

University of Birmingham

VoltPillager:
Chen, Zitai; Vasilakis, Georgios; Murdock, Kit; Dean, Edward; Oswald, David; Garcia, Flavio

Document Version
Peer reviewed version

Citation for published version (Harvard):
Chen, Z, Vasilakis, G, Murdock, K, Dean, E, Oswald, D & Garcia, F 2020, VoltPillager: Hardware-based fault
injection attacks against Intel SGX Enclaves using the SVID voltage scaling interface. in Proceedings of 30th
Usenix Security Symposium (USENIX Security 21). USENIX , 30th USENIX Security Symposium 2021 (USENIX
Security 21), Vancouver, Canada, 11/08/21.

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 11. May. 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Birmingham Research Portal

https://core.ac.uk/display/426863647?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://research.birmingham.ac.uk/portal/en/publications/voltpillager(bfe72039-6623-4dff-ac9d-22a45a261ac8).html

VoltPillager: Hardware-based fault injection attacks against Intel
SGX Enclaves using the SVID voltage scaling interface

Zitai Chen, Georgios Vasilakis, Kit Murdock, Edward Dean, David Oswald, and Flavio D. Garcia

School of Computer Science, University of Birmingham, UK

Abstract
Hardware-based fault injection attacks such as volt-
age and clock glitching have been thoroughly stud-
ied on embedded devices. Typical targets for such
attacks include smartcards and low-power microcon-
trollers used in IoT devices. This paper presents the
first hardware-based voltage glitching attack against
a fully-fledged Intel CPU. The transition to complex
CPUs is not trivial due to several factors, including:
a complex operating system, large power consump-
tion, multi-threading, and high clock speeds. To this
end, we have built VoltPillager, a low-cost tool for
injecting messages on the Serial Voltage Identifica-
tion bus between the CPU and the voltage regu-
lator on the motherboard. This allows us to pre-
cisely control the CPU core voltage. We leverage this
powerful tool to mount fault-injection attacks that
breach confidentiality and integrity of Intel SGX en-
claves. We present proof-of-concept key-recovery at-
tacks against cryptographic algorithms running in-
side SGX. We demonstrate that VoltPillager attacks
are more powerful than recent software-only under-
volting attacks against SGX (CVE-2019-11157) be-
cause they work on fully patched systems with all
countermeasures against software undervolting en-
abled. Additionally, we are able to fault security-
critical operations by delaying memory writes. Mit-
igation of VoltPillager is not straightforward and
may require a rethink of the SGX adversarial model
where a cloud provider is untrusted and has physical
access to the hardware.

1 Introduction

Modern computing platforms allow the operating
system to self-regulate the processor’s core frequency
and voltage in order to manage heat and power con-
sumption. Several authors [37, 24, 40] have shown
that an adversary can abuse this feature to inject

bit flips into computations, including those inside
an Intel Software Guard Extensions (SGX) enclave
(cf. CVE-2019-11157). Using the software-exposed
interface Model Specific Register (MSR) 0x150, at-
tacks against Intel SGX were mounted by under-
volting from (untrusted) software running with root
privileges. Intel have addressed this vulnerability by
providing features to disable software undervolting
through this MSR. Because SGX was compromised,
Intel have initiated Trusted Computing Base (TCB)
recovery and modified remote attestation to verify
that software-based undervolting is disabled. This
requires Microcode (µCode) and BIOS updates.

Hardware fault injection considers a different ad-
versarial model where the adversary has physical ac-
cess to the device under attack. When targeting
an SGX enclave running on a fully patched sys-
tem (with the latest µCode and BIOS updates),
software-based fault attacks have been fully miti-
gated and that is where hardware-based attacks be-
come relevant. Fault attacks induce a computation
fault in the target processor, such as skipping an
instruction, by changing the physical operating en-
vironment of the chip, e.g., the supply voltage. They
do not rely on the presence of a software vulnerabil-
ity or any code execution privileges. Voltage fault
injection (aka, glitching) in particular has the ad-
vantage of being very powerful whilst not requiring
expensive lab equipment.

1.1 Our Contribution
In this paper, we analyse the dynamic voltage scaling
features of x86 systems at the hardware level. We
found that a three-wire bus, Serial Voltage Identifi-
cation (SVID), is used to send the currently required
voltage to an external Voltage Regulator (VR) chip
on the motherboard. The VR then adjusts the volt-
age supplied to the CPU. We reverse-engineered the

mailto:Z.Chen@pgr.bham.ac.uk
mailto:gxv724@cs.bham.ac.uk
mailto:kxm663@cs.bham.ac.uk
mailto:ed.dean515@gmail.com
mailto:d.f.oswald@bham.ac.uk
mailto:f.garcia@bham.ac.uk

communication protocol of SVID and developed a
small microcontroller-based board that can be con-
nected to the SVID bus. As there is no crypto-
graphic authentication of the SVID packets, we were
able to inject our own commands to control the
CPU voltage. With this, we reproduced Plunder-
volt’s [37] open-source Proof-of-Concept (PoC) at-
tacks, including against code running inside an SGX
enclave. Beyond that, we also found (and document)
faults not previously observed. These faults affect el-
ementary operations such as memory accesses. Be-
cause the software interface MSR 0x150 is not used,
Intel’s countermeasures do not prevent this attack.
The main contributions of this paper are:
• We showcase the (to our knowledge) first

hardware-based attack that directly breaches
SGX’s integrity guarantees. We demonstrate its
practicality with end-to-end secret-key recovery
attacks against mbed TLS and the unmodified
file-encryptor sample enclave from Microsoft
Open Enclave.

• We show that Intel’s countermeasures for CVE-
2019-11157 do not prevent fault-injection attacks
from adversaries with physical access. This chal-
lenges the widely accepted belief that SGX can
protect enclave integrity against a malicious cloud
provider (cf. e.g., [2, 5, 27, 8]).

• We demonstrate novel fault effects discovered
through hardware-based undervolting, in partic-
ular by briefly delaying memory writes.

• We present VoltPillager, an open-source hardware
device to inject SVID packets. VoltPillager is
based on a low-cost, widely available microcon-
troller board, the Teensy 4.0, and can be built
for approximately $ 30. We also document the
internal power management interfaces on mod-
ern motherboards, SVID and System Manage-
ment Bus (SMBus).

1.2 Responsible Disclosure
We reported this issue to Intel on 13 March 2020.
Intel evaluated our report and concluded on 5 May
that “... opening the case and tampering of inter-
nal hardware to compromise SGX is out of scope
for SGX threat model. Patches for CVE-2019-11157
(Plundervolt) were not designed to protect against
hardware-based attacks as per the threat model”,
and, therefore, they will not further address the is-
sue. Intel have not requested an embargo for the
vulnerabilities described in this paper. We discuss
the implications of Intel’s response in relation to the
widely adopted threat model of SGX in Section 1.4.

1.3 Related Work

Since their introduction by Boneh et al. [6], fault-
injection attacks with physical access have been
widely investigated in the context of embedded de-
vices. Those attacks are based on the fact that the
execution semantics of an IC can change when it is
operated outside the specified operating conditions.
Examples of fault injection include: over and under-
volting (“voltage glitching”), overclocking, exposure
to high or low temperature, or laser light [3, 53].

The fault injection threat model changed with the
discovery of software-based attacks. In 2014, Kim
et al. reported the Rowhammer effect: bits could be
flipped in DRAM by accessing neighbouring rows
but not the actual target location [26]. Several au-
thors [43, 17, 28] have since discovered applications,
variations, and improvements of the original attack,
including the successful bypass of countermeasures
in recent DDR4 DRAM chips [14]. While Rowham-
mer can be performed from unprivileged software,
another class of software-based fault injection at-
tacks require the adversary to have root privileges.
These generally target a Trusted Execution Envi-
ronment (TEE) such as ARM TrustZone or Intel
SGX, which should defend the code running inside
the TEE even against a privileged adversary.

CLKSCREW [50] was the first attack of this type:
it exploited the software-controlled overclocking fea-
tures on the ARM processor of a Nexus 6 smart-
phone. CLKSCREW was able to extract crypto-
graphic secrets from TrustZone and to bypass signa-
ture checks, leading to code execution inside Trust-
Zone. Qiu et al. later found a similar attack,
VoltJockey, against TrustZone, this time controlling
the CPU’s core voltage from privileged software [41].
This line of work continued with voltage fault in-
jection attacks on Intel SGX enclaves [37, 24, 40],
which use the software-exposed MSR 0x150 to un-
dervolt during enclave execution and thus trigger bit
flips in certain operations, e.g., multiplications, vec-
tor instructions, and cryptographic operations.

