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Abstract: Due to the increasing use of underground space to align with sustainability needs, geohazard
risk assessments have become a valuable tool for decision-making. One common issue in relation
to urban geohazard assessments relates to ground movements due to tunneling affecting adjacent
buildings. A framework for assessing costs related to subsequent building damage, using integrated
data, statistics and considering the uncertainties involved, is presented in this paper. The proposed
methodology provides an integration of Monte Carlo simulations to support uncertainty estimations
with an analysis for building-damage cost risk due to tunneling-induced settlements. The analysis
involves analytical models using green-field conditions and a typically used building damage
assessment method. BIM is capable of collating, combining and visualizing information with
advanced analysis techniques into a risk-based tool. The resulting tool provides a clear way of
assessing building-damage costs risk due to tunneling-induced settlements. This uses a BIM-based
environment and incorporates 3D visualizations and an integrated analysis via MATLAB to reveal and
highlight hazardous areas and the severity of economic risk along the tunneling route. This informs
the need for additional ground investigations or secondary analyses to ensure engineering processes
reduce or remove the risk of economic damage and advance sustainable decision-making.

Keywords: settlement economic risk; BIM; uncertainty; tunneling; building damage costs

1. Introduction

The use of underground space in an urban area has become an essential feature of the sustainable
urban expansion of a modern city [1,2]. This demands an understanding of all the related geohazard
and geotechnical aspects that should be considered prior to tunneling and/or other underground
construction processes. Hence, a geohazard risk assessment in relation to these construction operations
should take place to support decision-making and align with the need for safe designs regarding the
ground conditions [3]. One particular geotechnical issue that is important as part of the planning
process is the ground settlement due to tunnel or underground construction in “soft ground”, defined
herein as soils or soft rocks as opposed to hard rock tunneling. This paper presents a methodology for
determining the economic risk arising from tunnel construction in soft ground as part of an overarching
framework for addressing the problems associated with urban underground construction.

Tunneling-induced ground movements are a complex geotechnical issue, particularly nowadays
with an ever-increasing density of the urban built environment. These ground movements are
associated with numerous considerations of safety and sustainability within urban settings [4–6].
Peck [7] presented the idea of representing the settlement trough under green-field conditions by an
inverted normal distribution curve. This was further developed into practical empirical and analytical
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solutions [8,9]. The criteria for combining the green-field settlement trough with potential building
damage assessments were proposed by Burland and Wroth [10], Rankin [11] and Mair et al. [12].
These can be used in combination with building-damage costs to assess the settlement-induced risk for
this damage. It is important for engineers to develop a risk-based assessment method in relation to
underground construction developments for planning and insurance purposes [13].

There is a growing body of literature concerning building costs [14]. It would be useful if this
was combined with the resulting repair/maintenance costs assessed via a risk assessment. The present
study has used the example of the risk of building-damage costs associated with tunneling-induced
settlements for residential buildings in the UK. These costs were derived using available data for
building costs/prices from the Office of National Statistics [15] in combination with the research of
Blong [16] and Sundell et al. [14]. Thus, it is possible to introduce a relative cost analysis to a risk
assessment analysis of building damage. In this paper, to demonstrate this risk as clearly as possible and
provide a more thorough analysis, this is integrated with an uncertainty analysis, which is important
to be considered in detail in decision-making [17].

Considering the uncertainty in geological and geotechnical engineering analyses is important
for successful ground-related outcomes [18,19]. This has been shown to be the case for a number of
geotechnical applications [19–21]. The criteria or factors to be included and the number of simulations
required are closely linked with the variability of the ground as well as modeling limitations [19,22,23].
Previous research has accounted for the effective input of these factors to model uncertainties, using
both geotechnical expertise and measurements [21,22]. This has revealed the need to undertake an
uncertainty analysis in relation to a geotechnical risk in an urban area due to the effects of physical
intervention, such as tunnel–induced ground movements.

