock and Watson’s Granger-causality tests support our results. 
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C. Probabilistic Approach to Empirical Causality 

 

The theoretical foundations of Directed Acyclical Graphs (DAG) as a probabilistic 

approach to infer causality from a data set have their origins in Pearl (1986). Combining 

the traditional philosophical notions of causality with statistical theory, Pearl proposed 

the concept of d-separation (defined in Pearl, 2000, pp. 16-17.), to describe conditional 

independence with a graphical approach21.  

Spirtes, Glymour, and Scheines (1993, 2000) developed algorithms based on 

Artificial Intelligence (AI), integrating the concept of d-separation to retrieve the causal 

structure from empirical data. Their main contribution: a search-theoretic algorithm 

called the PC algorithm. 

Even though this approach was born on the fields of Philosophy, Statistics, and 

Computer Science, it has now been increasingly used in economics and finance. 

Swanson and Granger (1997) pioneered in the application of DAGs in a Vector 

Autoregression setting. Bessler and Lee (2002), and Awokuse and Bessler (2003) apply 

these ideas to recent macroeconomic VARs. Demiralp and Hoover (2003) judged the 

usefulness of the PC algorithm using Monte-Carlo simulations to test how close the 

causal structure inferred by this methodology was from the data generating process’ 

true causal system. They found very encouraging results. 

 

                                                           
21 Verma and Pearl (1988) provide a proof of this proposition. 
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1. Directed Acyclical Graphs and the PC Algorithm 

This part follows closely the work by Pearl (2000) and Spirtes, Glymour and 

Scheines (1993, 2000). A directed graph is formally defined as an ordered triple 

EMV ,, , where V  is a nonempty set of vertices (variables), M  is a non-empty set of 

marks (symbols attached to the end of undirected edges; e.g., >  or <  ), and E  is a set of 

ordered pairs (the lines between them). In other words, directed graphs are pictures 

summarizing the causal flow among a set of variables. 

A directed acyclic graph (DAG) is a directed graph that contains no feedback cycles. 

In other words, cyclic graphs such as ACBA →→→ , assuming a set of vertices 

(variables) { }CBA ,, , are ruled out. The concept of DAG is used in this paper.  

Directed acyclical graphs are sketches representing conditional independence. This 

can be illustrated by the recursive product decomposition, derived from the chain rule 

of probability calculus: 

( )22     ( ) ( )∏
=

− =
n

i
iinn paxPxxxxxP

1
1321 ,,,,, …   

where P  is the probability distribution of variables nxxxx ,,,, 321 … , and the realization 

of some subset of the variables that precede ix  in order ( nxxxx ,,,, 321 … ), is represented 

by the term ipa .  

DAGs are classified in three types: Causal chains, causal forks, and inverted causal 

forks (or colliders). For example, assuming a causally sufficient set of three variables 

X , Y , and Z , the causal chain YXZ →→  implies that the unconditional association 

between Z  and Y is nonzero, but the conditional association between Z  and Y  on X  
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is zero.  The causal fork YZX →←  implies that the unconditional association 

between X  and Y  is nonzero, but conditioning this relationship on Z , is zero. In other 

words, common causes screen off associations between their joint effects, or 

Richenbach’s principle of common cause (Richenbach, 1956, pg. 156). Finally, the inverted 

causal fork (or collider) ZYX ←→ implies that the unconditional association between 

X  and Z  is zero, and conditioning on Y is nonzero, i.e. common effects do not screen 

off the association between their joint effects. Orcutt (1952), Simon (1953), and Papineau 

(1985) provide analogous expressions of asymmetries in causal relationships. Hausman 

(1998) gives an extensive survey on causal asymmetries. 

The concept of d-Separation characterizes the conditional independence 

associations specified in equation ( )22 . 

DEFINITION 1. Let X , Y  and Z  be three disjoint sets of variables in a DAG, and let p  be a 

sequence of consecutive edges (or path) between a variable in X  and a variable in Y . p is said to 

be d-separated (blocked)  by a set of variables  Z  if and only if there is a variable W  satisfying 

the following: ( )i  W  does not have converging arrows along p , and W is in be Z , or, 

( )ii W has converging arrows along p and neither W nor any of its descendants are in Z . Set 

Z  d-separates X  from Y  if and only if Z  blocks every path from a variable in X  to a variable 

in Y . 

Geiger, Verma, and Pearl (1990) demonstrate that there exists a one-to-one 

correspondence between the set of conditional independencies, implied by 

equation ( )22 , and the set of variables X , Y , and Z  that satisfy the d-separation 

criterion. This was possible due to the fact that a DAG composed by the set of variables 
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X , Y , and Z , linearly implies that the correlation between X  and Y , conditional on 

Z , is zero if and only if X  and Y  are d-separated, given Z . The conception of d-

separation was “the missing piece in the puzzle” that related the philosophical idea of 

causality with probability theory.  

The PC algorithm22 is a search-theoretic model developed by Spirtes, Glymour, and 

Scheines (1993) to construct directed acyclical graphs to represent a causal structure 

based upon an empirical set of data. 

In order to yield the same causal model as a random assigned experiment, the PC 

algorithm relies on the following four assumptions: ( )i  Causal Sufficiency (there are no 

omitted variables that cause two of the included variables), ( )ii  Causal Markov 

Condition (the variables are generated by a Markov property. In other words, 

probabilities of variables are conditioned on each variable’s “parents” only), ( )iii  

Faithfulness23 (there is a one-to-one correspondence between the edges implied by the 

causal structure of the graph and the selected relationships obtained from the data. In 

other words, structural parameters do not form combinations and cancel each other), 

and  ( )iv  Multivariate Normality.  

The algorithm consists of a series of three systematic steps. Step 1 involves the 

construction of a complete undirected graph connecting every variable with all other 

variables.  

                                                           
22 For a detailed description, please see Spirtes, Glymour, and Scheines (2000, pg. 84). 

23 This is a version of the Lucas critique of econometric policy evaluation (Lucas, 1981b). For a useful discussion 
of the relation between the faithfulness condition and the celebrated Lucas critique, see Hoover (2001), pg. 
182. 



 35

At step 2 edges are removed sequentially based on zero unconditional and 

conditional correlation tests. This is where the concept of d–separation is integrated to 

the PC algorithm using the notion of sepset (or separation set).  The sepset of the 

variables whose edge has been removed is defined as the set containing the 

conditioning variable(s) on removed edges between two variables. e.g. for the following 

undirected graph ZYX −− , assume that we remove the edge between variables X  

and Y through an unconditional correlation test. Thus, the sepset is the empty set. But if 

we remove the edge by means of correlation test conditional on variable Z , then the 

sepset is Z .  

Fisher’s z -statistic is employed to test the following null hypotheses: 0: ,0 =kjiH ρ , 

where kji,ρ  is the population correlation coefficient between series i  and j , 

conditional on series k .  
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where n  is the number of observations provided to estimate the correlations, and k  is 

the number of variables in k  that we condition on. [ ]kjiz ,ρ  is distributed as a standard 

normal. In other words, Fischer’s z  is used to test if conditional correlations are 

significantly different from zero.  Based on Monte Carlo experiments, Spirtes, Glymour, 

and Scheines (2000, pg. 116) recommend using a confidence level of 0.20 whenever the 

sample size is below 100 observations, and 0.10 when the data points are less than 300 

and above 100. 
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Step 3 consists of directing the edges that remain after all possible tests of 

conditional correlation have been carried out considering sets of three variables (or 

triples). This is accomplished by using the screening-off characteristics (mentioned 

above) to orient the edges.  

The assumptions upon which PC algorithm rests can be violated. Therefore, any 

causal structure retrieved from observational data must be examined with prudence. 

Two assumptions are more of a source of concern because it is more likely to happen in 

economics and finance: causal sufficiency and the faithfulness condition. The former 

can be encountered when there are omitted variables in our assumed causal model. The 

latter is faced whenever parameters between causes have the same magnitude to cancel 

one another24. 

There are other algorithms such as the Modified PC Algorithm (Spirtes, Glymour, and 

Scheines, 2000, p. 125), and the Fast Causal Inference Algorithm (p. 144), that have been 

developed to be applied whenever the causal sufficiency assumption does not hold (i.e. 

when it is assumed that latent variables are present). We restrict out discussion to the 

PC Algorithm since, in our opinion, it is the most easily understood, and we assume 

causal sufficiency holds, supported by the underlying theories described on section 2 of 

this paper. 

 

                                                           
24 Scheines, et al. (1999) exemplify this situation on page 181.   
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2. Calculus of Interventions 

Pearl (2000) acknowledges the differences between “seeing” and “doing” in the 

context of causality under the name of calculus of interventions. This refers to the 

distinction between observations and actions in a causal model, represented by a DAG, 

and the development of a new operator and new rules to work when dealing with 

analyses of actions. 

Following Pearl’s (pg. 351) example, we are able to express the question “What is 

the probability that it rained, given that we see the grass wet?” in the following 

probability statement: ( )WetRainP , where P  stands for the conditional probability 

distribution. But what if we want to ask the odds that it rained if we make the grass 

wet? The conditional statement implies observation or a fact, not an action. 

Instead of recognizing the obvious, but superficial impossibility of asking that 

question, Pearl develops a new operator: the do -operator.  

Assume that the probability of raining is known, let’s say ( ) 5.0=RainP . In 

addition, suppose that there are no other sources (either automatic, e.g. sprinklers, 

human, animal or any other “feasible” kind) to wet the grass than rain, and ourselves, 

in a voluntarily fashion. Then we would know that the probability that it rained, 

observing that the grass is wet (and that we did not take any action) is one, i.e. 

( ) 1=WetRainP . We are also able to know that if it was dry, and we wet the grass, then 

( ) ( )RainPWetdoRainP === 5.0 . This denotes our helpless role when we try to exert 

any control over “Mother Nature”. But, drawing back from deeper philosophical 
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debates, the “new” operator do , allows us to perform analyses on actions, rather than 

mistakenly confuse them with observations. 

As any mathematical operator, do  comes along with certain rules for its 

application. While simple conditioning a probability distribution with the “relevant” 

variable (e.g. including that “relevant” variable as a regressor in a regression analysis), 

we are able to assess the impact of observations on a dependent variable, the 

examination of an action has to follow these rules: (i) Ignoring observations, (ii) 

ignoring actions, and (iii) exchanging an action with an observation of the same fact.  

Figure 1 (drawn based upon figures 1.2 and 1.3 in Pearl, 2000, pp. 15 and 23) aids to 

exemplify the difference between “seeing” and “doing”. It also depicts how the do -

operator works cutting the edge between SEASON  and SPRINKLER  like a pair of 

scissors when we set the sprinkler to “on”. By this we are applying rules (ii) and (iii). 

 

D. Results 

 

Stock and Watson’s (2001) Taylor rule-inspired VAR was chosen to illustrate the 

difference between a policy analysis from a “do” to a “see” point of view. They impose 

a causal structure based on the Taylor rule in both an “unrestricted” and a restricted 

VAR. On first sight, putting the words “imposed” and “unrestricted” together sounds 

like a tautology. But if we recall Cooley and Leroy’s (1984) remark on the possibility of 

undesirable causality structure being implicitly imposed at the innovation accounting 

phase of the VAR analysis.  
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It is a well known fact that using a microfoundations-based model, taking into 

account all the already mentioned caveats, we can obtain a central bank’s reaction 

function in the Taylor rule form. 

The canonical form of the Taylor rule, given by either equation ( )1  or equation ( )18 , 

the Taylor rule’s underlying causality structure can be represented by the following 

directed acyclical graph25:  

( )24     ttt ur ←→π  

The above directed graph makes assumes that at contemporaneous time, the inflation 

rate  at time t  ( tπ ), and the unemployment rate at time t  ( tu ) are exogenous. The 

nominal interest rate ( tr ) is then contemporaneously caused by tπ and tu . 

This graph is equivalent to the following Bernanke-style input pattern to obtain 

the K  matrix: 
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Stock and Watson used the Choleski factorization in their “unrestricted” VAR with 

ordering π , u , r . This translates into the following pattern: 
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25 This assumes that the unemployment rate is equivalent to the output gap. This is discussed in section B 
of this paper. 
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The pattern depicted in ( )26  is very similar to the pattern in ( )25 , except for a 

number one, instead of a zero, that incorporates an “undesired” edge from inflation to 

unemployment. 

The difference between these two is not a significant one when we obtain the 

standard innovation accounting procedures.  

If we want to test if this is the empirical underlying causal structure, the Directed 

Graph paradigm is able to analyze how the variables are causally related in 

contemporaneous time. In order to perform this task, since the data is dynamically 

related, it would be we useful (almost imperative) to “pre-filter” the data using a vector 

autoregression (VAR). Then we would be able to use the PC algorithm on the residuals 

before actually run the impulse-response functions. 

We use Stock and Watson’s data set26, replicate what their “unrestricted” VAR (in 

section ). We are analyzing the US monetary policy for different FED governors across 

the 1960:I-2000:IV period (Martin, up to 1970; Burns; Miller, appointed in 1978; Volcker, 

from 1979 to 1987; and currently Greenspan). The appointment of Paul Volcker on Aug. 

6th, 1979, and his explicit disinflation bias, marks the first justification for the partition. 

In addition, Sims (1986) claims that there is a structural change on the third quarter of 

1979, due to a  structural change in money supply. As a result, we study an early period 

of 1960:I-1979:III and a late one of 1979:IV-2000:IV. 

In addition, we compare our results with Sims (1986), and Awokuse and Bessler 

(2003), imposing theoretical and DAG empirically-based causal structures, respectively, 

                                                           
26 from Mark Watson’s website: http://www.wws.princeton.edu/~mwatson/publi.html 
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as it is depicted in table 2. We were pleasantly surprised to obtain similar results for the 

early period. 

We used the following variance-covariance matrices from the VARs for the two 

periods under study: 

1960:I-1979:III 
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On the other hand, the strongest result of the paper, is that we find tr  causing tπ  

and tu . This suggests the following three implications: (i) Monetary policy  is powerful 

to reduce inflation, contrary to the contradictory result, both theoretically and 

empirically, using Stock and Watson’s causal structure for the second period. Inflation 

is significantly reduced even before a year. We think that this reflects the increased 

importance of the role of information in the late period. As a result, at the interest rate 

change cause a more immediate effect on both, inflation and unemployment, since 

several times, an interest rate movement is discounted by the market way before the 

actual policy change; (ii) There is not a short-run trade-off between the unemployment 

rate and  inflation. In other words, a rate hike of 25 basis points translates into less 

inflation and less unemployment. These are some good news for a politically-attached 



 42

policymaker. However, we have to take into account that it is a short-run effect indeed 

and these actions increase variability, persistence negative effects on the employment 

level; and (iii) a rate hike tends to come back to the “steady-state” in a more gradually. 

These results takes more significance when we compare the three last impulse-

responses in figure 3 of both, the Stock and Watson’s and the ones based upon the 

empirically-based DAG. 

We want to emphasize that these results are based on an observed causal structure 

only between inflation, unemployment rate, and the interest rate. 

 

E. Conclusions 

 

The strongest result of the paper, is that we find tr  causing tπ  and tu . This suggests 

the following four implications: (i) Monetary policy is powerful to reduce inflation, 

contrary to the contradictory result, both theoretically and empirically, using Stock and 

Watson’s causal structure for the second period. Inflation is significantly reduced even 

before a year. We think that this reflects the increased importance of the role of 

information in the late period. As a result, at the interest rate change cause a more 

immediate effect on both, inflation and unemployment, since several times, an interest 

rate movement is discounted by the market way before the actual policy change; (ii) 

There is not a short-run trade-off between the unemployment rate and inflation. In 

other words, a rate hike of 25 basis points translates into less inflation and less 

unemployment. These are some good news for a politically-attached policymaker. 
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However, we have to take into account that it is a short-run effect indeed and these 

actions increase variability, persistence negative effects on the employment level; (iii) 

The Fed has not followed a Taylor rule in any of the two periods under study; and (iv) a 

rate hike tends to come back to the “steady-state” in a more gradually. 

These results takes more significance when we compare the three last impulse-

responses in figure 3 of both, the Stock and Watson’s and the ones based upon the 

empirically-based DAG. 

We want to emphasize that these results are based on an observed causal structure 

only between inflation, unemployment rate, and the interest rate. 
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CHAPTER III 

 
 

PROBABILITY FORECASTING AND CENTRAL BANK ACCOUNTABILITY 
 
 
 

If you twist my arm, you can make me give a single number as a guess 
about next year’s GNP. But you will have to twist hard. My scientific 
conscience would feel more comfortable giving you my subjective 
probability distribution for all the values of GNP. 
       ― Paul A. Samuelson (1965), p. 278. 

 

A. Introduction 

 

For years the conduction of monetary policy and its executive board’s judgment and 

motivation was a mystery to the general public. Central Bankers built reputations 

making decisions in an environment of confidentiality.  Arguments supporting a higher 

degree of central bank transparency have recently persuaded monetary authorities to be 

more open with respect to policymaking decisions, up to the point for some to make 

their forecasts of the key variables public. Intensifying the public’s response to 

monetary policy changes as transparency improves the public’s ability to predict policy 

decisions reflected in the public’s actions, is among the potential gains of increased 

transparency (Svensson, 1997; Woodford, 2003).  

Transparency is related to accountability (Walsh, 2003). Given that central banks 

have no absolute control over inflation and that monetary policy effects are observed 

with time lags, making the central bank beliefs about the state of the economy available 

ex ante through their forecasts, opens up new ways to assess whether the central bank’s 
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actions are consistent with their mandate27. Proper forecast evaluation methods are 

among these.   

In order to incorporate the inherent risks of macroeconomic policy, complete 

probabilistic statements –namely density or probabilistic forecasts28 (Dawid, 1986)-, 

rather than point-forecasts are preferred (Samuelson, 1965; Zarnowitz and Lambros, 

1987; Chari, 1998; Svensson, 2003). What is even more compelling is that advances in 

statistical methodology, as well as increases in computer power, have generated the 

interest and use of probabilistic forecasts (Tay and Wallis, 2000) . 

The Bank of England (BoE) is one of the few central banks that actually publish its 

inflation forecasts29. The Monetary Policy Committee (MPC) of the BoE has been issuing 

density forecasts of inflation –the so-called “Fan Charts”- on a quarterly basis in its 

Inflation Report since August 1997. It has been issuing output growth forecasts since 

November 1997. In addition, the BoE has published probabilistic forecasts of these two 

“key” variables from a quarterly survey of undisclosed external forecasters, averaging 

their responses for each range of the probability distribution. 

The MPC has shown interest in the ex post evaluation of their ex ante density 

forecasts30: “…the analysis of past forecast errors may help to shed light on deficiencies 

                                                           
27 This becomes less ambiguous in an explicit inflation targeting regime (Walsh, 2003) 

28 The terms “density” and “probabilistic” are used interchangeably all across the paper. 

29 Hatch (2001) provides an insightful introduction to the Bank of England’s modeling and forecasting. For 
detailed information on the construction of fan charts see Britton, Fisher and Whitley (1998). 

30 The MPC asked Adrian Pagan (2003) to review their forecasts and assess their forecasting abilities in 
2001. 
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in the models, as well as in the Committee’s thinking. For this reason the Bank conducts 

regular analysis of its forecast errors.” (Bank of England, 2003).  

Unfortunately, the Committee has only reported point-forecast evaluation 

measures31, such as the average forecast errors of their mean projections. This suggests 

two potential problems: First, point-forecast evaluation measures do not take into 

account the forecaster’s assessment of the uncertainty associated with the forecast, 

present in a complete probabilistic statement, such is the case of the “Fan Charts”. 

Second, even though the MPC integrates external surveyed forecasts in their 

Inflation Report, they do not report any forecast ability measurements of the 

“others’” probability assessments. Thus there are no means to compare the 

calculated metric and provide an objective appraisal of how “good” or “bad” is it. 

We suggest that reported the probabilistic forecasts and ex-post evaluations on both 

the MPC and an alternative “shadow” committee offers valuable information on 

forecasting performance that is not available from reports on the MPC above. A 

humorous epigraph, summarizing a conversation between person “A” and person 

“B”, of Granger and Newbold (1986) illustrates well our suggestion: “A: How is 

your wife? B: Compared to what?” 

Probability calibration has been used to evaluate probability forecasts (Bunn, 1984; 

Dawid, 1984; Kling and Bessler, 1989; Diebold, Hahn, and Tay, 1999; and the survey by 

Tay and Wallis, 2000). Calibration is the ability to match the ex post relative frequency of 

all events with the associated forecasted probability distribution (Dawid, 1984).  

                                                           
31 Surveyed by Wallis (1995). 
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Recently Wallis (2003, 2004) and Clements (2004) have performed calibration-based 

analyses on the MPC one-year-ahead inflation density forecasts. They both agree that 

the MPC overestimated the future uncertainty making the inflation probabilistic 

forecasts “fan out” more rapidly. They also suggest the existence of biases by stressing 

the MPC has placed too much probability in the upper ranges of the forecasted 

distribution. While Wallis (2004) compares the MPC inflation forecasts with the ones 

issued by the National Institute of Economic and Social Research 32 (NIESR), Wallis (2003) 

and Clements (2004) do not offer comparisons with other forecasters.  

A drawback of using calibration-based measures as the sole metric of “goodness” of 

density forecasts is that calibration does not measure the resolution of the forecast. In 

other words, by neglecting the ex post resolution of a density forecast, we are 

overlooking the ability to sort the probabilities between the events that actually occur 

from the ones that did not occur. As a result, a forecaster could be perfectly calibrated 

and, at the same time, offer little to forecast users. 

Although these issues in forecast evaluation have been present in the meteorology 

literature for many decades (Brier, 1950; Sanders, 1963; Murphy, 1973; Yates, 1982, 

1988), their discussion has not emerged in economics until recently. Zellner, Hong, and 

Min (1991) use the Brier score, which captures both calibration and resolution to assess 

turning forecasts from econometric models. More recently, Bessler and Ruffley (2004) 

use the Brier score and its partition to assess probabilistic forecasts of stock market 

returns. They offer an example of potential problems associated with using only 

                                                           
32 The National Institute of Economic and Social Research issues 1-quarter and 1-year-ahead probabilistic 
forecasts for inflation and output growth in the National Institute Economic Review since October 1996.  
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calibration when evaluating density forecasts. They provide means to overcome the 

problem by exploiting two properties of the Brier score. First, it has been shown that the 

Brier scoring rule encourages the forecaster to report their true beliefs. In this regard, an 

affluent history unfolds on the use of quadratic scoring rules to motivate and evaluate 

subjective probabilities, finding foundations on both theoretical (de Finetti, 1937, 1965 

and 1974; Savage, 1971) and experimental grounds (Nelson and Bessler, 1989). 

Furthermore, calibration does not necessarily encourage honesty (Winkler, 1986). If 

agent (subject) knows he/she is being “judged” using calibrations, he/she can 

misreport probabilities for the next period to compensate for already known 

miscalibrations in earlier periods. By doing thishe/she might not be reporting what is 

actually believed. 

Second, the Brier score not only takes into account the calibration property, but also 

relates to the ability of a forecaster (person or model) to sort events into groups: those 

events which obtain versus those events which do not obtain, ex ante.  

The Brier score can be decomposed in order to offer assessments on both calibration 

and sorting (resolution) attributes of a probability forecast using its Yates’ partition 

(Yates, 1982, 1988). 

The purpose of this paper is to illustrate use of the Brier score and its Yates’ 

partition and suggest how such information may improve the degree of transparency of 

the monetary authorities’ policy decisions, by increasing the ability to make the central 

bank accountable for their actions. Such information, when used in conjunction with 

similar information from a “shadow” committee can aid the central bank in improving 
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their probability forecasts and give private market participants clear signals on 

monetary policy and  its likely aggregate consequences. Our purpose falls well within 

the ambit of study of the Bank’s own forecast assessments; only here we demonstrate 

how one might perform such a study with a well defined proper scoring rule.  

We propose the use the quadratic scoring rule to evaluate the central banks’ 

inflation (and output growth) density forecasts. These analyses are carried out under 

the consideration that optimal density forecast evaluation is a necessary condition for 

the forecast to work as an optimal accountability mechanism.  

Recognizing the incentive-compatible feature of the Brier score, we considered (and 

later ruled out) utilizing the Brier score in the context of a contract between the govt. 

and the central bank in the spirit of Persson and Tabellini (1993, 1999, 2000), and Walsh 

(1995a, 1998). Because of ambiguities –discussed in McCallum (1999) and Blinder 

(1998)- that come into sight from applying this approach to central banking to the 

letter33, this possibility is abandoned. Difficulties in determining whether it is the 

principal (Parliament or Congress) or the agent (central bank), who has more incentive 

to try to boost the real output in the short-run by creating “surprise inflation” is among 

these ambiguities. 

Hence, given the fact that there is no explicit reward-punishments agreement, 

contingent to the realization of the states that were forecasted and the probabilities that 

were issued to those events, in order to keep the incentive property of the Brier score, 

                                                           
33 In order to connect Walsh’s (1995a, 1998) and Persson and Tabellini’s (1993, 1999, 2000) contracting 
approach to our proposal, it had to be followed literally. Consequently it was not given any practical 
consideration. However, this should not be interpreted as discarding the importance of their contributions 
to improve the assessment of modern monetary policy issues. 
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there is merit to a comparison among the appraisers’ ability to forecast (Granger and 

Newbold, 1986; Coyle, 2001; Fildes and Ord, 2002). That is to say comparing the Central 

Bank’s probability forecasts with a competent but “shadow” expert will help to induce 

forecasting “soundness” by reputation building and learning. Usually, the central bank 

is not the only institution that regularly issues forecasts on the two well-identified 

“key” variables of the economy: inflation and real Gross Domestic Product (GDP) 

growth. As a result, analyzing both forecasters predictability performance appeals to 

the forecast competition arguments extensively treated in the references above. 

Additionally, despite the fact that central banks’ policymaking “correctness” is 

ultimately measured by the outcome on inflation34 and given the availability of the real 

GDP growth forecasts, it intuitively makes sense to compare their forecast ability 

between the two key variables as well. After all, GDP, though very important, there is 

usually no explicit commitment to it. 