Hardware-based attacks against TEEs have, so
far, received less attention. Cui et al. showed that
electro-magnetic fault injection can be used to by-
pass the TrustZone-based secure boot process of a
Broadcom ARM CPU [9]. Similarly, Roth et al. pre-
sented fault injection attacks with physical access to
ARMv8-M processors, among others breaking the
TrustZone-M security on certain CPUs [46].

Lee et al. presented a side-channel attack [29] on
SGX by physically connecting to, and eavesdropping
on, the DRAM memory bus. They showed that by
observing the pattern of the (encrypted) memory ac-

cesses, they can recover secret information from a
range of example enclaves. Notably, their attack
requires specialized and expensive test equipment
(e.g., $ 170,000 for a JLA320A signal analyzer).

1.4 Attacker Model
We are using the widely adopted SGX adversary
model with physical access to the target CPU and
full control over all software running outside the en-
clave, including BIOS and operating system. Cru-
cially, our attacks do not require expensive lab
equipment (e.g., for invasive attacks on the CPU
die), but can be mounted with an inexpensive micro-
controller board and only require board-level access
as opposed to e.g., chip decapsulation. It is suffi-
cient that the adversary can connect two wires to
the SVID bus on the motherboard.

In the research community, SGX is widely as-
sumed to provide protection against such an adver-
sary, e.g., in the form of an untrusted cloud provider
with physical access to the server hardware. A sub-
stantial amount of research explicitly relies on SGX
protecting integrity and confidentiality even for a
malicious cloud operator, cf. e.g., [2, 5, 27, 8]. Ac-
cordingly, cloud providers with SGX support, such
as Microsoft Azure, state that SGX “safeguard[s]
data from malicious and insider threats while it’s in
use” [36, 34]. Fortanix, the developers of widely used
runtime software for SGX, similarly claim that “In-
tel SGX allows you to run applications on untrusted
infrastructure (for example public cloud) without
having to trust the infrastructure provider with ac-
cess to your applications.” [13]. Similarly, the Enarx
project considers the enclave host as untrusted in
their threat model [11]. Finally, SGX was also orig-
inally designed for client-side applications such as
Digital Rights Management (DRM) (e.g., in early
versions of the Netflix 4K client), user authentica-
tion, and fingerprint matching [47].

1.5 Experimental Setup
For the experiments in this paper, we mainly used
three different systems, with 7th and 9th generation
Intel CPUs and SGX support. We upgraded the
BIOS and µCode to the most recent available ver-
sion. The systems are detailed in Table 1 and all use
SVID as the main interface for controlling the supply
voltage. We initially used a fourth motherboard, a
Gigabyte Z170X Gaming 3 with an i3-7100, but this
was damaged due to inadvertently short-circuiting
the SVID lines, and is therefore not listed in Ta-
ble 1. However, as we used this motherboard during

SVID reverse engineering, we occasionally refer to it
as i3-7100-GZ170 in Section 4.

We used 64-bit Ubuntu 18.04.3 LTS as our oper-
ating system with stock Linux 5.0.0-23-generic ker-
nel, Intel SGX driver V2.6 and Intel SGX-SDK
V2.8. We publicly release all source code at https:
//github.com/zt-chen/voltpillager.

1.6 Outline
The remainder of this paper is structured as follows:
first, in Section 2, we discuss Intel’s mitigation for
CVE-2019-11157. In Section 3, we then describe the
two main interfaces for controlling CPU voltage on
modern systems. We introduce our open-source tool
VoltPillager for injection of SVID packets in Sec-
tion 4. The use of VoltPillager for hardware-based
undervolting attacks on SGX is detailed in Section 5
and Section 6. We discuss possible countermeasures
and the implications of our findings in Section 7,
before concluding in Section 8.

2 Intel’s Mitigation for Software-
based Undervolting Attacks on
SGX Enclaves

The mitigation deployed by Intel to address CVE-
2019-11157 effectively disables software access to the
voltage control features of the system. It consists of
two main parts: (i) a BIOS update supplied by the
BIOS vendor to disable the undervolting functional-
ity at boot, and (ii) a µCode update to interact with
the updated BIOS and include the software under-
volting status (enabled or disabled) in SGX’s remote
attestation functionality.

The exact implementation of the BIOS update dif-
fers by vendor. On our test systems i3-7100-AZ170
and i3-9100-MZ370, even the most recent BIOS still
allowed undervolting. In contrast, the latest update
of our Intel-manufactured i3-7100U-NUC added a
new BIOS option (“Real-Time Performance Tun-
ing”), which, when disabled, removes the ability to
undervolt via MSR 0x150. We ran all experiments
for the i3-7100U-NUC with software undervolting
disabled via this BIOS option, and confirmed, prac-
tically, that writes to MSR 0x150 no longer cause
voltage changes. We also verified that the OC mail-
box interface (which is used for undervolting) is dis-
abled on i3-7100U-NUC using intel-oc-mbox [12].

Other manufacturers, such as Dell [15], removed
software-controlled undervolting with recent up-
dates in response to CVE-2019-11157, without any
configuration options available at the BIOS level.
The µCode update deployed by Intel includes the

https://github.com/zt-chen/voltpillager
https://github.com/zt-chen/voltpillager

Device Motherboard BIOS version CPU µCode VR IC VR on SMBus
i3-7100-AZ170 ASRock Z170 E4 P7.50 i3-7100 0xca ISL95856 0x40
i3-9100-MZ370 MSI Z370-A Pro E7B48IMS.2B0 i3-9100 0xca UP9508 0x45
i3-7100U-NUC NUC7i3BNH 0082.2020.0505 i3-7100U 0xca ISL96853 7

Table 1: CPUs and motherboards used for experiments in this paper, including BIOS and µCode version, and
the used VR IC. We also indicate if the VR is connected to the SMBus (and at which address) in addition
to SVID. A 4th system, i3-7100-GZ170, left out here as it was only used in initial reverse engineering.

status of the software undervolting interface in the
remote attestation process, similar to other function-
ality such as hyperthreading and the internal graph-
ics card. Specifically, the SGX attestation service
returns a CONFIGURATION NEEDED response if soft-
ware undervolting (or any of the other problematic
features such as hyperthreading) is enabled [20].

3 Power Management Interfaces

In modern computers, there are usually one or more
VRs connected to the CPU on the motherboard.
They are used for managing the performance and
power consumption of the system by changing the
core voltage (and other voltages) supplied to the
CPU. When the CPU runs at lower frequencies or is
in idle mode, it sends commands to the VR to reduce
the voltage. Vice versa, when the CPU operates un-
der heavy load and/or at high frequency, it requests
the VR to increase the voltage. We found two main
interfaces to the VR that can be used for changing
the CPU voltage and hence to conduct undervolting
attacks: the SVID interface and the SMBus interface
(more specifically Power Management Bus (PMBus)
in this context). The overall architecture of the volt-
age supply on an x86 system is shown in Figure 1.
We now introduce those VR interfaces in detail and
discuss their use for undervolting attacks.

3.1 Serial Voltage Identification
SVID is the interface used by the CPU to send the
currently required voltage (and other related data)
to an external VR IC. To the best of our knowledge,
Intel does not provide any detailed documentation
for this interface. From the CPU documentation
[21], we found that SVID uses the three pins VCLK,
VDIO, and ALERT#. The first two pins are used for
a bi-directional serial interface similar to common
serial protocols like Inter-Integrated Circuit (I2C) or
Serial Peripheral Interface (SPI). The ALERT# line
is asserted by the VR when a voltage change has
been completed [18]. The SVID bus uses voltage

CPU
package

Voltage
regulator

	SVID	

SMBus

PWMVcore Vdd

Driver

Figure 1: Architecture of voltage supply on x86 sys-
tems. The CPU has an SVID and (optional, dot-
ted) SMBus connection to the VR. The VR drives a
Pulse Width Modulation (PWM) output to generate
the core voltage from the main supply voltage.

levels of 0 V (low) and 1 V (high) and is clocked at
25 MHz. Both clock (VCLK) and data (VDIO) lines are
realised as open-drain outputs: by default, the lines
are held high by pullup resistors to 1 V, and actively
driven low by the CPU or VR when they exchange
data. Note that this allows multiple devices to be
connected to SVID, we will later use this to connect
our own device for command injection.