To estimate the uncertainties, probability functions were adopted. The resulting indicators
using such statistical techniques are able to describe geotechnical processes [24,25], Mashhadian
et al. [20] and Cao et al. [26]. Probabilistic modeling approaches have been employed to estimate
uncertainty [20,27,28]. These estimations used common statistical methods, such as the sample mean,
standard deviation and correlation coefficient to provide the probability distributions, and the Bayesian
approach [28,29]. This was applied in the assessment used in this paper, using probability density
functions (PDFs). These are useful tools for this type of analysis, as shown by Pan and Dias [27] and
Zhang et al. [28]. Particularly, log-normal PDFs were used that could indicate successful resultants,
as shown by Sundell et al. [14]. An indication of the related uncertainty utilizing the mean and
standard deviation values of geotechnical factors could be obtained using the Monte Carlo method
and these PDFs. Available methods for probability simulation based on the Monte Carlo method
could be categorized as directional sampling, Importance sampling, Subset simulation and Line
sampling/stepwise simulation [30–33]. Monte Carlo simulations have been widely used to manage or
estimate uncertainties, and there is a large body of literature using it in the geotechnical field providing
risk assessments, e.g., Peng et al. [34], Cao et al. [35], Jin et al. [36] and Cao et al. [26]. A successful
example of its use in relation to tunneling involved investigation of the potential hazards induced by
TBM excavations [37]. This statistical technique could produce even more useful findings if combined
with a framework incorporating an advanced database and visualizations so as to help overcome some
of the limitations associated with ground/geological data.

Building information modeling (BIM) has become a widely utilized platform for assigning,
managing, storing and demonstrating building construction data [38]. This is not limited to structural
applications but can also be applied to geotechnical aspects [39]. Therefore, BIM could be used to
provide advanced data and visualization aspects to produce integrated computer-aided geotechnical
applications. An enhanced framework combining probabilistic and analytical approaches that takes
advantage of BIM features, while applied in the context of geotechnics to provide an advanced risk
assessment, could provide such a useful computer application for engineers and researchers.

In this paper, the costs associated with the damage caused by settlements due to tunneling
in an urban area are assessed using a modeling tool that integrates BIM data with advanced
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analyses. This integrated tool uses the framework to provide the digital integration presented
by Providakis et al. [3] and reports on the subsequent research to extend the assessment to include
uncertainty and cost analysis of the specific urban geohazard. The uncertainty and cost analyses
indicate the risk of building damage costs due to these settlements. This is achieved by presenting
areas of economic risk in three-dimensions using BIM and aligning them with a probabilistic analysis.
An assessment tool is presented that could provide a “real-life” computer application in geotechnics,
i.e., settlement-induced costs. The proposed approach demonstrates a framework for an integrated
digital tool, which could be applied to different types of urban geohazards. This tool could improve
the knowledge and understanding of ground-building interaction problems. It is important to
note that this is used to demonstrate the principles of the method and does not focus on detailed
soil–structure interactions within the foundations or on an attempt to assess all the parameters involved.
The method could equally be applied to allied geotechnical hazard analysis, such as seismic risk
analysis, and the analysis reported herein could be extended in its sophistication as required for any
specific contextual need.

This paper first describes the methodology used for the integration of the core elements within
the modeling analysis. Details of the uncertainty evaluations using the Monte Carlo method are then
described, together with its application to this case. The analytical methods to provide the resulting
cost functions are then presented, along with the resulting 3D visualizations using BIM, which provide
an integrated view of the (tunneling-induced) settlement economic cost risk, and hence a potential
assessment tool. Finally, these demonstrators and their relative advantages using this integrated
computer-aided tool are discussed.

2. Materials and Methods: Building-Damage Cost Analysis due to Tunneling-Induced Settlement

In the proposed methodology, a framework to assess the tunneling-induced settlement costs
from adjacent building damages was developed. This framework extends the work presented by
Providakis et al. [3] into an economic analysis to provide a sustainable city decision-making analysis.
The concept is to provide an information “layer” showing these costs from a “settlement economic
risk” assessment, integrated with the georeferenced 3D geological-tunnel-building model.

Uncertainty is important for geohazard prediction and assessment and the consequences (such as
rehabilitation costs) and how to limit them. The study aimed to provide an integrated computer-based
approach for estimating and visualizing the economic risk (costs) in relation to building damage
caused by tunnel-induced settlements using building information modeling (BIM). The risk is adjusted
according to the probability, extent and severity of the hazard [40]. The present methodology uses
Monte Carlo simulations to provide a probabilistic approach. In addition, analytical models are used
to estimate the surface settlement caused by tunneling [9] in combination with building damage
assessment methods [12,41].