This paper also contributes to the existing literature on probabilistic forecast 

evaluation with quadratic probability scores making available a Neyman-Pearson 

(1933) approach to assess how different are the Brier scores of two different forecasters. 

Not considering the possibility of statistical hypothesis testing appears to be an unusual 

circumstance for applied economics in today’s world. But the strict subjectivism that 

characterized the pioneering work on scoring rules of de Finetti (1965, 1974) was more 

likely to resemble a “horse race” in the sense that the distance between the first-place 

                                                           
34 This is particularly better perceived in an Inflation Target regime. 
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winner and the second-place arriving horse turns out to be completely irrelevant at the 

moment of getting the prize. 

This paper differs from Clements (2004), who also calculates the Brier Score of the 

MPC forecasts, as we provide an idea of an incentive-compatible mechanism to 

encourage honesty from the forecaster. Furthermore, we introduce the use of the Yates 

decomposition as a technique to extract meaningful information about the forecaster’s 

beliefs.  

We find that the MPC is “upwardly” biased by placing larger probabilities to the 

high state preventing the less conservative members of the Committee to gain any 

approval for interest rate cuts. These results are consistent with Pagan (2003), Wallis 

(2003, 2004) and Clements (2004). 

The remainder of the paper is divided in four sections. The relationship between 

transparency, accountability and proper forecast evaluation methods as reputation-

building mechanisms is described in the first section. Section C, provides an overview 

of probabilistic forecasting concepts and shows the suggested density forecast 

evaluation methodology with the theoretical rigorousness that characterizes the 

process. The third part presents the empirical exercise of the techniques described on 

Section C on the density forecasts of inflation and output growth of the MPC and the 

external surveyed forecasters. Section E portrays the concluding discussions. 
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B. Transparency, Accountability, and Forecast Evaluation 

 

1. Central Banks Tradition of Secrecy, Problems, and Proposed Solutions 

It is well-known that “enigmatic” policymaking gives rise to highly uncertain 

scenarios. Uncertainty about money and inflation weakens the role of the price system 

as a mechanism of optimal resource allocation (Hayek, 1945). Furthermore, Friedman, et 

al. (1949) argued that policy-induced uncertainty could lead both consumers and firms 

to undertake actions they would not choose under certainty. He also claimed that the 

source of the monetary authority’s “secrecy” was the central bankers’ dual goal of 

maximizing their prestige and, at the same time, minimizing their accountability35.  

The first proposed solution was to impose a fixed rule of monetary growth on the 

central bank (Friedman, 1948, 1960). It has been argued that such rules are overly 

restrictive, and that they do not provide the central bank with the sufficient 

discretionary power to account for adverse shocks in the economy.  

A “new” version of the “rules vs. discretion” debate -brought up by Kydland and 

Prescott (1977), and Barro and Gordon (1983)- brought forth the utilization of dynamic 

policy rules (Taylor, 1993, 1999 and McCallum, 1988, 1999 -among others-) to overcome 

the concerns that could arise due to the celebrated “time inconsistency” problem, first 

noticed in the monetary literature by Auernheimer (1974). Arguments against the 

potential problems of “time inconsistency” (Mankiw, 1998 and Albanesi,  Chari and 

                                                           
35 As quoted by Fischer (1990) and cited by Faust and Svensson (2000). 
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Christiano, 2001), in addition to the central bankers’ fear that even a dynamic policy 

rule could still be stringent36, have made central banks hesitant to adopt these rules.  

To overcome the dynamic inconsistency problem, Rogoff (1985) suggests hiring a 

“conservative” central banker. Lamentably, finding out if a central banker is sufficiently 

conservative or not, is not an easy task to perform as noted by Barro (1986) and recently 

by Woodford (2003). In that case, another asymmetric information problem surfaces: 

adverse selection at the time of deciding who to appoint as central banker. Yet, a moral 

hazard problem remains. 

An alternative scheme to face the “time inconsistency” problem has been the use of 

contracts (Persson and Tabellini, 1993, 1999, 2000, and Walsh, 1995a, 1998). Here the 

contract would design or specify a rewards-punishments scheme between the congress 

and the central bank. On this issue, Garfinkel and Oh (1993) assert that legislation 

punishing the monetary authority by reducing her salary or the central bank’s budget, 

if she deviates from the target could be used to enforce the regime. Unfortunately, the 

intrinsic complexity in modeling the government’s preferences causes serious 

difficulties to build a totally applicable contract. Blinder (1998) criticizes this approach 

by stating that the principal, by having a reelection period ahead, could have more 

incentive to have an inflation bias than the agent, who is not supposed to be concern 

about the political election process. Another point of disapproval is that salary is not a 

                                                           
36 Taylor (1993, 2000) acknowledges the remaining restrictions that these “activist” rules impose on central 
bank and suggests that, instead of making use these rules as systematic mechanisms to act to stabilize the 
economy, they could still be used as guidelines. 
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good motivator for the central banker to do her job, since she is already giving up salary 

for not working in the private sector. 

Therefore, we are left with a reputation-building mechanism as a feasible initiative 

to diminish the inflationary bias, once we know how to make the central bank 

accountable. In this regard, Canzoneri (1985) demonstrates that reputation, as an 

inflation-bias elimination framework, does not work in the presence of private 

information. Reputation fails to solve Barro and Gordon’s (1983) credibility problem 

whenever the central bank’s forecasts of the key variables are not public information. 

This is because the public cannot tell if the difference between expected and realized 

inflation is due to exogenous shocks or intentional cheating. Canzoneri also emphasizes 

–along the same lines as Persson and Tabellini (1993)- that full disclosure of the 

inflation-forecast by the central bank is not intended to pass on information to the 

private sector, but to make the monetary authority accountable of her actions.  

On the role of announcements to influence policymaking, Cukierman and Liviatan 

(1991) and Walsh (1999) provide theoretical frameworks in the light of modern contract 

theory. They conclude that announcements do make available information to the 

public, and observe that it is surprising how there has not been much research on 

linking commitment to targets and information reporting requirements. Conversely, 

Persson and Tabellini (1993) only grant an incentive-alignment property to 

announcements, ruling out any other informational transmission of the state of the 

economy to the public. There appears today a consensus that central banks’ periodic 

announcements -in the form of inflation-forecasts- are a practical approach to make the 
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central banks accountable for their policymaking decisions (Persson and Tabellini, 1993; 

Svensson, 1997). 

 

2. Recent Increased Central Bank Transparency 

Nevertheless, the “obscurantism” era of monetary policymaking seems to be 

coming to an end. Contrary to what the academic orthodoxy have prescribed for a long 

time –namely, the adoption of policy rules-, this issue has been developing on another 

set of facts. As modern information technologies have evolved, the acquisition of 

information has become almost costless, bolstering the speed of adjustment of people’s 

expectations in response to economic disturbances. Consequently the public has 

become more sensitive to inflation and, as a result, several central bankers have 

entertained the idea of transparency as a mechanism to improve monetary policy’s 

stabilization features. According to Svensson (1997), this is achieved because 

transparency improves the private sector’s predictability of monetary policy leading 

them to better reflect information relevant to monetary policymaking. Woodford (2003) 

claims that the effectiveness of monetary policy not only depends on correctness and 

timeliness of the central bank’s decisions, but also on the public’s expectations and their 

ability to predict future policy. This relates to Hayek’s (1945) and Friedman’s (1949) 

argument that resource allocation can be improved based upon reducing the 

uncertainty on the price level and inflation, as the price system works as to convey 

informative signals to consumers. As a result, monetary policy performs better as a 

stabilization mechanism. Therefore, judging by their fairly recent actions, central banks 
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have been more in line with the role of actually providing the public with information 

(Cukierman and Liviatan, 1991; Walsh, 1999).  

In order to increase their transparency, several central banks have explicitly 

committed to achieve a low and stable inflation. This has been achieved by Central Bank 

Independence (CBI), and Inflation Targeting (IT). They also issue reports on inflation, 

making their (and sometimes others’) forecasts public, and describing their expected 

policy responses to face the forecasted future events. 

 CBI is described as the assignment of monetary policy to a central banker whose 

decisions cannot be rejected ex post by the policymaker (Lippi, 1999). Herrendorf and 

Neumann (1999) claim that a politically-detached independent central bank exhibits 

less incentives to care about the government’s reelection chances reducing the 

possibilities of using monetary policy to create surprise inflation37. But independence 

could be associated with a greater degree of “conservativeness” in the Rogoff (1985) 

sense. In other words, greater independence may imply less-active stabilization policies 

and, therefore, higher output variance. This suggests that the gains of having an 

independent central bank depend on the extent of the trade-off between the inflationary 

bias and the variance of the policy targets. As a result, in addition to CBI, stability of 

policy targets is desired to overcome the time-inconsistency problem (Lippi, 1999). CBI 

and targeting regimes are not viewed as substitutes, but complements.  

                                                           
37 The monetary policy credibility issues have been criticized because, in reality, usually policymakers do 
not try to create unexpected inflation to surprise the private sector. But these criticisms miss the point that, 
in equilibrium, despite the monetary authority’s wish to reduce the inflation rate, it abstains from doing it 
because the disinflationary policy could turn into a recession, due to its lack of credibility. 
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IT is a mechanism that could be interpreted to be “in the middle” between full-

discretion and restriction. But still, even an inflation targeting regime, of a constrained 

discretion regime country, could show an inflation bias if there is no incentive to 

achieve the target. The ex-post measure that the IT regime provides as inflation and the 

target could still not fully remove the inflation bias since there could be moral hazard. 

The bank can always provide a somewhat “good” explanation of why she could not 

achieve the target. Hence, additional to the inflation targeting regime, these points raise 

the question of what can be done to eliminate the moral hazard that feeds the credibility 

problem.  

Yet central banks often do issue reports on inflation, making their (and sometimes 

others’) forecasts public, and describing their expected policy responses to face the 

forecasted future events. Justification for this central banks behavior is along the same 

lines as Hayek (1945), Friedman, et al. (1949), and Svensson (1997), rather than on the 

Canzoneri (1985) sense. 

With respect to the publication of inflation forecasts, although this is a plausible on 

possible means to increase transparency, this does not necessarily ensure transparency. 

Walsh (2003) defines the degree of transparency as the ability to monitor the central 

bank. Under imperfect information, it is optimal for the monetary authority to place less 

weight on achieving the inflation target. To solve this problem he suggests to create a 

high-powered incentive structure, based on optimal performance measures (Baker, 

1992), to motivate the central banks not only publish their inflation forecasts but, by 

doing this, attain transparency as well. In other words, with perfect monitoring, the 
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central bank’s only goal is to care about achieving the desired level of inflation (or 

inflation target). 

Summarizing the above, on one hand, greater transparency is prone to trim down 

uncertainty and help monetary policy performance. On the other hand, greater 

accountability is likely to improve incentives to be really transparent and get rid of the 

inflationary bias. However, for transparency to work, besides making the central bank’s 

forecasts public, we need an incentive structure that allows perfect monitoring. 

 

3. Forecasting as a Reputation-Building Mechanism 

For the publication of the forecast to increase transparency a la Walsh (2003), a way 

to monitor the central bank must be found. For the forecast to work as a reputation-

building mechanism in the Canzoneri (1985) sense, it should neither be private 

information nor a disturbance element. In decision theory jargon, the forecast needs to 

satisfy two conditions: (i) have full disclosure of the forecast and the forecast generation 

methods, and (ii) the forecast has to be a “good” forecast (Winkler, 1986). By this, we 

mean that, it must reflect the banks’ true beliefs. When outcomes are uncertain, 

planning must be based on forecasts. Naturally, the planner wishes to ensure that these 

forecasts are prepare honestly and with an appropriate degree of care (Winkler, 1986; 

Osband, 1989).  

The forecast must be an accurate forecast as well. So not only should the central 

banker provide their true beliefs about their future expectations on inflation (and, if 

there is the case, on GDP as well), but also exert their best effort to provide a “good” 
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forecast. Walsh (2003) proposes the use of optimal measures of (forecast) performance 

for accountability to be transformed into transparency. Therefore we need an optimal 

way to evaluate the central banks forecasting performance on the key variable -namely 

inflation- that honors both honesty and accuracy. The Brier Score and its partition (by 

Yates, 1982, 1988) actually promotes both. 

 

4. Density Forecasts in Monetary Policy 

If we want to take into account the uncertainties that surround the forecast, it is 

recommended to be in probabilistic form (Samuelson, 1965). In the spirit of Robert E. 

Lucas’ contributions to modern macroeconomics, Chari (1998) wrote: “Economists 

today routinely analyze systems in which agents operate in complex probabilistic 

environments to understand (their) interactions…”. Thus, an inflation-forecast, 

provided as a complete probabilistic statement is desired. Furthermore, Svensson (2003) 

points out that in an inflation-forecast targeting setting, a point-forecast only works 

under the following three assumptions: (i) quadratic loss function, (ii) linear 

transmission mechanism, and (iii) additive uncertainty. The first assumption is 

reasonable and widely used (Kydland-Prescott, 1977, and Barro and Gordon, 1983), and 

it is supported by more recent research led by Blinder (1998), Svensson (2001), and 

others.  

The second assumption -linear transmission mechanism- is quite strong, since it 

means that the future target variables depend on the current state of the economy and 

the instrument, in a linear fashion. This is not likely to happen (Svensson, 2003).  
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But most importantly, if assumptions (ii) and (iii)–namely, the uncertainty of policy 

multipliers- fail, then the certainty equivalence paradigm does not hold. Hence, 

distribution forecast is needed to account for the unbalanced risks. 

It makes sense having the monetary authority issuing and publishing their forecast 

in a probabilistic mode. A probabilistic forecast is defined as a rule that links 

probability distributions with the realized values of the variable under study, and 

whichever possible set of outcomes (Dawid, 1984).  

But the question we want to bring up to the discussion table is how to evaluate their 

forecasting performance? In the next section we assess the Brier score as an appropriate 

mechanism to evaluate density forecasts that encourages honesty and effort-exertion, 

two important things for a central bank to show. 

 

C. Probability Forecasting 

 

1. Prequential Analysis 

Prequential analysis refers to the study of sequential probability forecasting (Kling 

and Bessler, 1989) 

Let tX , Nt ,,1…= , be a 1×K  vector time series of realized values ( )tKtt xxx ,,1 ,,…=′ , 

with K  defined (discrete) possible outcomes. Assume that at time N , given the 

observed values tx , Nt ,,1…= , the forecaster issues a set of probability distributions 

( )mjPP mNmN ,,1, …== +  for future (unknown) quantities jNx + , mj ,,1…= . A 

relationship P  which links a selected mNP ,  with each value of N  and any possible set 
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of outcomes tx , mNNt ++= ,,1… , is defined as a “prequential forecasting system” 

(PFS) (Dawid, 1984). Although we could think of models, this could also apply to 

subjective probability judgments as well (Kling and Bessler, 1989).  

 

2. Probability Forecast Evaluation 

According to Winkler (1996) to judge whether a probability forecast is good or bad 

there are three aspects: coherence, expertise and calibration. In the current literature we 

still find that this is what has been used to evaluate forecasts is the concept of 

calibration. In other words, the ability to match the ex post relative frequency of all 

events with the associated ex ante forecasted probability distribution.  

 

3. Empirical Assessment of Calibration 

If the quantities mtx +  for each Kk ,,1 …= are random variables with distribution 

functions mtF +  for every Kk ,,1 …= , then the random fractiles ( )mtkmtkmtk xFQ +++ = ,,,  

have a distribution function of the form ( ) mtkmtk qqG ++ = ,, . In the case of continuous 

random variables, the random fractiles are independently and uniformly distributed 

[ ]1,0U . In both the continuous and discrete cases the evaluation of a PFS can be 

achieved if we test that the observed sequence  mtkx +,  was drawn from a probability 

distribution with cumulative distribution ( ) mtkmtk qqG ++ = ,, . The forecaster is considered 

to be well-calibrated if this hypothesis cannot be rejected. In order to obtain the 

estimated distribution function ( )mtkqG +,
ˆ  for mtkQ +,  Bunn (1984) suggests a three-step 
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procedure. First he recommend to take the observed sequence ( )mtkmtkmtk xFq +++ = ,,, , 

Nt ,,1…=  and order them in an ascending sort.  

Step two consists in calculating the following empirical cumulative distribution 

function also referred as “calibration function” (Bunn, 1984):  

( )29      ( )[ ] ( ) NjNjjqG jk ,,1,ˆ
, …==   

The graph of a well-calibrated PFS should look similar to a 45-degree line.  

Third, test the observed fractiles iq ’s from the sequence of N  probability forecasts 

mtP , . Under the null hypothesis of well-calibration, any subinterval of length [ ]1,0∈L  

will have NL ∗  observed fractiles. A chi-squared goodness-of-fit test could be utilized 

if there are J  non-overlapping subintervals that exhaust the unit interval.  

( )30     ( )[ ] 2
11

22 ~ −=∑ −= J
J

j jjj NLNL χκχ   

where jκ  is the number of observed fractiles in the interval j  and jL  is the length of 

interval j . The test statistic is distributed as a chi-squared with 1−J  degrees of 

freedom, if independence of the underlying distributions is not required (Dawid, 1984). 

According to Winkler (1996) to judge if it is good or bad there are three aspects: 

coherence, expertise and calibration. In the current literature we still find that this is 

what has been used to evaluate forecasts is the concept of calibration. In other words, 

the ability to match the ex post relative frequency of all events with the associated ex ante 

forecasted probability distribution.  

Bessler and Ruffley (2004) presented the major potential problem of using only 

calibration-based forecast evaluation methods: Neglecting the ability to sort the 
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probabilities between the events that actually occur from the ones that did not occur. 

Consequently, a forecaster could be perfectly calibrated but, at the same time, way too 

wrong.  

 

4. Scoring Rules 

Let kr  be the forecaster’s believed (discrete) probability judgments38 for every 

possible event Kk ,,1 …= , where K  is the number of possible outcomes, and kp  the 

reported probability of event k  occurring. A scoring rule S  is a one-to-one real-valued 

function that assigns a score kS  to a reported probability kp   if event k  did not occur, 

and a score kj SS ≠ , kj ≠  to a stated probability jp  if event k  did occur39, regardless 

of the appraiser’s true beliefs, i.e. kp  need not be equal to kr , for all k . We 

acknowledge that we are providing a somewhat restricted definition of scoring rules, 

but we consider that its simplicity serves for our purpose without significantly 

sacrificing rigorousness. For a more general definition of scoring rules, please see 

Winkler (1986) and Selten (1998), pg. 45-46. jS can either be larger or smaller than kS , 

depending on the nature of the scoring rule. e.g. in the case of a linear scoring rule, 

kj SS > , in the case of the quadratic rule would be the opposite. 

                                                           
38 Although we are only considering discrete probability distributions, this can be easily extended to the 
continuous distribution case as well (Winkler, 1986). 

39 jS can either be larger or smaller than kS , depending on the nature of the scoring rule. e.g. in the case of 

a linear scoring rule, kj SS > , in the case of the quadratic rule would be the opposite. 
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The forecaster’s optimization problem is to choose the reported probabilities kp  for 

each possible outcome of event Kk ,,1…=  that maximize her expected payoff, subject 

to de Finetti’s (1937) and Savage’s (1954) “coherence” restriction, i.e. believed 

probabilities add-up to one, given a scoring rule ( )kpS : 

( )31     
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where h  is a constant “scaling” factor, usually associated with a monetary reward. 

We choose the quadratic scoring rule not only because it takes into account the 

“sorting” ability but it is also a proper scoring rule. 

A scoring rule S  is a considered a (strictly) “proper rule” if the expected payoff of 

revealing the true believed probabilities is (strictly) greater than the payoff of stating 

different probabilities: 

( )[ ] ( )[ ]pSErSE > , for rp ≠  

Therefore, the forecaster can only maximize her expected score by being honest, i.e. 

setting rp = . 

 

5. The Quadratic Probability Rule and the Brier Score 

The quadratic rule was first introduced by Glenn W. Brier (1950) in the context of 

weather forecasting. The mean probability score or Brier Score is a variant of the 

quadratic scoring rule.  



 65

The Brier score belongs to a set of rules called “proper” rules or, in modern contract 

theory terminology, of incentive-compatible forecasting scores. This means that these 

rules encourage honesty (Winkler, 1996; Osband, 1989). There is a rich history on the 

use of quadratic scoring rules to motivate and evaluate subjective probabilities, finding 

strong foundations on both theoretical (de Finetti, 1937, 1965 and 1974; Savage, 1971) 

and experimental (Nelson and Bessler, 1989) fields.  

Let the probabilistic forecast of an event k  occurrence be denoted by p , d  be a 

vector defined as the outcome index for event k  as follows: 





=
0
1

d  

The Quadratic Probability Score ( PS ) for a single forecast is: 

( )32     ( ) ( ) 10,, 2 ≤≤−= PSdpdpPS  

PS  ranges between 0 and 1. A score of zero means that the forecaster did a “great job” 

and predicted the events perfectly. We can see that PS  is a loss function, rather than a 

positive score. A forecaster who actually did extremely “bad” gets a 1. 

PROPOSITION 1: The Quadratic Probability Score ( PS ) is a truth-probability-revelation 

mechanism, i.e. PS is a “proper” scoring rule. 

PROOF: To show that PS  is a “proper” scoring rule, then we have to show that 

rp =  is the argument that maximize the forecaster’s optimization problem ( )31 . For 

simplicity we set the scaling factor h  to 21 . Since PS  is a single-forecast (two-

outcome) rule, 2=k . Thus, imposing the “coherence” constraint (all the probabilities 

If event k  occurs  

If event k  does not occur 
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must sum to unity), r  and p  are defined as the believed and reported probabilities that 

the event will occur, respectively. To find an analytical solution to the optimization 

problem, the forecaster has to choose a p  that maximizes40 the expected payoff EP : 

( )33      ( ) ( ) 22

2
111

2
1 prprEP −−−−=   

  Taking the partial derivative of ( )33  with respect to p , and setting it to zero, yield 

the following first-order condition: 

( )34      0=∂∂ pEP  ⇔  ( ) ( ) 011 =−+− prpr   

  Solving for p  we find out that rp =* . In other words, the forecaster has to report 

her true believed probability to maximize her expected payoff. Therefore, we have 

shown that PS  is a “proper” scoring rule  

 

The Mean Probability Score or Brier Score ( PS ) is the average of the single-forecast 

version of the Probability Score ( )32  over N  occasions, indexed by Nt ,,1…= : 

( )35       ( ) ( ) ( )∑ =
−= N

t tt dpNdpPS
1

21,   

the notation follows from before.  

So far we can see how the scoring rules are related to the concept of coherence. 

However, understanding the relationship between the scoring rules and the resolution -

or ability to sort events that occurs and events that did not occur- it is not a 

                                                           
40 Actually we maximize the negative expected payoff if we recall that in this case a smaller probability 
score reflects a better forecast. 
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straightforward task. It will become evident once we expose the Yates’ partition (Yates, 

1982, 1988).  

 

6. Yates’ Decomposition of the Brier Score 

Yates (1982, 1988) emphasizes the covariance between the reported forecasts and the 

outcome as “the heart of forecasting”. We now show the Yates’ decomposition for the 

Brier Score ( PS ). 

Yates (1982, 1988) decomposed the Brier Score ( PS ) into several modules providing 

further analyses on resolution. Yates’ so-called “covariance decomposition” is given 

as41: 

( )36     ( ) dpdpSBdpPS ,
22

min,
2 2, σσσ −+++=   

B  is the bias, and it is defined as: 

( )37     dpB −=   

where 

( )38     ( )∑ =
= N

t tpNp
1

1   

( )39       ( )∑ =
= N

t tdNd
1

1   

Bias is also called “calibration in the large” or “mean probability judgment”. It 

quantifies whether the probability forecasts are too low or too high. It is a measure of 

miscalibration of the probability assessments. 0=B  indicates that the forecaster 

perfectly matched the mean forecasts to the outcome index relative frequency, i.e. the 

                                                           
41 We deliberately departed from the original notation (Yates, 1982) for consistency of the present paper. 
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forecaster is perfectly calibrated. 2B  points out calibration errors whether the direction 

of the bias is positive or negative. p  and d  are the mean of the probability forecasts 

and the mean of the outcome index, respectively. 

S  Stands for scatter: 

( )40      ( )[ ]2
00

2
111 == += dpdp NNNS σσ   

where 

( )41      ∑ =
= N

t tdN
11   

( )42     10 NNN −=   

( )43     ( ) ( )∑ == −= N

t ttdp ppdN
1

2

11
2

1 1σ   

( )44      ( ) ( )( )∑ == −−= N

t ttdp ppdN
1

2

00
2

0 11σ   

where 

( )45      ( )∑ =
= N

t tt pdNp
111 1   

( )46      ( ) ( )∑ =
−= N

t tt pdNp
100 11   

1N  ( 0N ) is the number of times the event occurred (did not occur). 2
1=dpσ  and 2

0=dpσ  

correspond to the conditional variances of the probability forecasts when event k  

occurs ( 1=d ), and when it does not occur ( 0=d ), respectively. 1p  represents the 

conditional mean probability forecast for event k  across the 1N  occasions when the 

event actually happened. 0p   stands for the conditional man probability forecast for 

event k  over the 0N  occurrences that the event did not occur. It follows that scatter ( S ) 
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is the weighted average of 2
1=dpσ  and 2

0=dpσ  , and it can be interpreted as an index of 

general “excess” variability (or noise) contained in the forecaster’s probability 

statements. 

2
min,pσ  is the minimum variance of the forecast, and it is defined as: 

( )47      Spp −= 22
min, σσ   

where 

( )48       ( ) ( )∑ =
−= N

t tp ppN
1

22 1σ   

S  is the scatter, defined in equation ( )40 , 2
pσ  is the total variance of the issued density 

forecast, and p  is defined in ( )38 . Notice that 2
min,pσ  equals the overall forecast 

variance whenever there is no scatter ( 0=S ) about the conditional means of 1p  and 

0p . 