Locating VR ICs The identification of the VRs
on the motherboard is the first step required for fur-
ther analysis of a particular system. Some vendors
provide schematic diagrams of their boards, which
greatly simplifies the process. Unfortunately, most
vendors do not publish such detailed documenta-
tion of their hardware. However, in our experi-
ence, VRs are commonly placed in close proximity
to the CPU and to large switching transistors and
inductors, making them easy to identify by visual
inspection and oscilloscope probing. Additionally,
the SVID signals are commonly connected to small
resistors and/or available on test pads, simplifying
connecting devices for analysis and packet injection.
Figure 2 shows the ISL96853 VR on i3-7100U-NUC.
The large transistors generating the actual core volt-
age are visible on the right, while the relevant SVID

pins are located around the top-left corner to the
VR IC.

Figure 2: ISL96853 VR on the motherboard of i3-
7100U-NUC with relevant SVID pins annotated.

Protocol Reverse-Engineering We identified
the clock and data lines on the motherboard used
for our experiments using a Rigol DS1074Z oscil-
loscope [45], and connected a DSlogic logic anal-
yser [10] to the SVID bus.

5 11 19
1

2

3

4

0 1 0 0 0 0 1

Leading
 clock

Start
 bits

VR
 address

SVID
 clock

SVID
 data

Figure 3: SVID data and clock lines during the first
cycles of a command sent to the VR.

By observing the bus and setting known values
for the voltage and with the help of a screenshot of
a SVID protocol analyzer [54], we reverse-engineered
the relevant commands used for configuring the volt-
age output by the voltage regulator. Note that this
is only a one-time process required to understand
the working of the SVID protocol and is not nec-
essary for subsequent packet injection attacks. Fig-
ure 3 shows an example of the clock and data signals
when transmitting a bit sequence over SVID. Based
on this, we analysed the command that configures
the voltage and its response, and document their
format in Figure 4 and Figure 5. Further details on
SVID can be found in Appendix C.

Bus Activity and Command Injection We
found that the SVID bus on our test motherboards

010 address
0000/0001

command
00001

voltage
ID

parity 011

0 3 7 12 20 21 24

Figure 4: Format of 24-bit SVID command from
CPU to VR to set the current core voltage. Gray
background indicates fixed bits.

status
ok: 01 error: 10

response
0000/0001 parity

0 2 6 7

Figure 5: 7-bit response from VR to CPU to the set
voltage command from Figure 4.

was active even when a fixed core voltage was con-
figured in the BIOS. Regular commands from the
CPU to the VR are still sent, although at a reduced
rate compared to normal, dynamic voltage control.

Understanding bus activity is crucial for SVID.
Our experiments (as described in Section 4) show
that the CPU freezes if there are multiple subse-
quent collisions between an injected and a “real”
SVID packet. From our experiments, we concluded
that the CPU stops after less than a second of failed
transmission attempts. Hence, it is crucial to limit
SVID command injection to a short burst.

Conversely, for reverse-engineering and analysis of
VR behaviour, the ability to temporarily “remove”
the CPU from the bus was useful: once the CPU has
frozen, we could send our own commands to the VR
without interference from the CPU. This allowed us
to verify our understanding of the SVID commands
during the initial analysis of the protocol, and to test
our tool, VoltPillager.

3.2 System Management Bus and
Power Management Bus

Apart from SVID, some VRs support another volt-
age control interface named SMBus (also referred to
as PMBus in this case) [49, 48]. Such VRs support-
ing SMBus are mainly found on server and gaming
motherboards. Similar to SVID, SMBus is a serial
two-wire interface consisting of a clock line (max-
imum frequency 1 MHz) and a data line. Multiple
devices are connected to the SMBus, with the moth-
erboard’s Southbridge acting as bus master. Each
device on the bus, including the VR if connected,
is assigned a unique address. Typically, these ad-
dresses are assigned by the motherboard vendor and
not publicly documented. Hence, determining the
address of the VR on the SMBus requires probing

the bus and/or analysis of manufacturer tuning soft-
ware.

Among our test systems, the i3-7100-AZ170 and
i3-9100-MZ370 had the VR chip connected to the
SMBus. We found that on both systems, when set-
ting a fixed core voltage through the BIOS, this con-
figuration takes place via the SMBus. Subsequently,
we determined the VR address (cf. Table 1) and
the respective commands to adjust the CPU volt-
age. We also noted that any voltage change made
through SMBus overrides any subsequent settings
made through SVID.

While it is technically possible to inject packets
into the SMBus, we opted for using SVID as our
main attack interface for several reasons: First, with
the higher clock frequency of SVID, voltage changes
can be made more quickly, allowing for more accu-
rate fault injection. Second, we found that SVID
commands were the same across our test systems,
while SMBus commands varied between VRs. Fi-
nally, SVID is used by all modern motherboards and
CPUs, while SMBus is only present on certain moth-
erboards and VRs.

4 VoltPillager for SVID Command
Injection

In this section, we present VoltPillager, our cus-
tom device for SVID command injection based on a
Teensy 4.0 microcontroller development board [38].
In contrast to other widely used interfaces like SPI,
we could not find a Microcontroller (µC) with a dedi-
cated hardware peripheral for SVID. We initially at-
tempted to implement the protocol in software using
the General Purpose I/O (GPIO) pins, but we found
that the relatively high clock frequency of 25 MHz
of SVID makes this difficult in practise even on rela-
tively high-end µCs like the ARM Cortex-M7 on the
Teensy 4.0, which runs at 600 MHz.

However, as SVID is similar to SPI in so-called
mode two (clock idles at high voltage and data line
stable and sampled on the falling edge of the clock),
we were able to use the SPI hardware peripheral
of the Teensy 4.0 for packet injection. Note that
an additional required feature is the support for
large SPI frames, which allows for the transmission
of a complete SVID transaction. With our imple-
mentation, a complete transmission of one SVID
packet takes 96 clock cycles (3.84 µs), including 40
clock cycles before sending the data, the 24-bit data
frame, and 32 clock cycles for receiving the response.
To adapt the output voltage levels of 3.3 V of the
Teensy 4.0 to the 1 V levels of SVID, we used two
open-drain drivers [51] for the data and clock lines.

CPU
Voltage

regulator
VoltPillager

SVID bus

Inject
commands

Figure 6: Command injection into SVID with the
VoltPillager connected in parallel to the bus.

As shown in Figure 7, we also made sure to keep the
wires between the actual bus lines and the driver
ICs short to minimise additional inductive and ca-
pacitive load on the bus. Note that VoltPillager
can be connected in parallel to the bus without—
when inactive—affecting the normal SVID traffic
from CPU to VR.

We also carried out initial experiments with a
Field Programmable Gate Array (FPGA) board to
obtain a man-in-the-middle position by splitting the
SVID bus: in this situation, the attacker simulates
normal behaviour of the VR to the CPU, while in-
jecting commands that are only visible to the VR.
However, due to the strict timing constraints of
SVID and the necessary level conversions, we did
not further investigate this approach for the present
paper.

and clock

Teensy 4.0

trigger

CPU voltage

SVID data

Bus driver

Oscilloscope

Figure 7: Hardware setup (i3-7100-GZ170) for anal-
ysis and packet injection into the SVID bus. Oscillo-
scope probes are attached to CPU core voltage and
SVID lines, while Teensy injects SVID packets.

4.1 Implementation of VoltPillager
VoltPillager has two main components, the firmware
of the Teensy 4.0 and PC-side software which con-
trols the device. We developed the Teensy 4.0

firmware using the open source Arduino IDE [1]
and the official Teensyduino [39] library, which pro-
vides the basic SPI functionality. We configured
this to match the structure of an SVID message.
The controlling PC communicates with the VoltPil-
lager through USB using the protocol shown in Fig-
ure 8. Firstly, the software on the controlling com-
puter specifies the undervolting parameters, includ-
ing the required voltage, number of SVID packets
being sent, and additional parameters as detailed in
Table 2. It then arms the glitch.

VoltPillager Computer

Setup undervolting
parameters and
arm the glitch

Send trigger

Send SVID
command

control USB

UART /
pin toggle

SVID

Figure 8: Protocol of VoltPillager for configuring
and initiating undervolting from a controlling PC.

Trigger After that, VoltPillager is armed and
waits for an active-low trigger input on a specific
pin. When the trigger signal is asserted (i.e., the
trigger pin pulled low), VoltPillager sends the pre-
pared SVID packets according to the configuration
to the target VR, i.e., initiates a hardware-based
undervolting attack. The trigger is generated by the
controlling computer from untrusted code directly
before the target code executes. In our experiments,
the control PC typically is the machine that also
runs the target SGX enclave, although this is not a
strict requirement.