A flow chart showing the approach adopted is presented in Figure 1. Initially, the data integration
process uses the method adopted by Providakis et al. [3] where BIM-building models [42] in IFC
format [43] are imported into SketchUp [44], which is used for the BIM visualizations. The data for the
whole georeferenced 3D geology-tunnel-building model was then exported into MATLAB [45] using
the STL format [46], as shown in Providakis et al. [3]. It is important to note that all the information for
the proposed analysis is provided using this mesh, which could then be used/integrated with other
frameworks (software) for further analysis/investigation [3,47].
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their locations across the area being shown in Figure 2. These boreholes provided the data for the 
interpolation conducted in MATLAB [45] to create the 3D geological model in Figure 3, using the 
method introduced by Providakis et al. [3]. A 3D 10 m-diameter tunnel model was placed within the 
geological model at approximately 20 m-depth. Ten low-rise building BIM-files taken from 
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Figure 2. Borehole locations were used for the analysis [49]. The tunnel centerline is shown by a red line. 

Figure 1. Flow chart of the proposed methodology building on the (BIM) data integration method from
Providakis et al. [3].

2.1. Set up of Simulated Urban Area

In this paper, the wider urban area around the campus of the University of Birmingham, UK,
is used as an example. The geological strata of the area consist of soft ground with made ground
overlying the alluvial deposits, which is underlain by the (Wilmslow) sandstone consisting of a
weathered to clay top and mudstone bands below. This geology is presented in fifteen boreholes,
their locations across the area being shown in Figure 2. These boreholes provided the data for the
interpolation conducted in MATLAB [45] to create the 3D geological model in Figure 3, using the
method introduced by Providakis et al. [3]. A 3D 10 m-diameter tunnel model was placed within
the geological model at approximately 20 m-depth. Ten low-rise building BIM-files taken from
SUPodium [42] and developed using Archicad [48] were imported in IFC in SketchUp. These were
used to provide a representative sample to test the methodology. These buildings are typical masonry
structures and were superimposed on the 3D geology-tunnel model, as shown in Figure 4.
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2.2. Settlement Hazard Using Analytical Methods

To provide a tunnel-induced settlement analysis, empirical/analytical models based on the
resulting settlement trough have been adopted [7,8]. This assumes that a settlement curve or trough is
formed below the ground surface and, in this case, in the ground among buildings. There are a number
of methods that can be used to estimate the settlements caused by tunnel construction in soft ground,
and any can be used in the proposed methodology, but the method used here to exemplify the process
is the analytical model adapted from Loganathan and Poulos [9] and Loganathan [50], as shown in
Equation (1)

Uz=0 = ε0R2 4H(1− ν)
H2 + x2 exp

− 1.38x2

(Hcotβ+ R)2

 (1)

where R is the tunnel radius, z is the overburden, H is the depth to the tunnel axis level, ν is the Poisson’s
ratio of the soil, ε0 is the ground loss, x is the lateral distance from tunnel centerline, and β = 45 + ϕ/2
and ϕ is the friction angle of the ground.

To evaluate the spatial distribution of Uz=0, input information of the ground (volume) loss,
Poisson’s ratio of the soil and the soil friction angle are required, as shown in Table 1. Since they
are geotechnical factors characterized by uncertainties, representative estimations throughout the
whole construction are needed. Such estimations are based on a combination of knowledge and
understanding of local geological conditions, previous experience and statistics. In the proposed
approach, the problem conceptually changes from geomechanical by correlating deterministic
information based on specific values of the ground (volume) loss, Poisson’s ratio and friction angle,
to multidisciplinary, by including (randomly) distributed uncertainty estimations within predefined
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ranges of values. Hence, each uncertain geotechnical factor X, i.e., ground loss, Poisson ’s ratio and
friction angle, could be estimated using Equation (2).

X = µ ± σY (2)

where µ is the mean and σ the standard deviation (square root of variance) of factor X, and Y is a
standardized random variate, which in the present approach is assumed to be normally distributed
within the range of [−3, +3].

Table 1. Mean and standard deviation values of the geotechnical factors investigated. The mean values
are typical representative values of the geotechnical factors used for the site investigated, adapted from
Waltham [51], Dindarloo and Siami-Irdemoosa [52], O’Reilly and New [53] and Xie et al. [54].