2
dσ  is the variance of the outcome index d  and defined as: 

( )49      ( )ddd −= 12σ   

where d  is defined in equation ( )39 . 

dp,σ  is the covariance between the forecasted probabilities and the outcome index, 

given by: 

 ( )50     2
, ddp θσσ =   

where θ  is the slope, and it is given by the following expression: 
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( )51      01 pp −=θ   

[ ]1,0∈θ The maximum value of θ  is 1 and it occurs whenever the forecaster reports 

1=p  when the event occurred and 0=p  when the event did not occur. 

 Given that 2
dσ  is completely exogenous to the forecaster’s judgments, the appraiser 

has to minimize S  and 2
min,pσ  and maximize dp,σ  in order to minimize the PS . 

 dp,σ , follows. dp,σ  measures the responsiveness of the forecaster to information 

related to event k ’s occurrence, and S  indexes the forecaster’s responsiveness to 

information not related to event k ’s occurrence.  

 Having presented the technical aspects of the Brier score and its Yates’ partition, we 

are able to show formally that using calibration-based forecast performance measures 

only is not the best way to evaluate density forecasts. 

PROPOSITION 2: Suppose that a forecaster obtains a perfect Brier score. Then the 

forecaster is also perfectly calibrated, but not the converse. 

PROOF: Assume that 02 ≠B , i.e. the forecaster is somewhat miscalibrated. By 

multiplying and dividing the term dp,σ  in equation ( )36  by 22
pd σσ , the 

correlation between p  and d , denoted by dp,ρ , becomes explicit: 

( )52     22
,

222 2 dpdpdpBPS σσρσσ −++=    

  Suppose that forecaster has perfect foresight. This implies that the forecaster has to 

match the total variance of the outcome index and the total variance of the issued 

forecast, i.e. 22
dp σσ = . 
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( )53     2
,

22 22 pdppBPS σρσ −+=    

  A perfect forecaster achieves a Brier score of zero. By definition, this implies that the 

correlation coefficient between the probability forecast and the outcome index equals 

the unity. It follows that 02 =B  and contradicts the initial statement of this proof. 

 We have demonstrated the first part of the proposition. We now turn to the second 

part. Since we just need to find an exception to complete this proof, we are going to set 

the conditions under which a perfectly calibrated forecaster does not achieve the 

minimum (best) Brier score. Assume the forecaster is perfectly calibrated, i.e. 02 =B . 

Suppose the forecaster assigned a probability of zero to every outcome that occurred. In 

addition, assume that without incurring in any miscalibration, resulting in a correlation 

between the forecasted probabilities and the outcome index strictly less than 21 . 

Furthermore, for simplicity, let’s assume that 022 ≠= dp σσ . Under these assumptions, 

equation ( )52  can be expressed as: 

( )54     ( )dppPS ,
2 212 ρσ −=    

  It follows that the Brier score cannot be zero.   

 Proposition 2 allowed us to see that calibration is a necessary but not sufficient 

condition to achieve the Brier score maximum attainable value. 

Table 3 portrays a simple numerical example to illustrate proposition 2. It can be 

observed that the forecasted probabilities match the relative frequency of the outcome 

index on realized inflation, i.e. the forecaster predicted that inflation would fall once 

within every range, and that is what happened. The problem here is that the forecaster 
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did not have the ability to discriminate between the events that occur and the ones that 

did not occur. This ability was referred as the “resolution” of the forecast. The Brier 

score takes into account both calibration and resolution. 

 

7. The Multiple-Event Brier Score 

The Brier mean probability score can also be expressed for a more than two-event 

case, i.e. 2>K . In order to show this feature, let’s introduce the probability score ( PS ) 

for the multiple-event case (Murphy, 1973), then we will show that it is a “proper” 

scoring rule as well, followed by the formulation for the Brier mean probability score 

for K  events and its Yates’ decomposition. 

Let kd  be the outcome index for each event Kk ,,1…=  and kp  represent the 

probability forecasts for each event  Kk ,,1…= . The multiple-event probability score is: 

( )55      ( ) ( )∑ =
−= K

k kk dpdpPSM
1

2,   

where 20 ≤≤ PSM . In this case, kd  can be seen as the observed relative frequency 

distribution over the outcomes  Kk ,,1…= . 

Although we consider that the proof of proposition 1 is intuitive, it cannot be 

generalized for a multiple event case.  

PROPOSITION 3. The Multiple-Event Probability Score ( PSM ) is a “proper scoring 

rule” 

PROOF. To demonstrate that PSM  is a “proper” scoring rule, the forecaster should 

choose to report her believed probability judgments for all the possible outcomes. In 
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other words, that kk rp =  for all Kk ,,1…=  are the arguments that maximize the 

forecaster’s optimization problem ( )31 .  

If outcome j  occurs, 1=jd , and 0=kd , jk ≠∀ , elaborating the summation on 

the PSM , equation ( )53 , and gathering terms, we are left with: 

( )56     ( ) ∑ =
+−= K

k kjj ppdpPSM
1

221,   

  To find an analytical solution to the optimization problem, the forecaster has to 

choose the set of kp ’s that maximize the expected payoff (For simplicity and without 

loss of generality we set the scaling factor h  to 1). The forecasters’ expected payoff is 

the following: 

( )57     ( )[ ] ( )∑∑ ==
+−= K

k kj
K

j jj pprdpPSME
1

2
1

21,   

 Remember that the Brier score is a loss function, therefore, in this case we minimize 

the forecaster’s expected payoff, [ ]jPSME , thus we maximize the negative of 

[ ]jPSME . Setting the partial derivatives of the expected payoff (with respect to kp , 

Kk ,,1…=∀ ) to zero, yield the following first-order conditions: 

 ( )58     Kkrpr K

k kkk ,,1,022
1

…=∀=− ∑ =
  

By coherence, i.e. 1
1

=∑ =

K

k kr , it follows that  kk rp =∗ , Kk ,,1…=∀ . 

 Therefore, we are only left with the task of showing that choosing kk rp =∗  for 

every event k  actually maximizes the forecaster’s (negative) payoff.  
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 To ensure that a maximum is achieved, the second-order sufficient condition for a 

minimum is that the matrix of second derivatives (Hessian) must be negative definite42. 

A symmetric matrix is negative definite if and only if its K  leading principal minors 

have the same sign as ( )k1− . 

 In this case, it is easy to show that the Hessian matrix is negative definite because 

the second crossed partial derivatives are zero and, restricting for “coherence” 

( 1
1

=∑ =

K

k kr ), the diagonal elements are all equal to 2− , i.e. 

[ ] 02
1

22 <−=∂∂ ∑ =

K

k kkj rpPSME , Kk ,,1…=∀ .  

 ( )59     …
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We have shown that: 

( )60     
{ }

( )[ ]{ }dpPSMErp
K
kkp

kk ,maxarg,
1

−≡=
=

∗   

  In other words, the forecaster has to report her true believed probabilities to 

maximize her expected payoff for each outcome Kk ,,1…= . Therefore, we have shown 

that the PSM  is a “proper” scoring rule  

The multiple-outcome mean probability score or multiple-event Brier score is: 

 ( )61     
k

K

k
PSPSM ∑ =

=
1

 

where PS  is defined in ( )35 .  

                                                           
42 Simon and Blume (1994), pg. 382. 
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The covariance decomposition due to Yates (1982, 1988) is: 

( )62    ( ) ( ) ( )∑∑∑∑∑
=====

−+++=
K

k
kdp

K

k
kd

K

k
kp

K

k
k

K

k
k SBPSM

1
,

1

2

1

2
min,

11

2 2 σσσ   

where each component has a similar interpretation as the single-event case ( )36 . 

 

8. Which Score Shall We Calculate? The Probability Score or the Mean Probability Score?  

To encourage honesty and effort, the multiple-event probability score ( PSM ), and 

not the mean probability score ( PSM ), should be calculated upon the last reported 

forecast, for every publication of BoE’s Inflation Report. For example, when deFinetti 

(1965), and Nelson and Bessler (1989) worked experimentally, they had to pay based 

upon the last reported forecast, not the overall performance metric. This is because as 

N  goes to infinity, the marginal time-value of PSM  tends to zero. Consequently, the 

evaluated entity’s (in this case BoE) effort is not encouraged. But it is very important to 

evaluate the overall performance as well. Not only because a “big picture” indicator of 

performance is desired but, on the other hand, by calculating the PSM , you extract 

information –by utilizing the Yates’ partition- to characterize their forecasting 

performance with more detail. Therefore, the two indicators, PSM  and PSM  are 

complements, not substitutes.  

 

9. Hypothesis Testing for the Brier Score 

We have assessed the importance of comparing the central bank’s forecasts with 

other forecasters, in the first place. On the other hand, we have said that it is important 
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to compare to different variables, one in which the forecaster has special value 

(inflation) and other that is not that important (GDP growth). Now, we ask the 

question, how different are the multi-event case of the Brier Score ( PSM )?  

As we call attention to this issue earlier in the paper, although the original purpose 

of using scoring rules by de Finetti (1965, 1974) was more likely to resemble a “horse 

race” in the sense that the distance between the first-place winner and the second-place 

arriving horse turns out to be completely irrelevant at the moment of getting the prize, 

not considering the possibility of statistical hypothesis testing appears to be an unusual 

circumstance for applied economics. 

In other words, we try to provide answers to the question on how different are the 

probability judgment performances of both the central bank and the “other” forecasters.  

We consider both positive and negative differences, in other words a two-tailed test. 

When comparing two means of dependent or “paired” data, Freund (1992) suggest the 

use of the following parametric test for the differences of the multiple-event probability 

scores at each point in time Nt ,,1…=  

  The null hypothesis that the multiple-event Brier mean probability scores issued by 

different forecasters is: 

( )63      0: =− OFMPCO PSMPSMH   

  We propose the use of the CB -statistic: 

( )64     ( )[ ] ( )NsPSMNCB ∆∆−∆= /1 µ  
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where 

( )65     ( )∑ =
−=∆ N

t tOFtMPC PSMPSMPSM
1 ,,  

( )66      ( )∑ =
−=∆ N

t tOFtMPC PSMPSMPSM
1

2
,,

2  

( )67     ( )[ ] ( )( )[ ]22 111 PSMNPSMNs ∆−∆−=∆   

  In the case of small samples (like the one we have got), using the “rule of thumb” 

30<N , Freund (1992) suggests that we should contrast the CB -statistic with a 1,2 −ntα .  

 Whenever we have a large sample, Freund (1992) suggests contrasting the same 

statistic with a z  distribution instead of a student t  distribution.  

The CB -test proposed here assumes a common thing in economics, normality of the 

differences of the multiple-event probability scores ( PSM∆ ). If we are concerned that 

this could be a strong assumption, normality tests could be performed on the PSM∆  

series in order to validate the statistical inference performed by the CB -test. According 

to a recent survey by Dufour, et al. (1998), the most widely used normality tests in the 

econometrics literature are the Jarque-Bera (1980, 1987), Kolmogorov-Smirnov 

(Kolmogorov, 1933; Smirnov, 1939), Shapiro-Wilk (1965), Anderson-Darling (1954), 

Cramér-von Mises (1928), and the D’Agostino (1971). Given the well-known trade offs 

between using one test or the other; we leave this choice to the forecaster. 

An alternative approach to the CB -test, if you happen to find out that your 

multiple-event probability score differences are not distributed normally, is to use 

certain non-parametric tests, such as the Wilcoxen Signed-Rank test. This 
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nonparametric approach utilizes the magnitude of the rank and the sign of the 

differences between the pairs of measurements43. 

 

D. Bank of England Fan Charts Evaluation 

 

1. Bank of England Inflation Report 

The Monetary Policy Committee (MPC) took responsibility of publishing an Inflation 

Report on a quarterly basis when the BoE was given the operational independence in 

1997. The MPC has been publishing their inflation forecast presenting the so-called 

“Fan-Charts” or “Rivers of Blood” (term coined by Coyle, 2001) since August 1997. 

These forecasts are conditional to the assumption that the interest rates remain constant 

at the level the MPC decided. The committee reports their projections for one-quarter 

up to eight-quarters ahead. The MPC meets every first Wednesday and Thursday 

following the first Monday of each month, and they issue their forecasts at the 

February, May, August and November meetings. 

Figure 4 depicts the historical retail price index excluding mortgage interest 

payments (RPIX) inflation since  and, as the graph “fans out” it portrays the probability 

of various outcomes for the future inflation. These projections are based on constant 

nominal interest rates at 4 percent (Bank of England’s Inflation Report, May 2003). The 

BoE’s inflation target was based on the RPIX until December 2003, when the MPC 

changed the target to inflation based on the CPI.  

                                                           
43 For a useful illustration of this test, please refer to Ott and Longnecker (2001), pp. 308-312. 
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We assess the MPC and the “others” density forecast evaluations for the February, 

1998–May, 2001 forecasts of inflation and GDP growth rate for the first quarter of 2000 

to the second quarter of 2003. Although the MPC started reporting their inflation 

forecasts in a density form in August 1997, they did not report the GDP until Nov. 1997. 

Moreover, the real GDP growth density forecast for the Nov. ’97 is only reported as a 

Fan Chart and not an explicit table.   

The Brier score is said to work only for unconditional forecast evaluations 

(Clements and Smith, 2002). Clements (2004) and Wallis (2003, 2004) discuss that the 

one-year-ahead forecasts can be treated as unconditional forecasts since interest rates 

do not have such an impact on inflation in the short-run. However, due to the lack of 

consistent one-year-ahead forecasts issued by the external surveyed forecasters –

published in the Inflation Report-, we focus our analysis on the two-year-ahead forecasts. 

Clements and Smith (2002) conclude that evaluating conditional forecasts with 

unconditionally-related forecast evaluation techniques is not a major drawback if the 

data set is sufficiently small (that is our case). Furthermore, exploring better methods 

becomes worthwhile as the focus of the analysis lies on larger data sets. On the other 

hand, evaluating the two-year density forecasts is important since longer term 

forecasting horizons are usually related to the establishment of central bank credibility. 

The BoE has issued Fan Charts conditional on a constant interest rate. Since 

February 1997, the MPC has published fan charts conditional to the market expectations 

of the interest rate. They perform this analysis by extracting information from the 
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implied volatilities from the market for options on government bonds with different 

maturities (see Bahra, 1997). 

 

2. Probability Scores, Brier Scores and Yates’ Partitions of the Density Forecasts of the UK 

Here we calculate the multiple-event probability scores ( PSM ) for each quarter’s 

forecast of inflation and the output growth rate, for both the MPC and the BoE’s 

surveyed forecasters. 

Figures 5 and 6 illustrate the MPC’s and the “other” forecasters’ PSMs obtained for 

their assessments on the forecasts of inflation and output growth.  On first sight, the 

upward trend in both graphs caught our attention44. A hypothesis emerged from the 

“learning-by-doing” theories could make us think experience in forecasting is grained 

as time goes and better scores can be achieved. We do not find support for these ideas. 

Unfortunately, the analysis is performed on very few observations. On the other hand, 

they both run into the same trend, so it is not clear that this is an issue.  

An oddity that becomes apparent is the “spike” in the forecast for the second 

quarter of 2002, published on May, 2000. While this appears in both the MPC and the 

surveyed forecasters’ PSMs, it is clearly a more dramatic one for the “other” forecasters. 

The “overresponsiveness” shown by the surveyed forecasters might have been 

explained because the MPC changes their surveyed sources from time to time without 

notice. In the search for an extraordinary event –directly related to the MPC’s decisions- 

during the dates the forecast was issued, we found an unprecedented “scandal” 

                                                           
44 Recall that the multiple-event probability score ranges from 0 to 2. An appraiser with perfect forecast 
attains a 0. The worse score is 2. 
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generated by the appointment of Chris Allsopp as a new member of the MPC. Allsopp 

faced a “tough time” when the Treasury Select Committee of the House of the Commons 

voted 5-4 to reject him as a member of the MPC. The Committee has no power to 

overrule the appointment. As a result, Allsopp became a member of the MPC on June, 

2000, replacing Charles Goodhart. BBC news economics reporter Dharshini David (2003) 

argues that the Committee did not want him for the job because Allsopp is considered a 

long-time interest rate “dove”45, and could limit the BoE’s ability to achieve their price 

stability mandate.  

Our hypothesis is that Allsopp’s appointment could have persuaded the MPC to 

modify their inflation (and not the output growth) forecast increasing their downward 

bias in order to reduce the possibilities for an interest rate cut. 

Figure 7 shows what it could be thought as evidence supporting our argument that 

the Allsopp event caused the spike (in the shaded region) we previously identified in 

figure 6. The spike on the MPC’s PSM for the inflation forecast for the second quarter of 

2000 is determined by the large difference between the forecasted and the realized 

inflation for that period. While the mode of the forecasted inflation was 2.56 percent -

above the inflation target of 2.5 percent-, the realized inflation was 1.9 percent only. 

Even though Wallis (2003) does not acknowledge this date in particular, he agrees that 

the MPC has been skewing BoE’s inflation forecasts due to “fear of inflation” to keep 

discouraging any “dovish” attempt for an interest rate cut. 

                                                           
45 In the financial markets jargon, an interest rate cut-friendly central banker is considered to be a  “dove” . 
Following the same babble, the opposite is called a “hawk”. 
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The PSM  analysis also shows that the “other forecasters’ are performing better 

than the MPC. Two questions remain unanswered: First, while the difference between 

the scores obtained by the MPC and the surveyed forecasters’ output growth rate 

forecasts look rather small, this is not the same when it comes to the PSMs  of the 

inflation forecasts (the key variable for the Bank of England). This brings about the 

question on how different their scores are. We will try to provide an answer to this 

question on using our proposed CB  test on the mean PSMs later on the paper.  

The second question is related to the fact that albeit we know what happened, we 

do not know formally why it happened. Was it “wishful thinking”? Were they 

“hedging” their forecasts? A quantitative analysis can be performed to identify which 

were the thriving forces that determined their scores. As it was mentioned earlier in this 

paper, this can be done by calculating of the multiple-event Brier mean probability 

score and its Yates’ partition. All calculations were performed in RATS (Doan, 2000) 

software. 

 In terms of the Brier score for the inflation forecasts, the surveyed forecasters do a 

“better” job than the MPC obtaining 0.5991, a smaller score than the MPC’s 0.7091. A 

completely different situation emerges when we turn our sight to the output growth 

forecasts, where both appraisers perform a similar job with scores almost matching 0.71. 

Combining both the inflation and the output growth forecasts, we can observe that the 

MPC’s Brier score worsens from period one to period two. This does not happen to the 

surveyed forecasters. These numerical results resemble what we have already seen in 

Figures 5 and 6. The difference here is that we are able to ask why they have got 
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different scores regarding the inflation predictions. In order to answer the question, 

let’s look at the bias and covariance components in the first set of results of table 4. Even 

though both forecasters show biases in their assessments, the MPC acquires a larger 

bias with 0.3342, compared to 0.2318 of the “other” forecasters. On the other hand, the 

MPC’s covariance between their forecasts and the outcome index is -0.0022. This is a 

much smaller number, compared to the “shadow” forecasters’ almost nonexistence 

covariance. In this case, if the covariance term is negative, the appraiser would rather 

choose not to have covariance at all, to minimize his/her Brier score. 

Bias can be interpreted as “wishful thinking”. This can be permeated through direct 

“qualitative corrections” to the forecasts, or are contained in the models’ assumptions 

on how the economy works. Mankiw (1998) approaches this point of concern in the 

following way: "Wishful thinking is one reason that monetary policy has historically 

been excessively inflationary…To my mind, wishful thinking is as worrisome a 

problem for monetary policy as time inconsistency." However, in this case we find that 

“wishful thinking” is coming from the inflation forecast, rather than from the output 

growth predictions. Thus, we do not find evidence of biases towards exploiting the 

output-inflation trade-off. On the contrary, our results support the idea that wishful 

thinking is directed towards a lower inflation level. This explanation gains more weight 

if we go back to the story about the peak found in figure 5 about rejecting “dovish” 

committee members, due to a supposedly “fear of inflation” on the MPC’s side. 

Shifting gears to another set of facts, the MPC consistently portrays a larger scatter, 

compared to the surveyed appraisers. Even at the overall level, i.e. combining the 
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forecasts, the most emphatic difference between the components of the Yates’ partition 

of the two forecasters is the scatter.  An intuitive interpretation of the relationship 

between the total forecast variance, 2
pσ , its components (minimum forecast variance, 

2
min,pσ , and scatter, S ), and the covariance between the probability forecasts and the 

outcome index, dp,σ , follows. dp,σ  measures the responsiveness of the forecaster to 

information related to event k ’s occurrence, and S  indexes the forecaster’s 

responsiveness to information not related to event k ’s occurrence. A large value of 

scatter suggests that, either the forecaster is aware of exogenous shocks and wants to 

take them into account at a qualitative level, i.e. not included in their models, or he/she 

simply wants to hedge his/her results. This view is enhanced by the fact that both 

forecasters attain a 2
min,pσ  very close to zero. This suggests that both the MPC and the 

surveyed forecasters have to do a better job in selecting the variables relevant for 

forecasting and the causal structure among them. This gains a special meaning in the 

case of inflation, since it is the key variable for the Bank of England, according to its 

mandate. We think this is a modern way to represent Keynes famous phrase: “I rather 

be vaguely right, than precisely wrong.” In any case, these “elegant” explanations help 

to disguise the forecaster’s lack of ability to incorporate the information relevant to the 

forecasts in the period of evaluation. An analogy to Markowitz’s (1952) portfolio theory 

can be made to exemplify these relationships. Addressing the total forecast variance in 

a “correct” way implies to match the outcome index variance. Therefore, there is no 

way that we can get rid of this source of forecast variability. This is just like 
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Markowitz’s “market” risk. Portfolio theory tells us that diversification, i.e. buying 

stocks with a low correlation among them, can help to reduce the idiosyncratic (or 

unique) risk and, as a result, decrease the overall risk. In this case, conducting efficient 

research on the relevant information affecting the variables to be forecasted, such as 

diversifying by using different models that capture different aspects of the economy, 

will decrease the forecaster’s responsiveness to information not related to the forecast. 

Consequently, this will improve the forecaster’s talent to discriminate between the 

events that occur and the ones that did not occur, i.e. this will reduce the idiosyncratic 

risk. Thus, minimize the Brier score. Summarizing, a large value of scatter suggests a 

revision of the models and ideas used for forecasting purposes. 

Notice that we propose to diversify, not to hedge. The second and third definitions 

of the word “hedge” on the Merriam-Webster’s Dictionary (1994) are: ”means of 

protection or defense (as against financial loss)”, and “a calculatedly noncommittal or 

evasive statement”. The second definition of the word “diversification” is: ”to balance 

(as an investment portfolio) defensively by dividing funds among securities of different 

industries or of different classes”. We are sure that “calculatedly noncommittal“ and 

“evasive statement” are not the phrases central banks want to be associated with. 

 A graphical approach to see each forecaster’s ability to discriminate between events 

that occur and events that does not occur with more clarity is depicted in figure 8. 

 Figure 8 shows the covariance graphs of the probability judgments of the MPC and 

the “other” forecasters for inflation and real GDP growth. We are able to observe 
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graphically that both the MPC and the “other” forecasters’ ability to sort is precarious, 

i.e. they assign very low probabilities to the events that actually occurred.  

 The 45-degree line represents the ideal forecaster (perfect foresight). The dotted-

lines are the regression lines of the probability forecasts on the outcome indices. As the 

dotted line looks more like the 45-degree line, the forecaster gets closer to perfection in 

both calibration and resolution criteria. The bias of the MPC’s inflation forecasts can be 

seen clearer when comparing the upper-left corner graph, depicting the MPC’s 

covariance graph, with the upper-right corner graph (other forecasters).  The MPC’s 

dotted line is flatter than the other forecasters showing a slope of 0.09, compared to 0.16 

of the other forecasters’ dotted line. In the case of the output growth forecasts, in spite 

of the flatness of their dotted-lines, the both have almost the same slope.  

 

3. Are the MPC and the “Other” Forecasters’ Brier Scores Significantly Different? 

The CB -test developed earlier in this paper, given by equation ( )64 , is used to 

provide answers to the question on how different are the probability judgment 

performances of both the central bank and the “other” forecasters. Results are reported 

in table 5. 

Table 5 indicates the rejection of the null that the difference between the Brier scores 

for the inflation forecast from the MPC and the other forecasters is zero. We fail to reject 

that the difference is zero for density forecasts for output growth. These analytic results 

bear a resemblance to what it is depicted in figures 5 and 6, as well as results portrayed 

in table 4. 
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These results suggest that the MPC either attaches a certain degree of “wishful 

thinking” to their inflation forecasts or hedges its inflation forecasts by adding extra 

variability, or both. Results on table 4 provide evidence that both things happened 

during the period under study. This explains the statistically significant difference 

between the two Brier scores in the case of the inflation forecast. 

 

E. Conclusions 

 

Central bankers’ long-dated tradition of secrecy has been gradually going out of 

fashion as many monetary authorities are convinced that transparency enhances 

monetary policy’s stabilization performance. Several central banks have adopted more 

transparent regimes; such is the case of inflation targeting. Others have gone even 

further and now publish their inflation forecasts periodically.  Bank of England (BoE) 

does the latter.  Their Monetary Policy Committee (MPC) has been informing the public 

about their (as well as others’) future perspectives of inflation in a probabilistic sense, 

on a quarterly basis.   

In order to have the central bank’s monetary policy decisions accountable, optimal 

forecast evaluation becomes an issue. While many studies use point-forecast techniques 

to evaluate the MPC issued forecasts (for example, Pagan, 2003), some others have 

recently utilized calibration-based evaluation methods (Wallis, 2003, 2004; Clements, 

2004). Although calibration procedures are more appropriate forecast-evaluation 

mechanisms -due to the probabilistic nature of their published forecasts-, they fail to 
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take into account the forecaster’s ability to sort between the events that occurred and 

the events that did not occur.  

We suggest central banks to publish their inflation forecast. Moreover, we 

encourage them to do it in a probabilistic form. This is recommended in order to 

provide the public with a complete probabilistic statement assessing the “upside” and 

“downside” risks of future inflation, perceived at the moment prediction. On the other 

hand, we suggest publishing forecasts from another sources or “shadow” forecasters.  