To provide a precisely-timed trigger signal, we
utilise the fact that some motherboards, such as the
ones used in i3-7100-AZ170 and i3-9100-MZ370, of-
fer a legacy onboard RS232 Universal Asynchronous
Receiver Transmitter (UART) port, including the
so-called DTR signal, which can be controlled from
software through an ioctl() system call. Because
this interface is controlled by the motherboard’s
Southbridge through the “super I/O” chip, it is more
reliable in timing than sending a trigger command
over the control USB interface.

However, for systems without hardware UART,
e.g., i3-7100U-NUC, we additionally implemented a

less timing-stable trigger over USB. After the un-
dervolting has been triggered, the control program
evaluates whether it has succeeded (i.e., that an un-
expected result occurred in the target code), and
outputs the fault results or repeats the process until
a fault has been found.

Adjustment of Undervolting Parameters
The parameters from Table 2, defining the under-
volting glitch shape, are illustrated in Figure 9.
Note that these parameters affect the stability of the
system-under-attack and hence, can be adjusted to
minimise system crashes. Note that the VR changes

TfTp

 Vn

 Vp

Time

Voltage

 Vf

 Vcc

SR

SR SR

Figure 9: Undervolting waveform with the parame-
ters described in Table 2. Vn can be ≤ Vcc.

the core voltage CPU with a finite slew rate SR, typ-
ically 20mV/µs, however on i3-7100U-NUC we ob-
served a higher slew rate (approximately 40mV/µs).
The limited slew rate can reduce the timing precision
of undervolting, as it adds delay between the recep-
tion of the injected SVID command from the VR and
the physical change of the core voltage to the fault
voltage Vf . The preparation voltage Vp reduces the
time to reach the target voltage Vf before the actual
attack: the system is still stable at Vp, and the ad-
justment to Vf at finite SR is quicker compared to
the higher default voltage Vcc. The reset voltage Vn

is set after the fault. It can take any values and is
used to stabilize the system. Figure 10 shows an os-
cilloscope capture of an actual undervolting injected
by VoltPillager on i3-9100-MZ370. In this case, we
set Vp = Vn = Vcc = 1.050V , Vf = 0.810V , Tp = 10µs
and Tf = 32µs.

System Stability One of the major factors affect-
ing the system stability is the amount of undervolt-
ing. When the voltage is too low, the CPU will
“freeze” or crash, while a too high voltage will not
yield successful faults. Figure 11 shows the under-
volting for the fault to occur and the value at which
the system crashes for different CPU frequencies.
We observed crashes before a fault happens below

Parameter Symbol Description
Delay after trigger Td The time between assertion of trigger and start of first undervolting.
Number of glitches N Number of times to repeat the undervolting.
Preparation voltage Vp Voltage before undervolting. Typically ≤ Vn, but system stable at Vp.
Preparation width Tp Time of voltage slew to Vp plus time for which Vp is held.
Fault voltage Vf Voltage used for actual fault injection.
Fault width Tf Time of voltage slew to Vp plus time for which Vf is held.
Normal voltage Vn Stable operating voltage after Vf .
Slew rate SR Rate of voltage change (in mV/µs). Most VRs support a single SR.

Table 2: Parameters defining a specific undervolting experiment with VoltPillager

20 40 60 80 100 120 140 160
Time [S]

Vo
lta

ge
 [V

]

0.00

3.30
Undervolting

commands

D
at

a
0.00
3.30

Clock signal Cl
oc

k

0.80

1.06

Voltage drop CP
U

vo
lta

ge

0.00

3.30

Trigger signal

Tr
ig

ge
r

Figure 10: Oscillocope capture of undervolting.
Data and clock captured before the voltage level
shifters.

1.4 GHz on i3-7100-AZ170 and 2.9 GHz on i3-9100-
MZ370. For both systems, there is a gap of ≈ 20 mV
(4 VID steps) which can be used for fault injection
without affecting system stability.

1.5 2.0 2.5 3.0 3.5
Frequency (GHz)

285
265
245
225
205
185
165

U
nd

er
vo

lti
ng

 (m
V)

i3-7100 First Fault
i3-7100 Crash

i3-9100 First Fault
i3-9100 Crash

Figure 11: Undervolting for first fault (solid) and
crash (dotted) for different frequencies on i3-7100-
AZ170 (max. 3.9 GHz) and i3-9100-MZ370 (max.
3.6 GHz), using the PoC from Listing 1 and Volt-
Pillager. 5 repetitions per frequency. Vn = Vp = Vcc.

5 Fault Injection into SGX Enclaves
with Hardware-based Undervolting

In this section, we demonstrate how VoltPillager can
be used to inject faults into the CPU even when the
software-controlled interface has been disabled. To
this end, we first show that we can reproduce faults
observed with software-based fault attacks through
hardware-based undervolting. We show how this can
be used in an end-to-end attack scenario to extract
in-enclave secrets. We then describe a novel fault at-
tack based on briefly delayed memory/cache writes.

5.1 Reproducing Plundervolt Proof-
of-Concepts

The authors of Plundervolt provide several PoCs on
their Github repository [16]. We mainly focused
on two of their PoCs, namely faulting integer mul-
tiplications (in userspace) and CRT-RSA decryp-
tion/signature (running inside an SGX enclave). We
made this choice to (i) give examples both for SGX
and non-SGX code and (ii) compare the behaviour
of the well-documented faults on imul when using
hardware-based undervolting (with various parame-
ters shown in Table 2). Additionally, we also suc-
cessfully reproduced Plundervolt’s PoC for AES-NI.

Faulting Multiplications We integrated Plun-
dervolt’s faulting multiplications PoC into our
experimental setup as shown in Listing 1. This code
segment is similar to the one used in Plundervolt:
two multiply operations (compiled to imul) are ex-
ecuted with the same input in a tight loop and the
result of the calculation is compared after each oper-
ation. However, before entering the loop, a trigger is
generated to start the hardware-based undervolting
using VoltPillager.

1 TRIGGER_SET // Set trigger
2
3 do {

4 i++;
5 correct_a = operand1 * operand2 ;
6 correct_b = operand1 * operand2 ;
7 if (correct_a != correct_b) {
8 faulty = 1;
9 }

10 } while (faulty == 0 && i < iterations);
11
12 TRIGGER_RST // Reset trigger
13 // ... fault check omitted ...

Listing 1: Simplified C code used for demonstrating
hardware-based fault injection into multiplication

Setting first the operands of imul to 0xAE0000
and 0x18, respectively, we obtained the same faulty
result (0xC500000 instead of 0x10500000) on all our
test systems, using the parameters from Table 3.

Cryptographic Operations inside SGX We
then adapted Plundervolt’s PoC sgx crt rsa to
our setup. This program computes an RSA signa-
ture/decryption inside an SGX enclave, using the
standard ipps library functions. Again, with the
parameters shown in Table 3, we successfully ob-
tained faulty signatures and confirmed that these
faulty values can be used to factor the RSA mod-
ulus and recover the private key using the Lenstra
attack [6]. Crucially, this attack also succeeded when
the software-undervolting interface was disabled on
i3-7100U-NUC through the respective BIOS option.

End-to-end Attack To demonstrate the real-
world implications of successful fault injection,
we developed an end-to-end attack on the mbed
TLS library as used in Microsoft Open En-
clave [35]. As a first step, we targeted mbed’s
mbedtls aesni crypt ecb() API function, which
internally is accelerated using aesni. We confirmed
that we can mount a VoltPillager attack to inject
a single-byte fault on i3-7100-AZ170 into the 8th
round of AES and then perform a Differential Fault
Analysis (DFA) to extract the full key [52].