Factor (X) Mean (µ) Standard Deviation (σ)

Ground loss 0.175 0.04

Soil Poisson’s ratio 0.25 0.03

Soil friction angle 35 4

Damage Extent and Severity of the Settlement Hazard

Although there are a number of approaches to assess building damage due to tunnel-induced
settlements, by way of example, the proposed methodology adopted in this paper used the Building
damage Assessment from the risk categories in Table 2 [11,55] through Equation (1). These were
used to estimate the damage extent due to the settlement hazard. This analysis is carried out in
MATLAB. BIM is used to collect the information on the maximum settlement and ground slope from
building-footprint locations using BIM.

Table 2. Risk categories used adapted from Rankin [11], CIRIA [55] and Chapman et al. [13].

Risk Category Maximum Slope
of Building

Maximum Settlement
of Building (mm) Description of the Risk

1 <1/500 <10 Negligible: superficial damage unlikely

2 1/500 to 1/200 10 to 50 Slight: possible superficial damage unlikely
to have structural significance

3 1/200 to 1/50 50 to 75
Moderate: expected superficial damage and
possible structural damage to the building,
possible damage to relatively rigid pipelines

4 >1/50 >75
High: expected structural damage to

buildings and rigid pipelines or possible
damage to other pipelines

To provide the building damage severity due to the settlement hazard, the building damage
assessment criteria adapted from Burland [41] and Mair et al. [12] are also employed, as shown in
Table 3. The limiting tensile strain method (LTSM) is used to assign the resulting settlement-induced
building damage using the critical tensile strains [10,56]. The LTSM does not focus on detailed
interactions in relation to the foundations. The total bending strain (εbs), diagonal strain (εds) and
horizontal strain (εh) were used in estimating the critical strain (εcrit) from Equations (3)–(5) [10,56]:

εbs = εb,max + εh (3)

εds = εh

(1− ν
2

)
+

√
ε2

h

(1− ν
2

)2
+ ε2

dmax (4)
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εcrit = max(εbs, εds) (5)

To evaluate the critical strain, εcrit, for each of the buildings within the study zone, their detailed
material and geometrical information (e.g., building length, width and height, sagging/hogging areas
and the construction material), was collected using BIM from the IFC buildings datasets [42,48] and
using the integrated approach in MATLAB proposed by Providakis et al. [3]. The building damage for
each building is then obtained using Equation (5) and is classified according to the damage categories
from Table 3 [12,41]. Maximum difference normalization is employed in the present methodology to
correlate factors and values that initially have completely different ranges, with factors estimated to
have a (0, 1) frame [24].

Table 3. Building damage classes adapted from Burland [41] and Mair et al. [12].

Damage Category No. Damage Severity Critical (Limiting) Tensile Strain (%)

1 Negligible 0–0.05

2 Very slight 0.05–0.075

3 Slight 0.075–0.15

4 Moderate 0.15–0.3

5 Severe to very severe >0.3

The ratio of Young’s modulus and shear modulus, E/G, of the buildings is challenging. This is
often heterogeneous due to variation in building materials used in the construction. It varies from
E/G = 2.6 in the case of masonry structures to E/G = 12.5 for concrete structures. The severity of the
settlement damage not only depends on the settlement magnitude and extent but also on the material
sensitivity within the construction. For instance, buildings built mainly from masonry bricks are more
susceptible to damage compared to reinforced concrete, and hence as an example, masonry buildings
were selected in the present study. The mean and standard deviation values used (E/G range within
2.6 and 2.8) are shown in Table 4. Thus, the present approach considers the uncertainty estimation of
E/G in addition to the geotechnical factors. In this case, this estimation is described in Equation (6):

XE/G = µE/G ± σE/GYE/G (6)

where the uncertainty factor, XE/G, can be estimated here using the mean value, µE/G and the standard
deviation, σE/G; the random variate (standardized) is YE/G, which is assumed to be normally distributed
in the range of [−3, +3].

Table 4. The mean and standard deviation values of the ratio of Young’s modulus and shear modulus,
E/G, used in the present analysis.