The point that we emphasize is to evaluate these density forecasts calculating the 

Probability Score for the latest forecast issued, as well as an overall performance 

measure, such as the multiple-event version of the Brier mean probability score, along 

with the Yates’ partition.  

This paper presents an incentive-compatible approach to evaluate density forecasts. 

Moreover, this line of attack offers means to extract important information about the 

forecaster beliefs. This is presumed to alleviate the central banks’ accountability 

problem and, potentially bolster monetary policy’s stabilization features. This is 

achieved calculating the Yates’ partition (Yates, 1982) of the Brier Score (Brier, 1950) on 

the MPC and “others’” forecasters on inflation and output. 

Calibration only takes into account the reliability or ex post relative frequency of the 

forecast, overlooking the resolution or ability to sort between outcomes that occurred 

and did not occur. The Brier score encompasses the covariance between the realized 

values and the forecast being a broader indicator. It is important to evaluate a central 

bank because of their accuracy and sorting ability, rather than only by their calibration.  
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Utilizing these methodologies to evaluate the MPC and the surveyed forecasters’ 

inflation and output growth rate forecasts, we found the following three results. First, 

our results indicate that both the MPC and the “other” forecasters have shown a large 

responsiveness to information not related to the forecasted variable and a very 

precarious response to developments affecting inflation and output growth. This 

analysis insinuates that the MPC could be hedging its forecasts. 

Second, “wishful thinking” in monetary policy has been usually identified as a bias 

towards the exploitation of the short-run output-inflation tradeoff. Conversely, our 

results indicate the MPC has been promoting its “wishful thinking” through its 

forecasts more on the “fear of inflation” side. 

Third, while there is not a statistically significant difference between the Brier mean 

probability scores for the output growth forecasts, there is a significant one for the 

inflation forecast. This supports the ideas that the MPC could be hedging their inflation 

forecasts and, at the same time, influencing them with “wishful” thoughts against a 

high-inflation (perhaps even moderate) outcome. 

We can see that BoE uses the forecast as an instrument. But publishing a true 

forecast, perhaps strips the power off the forecast as an instrument, but gives more 

power to monetary policy itself, since the public will improve predictability of 

monetary policy and their actions will reflect better behavior ad hoc with monetary 

policymaking decisions. In other words, this could be seen as a transfer of power from 

one instrument to another or just emphasizing the usefulness of the instrument, in this 
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case, by encouraging honesty on the publication of the forecast, will be emphasize the 

open-market operations to set the key interest rate, monetary policy literally. 

Regarding the incentive-compatible feature of the Brier score, it has been thought 

that the scoring rule proposed by Brier could be used in the context of a contract 

between the govt. and the central bank a la Persson and Tabellini (1993, 1999, 2000) and 

Walsh (1995a, 1998). But, although we do recognize that their work has been useful to 

understand certain issues in modern monetary policymaking from a theoretical point of 

view, there are certain ambiguities that come into sight from try to apply this approach 

to central banking (Blinder, 1998). Hence, this possibility was discarded. 

The use of Brier score belongs to a so-called decision-based approach to evaluate 

forecasts. Clements (2004) calculates decision base theory rules and concludes the same 

as Wallis (2003, 2004). There are criticisms with respect to the use of these criteria for 

forecast evaluation (Pesaran and Skouras, 2002; Wallis, 2004). Wallis states that, 

although decision theory states that all forecasts should be evaluated in terms of the 

gains and losses that resulted from using the forecasts to solve a sequence of decision 

problems, macroeconomics forecasts are published for the general use and we have 

little knowledge on the users’ specific decision contexts and evaluation. Nevertheless, 

aggregation of the preferences of individuals across the economy makes this task an 

impossible one. Our focus is more into evaluation the forecast to ensure an optimal 

degree of transparency by making the central bank accountable of their actions, via 

their forecast. We not only propose to encourage the central bank to be honest in their 
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forecasting reports, but also to persuade the monetary policy committees to exert their 

best effort when constructing their forecasts.  

Granger (2001) states that forecast evaluation criteria depend on the purpose of the 

forecast. Along the same lines as Granger, we are integrating central bank’s 

transparency as a beneficial feature for both the central bank (forecast producer), and 

the public (users), and accountability via a reputation-building mechanism that 

encourages honesty and accuracy utilizing the Probability Score and the Brier 

Probability Score. 

The Brier score is said to work only for unconditional forecast evaluations. In a 

context of evaluating forecast densities of output growth and unemployment, Clements 

and Smith (2002) mention that this could be a potential problem. Clements (2004) and 

Wallis (2003, 2004) discuss that the one-year-ahead forecasts can be treated as 

unconditional forecasts since interest rates do not have such an impact on inflation in 

the short-run. However, due to the lack of consistent one-year-ahead forecasts issued by 

the external surveyed forecasters –published in the Inflation Report-, we focus our 

analysis on the two-year-ahead forecasts. Clements and Smith (2002) conclude that 

evaluating conditional forecasts with unconditionally-related forecast evaluation 

techniques is not a major drawback if the data set is sufficiently small (that is our case) 

and exploring better methods becomes worthwhile as the focus of the analysis lies on 

larger data sets. On the more intuitive side, in our particular case, this could have 

affected our analysis in the sense that central bank had more opportunity (time) not 

only to act but to see the consequences of her actions and actually either be close to their 
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forecast if she places a large weight on “hitting” the forecast. On the other hand it could 

have been far because the conditions of the economy change dramatically. This second 

possibility can be ruled out by following the economic developments in the period of 

analysis. In any case, this issue did not prevent us to arrive to the same conclusions as 

Pagan (2003), Wallis (2003, 2004) and Clements (2004) that the MPC is “upwardly” 

biased by placing too much probabilities to the high state precluding the less 

conservative members of the Committee to gain any sympathy for rate cuts. On the 

other hand, the evaluating the two-year density forecasts is important since longer term 

forecasting horizons are usually related to the establishment of central bank credibility. 

This fact suggests that future research should be undertaken in this topic. In the 

specific case of the Bank of England, obtaining a “good” number of one-year-ahead 

density forecasts by “other” forecasters in order to overcome the issue on 

conditionality.  

The MPC has changed their target from RPIX to the Consumer Price Index (CPI), it 

could be interest in extending the analysis we propose in this paper to the CPI, once a 

consistent and “decently” large number of observations becomes available.  

Another topic is left out of the scope of the present research effort future research 

would be to explore ways to relax assumption of neutrality of the forecaster with 

respect to the forecast and its implications, if we believe that this is a strong 

assumption. Henceforth we have noted quite a few topics for future research. 
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CHAPTER IV 
 
 

WHAT CAUSES THE SACRIFICE RATIO? 
 
 
 

Our inferences . . . always retain more or less of a hypothetical character, 
and are so far open to doubt. Only in proportion as our induction 
approximates to the character of perfect induction, does it approximates 
to certainty. The amount of uncertainty corresponds to the probability 
that other objects than those examined may exist and falsify our 
inferences; the amount of information yielded by our examination; and 
the theory of probability will be needed to prevent us from 
overestimating and underestimating the knowledge we possess. 
       ― Jevons, W. S. (1874), p. 263 

 

A. Introduction 

 

According to Benjamin Friedman, the relationship between output and inflation has 

been a (if not the) central reason for doing monetary policy (Solow and Taylor, 1999). 

But, while it is a well-known fact that low inflation is an advantageous state in the 

economy (see Barro, 1996, and Feldstein, 1999a, for well-documented surveys), there is 

also consensus that disinflationary policies cause short-run output losses46 (Romer and 

Romer, 1989; Ball, 1994).  

The assessments of the costs of disinflationary policies have used the concept of 

sacrifice ratio defined as the costs in terms of unemployment or loss of output that must 

be faced to achieve a reduction in inflation. 

                                                           
46 Blanchard (1997) and Zhang (2001) –among others- go even further and claim that these policies can have 
long-run effects. 
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There have been several attempts to estimate the sacrifice ratio in the literature. 

These can be divided in two classes: constant over time (Okun, 1978; Gordon and King, 

1978; and recently Cecchetti and Rich, 2001), and case-by-case (Ball, 1994; Bernanke, et 

al., 1999; Sánchez, Seade, and Werner, 1999, among others). Ball’s technique remains as 

the “standard” method since Cecchetti and Rich concluded that their estimates are 

imprecise.  

We take the “case-by-case” approach in this study. The numerator is the (discrete) 

sum of the differences between the potential Gross Domestic Product (GDP), and the 

realized GDP -also called output gap-, across the time periods within the disinflation 

episodes. The denominator is the change in the inflation rate from the beginning to the 

end of the identified disinflation episode. 

We divide the variables that presumably affect the magnitude of the sacrifice ratio 

into three categories: “traditional”, “structural”, and “institutional”. The set of 

traditional determinants encompasses a series of variables that, on one hand, have been 

“key” issues in the modern monetary macroeconomics debate for a long time. These are 

also related to the sacrifice ratio in a more operative basis. The structural factors 

incorporate the characteristics of the countries economic agents’ interactions, such as 

wage rigidities and the degree of openness of the economy. The third set of 

determinants is much of a newer one in the literature. The institutional aspect reflects 

the need to account for the structure of incentives that are likely to be within the central 

banks’ institutional structure. Such is the case of Central Bank Independence (CBI) and 

Inflation Targeting (IT). These factors are out of the scope of Ball’s analysis.  
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In order to identify the impact of the determinants on the sacrifice ratio, the 

literature has provided neither a formal theoretical framework, nor a consistent 

empirical estimation technique to assess the way these factors affect the magnitude of 

the sacrifice ratio. Scatter diagrams, simple correlations, and simple regressions have 

been performed on empirical estimates of the sacrifice ratios, usually evaluating each 

factor separately. 

We believe that it is extremely important to identify the causal structure underlying 

the sacrifice ratio and its determinants to achieve a more effective way of implementing 

monetary policy. In order to succeed to provide the set of factors that can be 

manipulated to reduce the costs of disinflation, we have to be able to recognize which 

are and which are not the factors that affect the sacrifice ratios, in order to choose 

“correct” variable and obtain the desirable outcome, if it is possible.  

That is why we used a new tool that retrieves the causal structure from a set of 

empirical observations. A methodological introduction to the techniques that are used 

in this study follows. We believe that a simple and general algorithm for the 

construction of empirical models can be summarized into four steps: 1. Select the 

variables that we think are relevant for our abstraction of reality, the model, e.g. x , y , 

z ; 2. Set the relationships of the variables –namely- the causal structure, for instance 

( )zxfy ,=  which in this case implies that x  and z  cause y ; 3. Choose the functional 

forms, let’s say, linear czbxay ++= , where a , b , and c  are parameters; 4. Decide the 

estimation method, least squares, generalized method of moments, and so on and so 

forth. Economic theory is usually involved in steps 1, 2, and 3; econometric theory in 3 
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and 4. But what if theory has not provided a sensible and consistent theory on how the 

variables are causally related. In other words, if step 4 is not fully analyzed or proven. 

To emphasize the importance of performing a reasonable analysis in step 4, let’s say 

that we think that the following causal structure YXZ →→  represents the truth. We 

would be tempted to manipulate X  to provoke an effect on Y . But what about if the 

real causal structure is YZX →← ? Manipulating X will never have an effect on Y . 

A handy example follows47. Assume that Z  refers to smoking cigarettes, X  stands for 

yellow fingers, and Y  is terminal cancer. If we prescribe a treatment for yellow fingers, 

we will not be affecting terminal cancer. This point is supported by Hausman (1998) 

when he says that manipulation is at the heart of causation. Trying to manipulate the 

“wrong” variable could lead to an outcome different from the one that is desired. 

There are two probabilistic approaches to estimate data-based causality: the 

“celebrated” Granger causality (Granger, 1969), based on “incremental predictability, 

and Directed Acyclical Graphs (DAG), a combination of graph theory48 with modern 

artificial intelligence methods proposed by Pearl (1986, 2000) and Spirtes, Glymour, and 

Scheines (1993, 2000). The former has been used extensively in the economic literature. 

The latter has started to permeate the economic literature and has been used by Bessler 

and Lee (2002), Bessler and Kergna (2002), Awokuse and Bessler (2003), Bessler and 

Yang (2003), and Yang and Bessler (2002) to identify a causal structure whenever theory 

fails to provide a sensible explanation of step 4 (above). Granger and Swanson (1997) 

                                                           
47 Pearl (2000) 

48 See Maxwell and Reed (1971) for a comprehensive introduction to graph theory. 
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use a similar methodology to retrieve a causal structure from the residuals of a vector 

autoregression (VAR).  

Two reasons lead us to pick DAGs for the assessment of the determinants of the 

sacrifice ratios.  First, the episode-by-episode nature of the data. In other words, we do 

not have a “continuous” stream of data. Therefore Granger causality cannot be used. 

The other, and more powerful reason, is that DAGs is that Granger causality assumes 

no contemporaneous correlations. 

Instead of imposing an a priori structure, an empirically-based structure is sought 

using Directed Acyclical Graphs (DAGs) (Pearl, 1986, 2000) and the PC Algorithm 

(Spirtes, Glymour and Scheines, 1993, 2000). We utilize DAG analysis on quarterly data 

from eleven member countries of the Organization for Economic Cooperation and 

Development (OECD) for the 1960-2000 period. We find that there is evidence that 

wage rigidities and central bank independence (CBI) are two major determinants of the 

sacrifice ratio. This supports Ball’s (1994) results as well as other empirical analyses on 

CBI such as Debelle and Fischer (1994), Walsh (1995b), Froyen and Waud (1995), and 

Fischer, (1996).  Although we find that openness is affected by CBI, we do not find 

support for Romer’s (1993) view that it has an effect on the sacrifice ratio. This is in line 

with a recent study by Temple (2002). Along the same lines as Bernanke, et al. (1999), we 

do not provide a solid assessment on the relationship between inflation targeting (IT) 

and the sacrifice ratio due to the recent adoption of these regimes and that our analysis 

is restricted to disinflation episodes only, yielding very few observations. 
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This paper is innovative in three ways. (i) It extends Ball’s sacrifice ratio calculations 

by including observations for the 1992-2000 period; (ii) It includes CBI and IT as 

relevant variables to possibly explain the costs of disinflation; (iii) And most 

importantly, it uses a new causal engine to determine the causal structure of the model 

to estimate a regression based on the identified causal model. 

The paper consists of five sections. The first section describes the methodology used 

to calculate the sacrifice ratios, and presents estimates of the sacrifice ratios for eleven 

OECD countries for disinflation episodes between 1960 and 2000. Section B discusses 

the theoretically-based factors that are supposed to have and effect on the magnitude of 

the sacrifice ratio. It also provides a description of the data used to examine each of 

these factors. The third section offers a brief introduction to the Directed Acyclical 

Graph approach at a theoretical level. Details about the results from past literature as 

well as our findings are discussed in section E. Section F provides concluding notes. 

 

B. Calculating the Sacrifice Ratios 

 

1. The Sacrifice Ratio 

The theoretical foundations of the sacrifice ratio are based on the expectations-

augmented Phillips curve (Phillips, 1958; Friedman, 1969a; Phelps, 1968), or Lucas 

supply curve with backward expectations49 (Lucas, 1972, 1973): 

                                                           
49 In other words, using lag inflation as a proxy of expected inflation. 
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( )68    ( ) ( ) 10,0,111 <≤>+−+−=− ∗
−−−

∗ βαεβππα ttttttt yyyy   

where y  is the (natural) log of real output, ∗y  the log of potential output , π  is the 

inflation rate, ε  is a disturbance term, α  and β  are parameters. Subindex 1−t  

indicates the variable is measured at time 1−t , and t  stands for a period ahead. 

Disinflation occurs whenever 01 <− −tt ππ . The term ∗− tt yy  is the output gap, or 

deviation of output from its potential level, attributable to a disinflation policy at time 

t . If disinflation does not occur ( 01 ≥− −tt ππ ), output ( y ) remains at its potential level 

( ∗y ) if output was at its potential level in the last period. If disinflation takes place, 

there is a short-term output loss. As α  increases, the cost of disinflation gets larger. 

Nevertheless, output reverts to its potential level in the long run. β  is the persistence or 

“long-lived” effect of the disinflation policy on the long-run output gap. In other words, 

β  determines how long it takes for the output to return to its potential level after a 

disinflation policy occurred.  

 Although  β  reveals how strong (or weak) are the effects of the disinflation policy 

on the output gap, it does not affect the potential (trend) output. An extreme case takes 

place whenever these disinflation policies cause a permanent decline in unemployment 

and output; this is defined as hysteresis (Blanchard and Summers, 1986).  Blanchard 

(1997) illustrates the hysteresis effect with the following equation: 

( )69     ( ) 10,1 11 ≤≤+−+=− −
∗
−

∗ θθθ tttt yyyyy   

where y  is the constant growth rate for potential output, θ  is the level of hysteresis 

effect, and the other terms follow from the notation above. If 10 ≤< θ , there is a 
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hysteresis effect. And the sacrifice ratio becomes larger with the intensity of θ . 

Whenever 0=θ , there is no hysteresis at all. 

 Attempts on estimating the sacrifice ratio fall into two categories: “constant-over-

time” estimation and “case-by-case” studies. The former methods were pioneered by 

Okun (1978) who analyzed a set of Phillips curve models to estimate the cost of 

disinflation in terms of the percentage loss of output during a given period. Gordon and 

King (1982) derived the sacrifice ratio using both “traditional” and Vector 

Autoregressive (VAR) models. More recently Cecchetti and Rich (2001) obtained 

estimates of the sacrifice ratio utilizing Structural Vector Autorregressions (SVAR), 

identifying aggregate demand and aggregate supply shocks a la Blanchard and Quah 

(1989)50.  

 The “case-by-case” method was developed by Ball (1994). Ball explored this new 

approach motivated by the two limitations of the methodologies described above. On 

one hand, they constrain the estimated ratios to be identical for disinflation periods as 

for periods of increasing trend-inflation or short-run aggregate demand fluctuations. 

On the other hand they constrain the sacrifice ratios to be constant over time. These two 

restrictions neglect the facts that disinflations are influenced by disinflation-specific 

factors (such as credibility shifts in expectations), and, time-specific institutional factors 

(such as labor contract structures or the degree of openness of the economy –among 

others).  

                                                           
50 Model “C” in Amisano and Giannini’s (1997) generalized SVAR approach. 
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 Ball’s technique has received criticism from Friedman (1994) and Cecchetti (1994) on 

the basis of using foregone output instead of rise of unemployment as the loss criterion, 

and ignoring the “benefits” from loosening monetary policy as well as the likely 

existence of supply shocks, respectively. Despite these criticisms, Ball’s methodology 

has become a “standard” in the field and has been used by numerous recent studies 

(Jordan, 1997; Bernake, Laubach, Mishkin, and Posen, 1999; Sánchez, Seade, and 

Werner, 1999; Zhang, 2001; Çetinkaya and Yavuz, 2002; Temple, 2002; and Boschen and 

Weise, 1999, 2003). We believe that this is because Ball provided a fairly uncomplicated 

methodology whose estimates are consistent with the “traditional” inflation-output 

literature, as well as because of the mentioned limitations of the constant-over-time 

approach and Cecchetti’s (2001) severe self-criticisms on his SVAR derived estimates: 

“…the estimates are very imprecise, which we suggest reflects the poor quality of 

instruments used in estimation. We conclude that the estimates provide a very 

unreliable guide for assessing the output cost of disinflation policy.” 

 Using the best methodology available to estimate the sacrifice ratios is a necessary 

condition for a good assessment on the factors that presumably affect them. As a result, 

Ball’s methodology is used in this paper. 

  Ball’s definition of the sacrifice ratio ( SR ) is the following: 

 ( )70     
( )
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where the numerator is the output gap, i.e. the (discrete) sum of the differences between 

the realized GDP  ( ty ) and the potential GDP ( ∗
ty ), across the time periods within the 
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disinflation episode ( Dt∈ ). The denominator is the change in the inflation rate from 

the beginning to the end of the identified disinflation episode. SR  is interpreted as the 

cost of reducing one percentage point of inflation in terms of aggregate demand 

contraction, which is similar to α , in equation ( )68 . 

The construction of this estimate for the sacrifice ratio has two underlying 

assumptions: ignores supply shocks –criticized by Cecchetti (1994)- and presumes that 

there is no hysteresis, i.e. 0=θ  in equation ( )69 . The first assumption introduces noise 

to the sacrifice ratio estimation as a measure of the inflation-output trade-off. Along the 

same lines as Ball (1994, pg. 161), we claim that these measurement disturbances will be 

reflected in the regression errors and will not cause a major problem in our analysis. On 

the hysteresis effect, Zhang (2001) studies the potential downward bias in calculating 

the sacrifice ratio whenever hysteresis is neglected51. There is almost consensus that 

there are short-run effects of disinflation policies, but there is still considerable debate 

on its long-run effects. The focus of this study is the short-run effects of disinflationary 

policies, as a result, we maintain Ball’s assumptions (as other authors mentioned 

above). 

 

2. Identifying Disinflation Periods and the Measurement of the Output Gap 

The methodology proposed by Ball consists of two steps: identify the disinflation 

episodes ( D ), and calculate ( )∑ ∈
∗−

Dt tt yy , the departure of real output from its 

                                                           
51 Zhang (2001) also studies the importance of accounting for the effects of persistence –namely β in 
equation (68)- “correctly”. We assess the persistence assumption later in the paper. 
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potential level during D . The former intends to separate the small fluctuations (arising 

from ”exogenous” shocks) from the relevant policy-induced changes in inflation. The 

latter is the heart of the sacrifice ratio. 

A series of basic characterizations used by Ball follows. In order to identify the 

disinflation periods, a smoothed version of inflation or “trend inflation” ( T
tπ ) is 

calculated as a centered, eight-quarter moving average of actual inflation.  

( )71     ∑
+

−+
=
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ππ
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 where i is an index. Although there are data on inflation for the whole sample, output 

data is only available on an annual basis, as a result, 4=i for the quarterly data trend 

inflation, and 1=i for the annual data. Therefore, the annual data trend inflation is 

defined as a two-year centered moving average of realized inflation. 

 In any given country, a disinflation period starts (ends) on the “peak” (‘trough”), 

defined as the point in time where trend inflation is higher (lower) than the previous 

and the next 4 quarters (for quarterly data), and 1 year for annual data.  

Ball identifies twenty-eight disinflationary periods in nine countries, using quarterly 

data and sixty-five episodes in nineteen countries, with annual data. 

The most delicate subject concerns the measurement of the output gap, due to the 

fact that there is no general agreement among economists on how to assess this issue. 

Ball departs from the most used methodology to calculate the trend output, the 

Hodrick-Prescott (HP) filter (Hodrick and Prescott, 1980, 1997) due to the fact that the 

filtered trend output follows the realized output very closely, practically eliminating the 
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differences between them, as a result, this eradicates any possibility of accounting for 

recessions. Instead, Ball assumes the following: (i) Real output is at its potential level at 

the beginning of the disinflation episode; (ii) Output reverts to its “natural” level four 

quarters (one year) after the trough52; (iii) Trend output grows log-linearly between the 

peak and the four quarters (one year) after the trough. 

Figure 9 shows graphically the methodology of calculation of the sacrifice ratio on a 

“case-by-case” basis. 

Assumptions (i) (i.e. 
Dttt yy

inf=

∗= ) and (iii) (i.e. log-linearity of trend output) have 

not been challenged to a large extent. But supposition ii has attracted modest debate 

(Blinder, 1987; Romer and Romer, 1989, 1994). Particularly, Zhang (2001) argues that 

there is a downside bias in the measurement of the sacrifice ratio if the methodology 

neither accounts for persistence effects in a “correct” fashion, nor includes hysteresis 

effects. Despite these critiques, as we mentioned above, given that we are interested in 

the short-run effects of this policies and there is not yet a general agreement on the 

existence of strong persistence effects or even hysteresis, we rule out these two factors. 

 

3. Estimates of the Sacrifice Ratio 

Ball estimated sacrifice ratios using quarterly and annual data. We analyze the 

determinants of the sacrifice ratio on quarterly data because we are only interested in 

                                                           
52 Thus, the ordered elements of set D (the dates) are the date of the peak (start), four quarters (or one year) 
after the trough (end), and the dates between these two. Translating this assumption into equations (1) and 
(2) is as if β in the fourth quarter, after the trough, approximates to zero. Moreover, assumes no hysteresis 
(i.e. θ=0). 
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the short-run fluctuations and using annual data dampens short-run inflation 

movements. We believe this has been the rationale behind the use of quarterly, rather 

than annual data in the majority of the studies mentioned earlier in the paper. 

We took the sacrifice ratio estimates from Ball’s quarterly data on 9 countries 

(Australia, Canada, France, Germany, Italy, Japan, Switzerland, United Kingdom, and 

United States), and added information for two more OECD countries relevant to 

address inflation targeting: Sweden and New Zealand. Additionally, we updated the 

sample for the 1990-2000 period using the Ball’s methodology on data obtained from 

the same source of information, the International Monetary Fund’s (IMF) International 

Financial Statistics (IFS). Ball acknowledged 28 disinflation episodes, we identified 15 

additional disinflation periods, 11 of them occurred in the 1990-2000 decade53. 

 Estimates for the sacrifice ratios along with their respective episode 

characterizations are shown on Table 6. In addition the table presents corresponding 

measures of initial inflation, change in inflation, length of disinflation, and speed of 

disinflation, all calculated as in Ball (1994). Speed of disinflation is defined as the 

quotient between the change of inflation and the length of the disinflation event, i.e. 

how many inflation percentage points were diminished in a quarter of a year. 

There are eight positive and thirty-five negative sacrifice ratios. A negative sacrifice 

ratio reflects that the economy grew at a higher rate than the trend, despite that a 

disinflation policy was implemented during that period. We do not think this 

                                                           
53 We compared our estimates with the ones provided by Sánchez, Seade, and Werner (2001) who used 
Ball’s methodology on IFS data, and there are exactly the same. 
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contradicts the widely accepted view that disinflation policies cause output losses, since 

the presence of positive sacrifice ratios represents less than a quarter of the sample. 

The average sacrifice ratio is 1.14 with a standard deviation of 1.18. In other words, 

it costs 1.14 percentage points of GDP growth rate to reduce one percentage point in 

inflation, on average. On the other hand, differences across countries are considerable. 