Based on this, we developed an attack on an
unmodified enclave, namely the file-encryptor
sample from Open Enclave1. This enclave ex-
poses ecalls to encrypt/decrypt files using AES
in Cipher Block Chaining (CBC) mode with an
in-enclave secret key. The enclave uses the re-
spective mbed TLS function, that internally calls
mbedtls aesni crypt ecb(). For simplicity, we fo-
cus on encryption using a 128-bit key, but note that
DFA can be extended to larger key sizes and decryp-
tion [31]. A challenge when attacking more complex
modes of operations such as CBC is that the DFA re-
quires both the correct and a faulty ciphertext for a

1https://github.com/openenclave/openenclave/tree/
98b71a/samples/file-encryptor

given plaintext. However, the file-encryptor sam-
ple allows us to invoke the encryption ecall multiple
times without resetting the CBC chaining. Hence,
we can first invoke the ecall with a chosen plaintext
p0 and obtain:

c0 = AESk (p0⊕ iv)

where iv is a fixed value. Then, we can repeatedly
invoke the ecall again to encrypt the value p0⊕ iv⊕
c0. By construction of CBC, this will repeatedly
yield the same ciphertext c0. We can now inject
faults into the computation until we obtain a faulty
ciphertext c′0, and then use DFA to recover the in-
enclave key from c0 and c′0 in ≈ 2 min of computation
on a 16-core CPU.

We practically implemented this attack against
the unmodified file-encryptor enclave. We ver-
ified on i3-7100U-NUC and i3-7100-AZ170 that we
can successfully inject the desired faults and recover
the secret key. On i3-7100U-NUC (with Plundervolt
patches disabled), we used software-undervolting by
-272 mV and invoked the respective ecall for a max-
imum of 100,000 times. On i3-7100-AZ170 we used
hardware undervolting with VoltPillager and suc-
cessfully injected faults while encrypting 10 blocks
of data repeatedly in a loop of 700 iterations. After
starting the program, it took less than 15 s to obtain
a fault using the parameters Vp = 0.7V , Tp = 30µs,
Vf = 0.64V , Tf = 35µs, Vn = 0.83V , Td = 600µs,
and N = 1. In both cases, triggering was performed
outside the enclave from untrusted code.

5.2 Comparison with Software-based
Undervolting

In this section, we compare VoltPillager to software-
based undervolting through MSR 0x150 and discuss
the advantages of our hardware-based approach.
First of all, crucially, attacks with VoltPillager are
not prevented by the mitigations deployed in re-
sponse to CVE-2019-11157 (cf. Section 2), and hence
can be mounted on systems with the most recent,
patched µCode and BIOS. This undermines the
common assumption that SGX can protect against
an attacker with physical access (e.g., a malicious
cloud provider). Furthermore, as discussed in de-
tail in Section 7, mitigating this issue will require,
at least in the short term, substantial changes to
enclave code to detect fault injections.

Timing Precision The authors of [37] reported
that they required more than 100,000 iterations to
fault an imul. Furthermore, the fault cannot target

https://github.com/openenclave/openenclave/tree/98b71a/samples/file-encryptor
https://github.com/openenclave/openenclave/tree/98b71a/samples/file-encryptor

Multiplication RSA-CRT
Device Clock Vp Vf Tf Temp. Vcc Vf Tf Temp.
i3-7100-AZ170 2 GHz 0.83 V 0.64 V 29µs 23◦ C 0.83 V 0.63 V 29µs 24◦ C
i3-9100-MZ370 3.4 GHz 1.050 V 0.81 V 83µs 26◦ C 1.050 V 0.81 V 43µs 27◦ C
i3-7100U-NUC 2 GHz 0.94 V 0.71 V 8µs 32◦ C 0.94 V 0.75 V 9µs 22◦ C

Table 3: Parameters for successful fault injection into the Plundervolt PoCs for userspace multiplication and
SGX RSA-CRT. We also record the clock frequency and the actual CPU temperature when our program
starts. All experiments are conducted with N = 1. For experiments with i3-7100-AZ170 and i3-9100-MZ370,
Vn = Vp, for experiments with i3-7100U-NUC, Vn = 1.05V . See Appendix A for full glitch details.

a particular loop iteration. VoltPillager can over-
come both limitations: first, setting Td = 0µs, Tp =
26µs, Vp = 0.615V , and Vf = Vn = Vcc = 0.830V ,
we were able to introduce a fault with as little as
i= 1,680 iterations (for Listing 1) on i3-7100-AZ170.

To evaluate the precision of VoltPillager when tar-
geting a particular loop iteration, we re-ran the mul-
tiplication experiment several times with fixed pa-
rameters and observed in which loop iteration (i.e.,
at which value for i in Listing 1) the fault occurred.
We conducted the following experiment on i3-7100-
AZ170 at 2 GHz. Core 1 was isolated with the ker-
nel parameter isolcpus=1 and used solely for run-
ning the target code. We then recorded the faulted
loop iterations for the following undervolting param-
eters, repeating the experiment 60 times: Td = 10µs,
N = 1, Vp = Vn = 0.830V , Tp = 35µs, Vf = 0.635V
and Tf = 24µs. Out of the 60 runs, we observed
a fault in 53. Within these successful faults, the
median value for the faulted iteration was 14,634,
with 21 faults within iterations 14,562 and 14,729.
In fact, 75% of all faults occurred within iteration
14,634 ± 300 as shown in Figure 12.

13000
13200

13400
13600

13800
14000

14200
14400

14600
14800

15000
15200

15400
15600

Iterations

0

5

10

15

R
un

s

Figure 12: Histogram over affected loop iteration for
53 successful fault injections into multiplication on
i3-7100-AZ170 at 2 GHz.

To compare the jitter of the different triggering
methods, we used the following setup: we peri-
odically toggle the trigger signal in a fixed-period
loop on the controlling PC and let VoltPillager gen-
erate a pulse on a pin when it detects the trig-

ger. To ensure consistent timing of the loop, we
created a delay with nanosleep() and ran the
program on a single core at priority 99 and with
SCHED RR policy. Furthermore, we set the fol-
lowing kernel parameters: intel pstate=disabled,
intel idle.max cstate=0, isolcpus=1.

Without any jitter, the period of the waveform
would be constant. Any jitter added by the control-
ling PC, the interface, and the Teensy will lead to the
period varying. Note that while the delay loop itself
might introduce some jitter, this would be present
for both triggering methods and hence still allows
for relative comparison. Figure 13 shows the distri-
bution (over 100 trigger period measures) for both
DTR and USB trigger, with the loop period on the
controlling Personal Computer (PC) set to 400 µs.
The average deviation from the ideal period value,
i.e., the jitter, was measured as 4.521 µs (for DTR)
and 54.442 µs (for USB). Clearly, the DTR trigger
exhibits substantially less jitter than USB.

384
392

400
408 416 424

432
440

448
456

464
472480

488
496

504 512 520
528

536
544

552

Period (µS)

0
10
20
30
40
50
60

Co
un

t

DTR Trigger

384
392

400
408 416 424

432
440

448
456

464
472480

488
496

504 512 520
528

536
544

552

Period (µS)

0
10
20
30
40
50
60

Co
un

t

USB Trigger

Figure 13: Histogram over 100 trigger period mea-
sured on i3-9100-MZ370 (2 GHz) with program run-
ning at priority 99 and SCHED RR policy on core 1.

Glitch Width In software-based fault attacks, a
long delay was observed between the MSR write and
the actual voltage change. This limits the ability to
generate short and potentially “deeper” glitches. In
contrast, using VoltPillager, the only limitation on
the glitch width is the slew rate SR: given SR, Vp,
Vf and Vn, the minimal glitch width Tmin is:

Tmin = |Vp−Vf |+ |Vn−Vf |
SR

Assuming Vp = Vn = Vcc, a typical fault voltage
Vf = Vcc−200mV, and typical SR= 20 mV/µs, the
minimal glitch width is hence Tmin = 20 µs.

The VR on some systems, e.g., i3-7100U-NUC,
further supports a higher slew rate of SR =
40mV/µs. Thus, in this case, Tmin can be further
reduced to 10µs. However, during practical experi-
ments with i3-7100U-NUC, we noticed that typically
2 µs after the voltage has reached Vf , the CPU emits
an SVID packet, which negatively affects the ability
to inject short glitches. The injected SVID packet
to immediately reset the voltage from Vf to Vn has
a high probability of colliding with the CPU’s com-
mand, leading to an ineffective packet injection and
the voltage cannot be increased to Vn until the next
SVID set voltage packet.

6 Delayed-Write Fault Attacks
through Undervolting

In this section, we describe a novel class of
undervolting-induced faults not reported in prior re-
search. Specifically, we observed that undervolt-
ing appears to briefly delay memory writes to the
cache, so adjacent instructions still read the pre-
vious value. We initially observed these faults
with hardware-based undervolting using VoltPil-
lager, however, could also later reproduce them on
a i7-7700HQ in a Dell XPS15 9560 laptop (without
the CVE-2019-11157 mitigations installed) through
software-based undervolting. We refer to this sys-
tem as i7-7700HQ-XPS in the following. For our
first PoC, we compare two integers for inequality, as
further explained in the following Section 6.1.