Factor (XE/G) Mean (µE/G) Standard Deviation (σE/G)

E/G 2.7 0.03

2.3. Uncertainty Analysis for Estimating the Settlement Economic Risk

In the case of a model including several inputs with uncertainties, a stochastic analysis could be
used to provide subsequent uncertainty evaluations, i.e., how the input uncertainty has an impact on
the characteristics of the model [26]. Monte Carlo simulation is a type of stochastic modeling where
the output probability distribution is derived from a repeat of random-sampling tests of inputs [23].
A large number of simulations ensures that a random variation of the inputs is reflected [57]. In the
present analysis, using the Monte Carlo simulations, uncertainties of the geotechnical factors used
in Equation (2) or of the E/G factor in Equation (6) have an impact on each other. The concept of the
Monte Carlo analysis used is presented in Figure 5. The damage of the buildings in the proposed
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analysis is a function of the critical tensile strain εcrit using Table 3. The key points of the Monte Carlo
simulations used in the proposed methodology are:

1. Define the probability distributions of possible inputs (factors): ground (volume) loss, Poisson’s
ratio, friction angle and E/G ratio. In this case, it is assumed these factors vary according to a
normal probability distribution;

2. Generate the random (representative) inputs from the probability distribution over the domain,
using Equations (2) and (6);

3. Calculate the resultants of building damage categories (outputs) according to Table 3 using
Equations (1) and (5) and the randomly generated inputs;

4. Repeat steps 1–3, using 1000 simulations;
5. Aggregate the results.
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2.3.1. Probability Distribution of Building Damage

Each of the ten buildings within the study area was analyzed using the methodology. To produce
clear probability estimations, the Monte Carlo simulations were run 1000 times in MATLAB (a
reasonable number of simulations according to Vose [57]). Hence, for each building, a probability for
any damage category to occur was generated. Figures 6–10 show the resulting probability distributions
for the damage associated with each building investigated as bar graphs of the damage categories
(1–5). The probability values were then used to develop the settlement economic risk of this damage.
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2.3.2. Building Damage Cost Analysis Using Probability Density Functions

As previously mentioned, in the settlement-induced building-damage scheme used in this case,
the critical tensile strain (εcrit) levels are related to this damage. Minor critical strains are associated
with negligible damage and small repair-costs, whereas larger critical strains affect the function or
the main structure of a building resulting in substantial damage and costs. The consequences of this
damage are described by a continuous function providing the settlement economic risk (Rs) for each
building, as presented in Equation (7) [14].

Rs =

∫
Cs fsds (7)

where Rs is the settlement economic risk due to tunneling given by a combination of the economic cost,
Cs, induced by the settlement and the probability density function (PDF) of damage occurring, fs.

The settlement economic risk, Rs, is initially calculated for each building. The sum of Rs for all
buildings included in the investigated urban area gives the total economic risk for a specific settlement
hazard for this urban area. The economic costs (Cs) are made up of direct costs (i.e., costs of repairing of
settlement damage) and indirect costs (e.g., related to project delay, a reduced market value of damaged
buildings and tenant issues) [14]. Only the direct costs are accounted for here to illustrate the approach.
Due to the fact that no rigorous related damage database exists for the UK, the economic cost valuation
in the proposed method was based on earlier research and not directly related to tunneling-induced
settlement damage. Hence, the proposed methodology employed the “damage index” adopted by
Blong [16] that enables the damage evaluation due to any hazard and any type of building to be
determined. This was used to estimate the settlement damage in terms of complete replacement costs
for any investigated building or building at risk. This is expressed in units of average gross charge
(cost) for a new property (house) in meter squared of floor area. The average gross charge for new
construction in England and Wales in the year 2016 was 2400 £/m2, while the highest reasonable gross
charge reached 6600 £/m2 in the wider London area [15]. The average property area in England and
Wales in the year 2016 was 90.1 m2 [15].

To estimate the damage costs from a particular hazard, the full scale of potential values from 0 to
1 corresponds to the complete range of the observed damage, i.e., from no damage to the total collapse
of the building. Blong [16], after reviewing studies of damage caused by natural hazards, identified
five alternative damage categories: light, moderate, heavy, severe and collapse, with a qualitative
description provided for the nature of this damage. A summary of the categories used in that study is
presented in Table 5, adapted from Blong [16]. Each damage category has a corresponding range of
damage-values, where for estimation purposes, Blong [16] has taken the central value and called this
the “central damage value” (CDV) (Table 5).

Table 5. Central damage value (CDV) examples adapted from Blong [16].