The United States possesses the highest costs of disinflation, estimated by the sacrifice 

ratio, with an average of 2.71 across its four identified disinflation episodes, followed by 

Germany with an average of 2.38. These two results are in line with Ball’s findings in 

spite of updating the sample. Sweden and New Zealand figured as the countries where 

disinflation policies are less costly, with 0.46 and a negative 0.23 mean sacrifice ratios, 

respectively. In the case of average initial inflation, France and New Zealand positioned 

themselves in the first two places with corresponding average inflation levels of 16.6 

percent and 12.5 percent. On the other hand, on average, Switzerland and Germany 

started with the lowest inflation levels of about 7.12 percent and 5.4 percent, in that 

order. Moreover, while New Zealand and Japan achieved the highest average speeds in 

reducing inflation with 0.60 and 0.56 inflation points per quarter, respectively, the 

“speedometer” showed that Germany and Canada took unhurried actions to diminish 

inflation with speeds corresponding to 0.27 and 0.32 inflation points per quarter. By 

relating these estimated sacrifice ratios with their average speeds, it might lead us to 

think right away that there is an inverse relationship between these two variables. In 

other words, that it is more costly to reduce inflation in a slow fashion. This has strong 

implications in the modern macroeconomic debate because this asseveration would 
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support Sargent’s (1983) arguments and, at the same time, defeat Taylor’s (1983) 

gradual approach, a consequence of his staggered-price model54. However, this is a 

preliminary appraisal of the historical correlation between these two variables, and not 

a causal analysis. Our analysis (on section E) will try to provide an answer to this as 

well as other related questions. Furthermore, despite of the high-speed achieved by 

New Zealand, it took their monetary authority 26 quarters to reduce inflation 15.62 

percentage points.  For the central banks of Japan and the United Kingdom it only took 

an average of 11 quarters, but they reduced only 4.5 and 6 percentage points, 

respectively. 

Table 7 portrays summary statistics by decade. The first result that stands out is that 

the average sacrifice ratios show a decreasing trend. At first sight, this seems to be good 

news, but identifying the main cause of this encouraging result is not an easy task. This 

is because we have relationships that that are not consistent across time (at this simple 

level of the analysis), as well as the fact that we have not accounted for other factors 

that could be of relevance to this phenomenon, such as the trend to increase the degree 

of central bank independence or the adoption of inflation targeting –among others-.  

Another set of facts that are reflected in table 7 is that it seems that reducing 

inflation was more popular during the eighties. Compared to the three other decades, 

14 disinflation episodes were identified with an average reduction of 7.8 percentage 

points in inflation each, during the 1980-1990 decade. This is a situation that clearly did 

                                                           
54 Section C provides a wider discussion on this debate. 



 108

not happen during the sixties when central bankers still tried to exploit the seemingly 

downward-sloping Phillips curve.  

Shifting gears to the initial inflation-sacrifice ratio relationship, it is not a clear that 

the costs of disinflation are lower at higher levels of initial inflation. This is because the 

average initial levels of inflation in the sixties as well as in the nineties are around 5.6 

percent, and the corresponding average sacrifice ratios are mixed outcomes of 1.7 and 

0.6.  

We also observe that the monetary authorities hurried up to decrease inflation 

levels with an average speed of half of a point per quarter during the sixties, seventies, 

and eighties, taking them on average 8, 11, and 18 quarters, respectively, to reduce 

inflation at the “desired” levels. It took longer periods of time in the seventies and 

eighties perhaps due to the fact that there were larger differences between inflation 

levels at the beginning of the disinflation episode and the central bank’s targeted levels. 

 

C. Determinants of the Sacrifice Ratio 

 

This section presents the relevant theoretical variables that are suggested in the 

literature to have a meaningful effect on the magnitude of the sacrifice ratio. It also 

describes the data that are used to examine each of these factors. 
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1. Traditional Factors 

Factors such as the speed of disinflation, and the inflation rate at the beginning of 

the disinflation periods are more closely related to the more “traditional” operational 

view of monetary policymaking.  

One of the most widespread controversies in modern macroeconomics is the choice 

between gradualism or quick disinflation and its impact on real output. An argument in 

favor of taking a gradual approach towards dampening inflation is supported by Taylor 

(1983). He prescribes a steady but slow decline in inflation in the light of a staggered-

wage adjustment model for the reason that wages and prices need time to adjust to a 

monetary contraction, linking quick disinflations to large output losses. 

Conversely, there are two different major views on this issue. Along the same lines 

of the NeoKeynesian price stickiness hypotheses, the celebrated “menu cost” approach 

supports a quick disinflation rather that a gradual one. This is because a once-and-for-

all large shift in inflation will yield adjustment of prices and will not affect output 

significantly. In contrast, a series of small changes in inflation will provoke output 

losses.  

The other argument that favors a quick disinflation is due to Sargent (1983). He 

claims that blunt regime shifts provide credibility to the monetary authority, while for 

gradual shifts (or slowly changing policy), expectations do not adjust because 

speculation about what will happen next emerges. 

Unfortunately, there is not an unambiguous empirical characterization of the speed 

of disinflation. If we maintain the basic definition of average speed in physics (the 



 110

distance traveled divided by the time taken to travel that distance), we end up 

calculating the (absolute) difference of the inflation rates between the initial and the end 

of the disinflation period as the numerator, and the length of the disinflation period as 

denominator.  The theoretical dilemma is that while Taylor’s approach suggests that the 

sacrifice ratio is only influenced by the length of the disinflation period (denominator), 

Sargent’s analysis focuses on the numerator as the key element of the quotient, since a 

large change in inflation is probably taken more seriously as a regime change. Ball 

recognizes this issue by running regressions on both, the speed of disinflation in the 

physics canonical form and with its separate components. He finds that regardless of 

which specification, quicker disinflations produce lower sacrifice ratios. Sánchez, Seade, 

and Werner (1999) use the speed metric as well on a larger sample and conclude the 

same as Ball. Temple (2002) uses the length of disinflation and the inflation rate change 

and, although it is not the focus of his study, he arrives at the same conclusions. 

The second traditional factor is the initial inflation. NeoKeynesian models predict 

that higher inflation levels decrease the degree of price rigidities. Ball, Mankiw and 

Romer (1988) derive this initiative theoretically and find empirical support on cross-

country analyses. In other words, when there is a large rise in prices in a short period of 

time, businesses need to “keep up” with the pace of inflation and stickiness is reduced. 

Therefore, following this raison d'être, initial inflation should show a negative 

relationship with the sacrifice ratio.  
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2. Structural Factors 

Nominal wage rigidity stands as the oldest institutional determinant identified to 

have potential effect on the sacrifice ratio. Even though, the latest NeoKeynesian 

convention emphasizes the role of output-price stickiness, rather than wage-related 

rigidities (Mankiw, 1990), Ball’s rationale, which we adopt in this paper, is more a 

practical one. He utilizes two different measures of nominal wage rigidities as a proxy 

of price stickiness and investigates their relationship with the sacrifice ratio. These two 

measures are the Bruno and Sachs (1985) index of wage responsiveness, henceforth 

B&S, and the Grubb, Jackman, and Layard (1983) index of overall wage rigidity, or GJL 

index. The former metric (B&S) is constructed adding the degree of wage indexation 

and synchronization to the index of duration of wage agreements. The B&S index 

ranges from 0 to 6, and a smaller value means a more rigid wage structure. The GJL 

index is build upon a time-series regression of wages on unemployment and prices. The 

average GJL index for our sample is 0.7, ranging from 0.09 for the country with the 

most flexible wage structure (Switzerland) to 3.14, corresponding to the country with 

the least flexible wage structure (United States). As Ball explains, while GJL is less 

subjective compared to the B&S index, it is an endogenous metric since the traditional 

factors are directly involved with the components of the GJL index. 

Basic open-macroeconomic theory recognizes that the degree of openness of an 

economy keeps an inverse relationship with the output losses related to disinflation 

policies (Romer, 1993). This is because a monetary contraction produces an exchange 

rate appreciation, having an effect on prices to the extent of the degree of openness of 
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the economy55. The most widely used metric is the proportion of the imports of GDP, 

calculated by Romer (1993).  Switzerland figures as the most opened country in our 

sample whose imports represent approximately 35 percent of their GDP. Conversely, 

the United States’ imports only account for 9 percent of their GDP. The average 

percentage across the sample is 22 percent. 

Ball and more recently Temple (2002) conclude that there is no strong evidence of 

an effect of the degree of openness of an economy on the slope of the output-inflation 

tradeoff. Nevertheless, Daniels, Nourzad, and VanHoose (2004) analyze Temple’s data 

and find an “unambiguous positive relationship between openness and the sacrifice 

ratio”, once they account for the degree of Central Bank Independence (CBI) and its 

interaction with openness itself. CBI is discussed in the next subsection. 

 

3. Institutional Factors 

We next turn to institutional factors. These variables reflect the need to account for 

the structure of incentives that are likely to be within the central banks’ institutional 

structure. First we consider Central Bank Independence (CBI), defined as the 

assignment of monetary policy to a central banker whose decisions cannot be rejected 

by the policymaker (Lippi, 1999). Herrendorf and Neumann (1999) claim that a 

                                                           
55 As far we know Sánchez, Seade, and Werner (1999) are the only authors who have included the exchange 
rate regime as a possible determinant of the sacrifice ratio. They are motivated by the fact that if an 
economy is sufficiently open, the exchange rate variability has a larger effect on domestic prices. A non-
floating exchange rate system constrains the variability of the relative prices between nations. Thus, this 
could have direct effects on the inflation-output tradeoff. On one hand, this issue can be (at least) partially 
accounted for in the inclusion of the measurement of the degree of openness of the economy. On the other 
hand, finding an objective metric for this issue is not an easy task, therefore we leave this interesting 
question out of the scope of this study for future research. 
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politically-detached (independent) central bank exhibits less incentive to care about the 

government’s reelection chances, reducing the possibility of using monetary policy to 

create surprise inflation. 

Several efforts have been directed to measure the degree of CBI and its relationship 

with both nominal and real variables such as inflation and real output. Most of this 

literature pioneered by Bade and Parkin (1984), has been surveyed by Cukierman (1992) 

and Eijffinger and de Haan (1996). The most widely used metric is the legal-based index 

by Cukierman, Webb, and Nayapti (1992). This index is composed of four categories:  

(i) CEO variables (term of office, who appoints, etc.), (ii) policy formulation variables 

(who formulates, final authority, role in budget), (iii) central bank objectives. And (iv) 

Limitations on lending variables (type of limit, maturity of loans, terms of lending, etc.). 

The Cukierman, et al. CBI index ranges between 0.18 (Japan) and 0.69 (Germany) in our 

sample. As the number approaches unity, the central bank enjoys a larger degree of 

independence. Except for United Kingdom and Switzerland, the calculated indices for 

each country in our sample show no variation across time. Therefore, variability is 

observed in a cross-country basis. 

Various studies have reported positive and significant correlation between CBI and 

the sacrifice ratio (Debelle and Fischer, 1994; Walsh, 1995b; Froyen and Waud, 1995; and 

Fischer, 1996). The most common theoretical explanation behind these empirical results 

is that CBI might help to diminish the levels of inflation, by reducing the inflation bias 

incentives. However, it could also increase the nominal wage rigidities indirectly, 

intensifying the magnitude of the sacrifice ratio (Walsh, 1995b). 
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The second institutional factor in our proposed taxonomy is Inflation Targeting (IT). 

Bernanke, et al. (1999, pg. 4) define IT as “…a framework for monetary policy 

characterized by the public announcement of official quantitative targets (or target 

ranges) for the inflation rate over one or more time horizons, and by explicit 

acknowledgement that low, stable inflation is monetary policy’s primary long-run 

goal.” 

Since the adoption of IT has been fairly recent and our sample is constrained to 

disinflations periods only, our analysis on this issue is rather cautious. We identified six 

episodes in countries that have already adopted IT by the time of the occurrence of the 

disinflation period. Nevertheless, in certain cases the adoption of IT took place in the 

midst of a disinflation episode. Consequently we define IT as the number of quarters 

that IT was active within the disinflation episode, divided by the length of the 

disinflation period itself, yielding a number ranging between zero and one. The average 

from these six observations was 0.60, with a standard deviation of 0.36. In other words, 

countries observed IT in approximately 11 of the 18 quarters that the disinflation 

episodes lasted, on average. 

While CBI is likely to provide a larger degree of discretion to central banks, 

adopting IT constrains them to observe a certain level of inflation. This constrained 

flexibility is desirable since despite the view that monetary policy cannot systematically 

affect unemployment and output in the long-run, it might aid to stabilize inflation and 

unemployment around mean market-determined levels (Fischer, 1977). 
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Another theoretical argument in the spirit of the dynamic inconsistency literature 

on why a country adopting an inflation targeting regime should have a smaller sacrifice 

ratio, is that IT minimizes the central banks’ incentives to exhibit an opportunistic 

behavior (inflation bias) and this might increase the central banks’ credibility and, as a 

result, the public moderates their inflations expectations in a quicker fashion.  

However, it could be the other way around, if the central banks’ focus centers on 

inflation objectives only, nominal wage indexation could be reduced, increasing the 

nominal wage rigidity and the sacrifice ratio as well (Walsh, 1995b). 

Bernanke, et al. (1999) find that the estimated sacrifice ratios for three of the four 

surveyed countries that adopted IT is higher than before the implementation of such 

regime. This suggests that the adoption of IT has not reduced he costs of disinflation. 

Furthermore, they suggest that this regime change has even increased them. 

Nevertheless, they acknowledge that these results are somewhat weak because of the 

limitations imposed by the small sample of countries and period of time since their 

adoption of IT. Only recently have countries adopted IT: New Zealand, 1990; Canada, 

1991; U.K., 1992; Australia, 1993; Sweden, 199356. 

 

D. Empirically-Based Causal Structure 

 

The theoretical foundations of Directed Acyclical Graphs (DAG) as a probabilistic 

approach to infer causality from a data set have their origins in Pearl (1986). Combining 

                                                           
56 More recently Brazil, Mexico, Czech Republic, Hungry, Korea, Peru, Poland, and Thailand have adopted 
an Inflation Targeting regime. 
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the traditional philosophical notions of causality with statistical theory, Pearl proposed 

the concept of d-separation (defined in Pearl, 2000, pp. 16-17.), to describe conditional 

independence with a graphical approach57.  

Spirtes, Glymour, and Scheines (1993, 2000) developed algorithms based on 

Artificial Intelligence (AI), integrating the concept of d-separation to retrieve the causal 

structure from empirical data. Their main contribution: a search-theoretic algorithm 

called the PC algorithm. 

Although this approach was born on the fields of Philosophy, Statistics, and 

Computer Science, it has now been increasingly used in economics and finance. 

Swanson and Granger (1997) pioneered in the application of DAGs in a Vector 

Autoregression setting. Bessler and Lee (2002), and Awokuse and Bessler (2003) apply 

these ideas to recent macroeconomic VARs. Demiralp and Hoover (2003) judged the 

usefulness of the PC algorithm using Monte-Carlo simulations to test how close the 

causal structure inferred by this methodology was from the data generating process’ 

true causal system. They found very encouraging results. 

We utilize the directed acyclical graph conceptual framework as well as the PC 

algorithm with cross-section data (as originally proposed by Spirtes, Glymour, and 

Scheines, 2000). This is because we are dealing with not necessarily time-sequenced 

disinflation episodes across several countries.  

 

                                                           
57 A proof of this proposition can be found in Verma and Pearl (1988). 
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1. Directed Acyclical Graphs 

This part relies heavily on the work by Pearl (2000) and Spirtes, Glymour and 

Scheines (1993, 2000). A directed graph is formally defined as an ordered triple 

EMV ,, , where V  is a nonempty set of vertices (variables), M  is a non-empty set of 

marks (symbols attached to the end of undirected edges; e.g., >  or <  ), and E  is a set of 

ordered pairs (the lines between them). In other words, directed graphs are pictures 

summarizing the causal flow among a set of variables. 

A directed acyclic graph (DAG) is a directed graph that contains no feedback cycles. 

In other words, cyclic graphs such as ACBA →→→ , assuming a set of vertices 

(variables) { }CBA ,, , are ruled out. The concept of DAG is used in this paper.  

Directed acyclical graphs are sketches representing conditional independence. This 

can be illustrated by the recursive product decomposition, derived from the chain rule 

of probability calculus, as it was shows on equation ( )22  in chapter II. 

DAGs are classified in three types: Causal chains, causal forks, and inverted causal 

forks (or colliders). For example, assuming a causally sufficient set of three variables 

X , Y , and Z , the causal chain YXZ →→  implies that the unconditional association 

between Z  and Y is nonzero, but the conditional association between Z  and Y  on X  

is zero.  The causal fork YZX →←  implies that the unconditional association 

between X  and Y  is nonzero, but conditioning this relationship on Z , is zero. In other 

words, common causes screen off associations between their joint effects, or 

Richenbach’s principle of common cause (Richenbach, 1956, pg. 156). Finally, the inverted 

causal fork (or collider) ZYX ←→ implies that the unconditional association between 
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X  and Z  is zero, and conditioning on Y is nonzero, i.e. common effects do not screen 

off the association between their joint effects. Orcutt (1952), Simon (1953), and Papineau 

(1985) provide analogous expressions of asymmetries in causal relationships. Hausman 

(1998) gives an extensive survey on causal asymmetries. 

Figure 10 shows an example of the three different kinds of directed acyclical graphs. 

Note that the spatial arrangement of the points is conceptually irrelevant. 

The concept of d-Separation58 characterizes the conditional independence 

associations specified in equation ( )22 . This concept was “the missing piece of the 

puzzle” that related the philosophical idea of causality with probability theory.  

 

2. PC Algorithm 

This subsection is intended to provide a brief description of the PC algorithm59. The 

PC algorithm is a search-theoretic model developed by Spirtes, Glymour, and Scheines 

(1993) to construct directed acyclical graphs to represent a causal structure based upon 

an empirical set of data. 

In order to yield the same causal model as a random assigned experiment, the PC 

algorithm relies on the following four assumptions: ( )i  Causal Sufficiency (there are no 

omitted variables that cause two of the included variables), ( )ii  Causal Markov 

Condition (the variables are generated by a Markov property. In other words, 

probabilities of variables are conditioned on each variable’s “parents” only), ( )iii  

                                                           
58 Please see definition 1 in chapter II of this dissertation. 
59 For a detailed description, please see Spirtes, Glymour, and Scheines (2000, pg. 84). 
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Faithfulness60 (there is a one-to-one correspondence between the edges implied by the 

causal structure of the graph and the selected relationships obtained from the data. In 

other words, structural parameters do not form combinations and cancel each other), 

and  ( )iv  Multivariate Normality.  

The algorithm consists of a series of three systematic steps. Step 1 involves the 

construction of a complete undirected graph connecting every variable with all other 

variables.  

At step 2 edges are removed sequentially based on zero unconditional and 

conditional correlation tests. This is where the concept of d–separation is integrated to 

the PC algorithm using the notion of sepset (or separation set).  The sepset of the 

variables whose edge has been removed is defined as the set containing the 

conditioning variable(s) on removed edges between two variables. e.g. for the following 

undirected graph ZYX −− , assume that we remove the edge between variables X  

and Y through an unconditional correlation test. Thus, the sepset is the empty set. But if 

we remove the edge by means of correlation test conditional on variable Z , then the 

sepset is Z .  

Fisher’s z -statistic61 is employed to test the following null hypotheses: 

0: ,0 =kjiH ρ , where kji,ρ  is the population correlation coefficient between series i  

and j , conditional on series k . Based on Monte Carlo experiments, Spirtes, Glymour, 

                                                           
60 This is a version of the Lucas critique of econometric policy evaluation (Lucas, 1978). For a useful discussion 
of the relation between the faithfulness condition and the celebrated Lucas critique, see Hoover (2001), pg. 
182. 

61 Equation ( )23  in chapter II. 
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and Scheines (2000, pg. 116) recommend using a confidence level of 0.20 whenever the 

sample size is below 100 observations, that it is our case. 

Step 3 consists of directing the edges that remain after all possible tests of 

conditional correlation have been carried out considering sets of three variables (or 

triples). This is accomplished by using the screening-off characteristics (mentioned 

above) to orient the edges. Figure 11 illustrates this step for a three-variable DAG. The 

unconditional and conditional correlations among the variables underlying the 

orientation procedure are shown below teach type of graph. 

The assumptions upon which PC algorithm rests can be violated. Therefore, any 

causal structure retrieved from observational data must be examined with prudence. 

Two assumptions are more of a source of concern because it is more likely to happen in 

economics and finance: causal sufficiency and the faithfulness condition. The former 

can be encountered when there are omitted variables in our assumed causal model. The 

latter is faced whenever parameters between causes have the same magnitude to cancel 

one another62. 

There are other algorithms such as the Modified PC Algorithm (Spirtes, Glymour, and 

Scheines, 2000, p. 125), and the Fast Causal Inference Algorithm (p. 144), that have been 

developed to be applied whenever the causal sufficiency assumption does not hold (i.e. 

when it is assumed that latent variables are present). We restrict out discussion to the 

PC Algorithm since, in our opinion, it is the most easily understood, and we assume 

                                                           
62 Scheines, et al. (1999) exemplify this situation on page 181.   
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causal sufficiency holds, supported by the underlying theories described on section 2 of 

this paper. 

 

E. What Causes the Sacrifice Ratio? 

 

Theory does not go very deep in terms of how the sacrifice ratio could be affected 

by several factors, such as the degree of central bank independence, the extent of the 

openness of the economy, or the choice between gradualism and “cold turkey” when it 

comes to reduce inflation, among other variables mentioned all along the paper. To 

date, empirical studies have tried to find associations between variables that make 

sense practically or theoretically and have launched themselves to the endeavor of 

“digging out” practical conclusions by drawing scatter diagrams, calculate simple 

correlations, and running regressions, without the aid of a causal engine.  

We believe that it is extremely important to identify which are (and which are not) 

the factors that affect the sacrifice ratios in order to manipulate the “correct” the 

variable and obtain a desirable outcome, if it is possible. In other words, finding a 

causal structure on the factors related to the sacrifice ratio is important if we want to 

achieve a more efficient implementation of monetary policy. 

On the first part of this section, a brief summary of Ball’s (1994) findings is 

presented in terms of the causal structures imposed on his regression analyses63. The 

                                                           
63 We do not provide this type of summary for more recent analyses since there is not a great deal of 
variation with respect to Ball’s work, in terms of the imposed causal structures in their regressions. For 
example, Temple (2002) presents regressions of openness, inflation, length of the disinflation period, 
duration of contracts, and speed of disinflation on the sacrifice ratios. 
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reminder is used to present our results using Directed Acyclical Graphs and the PC 

algorithm to “recover” the causal structure of the sacrifice ratio and its presumably 

affecting factors. 

 

1. Imposed Causal Structure on Ball’s Seminal Analyses 

In order to investigate the relationships between the costs of disinflation and their 

determinants, we consider important to illustrate that the decision between setting the 

variables on the left or right-hand-side of a regression equation implies causation. 

Tables 8 and 9 summarize the regressions presented by Ball in his seminal paper in 

1994. We have divided Ball’s analyses in traditional (operational) and structural 

determinants, appealing to the taxonomy developed earlier in the paper. Ball does not 

address the institutional factors (CBI and IT). 

SR  is the sacrifice ratio, SPD  refers to the speed of disinflation, π∆  is the change 

in inflation, LNG  is the length of the disinflation episode, 0π  is the level of inflation at 

the beginning of the disinflation period, and DUR  is Bruno and Sachs’ (1985) index of 

duration of contracts.  

The causal structures imposed with respect to either the speed of disinflation, or its 

components, π∆  and LNG , imply that a Sargent’s (1983) “cold turkey” disinflation 

would be more beneficial. On one hand, the negative relationship between SPD  and 

the SR  claims for a quick disinflation to achieve a “cheaper” scenario. On the other 

hand, the negative relationship between LNG  and SR cries for shorter disinflation 

periods. 
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Ball does not find statistically significant results of initial inflation as a determinant 

of the sacrifice ratio, especially when he controls for other factors. 

There is no statistical significance between SR  and Bruno and Sachs’ wage 

responsiveness index ( BSWR ) in the annual data, but there is in the quarterly data set. 

This mixed result gives support to the idea that measuring sacrifice ratios with annual 

data dampens fluctuations and does not allow researchers to analyze the short-run 

trade-offs  properly. While BSWR  maintains a negative relationship with SR , whenever 

it is statistically significant, the Grubb, Jackman, and Layard’s wage rigidity index 

( GJLWR ) preserves a statistically significant positive sign in its relationship with SR . 

This is consistent with theory and the empirical literature, i.e. a more rigid wage 

structure is associated with a more responsive aggregate output to a change in inflation. 

Notice that they have a different sign because BSWR  is a nominal wage responsiveness 

index and GJLWR  measures nominal wage rigidities. Observe that in LNG  keeps its 

statistically significant positive sign across all the experiments where it appears. 

 Results from Table 9 lead Ball provide two important conclusions. First, despite the 

NeoKeynesian discouragement that it is from output prices and not from input prices 

(wages) where nominal rigidities affect the economy the most (Mankiw, 1990), 

inflexibilities observed on wages are very important in the analysis of the determinants 

of the sacrifice ratio. 

Second, although openness (OPN ) generally shows a negative relationship with the 

sacrifice ratio in theoretical settings (Romer, 1993), it has no significant effect on the 

sacrifice ratio in the empirical arena. This is consistent with Temple (2002), but does not 
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agree with Daniels, Nourzad, and VanHoose (2003) who argue that openness it is 

important empirical factor if central bank independence is included in the model. We 

address this issue in the following section. 

 

2. Results 

A detailed description of the data used to construct the causal structures is 

described across sections C and D of this chapter. A summarized version follows. 