6.1 Initial Proof-of-Concept
The C code used for our PoC is shown in Listing 2.
We developed this initial PoC in userspace and later
verified that a realistic exploit also works when run-
ning inside an SGX enclave, cf. Section 6.2.

1 int i = faulty = 0;
2 int operand1 = ...;
3 int operand2 = operand1 ;
4

5 do {
6 if(operand1 != operand2) {
7 faulty = 1;
8 }
9 operand1 ++;

10 operand2 ++;
11 i++;
12 } while (faulty == 0 && i < iterations);
13 // ... trigger code and fault check omitted ...

Listing 2: Simplified C code used for demonstrating
fault injection into memory accesses

Note that the code from Listing 2, under normal
non-faulty execution, never sets faulty to 1.This
tight loop of memory writes (for incrementing) and
reads (for comparison) was essential to discover this
novel effect. After a pre-set number of executions
(or if faulty is set), the loop terminates and pro-
ceeds to check whether a fault was injected (i.e.,
faulty has been set). To avoid faulting adjacent in-
structions after the detection of a successful fault, we
also inserted a group of nop instructions as a buffer
between the loop and subsequent code.

If a fault has occurred, we output the values of
both operands to ensure that the actual operand val-
ues have not changed (or e.g., the increment has been
faulted). With this design, we can reduce the actual
assembly instructions that can possibly be affected
by a fault to the instructions on Lines 1, 3, 5, 9, 10
shown in Listing 3. Note that even though Listing 3
uses the 32-bit register %eax, all our code is compiled
and runs in 64-bit mode. We have not observed any
difference between 32 and 64-bit instructions.

1 mov -0x18 (% rbp) ,%eax
2 // compare operand1 (% eax) and operand2
3 cmp -0x14 (% rbp) ,%eax
4 // continue at no_fault if equal
5 je no_fault
6 // else set faulty = 1
7 movl $0x1 ,0 x20290f (% rip)
8 // Increment operands and counter
9 no_fault : addl $0x1 ,-0 x18 (% rbp)

10 addl $0x1 ,-0 x14 (% rbp)
11 addl $0x1 ,-0 x1c (% rbp)

Listing 3: Assembly compiled from Listing 2 with
Lines 1, 3, 5, 9, 10 presumably affected by fault
injection (AT&T syntax)

In other words, a fault injection that would lead
to faulty being set could only affect one of the fol-
lowing common instructions: (i) a load from mem-
ory into a register, (ii) increment/write to memory,
(iii) a comparison of a memory location with a reg-
ister, or (iv) a jump-if-equal operation.

Initial Experiments We ran the target code de-
scribed in Section 6.1 on the i3-7100-AZ170 at a
clock frequency of 3 GHz and observed several suc-
cessful fault injections (i.e., faulty being set to 1) at
24◦ C with Vf = 0.76V , Vp = 0.95V , and Tf = 29µs
as shown in Figure 14. In all cases, the operands

printed after the detection of the fault were equal,
i.e., the undervolting could have only affected the
assembly instructions pointed out above.

0 25 50 75 100 125

Time [µs]

0.8

0.9

1.0

V
ol

ta
ge

[V
]

Tp
36µs

Tf
29µs

Tr
34µs

Vp

Vf

Figure 14: Oscilloscope capture of the CPU voltage
during a successful fault injection. Signal low-pass
filtered (Gaussian filter with σ = 2) for clarity. Ac-
tual Vf different to the value specified by VoltPil-
lager due to physical effects. Tr indicates recovery
time from Vf to Vn.

We found the parameters for successful fault in-
jection through manual tuning combined with an ex-
haustive search in a specified region. Note that our
experiments required a relatively low voltage, which
in turn can affect system stability.

As reported by earlier work [37, 24], the CPU tem-
perature affects the success rate and system stabil-
ity. For faulting operations with (presumably) short
critical paths such as memory accesses, we found
this effect even more pronounced than for multi-
plications or AES-NI rounds (with longer critical
path) on the i3-7100-AZ170. Hence, we ensured that
we kept the core temperature at around 24◦ C with
standard cooling. Subsequently, we successfully re-
produced the same experiment on i7-7700HQ-XPS
at 2 GHz with software-based undervolting through
MSR 0x150. The attack succeeded at normal core
temperature of approximately 50◦ C without any ad-
ditional cooling.

Further Analysis By modifying the code from
Section 6.1, we obtained further insights into the
likely cause of the fault (i.e., the “operands not
equal” branch being taken). To this end, we re-
placed the increment of operand2 on Line 10 with a
decrement of operand1, i.e., operand1/2 should be
equal and constant throughout the loop, as shown
in Listing 4:

1 do {
2 if(operand1 != operand2) {
3 faulty = 1;
4 }
5 operand1 ++;
6 operand1 --;

7 i++;
8 } while (faulty == 0 && i < iterations);

Listing 4: Modified C code used for demonstrating
fault injection into memory accesses

However, in this case, fault injection led to
operand1 being only decremented, with the incre-
ment on Line 5 seemingly ignored. Conversely, when
swapping the order and first decrementing followed
by incrementing, operand1 took the value operand2
+ 1 when undervolted. Furthermore, we modified
the assembly code from Listing 3 to store the value
of %eax used for the comparison on Line 3 when
the “operands not equal” branch had been taken.
We observed that, e.g., when a fault was found for
operand1 = operand2 = 3, the value loaded into
%eax was 2 i.e., the increment had not taken effect.

From these observations, we conjecture that the
most likely explanation for the observed faults is that
recent memory (cache) writes are delayed and thus
ignored in adjacent reads of the modified location.
This suggests that the fault affects the load-store
queue logic of the CPU, causing writes to be delayed
for a few cycles while the execution of dependent in-
structions progresses with old values. For example,
for the (undervolted) code sequence operand1++;
operand1--; the decrement operates on the previ-
ous value of operand1, ignoring the update through
the preceding increment.

6.2 Practical Exploitation Scenario
We now consider a realistic scenario to exploit the
effects from Section 6.1. The experiments described
in this subsection were all performed inside an SGX
enclave. We show how a delayed-write fault can be
used to trigger out-of-bounds accesses in memory-
safe code. To this end, the PoC code shown in List-
ing 5 initializes elements of an array to a fixed value.

1 uint32_t array [8] = { 0 };
2 // Attacker - supplied out -of - bounds size
3 int copy_size = 7;
4
5 // Ensure we stay within bounds
6 if(copy_size >= 5)
7 copy_size = 4;
8
9 // overwrite elements 4, 3, 2, 1

10 while (copy_size >= 1) {
11 array [copy_size] = 0 xabababab ;
12 copy_size --;
13 }

Listing 5: Proof-of-concept to demonstrate out-of-
bounds memory accesses due to undervolting
In Listing 5, array[] holds eight uint32 t ele-
ments all initially set to zero. The code then first
ensures that the (potentially adversary-controlled)
upper bound copy size is ≤ 4, using a common

code pattern that effectively implements min(4,
copy size). It then proceeds to write 0xABABABAB
to array elements 4 to 1, leaving the other elements
(0 and 5 . . . 7) at their initial value of zero.

We are intentionally only writing to part of the
eight-element array in this PoC to avoid triggering
actual stack corruptions (and hence crashes). How-
ever, note that all experiments also apply to a real
scenario, where the attacker would write beyond ar-
ray bounds and corrupt the enclave stack, thus gain-
ing control over the program counter and applying
traditional exploitation techniques afterwards [30].

We undervolted the CPU whilst executing the
above code in a loop within an ecall handler. The
experiments were run on i7-7700HQ-XPS at a fre-
quency of 2 GHz, undervolting by -170 mV. The core
temperature reported by the CPU varied between
44◦ C and 49◦ C. We observed two distinct effects
induced by the fault (cf. Appendix B), as illustrated
in Figure 15: (i) in addition to elements 4 to 1,
element 0 was also overwritten (i.e., an underflow)
and (ii) the upper bound was not limited to 4 but
stayed at 7, i.e., an overflow into elements 5 . . . 7 oc-
curred. In both cases, out-of-bounds accesses take

00... AB... AB... AB... AB... 00... 00... 00...

AB... AB... AB... AB... AB... 00... 00... 00...

00... AB... AB... AB... AB... AB... AB... AB...