Damage CDV Range Geohazard

Light 0.02 0.01–0.05 Hairline cracks (<0.1 mm)

Moderate 0.10 0.05–0.20 Minor foundation settlement

Heavy 0.40 0.20–0.60 Walls out of perpendicular by several degrees; floors inclined/heaved;
open cracks in walls

Severe 0.75 0.60–0.90 Structure grossly distorted; partition walls and brick infill at least partly
collapsed; footings lose bearing; service pipes disrupted

Collapse 1.00 0.90–1.00 Partial/total collapse

In the current approach, the five damage categories after Blong [16] are correlated with the
building damage categories (No 1–5) based on the critical strains of Table 3 [12,41], caused by the



Sustainability 2020, 12, 10034 11 of 19

tunneling-induced settlements generated within the building footprints. Subsequently, the cost of the
settlement damage for each of the five damage categories is estimated from Equation (8).

Average damage cost per m2 f loor area
(
£/m2

)
= Central Damage Value (CDV)

× Average cost o f a new property in England and Wales
(
£/m2

) (8)

Considering Equation (8) and Table 5, the average damage cost per m2 (gross) floor area is
estimated for each corresponding damage category as presented in Table 6. Due to the fact that
probability density functions (PDFs) are not directly defined by a number, the highest reasonable
damage cost for a respective category is estimated in combination with the expertise of the authors
in this field. The resulting highest value would then represent the 95% percentile in the respective
category. The values of the 95% percentile cost per m2 floor area for each damage category are also
summarized in Table 6. To obtain these values, the prices used were adapted using the study of Sundell
et al. [14] combined with the expertise of the authors, in addition to the highest gross charge (cost) in
the wider London area taken from the Office for National Statistics [15]. It is important to note that the
intention here is to demonstrate how the method works rather than providing exact values for these
costs, which will be dependent on the particular costs associated with a country/region or city.

Table 6. Average and 95% percentile damage costs for each damage category adapted from Burland [41],
Mair et al. [12], Blong [16], Office for National Statistics [15] and Sundell et al. [14].

Damage
Category (No)

Damage
Severity

Critical Tensile
Strain (%)

Average Damage Cost Per
m2 Floor Area

95% Percentile
Damage Cost Per

m2 Floor Area

1 Negligible 0–0.05 0.02 × 2400 £/m2 = 48 £/m2 110 £/m2

2 Very slight 0.05–0.075 0.10 × 2400 £/m2 = 240 £/m2 900 £/m2

3 Slight 0.075–0.15 0.40 × 2400 £/m2 = 960 £/m2 3300 £/m2

4 Moderate 0.15–0.3 0.75 × 2400 £/m2 = 1800 £/m2 5000 £/m2

5 Severe to very
severe >0.3 1.00 × 2400 £/m2 = 2400 £/m2 6600 £/m2

Damage from various hazards often follows a skewed probability distribution [58]. The log-normal
distribution is commonly employed to analyze the positively skewed damage distributions of PDF [58].
By definition, a PDF of damage is “lognormally” distributed when the log-transformed PDF of the
damage is normally distributed. This can be described as a function: Y = ln(X) that is normally
distributed with a mean, µ, and a variance, σ2. Then, X is lognormally distributed with parameters,
mean (µ), and variance (σ2). It should be noted that µ and σ2 are not the mean and variance of the
log-normal random variable, X, but are the mean and variance of the log-transformed random variable,
Y and the log-normal distribution is commonly referred to as LN(µ, σ2). The log-normal PDF was
selected in the present methodology to provide positive (damage) costs, Cs, and represent larger
uncertainties in the correct part of the curve [58]. If the average cost per m2 is the expected value
m and the 95% percentile is the variable q for each damage category, the Equations (9)–(12) can be
employed to evaluate the parameters µ, and variance, σ2, of the log-normal PDF for damage cost, Cs,
for each damage category [59]. The value from the log-normal distribution, m, and the 95% percentile,
q, is given by Equations (9) and (10), respectively [59]:

m = exp
(
µ+ 0.5σ2

)
(9)

q = exp(µ+ z0.95σ) (10)
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where z0.95 is the 95% percentile of the standard normal distribution profile (approximately equal to
1.645). Then, taking the logarithms of m and q, are represented by Equations (11) and (12) [59]:

log(m) = µ+ 0.5σ2 (11)

log(q) = µ+ z0.95σ (12)

From Equations (9)–(12), the Equations (13) and (14) [59] are obtained:

σ = z0.95 ±

√
z0.952 + 2 log

(
m
q

)
(13)

µ = log(q) − z0.95σ (14)

The equation with the positive solution for σ and µ is selected (unless q > m). Table 7 shows the
resulting mean (µ) and variance (σ2) for the log-normal PDF, LN(µ, σ2), for the building damage costs
for each damage category. Using these values, a log-normal PDF (fs) describing the variation in the
corresponding (repair) cost (Cs) for each damage category is presented in Figures 11–13, using MATLAB.