Quarterly data on prices and output was obtained from the International Monetary 

Fund’s (IMF) International Financial Statistics (IFS). Speed of disinflation ( SPD ) is 

defined as the change in inflation ( π∆ ) divided by the length of the disinflation episode 

( LNG ). Although Ball uses either SPD  or its components ( π∆  and LNG ) in his 

analyses, we only use  SPD  because we are interested in the total effect of speed. We 

also prefer to introduce a proportions variable, rather than a component of the sacrifice 

ratio directly ( π∆ ). Two measures of wage rigidity are utilized here: Bruno and Sachs 

(1985) index of wage responsiveness ( BSWR ), and the Grubb, Jackman, and Layard 

(1983) index of overall wage rigidity ( GJLWR ). Openness is measured as the proportion 

of imports on GDP, calculated by Romer (1993). We use the legal-based index by 

Cukierman, Webb, and Nayapti (1992) as a metric for central bank independence 

( CBI ). The data correspond to the period between 1960 and 2000. 

The analysis was performed using the software TETRAD II (Scheines, 1994). Our 

estimations were carried out using the seemingly unrelated regressions (SUR) 

methodology (Zellner, 1962). OLS results are quite similar but SUR was chosen because 
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we wanted to take advantage of the cross-equation error correlations for more efficient 

estimation. 

Figures 12 and 13 depict the directed acyclical graph (DAG) retrieved by the PC 

algorithm and tables 10 and 11 show their implied models using Bruno and Sachs’ 

(1985) wage responsiveness index, and Grubb, Jackman, and Layard’s (1983) wage 

rigidity index, respectively. 

  There are no major differences between the models depicted in figure 12 and figure 

13. The negative causal relationships between speed and CBI , as well as the positive 

causal flow from CBI  to the sacrifice ratio, and the negative causal relationship 

between nominal wage rigidities and the sacrifice ratio are preserved in both models. 

The two models kept the positive relationship between CBI  and OPN , as well as the 

negative causal flow from initial inflation to IT . 

We find evidence that the only two components that have a direct effect on the 

sacrifice ratio are wage rigidity and the CBI .  With respect to the former, we agree with 

Ball’s conclusion: “wage rigidity is an important determinant of the sacrifice ratio” 

(Ball, 1994, pp. 176). Comparing the estimated coefficients of both models for the 

sacrifice ratio equation with respect to nominal rigidities (0.383*** and -0.163*), the 

impact of both wage rigidity measurements retains the same sign64, but the estimated 

coefficient associated with BSWR  (table 10) is less statistically significant than the 

estimated parameter for GJLWR  (table 11). This result, along with the causal relationship 

                                                           
64 Recall that in the model on table 5, Bruno and Sachs’ wage responsiveness (flexibility) index is used and 
the Grubb, Jackman, and Layard index is utilized in the regression in table 9. As a result they have opposite 
signs. 
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with the degree of openness found in the second model, allows us to see that these two 

metrics capture different aspects of the nominal stickiness of wages. 

Walsh (1998, pp. 378-79) poses the question on how does the transmission 

mechanism work between CBI  and the sacrifice ratio. In other words, does causality 

runs from CBI  to wage rigidities and then the magnitude of the costs of disinflation? 

Or it is the other way around? Countries with high sacrifice ratio and high inflation 

tend to grant central banks a larger degree of independence, reducing inflation but 

paying the costs of it. Actually, both models keep a stable and statistically significant 

causal flow from wage rigidity to the sacrifice ratio. The estimated coefficients for the 

sacrifice ratio equation are 2.91*** and 3.41***, corresponding to the models in tables 10 

and 11 respectively. They are both large numbers indeed if we recall that the average 

sacrifice ratio across the sample is 1.14. This suggests that, holding everything else 

constant, a change in ten basis points in the CBI  index65 would imply a change of 

approximately thirty basis points in the sacrifice ratio. This translates into a loss (or 

benefit) of 0.30 percent in the quarterly growth rate, for each percentage point of 

inflation reduced during a disinflation period66. These results are contrary to opinions 

expressed by Alesina and Summers (1993), Pollard (1993), and Cukierman, 

Kalaitzidakis, Summers, and Webb (1993) in their influential papers that central bank 

                                                           
65 This does not look like an odd outcome if we appeal to the summary statistics of the CBI index in our 
sample, with a mean of 0.36 and std. dev. of 0.16. 

66 Just to make the case in a more concrete way, if we consider the last identified disinflationary period in 
the UK (1989:2-1993:3), according to our estimations, assuming a ten basis point increment in the CBI index, 
this could have yielded an additional cost of 2.55% in terms of loss of output growth rate, in less than five 
years. 
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independence comes with no cost at all. This is because they measure the potential 

welfare losses only in terms of output variability and found no response. But according 

to empirical evidence in Debelle and Fischer (1994), Walsh (1995b), Froyen and Waud 

(1995), and Fischer, (1996), supported by our analysis, there is no free lunch when it 

comes to CBI . After all, as Blinder (1996) points out: “You pay the costs of disinflation 

up front, and you reap the benefits -lower inflation- only gradually through time.” 

Therefore, a politically-detached central bank would be continuously tempted to exploit 

these short-run gains at the expense of the future. 

NewKeynesian tradition predicts that a higher inflation is associated with a lower 

degree of price rigidities (Ball, Mankiw and Romer, 1988). The causal structures 

retrieved from our two DAG exercises indicate that is there is not a direct effect of 

initial inflation on the sacrifice ratio. This is also consistent with Ball’s (1994) findings. 

The two directed edges emerging from initial inflation to IT  and SPD  lead to the 

following discussions. In terms of IT , we see it is a sink (figures 12 and 13). 

Accordingly no direct link is found from IT  to inflation. However, we caution, along 

the same lines as Bernanke, et al.. (1999), that we cannot provide a robust assessment on 

the matter, due to the recent adoption of IT regimes. The obtained causal structure 

points out more of a historical relationship rather than an economic analysis. We can 

either say that IT  was adopted by countries with lower levels of initial inflation at the 

beginning of their identified disinflation episodes, or that countries who adopted IT  

did it when they had lower initial inflation levels. 
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Friedman (1994) argues that it is not clear if a quicker disinflation causes the 

sacrifice ratio to be smaller or, if central bankers know that they can minimize the costs 

of disinflation by reducing inflation in a fast fashion: a question of causality. Neither the 

DAG on figure 12, nor the one in figure 13 reports evidence of a direct causal flow 

between these two variables. But there are three interesting points that we would like to 

highlight. The first one is that there is a statistically significant and positive directed 

edge from initial inflation to SPD . This has important considerations in terms of 

monetary policy conduction since a higher level of initial inflation determines the 

ability of the monetary authority to perform the disinflation task in a quicker fashion. 

Secondly, the negative relationship between SPD  and CBI  provides a simple 

historical rationale that central banks were granted with a larger extent of 

independence when they were slow in their disinflation endeavors. Thus, the data does 

not support the hypothesis that CBI  aided in speeding up the disinflation processes. 

Third, and most importantly, we are able to verify the total effect of the speed of 

disinflation has on the sacrifice ratio, using DAG analysis. According to Pearl (2000, pp. 

81-83) a front-door criterion can be used to estimate the effects. To illustrate this point in 

our analysis, according to figures 7 and 8, the sacrifice ratio regression should be 

conditioned on the wage rigidity and CBI (because of GJLWRSRCBI ←→ ). But we 

also know that GJLWRSRCBISPD ←→→ . Consequently, if we want to analyze the 

total effect of SPD  on SR , we must regress SR  on GJLWR  and SPD  only, getting rid of 

the “blocking” front-door variable, namely, CBI .  
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Table 12 illustrates the total effect of SPD  on SR  using the GJL index of nominal 

wage rigidity. It also demonstrates the problematic consequences in terms of statistical 

significance of not disposing of the “blocking” variable. Regression (I) follows the 

causal structure retrieved by the PC algorithm in figure 13. In regression (II), SPD  is 

added as a regressor, notice that the estimated coefficient associated with SPD  has no 

statistical significance at all (even the adjusted coefficient of determination decreases its 

magnitude). But observe that once the ”blocking” variable -CBI - is dropped from the 

equation, as in regression (III), the statistical significance of the estimated coefficient of 

SPD  jumps up to a 25 percent confidence level. Note that the estimated coefficient for 

SPD  preserves the negative sign in both cases.  

Ball estimated the effects of the speed “correctly” when he controlled for wage 

rigidity (at least using its components, i.e. π∆  and LNG ). These results back Sargent’s 

(1983) claim that speed shows a negative and causal relationship with the sacrifice ratio. 

For this reason, a “cold turkey” disinflation is preferred to Taylor’s (1983) gradualism in 

order to minimize the output costs of disinflation. Of course, we have to be careful to 

provide this prescription to any country. These results are based on data of OECD 

countries and may not be generalized to other countries without performing a DAG 

analysis on a broader data set. This especially applies to developing countries, since 

their causal structure might be different and the social costs could be unbearable for the 

population. 

We do not find any direct causal link between openness and the sacrifice ratio, 

supporting Ball (1994) and Temple (2002). But as it is mentioned earlier, it is important 



 130

to mention that our results come from a data base of industrialized countries. It would 

be interesting to perform this analysis on a broader set of countries including 

developing countries (small-open economies), where this is a more important factor in 

terms of their economic frailty.  

The interesting relationship for policy purposes is the causal directed edge from 

CBI  to OPN . This suggests that a more independent central bank can influence 

international trade in a positive fashion. This can be explained on the theoretical 

grounds that a less politically-detached monetary institution may involve more 

“conservativeness” and less-active policy actions. This might imply less policy-induced 

movements in the foreign exchange market as well, providing less uncertainty to 

international transactions. However, since our analysis was focused on the 

determinants of the sacrifice ratios, this is only a speculative result that needs further 

research.  

 

F. Conclusions 

 

This essay analyses empirically the possible factors that may influence the 

magnitude of the sacrifice ratio using Directed Acyclical Graph techniques on quarterly 

data for eleven OECD countries for the period between 1960 and 2000. 

We classify these factors in three categories: traditional, structural, and institutional. 

Traditional variables associated with the sacrifice ratio account for the operational side 

of the study (speed of disinflation and initial inflation at the beginning of the identified 
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disinflation period). The structural components stress the importance of the 

relationship between the interactions among individuals in an economic environment 

and the costs associated with disinflation policies in terms of real output losses (wage 

rigidities and the degree of openness of an economy). The institutional set of our 

proposed taxonomy accounts for the effects of the incentive configuration within the 

central banks’ institutional structure on the sacrifice ratio (central bank independence 

and inflation targeting). 

We find evidence that the wage rigidities and central bank independence (CBI) are 

the two major determinants of the sacrifice ratio, supporting earlier work of Ball (1994), 

as well as other empirical analyses on CBI such as Debelle and Fischer (1994), Walsh 

(1995b), Froyen and Waud (1995), and Fischer, (1996).  We do not find support for 

Romer’s (1993) view that openness has any effect on the sacrifice ratio. This is in line 

with a recent study by Temple (2002). Along the same lines as Bernanke, et al. (1999), we 

do not provide a robust analysis on the relationship between the sacrifice ratio and the 

adoption of inflation targeting (IT). This is due to the recent adoption of these regimes 

and that our analysis is restricted to disinflation episodes only, yielding very few 

observations. 

The metric used for each of the variables analyzed in this paper, including the 

sacrifice ratio, are subject to criticisms because of the fact of the impossibility of making 

controlled experiments in a macroeconomy and, as a result, the emergence of the 

typical problems of making inferences assuming the ceteris paribus condition to perform 
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inferences on aggregate sets of observationally-obtained data67. In any case, we directed 

our efforts to select the best measurements available in the current literature. 

Extensions can be made to include other OECD countries and less-developed 

countries. Further, the relationship between the exchange rate regime and the sacrifice 

ratio can be studied. Sánchez, Seade, and Werner (1999) examined this subject, 

motivated by the fact that if an economy is sufficiently open, exchange rate variability 

has a larger effect on domestic prices. A less than fully flexible exchange rate scheme 

restricts the variability of the relative prices between nations, increasing nominal 

rigidities and the sacrifice ratio as well. Nevertheless, we think that this factor is (at 

least partially) accounted for, in our work, as we incorporate the degree of openness of 

the economy in our DAGS. In addition, finding an objective statistic for this issue is not 

an easy endeavor. We have left this interesting question for future research. 

                                                           
67 See Holland (1986), for an illustrative discussion on causation inference, experimental methods and the 
ceteris paribus assumption.   
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CHAPTER V 
 
 

CONCLUSIONS 
 
 
 

Monetary policy, as a set of government actions to improve the state of the 

economy, has been given either too many positive attributes or, in contrast, only 

economy-disturbing features. Uncertainties emerging from the degree of influence of 

monetary policy on output and inflation, as well as the possible adverse shocks 

economies may face, in addition to the complexity of the lag structure of the monetary 

policy transmission mechanism, and the choice of the relevant instruments and targets, 

sets up an array of difficult intricacies that the central bank must overcome.  

While academia have prescribed for a long time the adoption of policy rules or the 

implementation of contracts between a “principal” and the central bank, to accomplish 

an optimal implementation of monetary policy, the practitioners’ point of view has 

evolved within a different set of facts. Acquisition of information has become almost 

costless, bolstering the speed of adjustment of people’s expectations in response to 

economic disturbances. Consequently the public has become more sensitive to inflation 

and, as a result, several central bankers have entertained the idea of transparency as a 

mechanism to improve monetary policy’s stabilization features. This is achieved 

because transparency improves the private sector’s predictability of monetary policy 

leading them to better reflect information relevant to monetary policymaking. In other 

words, the effectiveness of monetary policy not only depends on correctness and 

timeliness of the central bank’s decisions, but also on the public’s expectations and their 
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ability to predict future policy. Central banks have responded providing the public with 

information. Such is the case of the publication of the inflation forecast, inflation 

reports, minutes of their policymaking decision meetings, and the adoption of explicit 

inflation targeting regimes. 

Aiming to reduce the gap between the academic and the policymakers’ view of 

monetary policy, the purpose of this dissertation is to develop and apply tools to 

examine and improve the implementation of monetary policy and its effectiveness. 

We first study the causal structure among the elements of the celebrated Taylor 

monetary policy rule. Directed Acyclical Graphs and the PC algorithm are used to 

evaluate the usefulness of the Taylor monetary policy rule as a characterization of a 

central bank’s instrument reaction function in terms of inflation and unemployment. 

Our findings can be summarized in the following four results: (i) Monetary policy is 

powerful to reduce inflation, contrary to the contradictory result, both theoretically and 

empirically, using Stock and Watson’s causal structure for the second period. Inflation 

is significantly reduced even before a year. We think that this reflects the increased 

importance of the role of information in the late period. As a result, at the interest rate 

change cause a more immediate effect on both, inflation and unemployment, since 

several times, an interest rate movement is discounted by the market way before the 

actual policy change; (ii) There is not a short-run trade-off between the unemployment 

rate and inflation. In other words, a rate hike of 25 basis points translates into less 

inflation and less unemployment. These are some good news for a politically-attached 

policymaker. However, we have to take into account that it is a short-run effect indeed 
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and these actions increase variability, persistence negative effects on the employment 

level; (iii) The Fed has not followed a Taylor rule in any of the two periods under study; 

and (iv) a rate hike tends to come back to the “steady-state” in a more gradually. 

We then examine the relationship between central bank accountability and the 

publication of central bank’s key variables forecasts. Several central banks publish their 

inflation forecasts. Making a forecast public does not ensure accountability for their 

policymaking decisions. Optimal forecast evaluation becomes a necessary condition. 

The majority of studies have used point-forecast techniques to evaluate central bank’s 

density forecasts. Some others have utilized more appropriate probabilistic forecast-

evaluation mechanisms, such as calibration. It has been shown that calibration fails to 

take into account the covariance between the forecast and the realized value. This paper 

presents an incentive-compatible approach based on proper scoring rules to evaluate 

density forecasts in order to reduce the central banks’ accountability problem. 

We found evidence that both the MPC and the “other” forecasters have shown a 

large responsiveness to information not related to the forecasted variable and a very 

precarious response to developments affecting inflation and output growth.  

Second, “wishful thinking” in monetary policy has been usually identified as a bias 

towards the exploitation of the short-run output-inflation tradeoff. Conversely, our 

results indicate the MPC has been promoting its “wishful thinking” through its 

forecasts more on the “fear of inflation” side. 

Third, there is a statistically significant difference between the Brier mean 

probability scores of inflation forecasts for the two forecasters. This supports the idea 
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that the MPC could be hedging their inflation forecasts and, at the same time, 

influencing them with “wishful” thoughts against a high-inflation (perhaps even 

moderate) outcome. This suggests that the BoE uses the forecast as an instrument. 

Publishing a true forecast, perhaps strips the power off the forecast as an instrument, 

but gives more power to monetary policy itself, since the public will improve 

predictability of monetary policy and their actions will reflect better behavior ad hoc 

with monetary policymaking decisions. In other words, this could be seen as a transfer 

of power from one instrument to another or just emphasizing the usefulness of the 

instrument, in this case, by encouraging honesty on the publication of the forecast, will 

be emphasize the open-market operations to set the key interest rate, monetary policy 

literally. 

We now turn to the third issue under study, the effectiveness of monetary policy. 

There is near consensus that disinflation policies generate output losses, at least in the 

short run. Studies have attempted to measure these costs by estimating the Sacrifice 

Ratio, generally defined as the quotient between the output gap and the percent change 

in inflation. This paper studies the causal structure of the factors that are presumed to 

influence the sacrifice ratio on panel data of eleven OECD countries. Directed acyclical 

graph methods are used to identify the causal structure among such determinants and 

the sacrifice ratio.  

We find evidence that wage rigidities and central bank independence (CBI) are the 

two major determinants of the sacrifice ratio. However, we find no support that the 

degree of openness of an economy has any causal effect on the sacrifice ratio.  
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We do not provide a robust analysis on the relationship between the sacrifice ratio 

and the adoption of Inflation Targeting (IT). We consider that this is due to the recent 

adoption of these regimes and that our analysis is restricted to disinflation episodes 

only, yielding very few observations. 
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TABLE 1 ― REPLICATION: GRANGER CAUSALITY TESTS AND 
FORECAST-ERROR VARIANCE DECOMPOSITION 

 

      
Dependent Variable in Regression 

(p-values of F-tests) 

Granger Causality Tests Regressor   π u r 
 π  0.00 0.00 0.05 
 u  0.00 0.00 0.00 
 r   0.00 0.00 0.00 

Variance Decompositions from the Unrestricted VAR ordered as π, u, r 

   Variance Decomposition 

   (Percentage Points) 

1. Variance Decomposition of π 
Forecast 
Horizon 

Forecast 
Std. Error π u r 

 1 0.957 100 0 0 
 4 1.324 88 10 2 
 8 1.722 82 17 1 
  12 1.938 82 16 2 

   Variance Decomposition 

   (Percentage Points) 

2. Variance Decomposition of u 
Forecast 
Horizon 

Forecast 
Std. Error π u r 

 1 0.227 0 100 0 
 4 0.631 0 98 2 
 8 0.784 7 82 11 
  12 0.912 16 66 18 

   Variance Decomposition 

   (Percentage Points) 

3. Variance Decomposition of r 
Forecast 
Horizon 

Forecast 
Std. Error π u r 

 1 0.843 2 19 79 
 4 1.831 9 50 41 
 8 2.437 12 60 28 
  12 2.625 16 59 25 

Notes: π denotes the inflation rate, u stands for unemployment, and r denotes the interest rate (Federal 
Funds). 
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TABLE 2 ― DIRECTED ACYCLICAL GRAPHS FOR INTEREST RATE ( r ), 
INFLATION (π ), AND UNEMPLOYMENT ( u ) IN SEVERAL STUDIES 

 

Stock & Watson (2001) Sims (1986) Awokuse & Bessler* (2003) 
1960:I – 2000:IV 1948:I - 1979:III 1948:I - 1979:III 

   

( )urr ,π=  
ππ =  
( )πuu =  

rr =  
( )rππ =  
( )π,ruu =  

rr =  
ππ =  
( )π,ruu =  

Our Results* 

1960:I – 2000:IV 1960:I – 1979:III 1979:IV – 2000:IV 

   
rr =  
ππ =  
( )π,ruu =  

rr =  
ππ =  
( )π,ruu =  

rr =  
( )rππ =  
( )ruu =  

   
Notes: π denotes the inflation rate, u stands for unemployment, and r denotes the interest rate. Below the 
directed acyclical graphs (DAGs) are the implied generalized functional forms. Sims (1986) and Awokuse 
and Bessler (2003) also used real output, investment, and money in their VAR specifications.  
* Causal structure retrieved using the PC Algorithm. 

r 

u 

π 
r 

u 

π
r 

u 

π 

r 
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π 
r 
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π
r 
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TABLE 3 ― EXAMPLE OF A PERFECTLY CALIBRATED  
BUT PERFECTLY “WRONG” FORECASTER 

 

Inflation Forecast (p)  Year  P(π<0)  P(0<π<1)  P(1<π<2)  P(π>2)  

  2000  0  1  0  0  
  2001  0  0  1  0  
  2002  0  0  0  1  

  2003  1  0  0  0  

Outcome Index (d)  Year  P(π<0)  P(0<π<1)  P(1<π<2)  P(π>2)  
  2000  1  0  0  0  
  2001  0  1  0  0  
  2002  0  0  1  0  

  2003  0  0  0  1  

Brier Score and some Elements of its Yates' partition 

        PSM    1.50  
        B2  0.00  
        σ2

p  0.75  
        σ2

d  0.75  
        σp,d  -0.25  

Notes: P indicates the probability of an event happening in a certain year. PSM  is the multiple-event Brier 
Mean Probability Score. The four numbers below the Brier Score are the components of its Yates’ 
decomposition: 2

,
222 2 dpdpBPSM σσσ −++= . To avoid ambiguities, 2

,dpσ  is reported instead of 2
,2 dpσ− . 

This is just an example from the authors’ creativity and not to be interpreted as information about a 
country’s inflation. 
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TABLE 4 ― BRIER MEAN PROBABILITY SCORES AND THEIR YATES PARTITIONS 
 

  Inflation 

  
2000 Q1 - 2001 Q1        

(5 obs.)  2001 Q2 - 2003 Q2          
(9 obs.)  Overall Period              

(14 obs.) 

    MPC   OF   MPC   OF   MPC   OF 

PSM   0.6256  0.5136  0.7555  0.6466  0.7091  0.5991 

σ 2d  0.0000  0.0000  0.5679  0.5679  0.3651  0.3651 

σ 2p,min  0.0000  0.0000  0.0000  0.0000  0.0000  0.0000 
S  0.0071  0.0031  0.0043  0.0009  0.0053  0.0017 

B2  0.6185  0.5105  0.1763  0.0770  0.3342  0.2318 

-2 [σ 2p,d]   0.0000   0.0000  -0.0035  -0.0004  -0.0022   -0.0002 

  Output Growth Rate 

  2000 Q1 - 2001 Q1        
(5 obs.)  2001 Q2 - 2003 Q2          

(9 obs.)  Overall Period              
(14 obs.) 

    MPC   OF   MPC   OF   MPC   OF 

PSM   0.7210  0.8212  0.7083  0.6548  0.7128  0.7142 

σ 2d  0.4800  0.4800  0.4938  0.4938  0.4889  0.4889 

σ 2p,min  0.0002  0.0003  0.0001  0.0001  0.0002  0.0002 
S  0.0037  0.0024  0.0061  0.0036  0.0052  0.0032 

B2  0.2371  0.3145  0.2110  0.1613  0.2203  0.2160 

-2 [σ 2p,d]   0.0000   -0.0120  0.0014  0.0020  0.0009   -0.0030 

  Combined Forecasts 

  
2000 Q1 - 2001 Q1        

(10 obs.)  2001 Q2 - 2003 Q2          
(18 obs.)  Overall Period              

(28 obs.) 