Normal	execution:

Fault	1	causing	out-of-bounds	underflow:

Fault	2	causing	out-of-bounds	overflow:

Figure 15: State of array[] after normal execution
of Listing 5 and out-of-bounds under/overflow when
undervolted. Faulty values in red bold font.

place, leading to potential memory corruption and
enabling further exploitation with traditional tech-
niques, e.g., through stack overflows. We describe
the two observed fault types in the following.

Case 1: Out-of-Bounds Underflow As shown
in Figure 15, undervolting caused array[0] to be
incorrectly overwritten. Our analysis showed that
this is due to a fault affecting the code responsible for
decrementing and directly afterwards comparing the
loop counter on Lines 12 and 10 in Listing 5, which
translates to the assembly code shown in Listing 6.

1 // check for copy_size >= 1
2 copy_loop : cmpq $0x0 ,-0 x28 (% rbp)
3 jle exit_loop
4 // move copy_size into rax

5 mov -0x28 (% rbp) ,%rax
6 // move 0 xabababab into array [copy_size]
7 movl $0xabababab ,-0 x20 (%rbp ,%rax ,4)
8 // copy_size --
9 subq $0x1 ,-0 x28 (% rbp)

10 jmp copy_loop
11 exit_loop : // ...

Listing 6: Assembly affected by underflow
When undervolting, we observed the decrement of

the loop counter on Line 9 in Listing 6 had not been
committed by the time the comparison on Line 2
occurs. Thus, the loop performs one additional iter-
ation for copy size = 0. We found that the decre-
ment does come into effect on the subsequent read
into %rax on Line 5, which is the index into the ar-
ray, hence overwriting array[0].

Case 2: Out-of-Bounds Overflow In the sec-
ond observed fault, elements 5–7 are incorrectly
overwritten. In this case, we concluded that the fault
affects the initialisation of the upper limit on Lines 6
and 7 in Listing 5. The respective assembly snippet
is shown in Listing 7.

1 movq $0x7 ,-0 x28 (% rbp)
2 cmpq $0x4 ,-0 x28 (% rbp)
3 // jump if copy_size less than or equal to 4
4 // THIS JUMP SHOULD NEVER BE TAKEN
5 jle cont
6 // set copy_size = 4
7 movq $0x4 ,-0 x28 (% rbp)
8 cont: // ...

Listing 7: Assembly affected by overflow
As with the previous fault, we conclude that the

operation copy size = 7 on Line 1 has not com-
pleted by the time the compare statement on Line 2
is reached. Consequently, copy size is not limited
to 4 but remains at the higher value of 7, triggering
writes beyond the upper limit of 4. Note that in this
example the initial value 7 is loaded as a constant,
but it could equivalently be loaded from an attacker-
controlled parameter, e.g., an untrusted length field
passed to an ecall.

7 Implications and Countermeasures

To the best of our knowledge, this paper presents
the first practical attack that directly breaches in-
tegrity guarantees in the Intel SGX security archi-
tecture through a hardware-based attack. We show
that the fix currently deployed by Intel—disabling
the software undervolting interface— is insufficient
when taking hardware-based attacks with physical
access into account.

We also believe that these attacks might have im-
plications for non-SGX programs, because the fault
injection in principle does not require code execution
on the CPU (in contrast to the software-based fault

attacks [37, 40, 24]). It is conceivable that it could
enable attacks on e.g., locked computers using disk
encryption, similar to the attacker model for Direct
Memory Access (DMA) attacks [33], where an ad-
versary with physical access is able to bypass secu-
rity mechanisms. However, an adversary mounting
attacks would face substantial challenges, including
proper triggering to fault the desired program while
keeping the system stable, and the need to open the
case and connect to SVID without powering down.

It is worth noting that the type of attacks de-
scribed in this paper could be applied to CPUs by
other vendors: AMD uses a similar design with a VR
connected to the CPU though their SVI bus [44].

Countermeasures against the attacks described in
this paper can be implemented at the level of (i) the
SVID protocol, (ii) the CPU hardware or µCode,
(iii) the enclave code itself. In the following, we
discuss mitigations in detail. Note that countermea-
sures cannot be implemented in the BIOS or in com-
ponents outside the CPU package, because SGX re-
gards the BIOS and external hardware as untrusted.

Mitigation through Changes to SVID In our
opinion, the issue of voltage glitching with physical
access cannot be effectively addressed by e.g., adding
cryptographic authentication to the SVID protocol.
As explained in Section 3, the VR essentially con-
verts the SVID commands to a PWM-modulated
waveform, which controls the transistors generating
the actual core voltage. Hence, instead of inject-
ing into SVID, an attacker could disconnect these
control outputs and supply their own (malicious)
PWM signal, bypassing any authentication of SVID.
A well-resourced attacker could even completely re-
place the VR with a custom voltage glitcher, and a
malicious cloud provider could use custom mother-
boards with built-in glitching functionality.

Mitigation in CPU Hardware or µCode To
detect the adversary’s injected SVID packets, the
CPU could monitor the bus for packets that were
not generated by itself. On detecting packet injec-
tion, the CPU could raise an exception and abort
execution. But, as pointed out in Section 4, an ad-
versary could split the connection between CPU and
VR and act as man-in-the-middle, hiding malicious
packets from the CPU. Hence, this countermeasure
would only protect against basic SVID injection at-
tacks with VoltPillager in parallel to the bus.

Secondly, the CPU could continuously monitor its
own supply voltage and abort if the voltage falls be-
low a safe threshold. When using existing function-
ality such as measuring the core voltage through the

Running Average Power Limit (RAPL) interface and
MSR 0x198 [22, 25], it should be taken into account
that such interfaces have a low sample rate in the or-
der of 1 kHz. Hence, they would not be fast enough
to detect glitches shorter than the sampling window.

Therefore, future CPU generations could include
dedicated hardware countermeasures [23], including
e.g., voltage monitoring circuitry as commonly found
in smartcards [42]. One could also consider running
critical code paths on multiple cores and detect de-
viations through additional CPU logic as e.g., im-
plemented by certain Infineon smartcard ICs [19].
However, such countermeasures would amount to
substantial hardware changes and incur overheads.
Another option would be the use of a Fully Inte-
grated Voltage Regulator (FIVR), i.e., the VR inte-
grated within the CPU package, as used in 4th gen-
eration Intel CPUs, but later abandoned in newer
generations [7]. However, as the input voltage for
the FIVR is still supplied externally, such circuitry
would have to appropriately handle malicious mod-
ification of that input voltage.

Mitigation in Enclave Code For SGX enclaves
that require immediate protection against fault in-
jection, countermeasures can be implemented within
the enclave code. According to our experience, it is
highly unlikely to produce the same fault twice in ad-
jacent or nearby instructions; however, this warrants
further detailed investigation. Enclaves could du-
plicate potentially vulnerable instructions and com-
pare the results. While manual insertion of such
countermeasures might be feasible for comparatively
small pieces of critical code (e.g., crypto functions
or memory management), fully protecting an exist-
ing codebase would require excessive effort. How-
ever, prior research [32, 4] shows that automatic in-
struction duplication at the compiler level is feasible.
Hence, porting such techniques to x86 architectures
and in particular SGX poses an interesting problem
for future work. Note that SGX enclaves cannot rely
on mitigations based on measuring CPU voltage, as
SGX does not offer a trusted way to access MSRs,
so any such countermeasure could be bypassed by a
compromised operating system.

8 Conclusions

In this paper we identified a novel and powerful at-
tack surface of Intel CPUs. We have shown how
the SVID interface can be leveraged by adversaries
with physical access to gain full control over the volt-
age regulator. We then demonstrate that dynamic
voltage scaling can be reliably exploited to mount

fault-injection attacks against the CPU. To the best
of our knowledge, this represents the first hardware-
based fault-injection attack against a fully-fledged
CPU and also the first one that directly breaches the
integrity and confidentiality of SGX enclaved com-
putations on a fully patched system.

We have proven that this attack vector is practi-
cal by recovering RSA keys from an enclaved appli-
cation, and have shown that other fundamental op-
erations such as multiplication and memory/cache
writes can be faulted as well. These lead to novel
memory safety vulnerabilities within SGX, which are
not detected by SGX’s memory protection mecha-
nisms. The results in this paper, together with the
manufacturer’s decision to not mitigate this type of
attack, prompt us to reconsider whether the widely
believed enclaved execution promise of outsourcing
sensitive computations to an untrusted, remote plat-
form is still viable.