Table 7. Calculated mean and variance for each damage category after Sundell et al. [14].

Damage Category Mean (µ) Variance (σ2) LN (µ, σ2)

1 3.6780 0.3863 LN (3.6780, 0.3863)

2 4.5077 1.9460 LN (4.5077, 1.9460)

3 6.1957 1.3426 LN (6.1957, 1.3426)

4 7.1503 0.6904 LN (7.1503, 0.6904)

5 7.4481 0.6703 LN (7.4481, 0.6703)Sustainability 2020, 12, x FOR PEER REVIEW 13 of 20 
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Figure 11. The variation in repair costs of buildings due to settlement using the probability density
functions (PDF), for (a) damage category No. 1 (negligible) and (b) damage category No. 2 (very slight).
The red dotted line shows the 95% percentile cost.

Finally, the settlement economic risk is provided for a building in relation to the probability of
damage within one of the damage categories. This is estimated using Equation (7), using the integral
indicated by the area bounded by the PDF curve for a damage category and by the repair costs up to
the point of the cost corresponding to the probability of this damage category. By way of example,
as shown in Figure 14, the settlement economic risk for the damage category No. 5 (severe) is provided
using the grid-area created by the PDF curve and the repair costs up to the cost corresponding in this
case to the 95% percentile probability of damage (damage category No. 5). This is also applied for the
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other damage categories, and their sum provides the settlement economic risk of a building. These can
then be presented visually, as discussed in the next section of the paper.
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Figure 12. The variation in repair costs of buildings due to settlement using the PDF, for (a) damage
category No. 3 for the (slight) and (b) damage category No. 4 the (moderate). The red dotted line
shows the 95% percentile cost.
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3. Results: Settlement Economic Risk Assessment

The resulting 3D visualizations using BIM demonstrate the settlement economic risk of buildings
due to the tunneling-induced settlement. Colors are used in the visualizations to represent the
probability of the risk (using Equation (7) and the Monte Carlo simulations). The damage Extent
due to the tunneling-induced settlements, presented on the ground surface (surface settlement risk),
is included in the same visualizations, using Table 2 [11,55] and Equation (1), to present the full picture
of the assessment conducted. 3D visualizations of the settlement economic risk and the damage Extent
are presented in Figure 15.
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Figure 15. 3D visualizations of the resulting settlement economic risk due to settlements using BIM
through (a) wide, (b) close and (c) closer views in SketchUp [44].
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4. Discussion

Colors are used in the visualizations to represent different levels of risk for the buildings and
the ground surface as a result of the settlement trough, demonstrating a higher risk along the tunnel
centerline (the risk increases towards the tunnel centerline). Therefore, buildings closer to the tunnel
centerline indicate a probability of higher economic risk due to ground settlement, although it is
well known that areas of sagging or hogging are also important in determining potential building
damage. Buildings lying within areas of high risk due to surface settlement obviously exhibit a higher
settlement economic risk, as shown in Figure 15c. In contrast, those lying away from this zone present
a lower economic risk, with slight or negligible risk-based colors (Figure 15). As a result, buildings
with a brown and red color, i.e., with a moderate to high settlement economic risk, would require more
detailed investigation with regard to potential damage. Due to the capabilities of BIM to capture all
the details of a building, it is evident that building characteristics, such as building dimensions, had an
impact on the assessment analysis outcomes and resulting visualizations. Therefore, larger buildings
would tend to lead to higher risk, based on a larger corresponding area spanning the settlement trough
and the potential for differential settlement and cost, using £/m2 [14], as presented in Figure 15.