    MPC   OF   MPC   OF   MPC   OF 

PSM   0.6733  0.6674  0.7319  0.6507  0.7110  0.6567 

σ 2d  0.2400  0.2400  0.5309  0.5309  0.4270  0.4270 

σ 2p,min  0.0001  0.0002  0.0001  0.0000  0.0001  0.0001 
S  0.0054  0.0027  0.0052  0.0022  0.0053  0.0024 

B2  0.4278  0.4125  0.1937  0.1192  0.2773  0.2239 

-2 [σ 2p,d]   0.0000   -0.0060  -0.0011  0.0008  -0.0007   -0.0016 
Notes: MPC is the Bank of England Monetary Policy Committee. OF stands for “other” forecasters. PSM  is 
the multiple-event Brier Mean Probability Score. The five numbers below the Brier Score are the 
components of its Yates’ decomposition: 2

,
22

min,
2 2 dpdpSBPSM σσσ −+++= . To avoid ambiguities, 2

,dpσ  is 

reported instead of 2
,2 dpσ−  
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TABLE 5 ― BRIER SCORES HYPOTHESES TESTS  
 

 Null: OFMPC PSMPSM =  

    CB-statistic p-value   

Inflation Forecast  5.2502  0.0002  

Output Growth Forecast  0.2737  0.7886  
Notes: MPC is the Bank of England Monetary Policy Committee. OF stands for “other” 
forecasters. PSM  is the multiple-event Brier Mean Probability Score. CB is the statistic 
developed in this paper, given by equation (35). 
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TABLE 6 ― DISINFLATION PERIODS AND SACRIFICE RATIOS  
 

Episode  

Initial 
Inflation 

(π0)  

Change in 
Inflation 

(∆π)  

Length of 
Disinflation 

(LNG) (Quarters)  

Speed of 
Disinflation 

(SPD)  

Sacrifice 
Ratio 
(SR) 

Australia         

1974:2-1978:1  14.60   6.57   15             0.4380  0.7234 
1982:1-1984:1  10.50   4.98   8             0.6225  1.2782 
1986:2-1993:1 * 8.99   7.83   27             0.2900  -0.4200 
Canada                         

1974:2-1976:4  10.60   3.14   10             0.3140  0.6273 
1981:2-1985:2  11.60   7.83   16            0.4894  2.3729 
1990:1-1993:4 * 5.85   4.85   15             0.3233  2.6300 
1996:1-1997:3 * 2.05   0.84   6             0.1400  0.7600 
France                         

1974:2-1976:4  11.90   2.98   10             0.2980  0.9070 
1981:1-1986:4  13   10.42   23             0.4530  0.5997 
Germany                         

1965:4-1967:3  3.67   2.43   7             0.3471  2.5590 
1973:1-1977:3  6.92   4.23   18             0.2350  2.6358 
1980:1-1986:3  5.86   5.95   26             0.2288  3.5565 
1992:2-1995:4 * 5.13   3.74   14             0.2671  0.7500 
Italy                         

1963:3-1967:4  6.79   5.74   17             0.3376  2.6539 
1977:1-1978:2  16.50   4.30   5             0.8600  0.9776 
1980:1-1987:2  19.10   14.56   29             0.5021  1.5992 
1989:4-1993:3 * 6.62   2.54   15            0.1693  -1.2800 
1995:1-1996:3 * 4.72   1.86   6             0.3100  -0.5400 
Japan                         

1962:3-1963:1  8.11   3.00   2             1.5000  0.5309 
1965:1-1967:2  5.99   2.20   9            0.2444  1.6577 
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TABLE 6 ― CONTINUED  
 

Episode  

Initial 
Inflation 

(π0)  

Change in 
Inflation 

(∆π)  

Length of 
Disinflation 

(LNG) (Quarters)  

Speed of 
Disinflation 

(SPD)  

Sacrifice 
Ratio 
(SR) 

Japan                         

1970:3-1971:2  7.53   2.09   3             0.6967  1.2689 
1974:1-1978:3  17.10   13.21   18             0.7339  0.6068 
1980:2-1983:4  6.68   5.07   14             0.3621  0.0174 
1984:2-1987:1  2.29   2.11   11             0.1918  1.4801 
1990:2-1996:1 * 3.74   3.85   23             0.1674  -0.8900 
New Zealand                          

1985:4-1992:2 * 16.68   15.62   26             0.6008  -0.2300 
Sweden                          

1977:1-1978:4 * 11.53   3.06   7             0.4371  1.4700 
1980:3-1986:3 * 12.84   8.77   24             0.3654  1.6100 
1990:1-1993:1 * 10.02   7.07   12             0.5892  -0.2100 
1993:4-1997:3 * 3.49   3.56   11             0.3236  -1.0400 
Switzerland                          

1973:4-1977:4  9.42   8.28   16             0.5175  1.8509 
1981:3-1983:4  6.15   3.86   9            0.4289  1.2871 
1990:4-1997:3 * 5.79   5.53   27             0.2048  1.4200 
United 
Kingdom                          

1961:2-1963:3  4.24   2.10   9             0.2333  1.9105 
1965:2-1966:3  4.91   2.69   5             0.5380  -0.0063 
1975:1-1978:2  19.7   9.71   13             0.7469  0.8679 
1980:2-1983:3  15.4   11.12   13             0.8554  0.2935 
1984:2-1986:3  6.19   3.03   9             0.3367  0.8680 
1989:2-1993:3 * 9.13   7.37   17             0.4335  1.1200 
United States                          

1969:4-1971:4  5.67   2.14   8             0.2675  2.9364 
1974:1-1976:4  9.70   4.00   11            0.3636  2.3914 
1980:1-1983:4  12.10   8.83   15             0.5887  1.8320 
1989:4-1994:3 * 5.28    2.65    19              0.1395   3.6800 

* Episodes identified by the authors. 
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TABLE 7 ― DESCRIPTIVE STATISTICS OF SACRIFICE RATIOS AND CHARACTERIZATIONS 
 

        Averages     

Decade 

Number of 
Identified 

Disinflation 
Episodes  

Initial 
Inflation 

(π0) 

Change in 
Inflation 

(∆π) 

Length of 
Disinflation 

(LNG) 
(Quarters)  

Speed of 
Disinflation 

(SPD) 

Sacrifice 
Ratio 
(SR) 

1960-1970        7  5.63 2.90        8 0.4954 1.7489 
1970-1980 11  12.32 5.60 11 0.5128 1.3025 
1980-1990 14  10.53 7.86 18 0.4511 1.1532 
1990-2000 11  5.62 3.99 15 0.2789 0.5818 
1960-2000 43  8.93 5.48 14 0.4301 1.1422 
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TABLE 8 ― TRADITIONAL FACTORS - CAUSAL STRUCTURE IMPOSED BY BALL (1994) 
 

Speed of Disinflation (from Table 5.4, Ball) 

Frequency of the Data  
Imposed Causality Structure and 

Sign of Estimated Coefficient (in Parenthesis) 

(1) Quarterly  ( )
SRSPD

−
→  

(2) Annual  ( )
SRSPD

−
→  

(3) Quarterly  ( ) ( )
LNGSR

+−
←→∆π  

(4) Annual  ( ) ( )
LNGSR

+−
←→∆π  

   
Initial Inflation (from Table 5.7)   

Frequency of the Data  
Imposed Causality Structure and 

Sign of Empirical Result 

(1) Quarterly  ( )
SR

−
→0π  

(2) Quarterly 

 

( )

( )

DUR

LNGSR
−

+

↑
←→

↓
∆

0π

π

 

(3) Annual  
SR→0π  

(4) Annual 

 

( )

( )

DUR

LNGSR
−

+

↑
←→

↓
∆

0π

π

 

Notes: SR denotes the sacrifice ratio, π0 is the inflation level at the beginning of the identified disinflation 
period, ∆π stands for the change of inflation during the disinflation period, LNG is the length of the 
disinflation episode, SPD stands for speed of disinflation, i.e. the quotient between the ∆π and LNG, the 
duration of contracts (taken from Bruno and Sachs, 1985) is denoted by DUR. The sign obtained by Ball’s 
regressions is between parentheses next to the edge. When there is no sign associated to an edge indicates 
that the estimated coefficient was not statistically significant at the 10% confidence level. 
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TABLE 9 ― STRUCTURAL FACTORS - CAUSAL STRUCTURE IMPOSED BY BALL (1994) 
 

Nominal Wage Rigidities: Bruno and Sachs Index (from Tables 5.7/5.8, Ball) 

Frequency of the Data  
Imposed Causality Structure and 

Sign of Estimated Coefficient (in Parenthesis) 

(1) Annual  SRWRBS →  

(2) Annual  
( )

( )
LNGSRWRBS

+
−

←
↓
∆

→

π

 

(3) Annual  SRDUR→  

(4) Annual  
( )

( )
LNGSRDUR

+
−

←
↓
∆

→

π

 

(5) Quarterly  
( )

SRWRBS

−
→  

(6) Quarterly  ( )
LNGSRWRBS

+
←

↓
∆

→

π

 

(7) Quarterly  ( )
SRDUR

−
→  

(8) Quarterly  ( )
( )

( )
LNGSRDUR

+
−

−
←

↓
∆

→

π
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TABLE 9 ― CONTINUED 
 

Nominal Wage Rigidities: Grubb, Jackman, and Layard Index (from Table 5.9, Ball) 

Frequency of the Data and Est. Method 
Imposed Causality Structure and 

Sign of Estimated Coefficient (in Parenthesis) 

(1) Quarterly (OLS)  ( )
( )

( )
LNGSRWRGJL

+
−

+
←

↓
∆

→

π

 

(2) Annual (OLS)  ( )
( )

( )
LNGSRWRGJL

+
−

+
←

↓
∆

→

π

 

(3) Quarterly (IV)  
( )

( )
LNGSRWRBS

+
−

←
↓
∆

→

π

 

(4) Annual (IV)  ( )
( )

( )
LNGSRWRGJL

+
−

+
←

↓
∆

→

π

 

 (continued) 
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TABLE 9 ― CONTINUED 
 

Openness (from Table 5.12, Ball) 

Frequency of the Data  
Imposed Causality Structure and 

Sign of Estimated Coefficient (in Parenthesis) 

(1) Quarterly  SROPN →  
(2) Annual  SROPN →  

(3) Quarterly  

( )

( )

DUR

LNGSROPN
↑

←→

↓
∆

+

−

π

 

(4) Annual  

( )

( )

DUR

LNGSROPN
↑

←→

↓
∆

+

−

π

 

Notes: SR denotes the sacrifice ratio, π0 is the inflation level at the beginning of the identified disinflation 
period, ∆π stands for the change of inflation during the disinflation period, LNG is the length of the 
disinflation episode, SPD stands for speed of disinflation, i.e. the quotient between the ∆π and LNG, the 
duration of contracts and the degree of wage responsiveness (taken from Bruno and Sachs, 1985) are 
denoted by DUR and WRBS. Grubb, Jackman, and Layard’s (1983) wage rigidity index is denoted by WRGJL. 
OPN is Romer’s openness index, i.e. the proportion of imports on the GDP. The sign obtained by Ball’s 
regressions is between parentheses next to the edge. When there is no sign associated to an edge indicates 
that the estimated coefficient was not statistically significant at the 10% confidence level. 
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TABLE 10 ― THE SACRIFICE RATIO AND ITS DETERMINANTS  
(BRUNO & SACHS’ WAGE RESPONSIVENESS INDEX) 

 

  Structural  Institutional  Traditional   
Dependent 
Variable  WRB&S OPN  CBI IT  SPD  SR 

           
Constant  5.307*** 16.523***  0.479*** 0.194***  0.161**  0.658 
  (0.549) (2.914)  (0.046) (0.076)  (0.070)  (0.632) 
WRBS  ---- ----  ---- ----  ----  -0.163* 
  ---- ----  ---- ----  ----  (0.098) 
OPN  ---- ----  ---- ----  ----  ---- 

  ---- ----  ---- ----  ----  ---- 

CBI  -4.852*** 15.841**  ---- ----  ----  2.907***
  (1.377) (7.302)  ---- ----  ----  (1.020) 
IT  ---- ----  ---- ----  ----  ---- 

  ---- ----  ---- ----  ----  ---- 

π0  

---- ----  ---- -0.013*  0.03***  ---- 

  

---- ----  ---- (0.008)  (0.007)  ---- 

SPD  ---- ----  -0.265*** ----  ----  ---- 

  ---- ----  (0.092) ----  ----  ---- 

SR  ---- ----  ---- ----  ----  ---- 

  ---- ----  ---- ----  ----  ---- 

F  11.139*** 4.819**  5.29** 2.982*  16.463***  9.007***
Adjusted R2  0.194 0.083  0.087 0.045  0.269  0.276 
DW  2.484 2.074  2.574 1.869  2.089  1.651 

Notes: 
BSWR  stands for the wage responsiveness index by Bruno and Sachs (1985). OPN is Romer’s (1993) 

openness index. CBI  is Cukierman, Webb, and Neyapti’s (1992) index of Central Bank Independence. IT  is 
the dummy variable for Inflation Target. Initial inflation is denoted by 

0π . SPD  stands for speed of 
disinflation, and SR  is the sacrifice ratio. The regressions are estimated as a system using the seemingly 
unrelated regressions (SUR) methodology. 
*, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively. Std. Errors in 
parenthesis. 
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TABLE 11 ― THE SACRIFICE RATIO AND ITS DETERMINANTS  
(GRUBB, JACKMAN & LAYARD’S WAGE RIGIDITY INDEX) 

 

 Structural  Institutional  Traditional   

Dependent Variable OPN  CBI IT  SPD  SR 

         
Constant 18.981***  0.479*** 0.217***  0.158**  -0.369 
 (2.241)  (0.046) (0.073)  (0.070)  (0.359) 
WRGJL -5.690***  ---- ----  ----  0.383*** 
 (0.969)  ---- ----  ----  (0.155) 
OPN ----  ---- ----  ----  ---- 
 ----  ---- ----  ----  ---- 

CBI 19.954***  ---- ----  ----  3.409*** 
 (5.555)  ---- ----  ----  (0.891) 
IT ----  ---- ----  ----  ---- 
 ----  ---- ----  ----  ---- 

π0 ----  ---- -0.016**  0.03***  ---- 
 

----  ---- (0.007)  (0.007)  ---- 

SPD ----  -0.264*** ----  ----  ---- 
 ----  (0.092) ----  ----  ---- 

SR ----  ---- ----  ----  ---- 
 ----  ---- ----  ----  ---- 

F 16.956***  5.29** 2.982*  16.463***  10.209***
Adjusted R2 0.43  0.087 0.043  0.269  0.303 
DW 2.525  2.574 1.906  2.085   1.734 

Notes: 
GJLWR  stands for the wage responsiveness index by Grubb, Jackman, and Layard (1983). OPN is 

Romer’s (1993) openness index. CBI  is Cukierman, Webb, and Neyapti’s (1992) index of Central Bank 
Independence. IT  is the dummy variable for Inflation Target. Initial inflation is denoted by 

0π . SPD  
stands for speed of disinflation, and SR  is the sacrifice ratio. The regressions are estimated as a system 
using the seemingly unrelated regressions (SUR) methodology. 
*, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively. Std. Errors in 
parenthesis. 
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TABLE 12 ― THE SACRIFICE RATIO AND THE SPEED OF DISINFLATION:  
THE FRONT DOOR PATH 

 

Dependent Variable  SR 

  (I)  (II)  (II) 
Constant -0.381  -0.364  1.189*** 
 (0.381)  (0.557)  (0.368) 
WRGJL  0.337**  0.338**  0.422*** 
  (0.166)  (0.168)  (0.188) 
CBI            (The “blocking” variable)  3.53***  3.515***  ---- 

  (0.949)  (1.023)  ---- 

SPD  ----  -0.028‡  -0.791‡‡ 
  ----  (0.652)  (0.691) 
F  10.209***  6.637***  3.188** 
Adjusted R2 0.305  0.287  0.094 
DW  1.747  1.740   1.762 

Notes: 
GJLWR  stands for the wage responsiveness index by Grubb, Jackman, and Layard (1983). CBI  is 

Cukierman, Webb, and Neyapti’s (1992) index of Central Bank Independence. SPD  stands for speed of 
disinflation, and SR  is the sacrifice ratio. The regressions are estimated using OLS. 
*, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively. Std. Errors in 
parenthesis. 
‡ and ‡‡  indicate statistical significance at the 95%, and 25%, respectively. 



 171

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDIX B 
 
 

FIGURES 
 

 



 172

 
 

 
 

FIGURE 1. ANALYSIS OF OBSERVATIONS AND ACTIONS 
(AS GIVEN IN PEARL, 2000, PP. 15-23) 
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FIGURE 2. IMPULSE-RESPONSE FUNCTIONS 1960:I – 1979:III 
 
Notes: π  stands for inflation rate. Unemployment rate is denoted by u . r  is the Fed 

Funds interest rate. The vertical axis is in terms of percentages and the 
 horizontal axis is the time lag in quarters. 
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FIGURE 3. IMPULSE-RESPONSE FUNCTIONS 1979:IV – 2000:IV 
 
Notes: π  stands for inflation rate. Unemployment rate is denoted by u . r  is the Fed 

Funds interest rate. The vertical axis is in terms of percentages and the 
 horizontal axis is the time lag in quarters. 
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FIGURE 4. MONETARY POLICY COMMITTEE FAN CHART OF INFLATION 
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FIGURE 5. MULTIPLE-EVENT BRIER PROBABILITY SCORE OF THE  
MPC AND “OTHER” FORECASTERS’ INFLATION FORECAST 

 
Notes: PSM  is the Multiple-Event Brier Probability Score. MPC is  

the Monetary Policy Committee, and OF  is the “Other” Forecasters 
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FIGURE 6. MULTIPLE-EVENT BRIER PROBABILITY SCORE FOR THE  
MPC AND “OTHER” FORECASTERS’ REAL GDP GROWTH FORECAST 

 
Notes: PSM  is the Multiple-Event Brier Probability Score. MPC is  

the Monetary Policy Committee, and OF  is the “Other” Forecasters 
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FIGURE 7. MPC’S FORECASTED INFLATION (MODE), REALIZED INFLATION,  
AND THE MPC’S MULTIPLE-EVENT PROBABILITY SCORE 
 
Notes: PSM  is the Multiple-Event Brier Probability Score. MPC is  

the Monetary Policy Committee. 
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FIGURE 8. COVARIANCE GRAPHS FOR THE MPC AND “OTHER” FORECASTERS’ (OF) 

PROBABILITY JUDGMENTS ON INFLATION AND REAL GDP GROWTH 
 

Notes: MPC is the Monetary Policy Committee, and OF  is the 
“Other” Forecasters. 

1p  and 
0p  correspond to the mean 

probabilities when the outcome  occurred, and when it did not 
occur, respectively. θ  is the slope. 

θθθθ    ====    θθθθ    ====    0.16 
  

 

θθθθ    ====    0.11 θθθθ    ====    0.12 
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FIGURE 9. INFLATION (UPPER), OUTPUT, AND POTENTIAL (TREND) OUTPUT (LOWER)   
DURING DISINFLATION PERIODS. π  DENOTES INFLATION, y IS OUTPUT, AND t IS TIME 
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FIGURE 10. THREE DIRECTED ACYCLICAL GRAPHS 
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FIGURE 11. PROCEDURE TO DIRECT EDGES INA DIRECTED ACYCLICAL GRAPH  
USING THE NOTION OF D-SEPARATION 
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FIGURE 12. DIRECTED ACYCLICAL GRAPH RETRIEVED BY THE PC ALGORITHM  
FROM DATA ON THE SACRIFICE RATIO AND ITS DETERMINANTS  

(WITH BRUNO AND SACHS’ WAGE RESPONSIVENESS INDEX) 
 

Notes: 
BSWR  stands for the wage responsiveness index by Bruno and Sachs (1985). 

OPN is Romer’s (1993) openness index. CBI  is Cukierman, Webb, and 
Neyapti’s (1992) index of Central Bank Independence. IT  is the dummy 
variable for Inflation Target. Initial inflation is denoted by 

0π . SPD  
stands for speed of disinflation, and SR  is the sacrifice ratio. The 
regressions are estimated as a system using the seemingly unrelated 
regressions (SUR) methodology. 
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FIGURE 13. DIRECTED ACYCLICAL GRAPH RETRIEVED BY THE PC ALGORITHM  
FROM DATA ON THE SACRIFICE RATIO AND ITS DETERMINANTS  

(WITH GRUBB, JACKMAN, AND LAYARD’S WAGE RIGIDITY INDEX) 
 

Notes: 
GJLWR  stands for the wage responsiveness index by Grubb, Jackman, and 

Layard (1983). OPN is Romer’s (1993) openness index. CBI  is Cukierman, 
Webb, and Neyapti’s (1992) index of Central Bank Independence. IT  is the 
dummy variable for Inflation Target. Initial inflation is denoted by 

0π . 

SPD  stands for speed of disinflation, and SR  is the sacrifice ratio. The 
regressions are estimated as a system using the seemingly unrelated 
regressions (SUR) methodology. 
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SAMPLE PROGRAM 
STRUCTURAL VECTOR AUTOREGRESSIONS AND THE TAYLOR RULE 
 
*-----------------------------------------------------------
*- RATS v5 Program for Structural Vector Autoregressions -
*- and the Taylor Rule -
*- By Gabriel Casillas -
*- May 31st., 2004 (Version 1.0) -
*- Last Update: June 10th, 2004 -
*- WARNING: THIS IS JUST AN EXAMPLE FOR THE DAG -
*- EMPIRICALLY-BASED CAUSAL STRUCTURES FOR THE -
*- 1960:I-1979:III & 1979:IV-2000:IV PERIODS -
*- USING STOCK AND WATSON's QUARTERLY DATA -
*- ON INFLATION, UNEMPLOYMENT, AND INTEREST -
*- RATES FOR THE US -
*- -
*-----------------------------------------------------------
*-----------------------------------
*- MAIN PROGRAM -
*-----------------------------------
************************************
* INVOQUE PROCEDURES *
************************************
SOURCE C:\PROGRA~1\ESTIMA\WINRAT~1\BERNANKE.SRC
************************************
* LOAD DATA *
************************************
* -&-&-&-&-&-&-&-&-&-&-&-&-&-&-&-&-&
* 1) Set starting year, starting period and
* number of periods per year

CALENDAR 1955 1 4
* 2) Set number and length of series

ALLOCATE 3 6
* 3) Rename the series from numbers to actual names

EQV 1 TO 3
P U R

* 4) Open Data Set
OPEN DATA C:\A\TR\PUR.ASC
DATA(FORMAT=FREE,ORG=OBS) 1955:1 2000:4 1 TO 3

* 5) Print the series to check that they are inside the
* program
* (This step is optional)

PRINT 1955:1 2000:4 1 TO 3
* -&-&-&-&-&-&-&-&-&-&-&-&-&-&-&-&-&

*************************************************
* FISRT PERIOD *
* SAMPLE 1: 1960:1 - 1979:3 STOCK AND WATSON *
*************************************************
*************************************************
* DECLARE SYSTEM (4-LAG REDUCED-FORM VAR) *
*************************************************

SAMPLE P 1960:01 1979:03 P2
SAMPLE U 1960:01 1979:03 U2
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SAMPLE R 1960:01 1979:03 R2
SYSTEM 4 to 6
EQUATION 4 P2
# CONSTANT P2{1 to 4} U2{1 to 4} R2{1 to 4}
EQUATION 5 U2
# CONSTANT P2{1 to 4} U2{1 to 4} R2{1 to 4}
EQUATION 6 R2
# CONSTANT P2{1 to 4} U2{1 to 4} R2{1 to 4}
END(SYSTEM)

*************************************************
* INNOVATION ACCOUNTING *
*************************************************

DECLARE SYMMETRIC V42
ESTIMATE(outsigma=v42) 1960:01 1979:03
COMPUTE nreg4=%nreg
COMPUTE nobs4=%nobs
* Choleski Decomposition
WRITE V42
DECLARE rect pattern(3,3)
INPUT pattern
1 0 0
1 1 1
0 0 1
* We need to let the BERNANKE Procedure in RATS
* know which are the parameters in the K-Matrix
* that have to be estimated. In this case they
* are the elements (2,1) and (2,3)
NONLIN A221 A223
* Starting values
COMPUTE A221=-0.1, A223=-0.1
* Continue Choleski
COMPUTE A2=%identity(3)
FIND min -2*log(%det(A2))+%sum(%log(%mqformdiag(V42,tr(A2)))) {
COMPUTE A2(2,1)=A221, A2(2,3)=A223
}
END FIND
WRITE 'MATRIX A2: ' A2
@BERNANKE(Initial=A2,TEST,PRINT) V42 PATTERN FACTOR
* ERRORS runs the Forecast Error Variance Decomposition
* and the Impulse-Response Functions for the three equations
* for 24-steps ahead
ERRORS(DECOMP=FACTOR,IMPULSES) 3 24
# 4
# 5
# 6

*************************************************
* SAMPLE 2: 1979:4 - 2000:4 STOCK AND WATSON *
* DECLARE SYSTEM (4-LAG REDUCED-FORM VAR) *
*************************************************

SAMPLE P 1979:04 2000:04 P3
SAMPLE U 1979:04 2000:04 U3
SAMPLE R 1979:04 2000:04 R3
SYSTEM 7 to 9
EQUATION 7 P3
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# CONSTANT P3{1 to 4} U3{1 to 4} R3{1 to 4}
EQUATION 8 U3
# CONSTANT P3{1 to 4} U3{1 to 4} R3{1 to 4}
EQUATION 9 R3
# CONSTANT P3{1 to 4} U3{1 to 4} R3{1 to 4}
END(SYSTEM)

*************************************************
* INNOVATION ACCOUNTING *
*************************************************

DECLARE SYMMETRIC V43
ESTIMATE(outsigma=v43) 1979:04 2000:04
COMPUTE nreg4=%nreg
COMPUTE nobs4=%nobs
* Choleski Decomposition
WRITE V43
DECLARE rect pattern(3,3)
INPUT pattern
1 0 1
0 1 1
0 0 1
* We need to let the BERNANKE Procedure in RATS
* know which are the parameters in the K-Matrix
* that have to be estimated. In this case they
* are the elements (1,3) and (2,3)
NONLIN A313 A323
* Starting values
COMPUTE A313=-0.1, A323=-0.1
* Continue Choleski
COMPUTE A3=%identity(3)
FIND min -2*log(%det(A3))+%sum(%log(%mqformdiag(V42,tr(A3)))) {
COMPUTE A3(1,3)=A313, A3(2,3)=A323
}
END FIND
WRITE 'MATRIX A3: ' A3
@BERNANKE(Initial=A3,TEST,PRINT) V43 PATTERN FACTOR
* ERRORS runs the Forecast Error Variance Decomposition
* and the Impulse-Response Functions for the three equations
* for 24-steps ahead
ERRORS(DECOMP=FACTOR,IMPULSES) 3 24
# 7
# 8
# 9

*************************************************
*************************************************

*************************************************
* PROGRAM END *
*************************************************
WRITE ' '
WRITE ' -------------- '
WRITE ' END OF PROGRAM '
WRITE ' -------------- '
WRITE ' '

END
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SAMPLE PROGRAM
PROBABILITY FORECASTING AND CENTRAL BANK ACCOUNTABILITY 

*-----------------------------------------------------------
*- RATS v5 Program for Probability Forecasting Evaluation -
*- By Gabriel Casillas & David A. Bessler -
*- Sept. 30th., 2003 (Version 1.0) -
*- March 26th., 2004 (Version 2.0) -
*- Last Update: March 26th., 2004 & May 24th, 2004 -
*- Version 2.0 -
*- In just 10 steps you will have a Brier Probability -
*- Score calculation and its Yates Covariance -
*- Decomposition. -
*- WARNING: THIS IS JUST AN EXAMPLE FOR THE BANK OF -
*- BANK OF ENGLAND's MONETARY POLICY COMMITTEE -
*- TWO YEARS-AHEAD INFLATION PROBABILITY -
*- FORECASTS FOR THE PERIOD BETWEEN THE FIRST -
*- QUARTER OF 2000 AND THE FIRST QUARTER OF -
*- 2001. -
*- NOTE: THE PROCEDURE IS AT THE BEGINING OF THE SAMPLE -
*- PROGAM OUTPUT, AT THE END OF THIS PROGRAM -
*-----------------------------------------------------------
*-----------------------------------
*- MAIN PROGRAM -
*-----------------------------------
************************************
* INVOQUE PROCEDURES *
************************************
SOURCE C:\PRBBRIER\PROCS2.SRC