A more detailed analysis of the resulting visualizations in Figure 15 would focus on the settlement
economic risk of particular buildings individually. To illustrate this, Building Nos. 1, 2, 3, 7 and 10
were used. Their locations are shown in Figure 4, and their corresponding visualizations are presented
in Figure 15. Building Nos. 1, 2 and 7 fell directly above the negligible, slight and high-risk zones of
surface settlements, respectively and exhibited a corresponding negligible, slight and high settlement
economic risk (Figure 15). However, the dimensions of the building would be the determining factor
in the case of the resulting risk visualization for Building No. 3, since it is larger than Building No. 1,
as shown in Figure 15—here the dimensions of this building had a strong effect on its resulting slight
risk even though it is located outside the settlement impact zone of the trough (negligible surface
settlement risk). Building No. 10 is located across all zones of surface settlement risk, yet with a larger
proportion located within the slight risk zone, as shown in Figure 15. This, in combination with its
large dimensions, provided a slight settlement economic risk for this building (Figure 15).

These examples of multidimensional visualizations using BIM provide a preliminary tool for
settlement economic risk assessment associated with building damage. This advances decision-making
in relation to tunneling-induced ground settlement in an urban setting. However, the framework of
this tool is designed to work effectively with any other geohazard application. In addition, it is possible
to alter the geotechnical factors depending on project requirements.

In an extended version of the current approach, the geometrical properties of the building elements
(columns, beams, walls, doors and windows) could also be integrated within the overall response
of a building to such a geohazard. Using a combination of extracted probabilistic distributions of
settlement and the appropriate building damage cost probability curves, any possible scenario of
damage (or damage category) could then be simulated. Such extended models would then be capable
of estimating damage costs per element, element group, story and buildings within different damage
categories. Regarding the actual economic value used in the uncertainty analysis, a complete cost
distribution rather than a mean value can be formed. In addition, the resulting visualizations of
building damage are also important, as they help to make the information more readily accessible
and understandable. Presenting this type of consequence is difficult for existing settlement analysis
software, and the proposed methods herein will consequently help in discussions with clients and
asset owners. Therefore, demonstrating such an integrated outcome of risk assessments in 3D allows
engineers/users to identify critical areas and plan for alternative routes and share them easily.

A more general observation is that such analysis prior to underground works can advise on the
types of engineering design and construction processes that may be used by making the potential or
likely consequences transparent, by iteration of the engineering “solutions” minimize the adverse
consequences, and thereby minimize the uncertainties surrounding the greater use of underground
space in urban areas and de-risk the decision-making towards far more sustainable urban environments.
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It should be noted that the “economic lens” used in this analysis is essential because of the economic
imperative that national and local governments face, and yet there are many techniques that could be
incorporated to introduce “social and environmental lenses” to the problem also [60,61].

5. Conclusions

This paper has focused on the economic risk of building damage due to ground movements from
tunnel construction. It has used the example of the settlement hazard due to tunneling to clearly reveal
the benefits of the adopted framework for this tool and provide the related uncertainty evaluation.
This integrated computer application employed Monte Carlo simulations and analytical models and
building damage assessments in relation to the “settlement trough” to investigate these building
damage costs.

The risk is assessed from a detailed numerical algorithm using MATLAB in combination with
the BIM framework. This combination has taken advantage of BIM’s capabilities to import building
characteristics into the model for use in the analysis. It also provided the basis for the uncertainty
analysis of the actual economic risk due to ground movements in an urban area using advanced statistical
tools, i.e., the Monte Carlo simulations and probabilities, and using building damage assessments.
The outcomes from a practical example were presented to show the benefits of multidimensional
visualizations, including an integrated settlement economic risk assessment using BIM.

The proposed computer-aided tool advances analyses and sustainable decision-making because
of its emphasis on the estimation of uncertainty associated with geohazards, in this case building
damage costs associated with tunneling-induced settlements in an urban area. The framework for
this assessment tool used the example of tunnel construction in an urban setting to demonstrate
how complex ground-structure interactions can be visualized and the associated building damage
risk identified and evaluated in terms of costs. Depending on the risk of incurring economic costs,
the potential for damage to buildings can be investigated further. Future simulations based on
the proposed framework and incorporating ground improvement processes could also be applied.
While this integrated framework was demonstrated for tunneling as an example of a geohazard, the
framework can be applied to any type of urban geohazard; more generally, similar uncertainty analyses
could be adapted for larger-scale models also based on this framework.
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