************************************
* IMPORT DATA *
************************************
* -&-&-&-&-&-&-&-&-&-&-&-&-&-&-&-&-&
* 1) Set starting year, starting period and
* number of periods per year

CALENDAR 2000 1 4
* 2) Set number and length of series

ALLOCATE 36 14
* 3) Rename the series from numbers to actual names

EQV 1 TO 36
PBFC1 PBFC2 PBFC3 PBFC4 PBFC5 PBFC6
POFC1 POFC2 POFC3 POFC4 POFC5 POFC6
PRC1 PRC2 PRC3 PRC4 PRC5 PRC6
GBFC1 GBFC2 GBFC3 GBFC4 GBFC5 GBFC6
GOFC1 GOFC2 GOFC3 GOFC4 GOFC5 GOFC6
GRC1 GRC2 GRC3 GRC4 GRC5 GRC6

* 4) Open Data Set
OPEN DATA c:\PRBBRIER\DATASET.TXT
DATA(FORMAT=FREE,ORG=OBS) 2000:1 2003:2 1 TO 36

* 5) Print the series to check that they are inside the program
* (This step is optional)

PRINT 2000:1 2003:2 1 TO 36
* -&-&-&-&-&-&-&-&-&-&-&-&-&-&-&-&-&
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************************************
* DECLARE GLOBAL VARIABLES *
************************************
* FRLST & RLST: Number of the Starting Forecasted and
* Past Events (Realized) Series

DECLARE INTEGER FST
DECLARE INTEGER RST

* RLEND: Number of the Last Forecasted and
* Past Events (Realized) Series

DECLARE INTEGER FEND
DECLARE INTEGER REND

* DATEST: Starting date of period to analyze
DECLARE INTEGER DATEST

* DATEND: End of period to analyze
DECLARE INTEGER DATEND

* NN: Number of forecast ocassions (Dates)
DECLARE INTEGER NN

* KK: Number of categories (disribution partitions)
DECLARE INTEGER KK

************************************
* SET PERIOD TO ANALYZE *
************************************
* -&-&-&-&-&-&-&-&-&-&-&-&-&-&-&-&-&
* Just set the number of:
* 6) Categories (KK) (or distrib. partitions):

COMPUTE KK=4
* 7) The starting number of the series
* of forecasts

COMPUTE FST=1
* 8) The starting number of the series
* of past (realized) events

COMPUTE RST=13
* 9) The starting date:

COMPUTE DATEST=2000:1
* 10) The ending date:

COMPUTE DATEND=2001:1
*-&-&-&-&-&-&-&-&-&-&-&-&-&-&-&-&-&

************************************
* INITIAL CALCULATIONS *
************************************
* Calculates the no. of the ending forecasted
* and realized series

COMPUTE FEND=FST+KK-1
COMPUTE REND=RST+KK-1

* Calculates the number of forecasted ocassions "N"
COMPUTE NN=(DATEND-DATEST+1)

************************************
* SET WORKING MATRICES *
* (Transform Series into Matrices) *
************************************
* F: (NxK)Matrix of Forecasts

DECLARE RECTANGULAR F(NN,KK)
* D: (NxK)Matrix of Past (Realized) Events

DECLARE RECTANGULAR D(NN,KK)
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* Call procedure to transform series into matrices
EXECUTE SMATRIX FST FEND NN KK DATEST DATEND
COMPUTE F=GG
EXECUTE SMATRIX RST REND NN KK DATEST DATEND
COMPUTE D=GG

************************************
* CALCULATE THE BRIER SCORE AND *
* THE YATES PARTITION *
************************************
************************************
* N1, DUPBR & VARD *
************************************
EXECUTE N1 RST REND NN KK DATEST DATEND
* NN1: (Kx1)Vector of vertical sum of columns of D matrix

DECLARE RECTANGULAR NN1(KK,1)
COMPUTE NN1=HH

* DUPBR: (Kx1)Vector 1/N x NN1
DECLARE RECTANGULAR DUPBR(KK,1)
COMPUTE DUPBR=JJ

* VARD: (Kx1)Vector of Var(d)
DECLARE RECTANGULAR VARD(KK,1)
COMPUTE VARD=QQ

************************************
* FUPBAR & VARF *
************************************
EXECUTE FUPBAR FST FEND NN KK DATEST DATEND
* FUPBR: (Kx1)Vector of vertical sum of columns of F matrix
* multiplied by (1/N)

DECLARE RECTANGULAR FUPBR(KK,1)
COMPUTE FUPBR=LL
DECLARE RECTANGULAR VARF(KK,1)
COMPUTE VARF=ZZ
* The following thing is to have a numerical
* value of (1/N) with no variable-type problem
DECLARE REAL OON
COMPUTE OON=ONEN
DECLARE REAL OKK
COMPUTE OKK=OKEN

************************************
* BIAS *
************************************
* BIAS: (Kx1)Vector of FUPBR-DUPBR

DECLARE RECTANGULAR BIAS(KK,1)
COMPUTE BIAS=(FUPBR-DUPBR)

* We want Average Bias as well
DECLARE REAL SUMBIAS
COMPUTE SUMBIAS=%SUM(BIAS)
DECLARE REAL AVGBIAS
COMPUTE AVGBIAS=OKK*SUMBIAS

* We also need BIAS^2, therefore:
DECLARE RECTANGULAR BIAS2(KK,1)
DO CONT=1,KK

COMPUTE BIAS2(CONT,1)=BIAS(CONT,1)**2
END DO
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************************************
* N0 *
************************************
* NN0: (Kx1)Vector of N-N1

DECLARE RECTANGULAR NN0(KK,1)
DO CONT=1,KK
COMPUTE NN0(CONT,1)=NN-NN1(CONT,1)

END DO
************************************
* F1UPBR *
************************************
DECLARE REAL ADDF
DECLARE RECTANGULAR F1UPBR(KK,1)
COMPUTE ADDF=0
DO CONT2=1,KK
DO CONT=1,NN
IF D(CONT,CONT2)==1 {
COMPUTE ADDF=ADDF+F(CONT,CONT2)}

END IF
END DO
IF NN1(CONT2,1)==0 {
COMPUTE F1UPBR(CONT2,1)=0}

END IF
IF NN1(CONT2,1)<>0 {
COMPUTE F1UPBR(CONT2,1)=ADDF*(1/NN1(CONT2,1))}

END IF
* Clear the value of the accumulator ADDF
COMPUTE ADDF=0

END DO
************************************
* F0UPBR *
************************************
DECLARE RECTANGULAR F0UPBR(KK,1)
COMPUTE ADDF=0
DO CONT2=1,KK
DO CONT=1,NN
IF D(CONT,CONT2)==0 {
COMPUTE ADDF=ADDF+F(CONT,CONT2)}

END IF
END DO
IF NN0(CONT2,1)==0 {
COMPUTE F0UPBR(CONT2,1)=0}

END IF
IF NN0(CONT2,1)<>0 {
COMPUTE F0UPBR(CONT2,1)=ADDF*(1/NN0(CONT2,1))}

END IF
* Clear the value of the accumulator ADDF

COMPUTE ADDF=0
END DO

************************************
* VARF1 *
************************************
DECLARE RECTANGULAR VARF1(KK,1)
COMPUTE ADDF=0
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DO CONT2=1,KK
IF NN1(CONT2,1)<>0 {
DO CONT=1,NN
IF D(CONT,CONT2)==1 {
COMPUTE ADDF=ADDF+(F(CONT,CONT2)-F1UPBR(CONT2,1))**2}

END IF
IF D(CONT,CONT2)==0 {
COMPUTE ADDF=ADDF}

END IF
END DO
COMPUTE VARF1(CONT2,1)=(1/NN1(CONT2,1))*ADDF}

END IF
IF NN1(CONT2,1)==0 {
COMPUTE VARF1(CONT2,1)=0}

END IF
COMPUTE ADDF=0

END DO
************************************
* VARF0 *
************************************
DECLARE RECTANGULAR VARF0(KK,1)
COMPUTE ADDF=0
DO CONT2=1,KK
IF NN0(CONT2,1)<>0 {
DO CONT=1,NN
IF D(CONT,CONT2)==0 {
COMPUTE ADDF=ADDF+(F(CONT,CONT2)-F0UPBR(CONT2,1))**2}

END IF
IF D(CONT,CONT2)==1 {
COMPUTE ADDF=ADDF}

END IF
END DO
COMPUTE VARF0(CONT2,1)=(1/NN0(CONT2,1))*ADDF}

END IF
IF NN0(CONT2,1)==0 {
COMPUTE VARF0(CONT2,1)=0}

END IF
COMPUTE ADDF=0

END DO
************************************
* SCAT *
************************************
DECLARE RECTANGULAR SCAT(KK,1)
DO CONT=1,KK
COMPUTE

SCAT(CONT,1)=(OON)*((NN1(CONT,1)*VARF1(CONT,1))+(NN0(CONT,1)*VARF0(CONT
,1)))

END DO
************************************
* MINVAR *
************************************
DECLARE RECTANGULAR MINVAR(KK,1)
DO CONT=1,KK
COMPUTE MINVAR(CONT,1)=VARF(CONT,1)-SCAT(CONT,1)
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END DO
************************************
* SLOPE *
************************************
DECLARE RECTANGULAR SLOPE(KK,1)
DO CONT=1,KK
COMPUTE SLOPE(CONT,1)=F1UPBR(CONT,1)-F0UPBR(CONT,1)

END DO
DECLARE REAL SUMF1UPBR
COMPUTE SUMF1UPBR=%SUM(F1UPBR)
DECLARE REAL SUMF0UPBR
COMPUTE SUMF0UPBR=%SUM(F0UPBR)
DECLARE REAL SUMSLOPE
COMPUTE SUMSLOPE=%SUM(SLOPE)

************************************
* COV *
************************************
DECLARE RECTANGULAR COV(KK,1)
DO CONT=1,KK
COMPUTE COV(CONT,1)=SLOPE(CONT,1)*VARD(CONT,1)

END DO
DECLARE REAL SUMCOV
COMPUTE SUMCOV=%SUM(COV)

* We need -2Cov, therefore:
DECLARE RECTANGULAR COVM2(KK,1)
COMPUTE COVM2=(-2)*COV

************************************
* PS *
************************************
DECLARE RECTANGULAR PS(KK,1)
COMPUTE ADDF=0
DO CONT2=1,KK
DO CONT=1,NN
COMPUTE ADDF=ADDF+((F(CONT,CONT2)-D(CONT,CONT2))*(F(CONT,CONT2)-

D(CONT,CONT2)))
END DO
COMPUTE PS(CONT2,1)=OON*ADDF
* Clear the value of the accumulator ADDF
COMPUTE ADDF=0

END DO
************************************
* MULTIPLE EVENT BRIER SCORE AND *
* YATES PARTITION *
************************************
DECLARE REAL PSM
COMPUTE PSM=%SUM(PS)
DECLARE REAL VARDM
COMPUTE VARDM=%SUM(VARD)
DECLARE REAL MINVARM
COMPUTE MINVARM=%SUM(MINVAR)
DECLARE REAL SCATM
COMPUTE SCATM=%SUM(SCAT)
DECLARE REAL BIAS2M
COMPUTE BIAS2M=%SUM(BIAS2)
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DECLARE REAL COVM2M
COMPUTE COVM2M=%SUM(COVM2)
************************************
* PRINTOUT *
************************************
WRITE '-----------------------------------------------------------'
WRITE '- RATS v5 Program for Probability Forecasting Evaluation -'
WRITE '- By Gabriel Casillas and David A. Bessler -'
WRITE '- Sept. 30th., 2003 -'
WRITE '- Last Update: March 26th, 2004 / May 24th, 2004 -'
WRITE '- Version 2.0 -'
WRITE '-----------------------------------------------------------'
WRITE ' '
WRITE ' This program calculates the Brier Mean Probability Score'
WRITE ' of a probability forecast and performs the Yates Covariance'
WRITE ' Decomposition.'
WRITE ' '
WRITE ' PROBABILITY FORECASTS: '
WRITE ' ---------------------- '
WRITE ' '
WRITE F
WRITE ' '
WRITE ' REALIZED EVENTS: '
WRITE ' ---------------- '
WRITE ' '
WRITE D
WRITE ' '

************************************
* FULL BRIER SCORE AND *
* YATES PARTITION *
************************************
WRITE ' BRIER SCORE AND YATES PARTITION:'
WRITE ' --------------------------------'
WRITE ' '
DISPLAY ' Score: ' PSM
DISPLAY ' Var(d): ' VARDM
DISPLAY ' MinVar: ' MINVARM
DISPLAY ' Scat(f): ' SCATM
DISPLAY ' Bias^2: ' BIAS2M
DISPLAY ' -2Cov(f):' COVM2M
DISPLAY ' ------------------------- '
* Variable CHECK is to "check" that
* adding up the Yates Partition Terms
* is equal to the Brier Probability Score

DECLARE REAL CHECK
COMPUTE CHECK=VARDM+MINVARM+SCATM+BIAS2M+COVM2M
DISPLAY ' CHECK: ' CHECK

DISPLAY ' ------------------------- '
WRITE ' '
DISPLAY ' Bias: ' SUMBIAS
DISPLAY ' Cov(f): ' SUMCOV
DISPLAY ' Slope: ' SUMSLOPE
DISPLAY ' f0: ' SUMF0UPBR
DISPLAY ' f1: ' SUMF1UPBR
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DISPLAY ' Average f: ' FUPBR
DISPLAY ' Average d: ' DUPBR
WRITE ' '
WRITE ' '
WRITE ' '
WRITE ' '
WRITE ' -------------- '
WRITE ' END OF PROGRAM '
WRITE ' -------------- '
WRITE ' '

END
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SAMPLE OUTPUT 
PROBABILITY FORECASTING AND CENTRAL BANK ACCOUNTABILITY 

*-----------------------------------
*- PROCEDURE SMATRIX -
*-----------------------------------
PROCEDURE SMATRIX AA BB CC DD EE FF
(01.0028) DECLARE RECTANGULAR GG
(01.0028) DIM GG(CC,DD)
(01.0051) MAKE GG EE FF
(01.0084) # AA TO BB
(01.0116) END PROCEDURE

*-----------------------------------
*- PROCEDURE N1, DUPBAR & VARD -
*-----------------------------------
PROCEDURE N1 AA BB CC DD EE FF
(01.0028) DECLARE RECTANGULAR GG
(01.0028) DECLARE RECTANGULAR WW
(01.0028) DECLARE RECTANGULAR HH
(01.0028) DECLARE RECTANGULAR JJ
(01.0028) DECLARE RECTANGULAR QQ
(01.0028) DECLARE REAL ONEN1
(01.0028) DECLARE REAL ONEN
(01.0028) DECLARE RECTANGULAR AKK
(01.0028) DECLARE REAL OKEN1
(01.0028) DECLARE REAL OKEN
(01.0028) DIM GG(CC,DD) WW(CC,1) HH(DD,1) JJ(DD,1) QQ(DD,1) AKK(DD,1)
(01.0136) MAKE GG EE FF
(01.0169) # AA TO BB
(01.0201) * N1 REALLY STARTS HERE
(01.0201) DO CONT=1,DD
(02.0233) COMPUTE WW=%XCOL(GG,CONT)
(02.0258) COMPUTE HH(CONT,1)=%SUM(WW)
(02.0285) END DO CONT
(01.0287) * DUPBAR STARTS HERE
(01.0287) * By the way, I had to use ONEN1 and ONEN as artificial
(01.0287) * variables to transform the type that emerged from %ROWS
(01.0287) COMPUTE ONEN1=%ROWS(WW)
(01.0309) COMPUTE ONEN=(1/ONEN1)
(01.0333) COMPUTE JJ=ONEN*HH
(01.0358) * By the way, I had to use OKEN1 and OKEN as artificial
(01.0358) * variables to transform the type that emerged from %ROWS
(01.0358) COMPUTE OKEN1=%ROWS(HH)
(01.0380) COMPUTE OKEN=(1/OKEN1)
(01.0404) COMPUTE AKK=OKEN*HH
(01.0429) * VARD STARTS HERE
(01.0429) DO CONT=1,DD
(02.0461) COMPUTE QQ(CONT,1)=JJ(CONT,1)*(1-(JJ(CONT,1)))
(02.0515) END DO CONT
(01.0517) END PROCEDURE

*-----------------------------------
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*- PROCEDURE FUPBAR & VARF -
*-----------------------------------
PROCEDURE FUPBAR AA BB CC DD EE FF
(01.0028) DECLARE RECTANGULAR GG
(01.0028) DECLARE RECTANGULAR WW
(01.0028) DECLARE RECTANGULAR HH
(01.0028) DECLARE RECTANGULAR LL
(01.0028) DECLARE RECTANGULAR ZZ
(01.0028) DECLARE REAL ONEN1
(01.0028) DECLARE REAL ONEN
(01.0028) DECLARE REAL SUMA
(01.0028) DIM GG(CC,DD) WW(CC,1) HH(DD,1) JJ(DD,1) ZZ(DD,1)
(01.0119) MAKE GG EE FF
(01.0152) # AA TO BB
(01.0184) * FUPBAR REALLY STARTS HERE
(01.0184) DO CONT=1,DD
(02.0216) COMPUTE WW=%XCOL(GG,CONT)
(02.0241) COMPUTE HH(CONT,1)=%SUM(WW)
(02.0268) END DO CONT
(01.0270) COMPUTE ONEN1=%ROWS(WW)
(01.0292) COMPUTE ONEN=(1/ONEN1)
(01.0316) COMPUTE LL=ONEN*HH
(01.0341) * VARF STARTS HERE
(01.0341) * This is extremely important since the
(01.0341) * calculation of Var(d) differs from the calculation
(01.0341) * of Var(f)
(01.0341) * Var(f) is calculated by the "usual variance formula"
(01.0341) * multiplied by (N-1)/N. In other words, using the
(01.0341) * population variance formula
(01.0341) COMPUTE SUMA=0
(01.0356) DO CONT2=1,DD
(02.0388) DO CONT=1,CC
(03.0420) COMPUTE SUMA=SUMA+(GG(CONT,CONT2)-LL(CONT2,1))**2
(03.0478) END DO CONT
(02.0480) COMPUTE ZZ(CONT2,1)=SUMA*(1/ONEN1)
(02.0520) COMPUTE SUMA=0
(02.0535) END DO CONT2
(01.0537) END PROCEDURE
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ENTRY PBFC1 PBFC2 PBFC3 PBFC4
2000:01 0.07 0.28 0.35 0.30
2000:02 0.13 0.34 0.32 0.21
2000:03 0.10 0.33 0.35 0.22
2000:04 0.19 0.36 0.33 0.12
2001:01 0.16 0.35 0.36 0.13
2001:02 0.10 0.15 0.21 0.21
2001:03 0.07 0.14 0.22 0.24
2001:04 0.17 0.18 0.22 0.23
2002:01 0.05 0.12 0.22 0.25
2002:02 0.10 0.16 0.23 0.24
2002:03 0.07 0.13 0.22 0.26
2002:04 0.10 0.15 0.22 0.23
2003:01 0.18 0.17 0.22 0.22
2003:02 0.14 0.17 0.23 0.23

ENTRY PBFC5 PBFC6 POFC1 POFC2
2000:01 0.00 0.00 0.11 0.39
2000:02 0.00 0.00 0.10 0.37
2000:03 0.00 0.00 0.13 0.38
2000:04 0.00 0.00 0.15 0.46
2001:01 0.00 0.00 0.16 0.41
2001:02 0.16 0.17 0.08 0.15
2001:03 0.18 0.15 0.07 0.12
2001:04 0.14 0.06 0.06 0.16
2002:01 0.19 0.17 0.07 0.15
2002:02 0.17 0.10 0.08 0.15
2002:03 0.20 0.11 0.08 0.14
2002:04 0.17 0.13 0.07 0.14
2003:01 0.14 0.07 0.06 0.15
2003:02 0.15 0.08 0.08 0.17

ENTRY POFC3 POFC4 POFC5 POFC6
2000:01 0.37 0.14 0.00 0.00
2000:02 0.39 0.14 0.00 0.00
2000:03 0.37 0.12 0.00 0.00
2000:04 0.30 0.10 0.00 0.00
2001:01 0.31 0.11 0.00 0.00
2001:02 0.32 0.29 0.11 0.06
2001:03 0.30 0.30 0.13 0.08
2001:04 0.33 0.29 0.12 0.05
2002:01 0.36 0.27 0.11 0.05
2002:02 0.32 0.28 0.11 0.06
2002:03 0.32 0.28 0.12 0.06
2002:04 0.33 0.30 0.11 0.05
2003:01 0.35 0.30 0.10 0.04
2003:02 0.32 0.26 0.12 0.06

ENTRY PRC1 PRC2 PRC3 PRC4
2000:01 0 1 0 0
2000:02 0 1 0 0
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2000:03 0 1 0 0
2000:04 0 1 0 0
2001:01 0 1 0 0
2001:02 0 0 1 0
2001:03 0 0 1 0
2001:04 0 0 1 0
2002:01 0 0 1 0
2002:02 0 1 0 0
2002:03 0 0 1 0
2002:04 0 0 0 1
2003:01 0 0 0 1
2003:02 0 0 0 1

ENTRY PRC5 PRC6 GBFC1 GBFC2
2000:01 0 0 0.00 0.00
2000:02 0 0 0.04 0.09
2000:03 0 0 0.07 0.13
2000:04 0 0 0.07 0.13
2001:01 0 0 0.03 0.08
2001:02 0 0 0.00 0.04
2001:03 0 0 0.01 0.06
2001:04 0 0 0.01 0.07
2002:01 0 0 0.02 0.10
2002:02 0 0 0.02 0.09
2002:03 0 0 0.01 0.07
2002:04 0 0 0.02 0.10
2003:01 0 0 0.03 0.09
2003:02 0 0 0.01 0.08

ENTRY GBFC3 GBFC4 GBFC5 GBFC6
2000:01 0.00 0.00 0.00 0.00
2000:02 0.19 0.25 0.21 0.22
2000:03 0.22 0.26 0.20 0.12
2000:04 0.23 0.27 0.20 0.10
2001:01 0.19 0.28 0.25 0.17
2001:02 0.14 0.29 0.30 0.23
2001:03 0.18 0.31 0.29 0.15
2001:04 0.19 0.32 0.27 0.14
2002:01 0.27 0.36 0.20 0.05
2002:02 0.24 0.35 0.24 0.06
2002:03 0.22 0.36 0.27 0.08
2002:04 0.25 0.33 0.22 0.08
2003:01 0.21 0.31 0.26 0.10
2003:02 0.24 0.34 0.23 0.09

ENTRY GOFC1 GOFC2 GOFC3 GOFC4
2000:01 0.05 0.11 0.30 0.36
2000:02 0.05 0.15 0.28 0.34
2000:03 0.06 0.13 0.29 0.35
2000:04 0.07 0.17 0.28 0.31
2001:01 0.05 0.11 0.22 0.34
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2001:02 0.03 0.08 0.20 0.37
2001:03 0.02 0.07 0.17 0.39
2001:04 0.03 0.08 0.21 0.41
2002:01 0.04 0.09 0.25 0.41
2002:02 0.04 0.11 0.26 0.39
2002:03 0.05 0.11 0.27 0.39
2002:04 0.03 0.06 0.23 0.45
2003:01 0.04 0.08 0.20 0.45
2003:02 0.04 0.09 0.20 0.40

ENTRY GOFC5 GOFC6 GRC1 GRC2
2000:01 0.13 0.06 0 0
2000:02 0.13 0.05 0 0
2000:03 0.13 0.04 0 0
2000:04 0.13 0.03 0 0
2001:01 0.18 0.10 0 0
2001:02 0.22 0.10 0 0
2001:03 0.25 0.10 0 0
2001:04 0.22 0.06 0 0
2002:01 0.15 0.05 0 0
2002:02 0.15 0.05 0 0
2002:03 0.15 0.04 0 0
2002:04 0.18 0.04 0 0
2003:01 0.17 0.05 0 0
2003:02 0.21 0.06 0 0

ENTRY GRC3 GRC4 GRC5 GRC6
2000:01 0 0 1 0
2000:02 0 0 1 0
2000:03 0 0 1 0
2000:04 0 1 0 0
2001:01 0 1 0 0
2001:02 0 1 0 0
2001:03 1 0 0 0
2001:04 1 0 0 0
2002:01 1 0 0 0
2002:02 1 0 0 0
2002:03 0 1 0 0
2002:04 0 1 0 0
2003:01 0 1 0 0
2003:02 1 0 0 0

-----------------------------------------------------------
- RATS v5 Program for Probability Forecasting Evaluation -
- By Gabriel Casillas and David A. Bessler -
- Sept. 30th., 2003 -
- Last Update: March 26th, 2004 / May 24th, 2004 -
- Version 2.0 -
-----------------------------------------------------------

This program calculates the Brier Mean Probability Score
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of a probability forecast and performs the Yates Covariance
Decomposition.

PROBABILITY FORECASTS:
----------------------

0.0700 0.2800 0.3500 0.3000
0.1300 0.3400 0.3200 0.2100
0.1000 0.3300 0.3500 0.2200
0.1900 0.3600 0.3300 0.1200
0.1600 0.3500 0.3600 0.1300

REALIZED EVENTS:
----------------

0.0000 1.0000 0.0000 0.0000
0.0000 1.0000 0.0000 0.0000
0.0000 1.0000 0.0000 0.0000
0.0000 1.0000 0.0000 0.0000
0.0000 1.0000 0.0000 0.0000

BRIER SCORE AND YATES PARTITION:
--------------------------------

Score: 0.62564
Var(d): 0.00000
MinVar: 0.00000
Scat(f): 0.00714
Bias^2: 0.61850
-2Cov(f): 0.00000
-------------------------
CHECK: 0.62564
-------------------------

Bias: 1.11022e-16
Cov(f): 0.00000
Slope: -0.33600
f0: 0.66800
f1: 0.33200
Average f:

0.13000
0.33200
0.34200
0.19600

Average d:
0.00000
1.00000
0.00000
0.00000
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--------------
END OF PROGRAM
--------------

Normal Completion
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