Acknowledgments

This research is partially funded by the Engineer-
ing and Physical Sciences Research Council (EP-
SRC) under grants EP/R012598/1, EP/R008000/1,
EP/V000454/1, by the European Union’s Hori-
zon 2020 research and innovation programme under
grant agreement No. 779391 (FutureTPM), and by
the Paul and Yuanbi Ramsay Endowment Fund.

References

[1] Arduino. Arduino IDE. https://www.arduino.
cc/en/Main/Software.

[2] Sergei Arnautov, Bohdan Trach, Franz Gre-
gor, Thomas Knauth, Andre Martin, Chris-
tian Priebe, Joshua Lind, Divya Muthuku-
maran, Dan O’Keeffe, Mark L. Stillwell, David
Goltzsche, Dave Eyers, Rüdiger Kapitza, Pe-
ter Pietzuch, and Christof Fetzer. SCONE:
Secure Linux Containers with Intel SGX. In
Usenix OSDI ’16, pages 689–703, Savannah,
GA, November 2016. USENIX Association.

[3] Hagai Bar-El, Hamid Choukri, David Naccache,
Michael Tunstall, and Claire Whelan. The sor-
cerer’s apprentice guide to fault attacks. Pro-
ceedings of the IEEE, 94(2):370–382, 2006.

[4] Thierno Barry, Damien Couroussé, and Bruno
Robisson. Compilation of a countermeasure
against instruction-skip fault attacks. In CS2
’16, page 1–6. ACM, 2016.

[5] Andrew Baumann, Marcus Peinado, and Galen
Hunt. Shielding Applications from an Un-
trusted Cloud with Haven. In Usenix OSDI ’14,
pages 267–283, Broomfield, CO, October 2014.
USENIX Association.

[6] Dan Boneh, Richard A. Demillo, and Richard J.
Lipton. On the Importance of Checking Com-
putations. In Eurocrypt’97, pages 37 – 51, 1997.

[7] Edward Burton, Gerhard Schrom, Fabrice
Paillet, Jonathan Douglas, William Lambert,
Kaladhar Radhakrishnan, and Michael Hill.
FIVR — Fully integrated voltage regulators on
4th generation Intel Core SoCs. In IEEE APEC
’14, pages 432–439, 03 2014.

[8] Chia che Tsai, Donald E. Porter, and Mona
Vij. Graphene-SGX: A Practical Library OS for
Unmodified Applications on SGX. In USENIX
ATC ’17, pages 645–658, Santa Clara, CA, July
2017. USENIX Association.

[9] Ang Cui and Rick Housley. BADFET: De-
feating modern secure boot using second-order
pulsed electromagnetic fault injection. In
Usenix WOOT ’17, Vancouver, BC, August
2017. USENIX Association.

[10] DreamSource Technology Co., Ltd. DSLogic
Plus. accessed June 2, 2020.

[11] Enarx. Threat model. accessed June 17, 2020,
revision 678e2c2. https://github.com/enarx/
enarx/wiki/Threat-Model.

[12] Fortanix. intel-oc-mbox. accessed Septem-
ber 21, 2020. https://github.com/fortanix/
intel-oc-mbox/tree/jb/initial.

[13] Fortanix. Intel SGX FAQ. accessed June 2,
2020. https://fortanix.com/intel-sgx/.

[14] Pietro Frigo, Emanuele Vannacci, Hasan Has-
san, Victor van der Veen, Onur Mutlu, Cris-
tiano Giuffrida, Herbert Bos, and Kaveh
Razavi. TRRespass: Exploiting the Many Sides
of Target Row Refresh. In S&P, May 2020.

[15] Github. intel-undervolt issue 43. ac-
cessed June 18, 2020. https://github.
com/kitsunyan/intel-undervolt/issues/43#
issuecomment-619373836.

[16] Github. Plundervolt. accessed June 18,
2020, commit 3bb0295. https://github.com/
KitMurdock/plundervolt.

https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://github.com/enarx/enarx/wiki/Threat-Model
https://github.com/enarx/enarx/wiki/Threat-Model
https://github.com/fortanix/intel-oc-mbox/tree/jb/initial
https://github.com/fortanix/intel-oc-mbox/tree/jb/initial
https://fortanix.com/intel-sgx/
https://github.com/kitsunyan/intel-undervolt/issues/43#issuecomment-619373836
https://github.com/kitsunyan/intel-undervolt/issues/43#issuecomment-619373836
https://github.com/kitsunyan/intel-undervolt/issues/43#issuecomment-619373836
https://github.com/KitMurdock/plundervolt
https://github.com/KitMurdock/plundervolt

[17] D. Gruss, M. Lipp, M. Schwarz, D. Genkin,
J. Juffinger, S. O’Connell, W. Schoechl, and
Y. Yarom. Another Flip in the Wall of
Rowhammer Defenses. In S&P ’18, pages 245–
261, 2018.

[18] Infineon. IR35204 3+1 Dual Output Digital
Multi-Phase Controller datasheet, 2016.

[19] Infineon. Integrity guard. online, ac-
cessed 2020-04-05: https://www.infineon.
com/dgdl/Infineon-Integrity_Guard_The_
smartest_digital_security_technology_in_
the_industry_06.18-WP-v01_01-EN.pdf?fileId=
5546d46255dd933d0155e31c46fa03fb, 2018.

[20] Intel. Intel SGX Technical Details for INTEL-
SA-00289 and INTEL-SA-00334. accessed
June 5, 2020. https://cdrdv2.intel.com/v1/dl/
getContent/619320.

[21] Intel. 4th Generation i7 Datasheet Vol. 1, 2014.

[22] Intel. Intel 64 and IA-32 Architectures Software
Developer’s Manual, Volume 4: Model-Specific
Registers, May 2019.

[23] Duško Karaklajić, Jörn-Marc Schmidt, and
Ingrid Verbauwhede. Hardware designer’s
guide to fault attacks. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems,
21(12):2295–2306, 2013.

[24] Zijo Kenjar, Tommaso Frassetto, David Gens,
Michael Franz, and Ahmad-Reza Sadeghi.
V0LTpwn: Attacking x86 Processor Integrity
from Software. In USENIX Security ’20,
Boston, August 2020. USENIX Association.

[25] Kashif Nizam Khan, Mikael Hirki, Tapio Niemi,
Jukka K. Nurminen, and Zhonghong Ou.
RAPL in Action: Experiences in Using RAPL
for Power Measurements. ToMPECS, 2018.

[26] Yoongu Kim, Ross Daly, Jeremie Kim, Chris
Fallin, Ji Hye Lee, Donghyuk Lee, Chris Wilk-
erson, Konrad Lai, and Onur Mutlu. Flipping
bits in memory without accessing them: An ex-
perimental study of DRAM disturbance errors.
In ISCA, 2014.

[27] Roland Kunkel, Do Le Quoc, Franz Gre-
gor, Sergei Arnautov, Pramod Bhatotia, and
Christof Fetzer. TensorSCONE: A Secure Ten-
sorFlow Framework using Intel SGX, 2019.
arXiv 1902.04413.

[28] Andrew Kwong, Daniel Genkin, Daniel Gruss,
and Yuval Yarom. RAMBleed: Reading Bits in
Memory Without Accessing Them. In S&P ’20,
2020.

[29] Dayeol Lee, Dongha Jung, Ian T. Fang, Chia
che Tsai, and Raluca A. Popa. An Off-Chip
Attack on Hardware Enclaves via the Memory
Bus. In USENIX Security ’20, Boston, August
2020. USENIX Association.

[30] J. Lee, J. Jang, Y. Jang, N. Kwak,
Y. Choi, C. Choi, T. Kim, M. Peinado, and
B. Byunghoon Kang. Hacking in darkness:
Return-oriented programming against secure
enclaves. In USENIX Security ’17, pages 523–
539, 2017.

[31] Yifan Lu. Attacking hardware AES with DFA.
arXiv preprint arXiv:1902.08693, 2019.

[32] Jonas Maebe, Ronald De Keulenaer, Bjorn De
Sutter, and Koen De Bosschere. Mitigating
smart card fault injection with link-time code
rewriting: A feasibility study. In Financial
Cryptography, 2013.

[33] A. Theodore Markettos, Colin Rothwell,
Brett F. Gutstein, Allison Pearce, Peter G.
Neumann, Simon W. Moore, and Robert N. M.
Watson. Thunderclap: Exploring vulnerabili-
ties in operating system IOMMU protection via
DMA from untrustworthy peripherals. In NDSS
’19, 2019.

[34] Microsoft. Azure confidential comput-
ing. version of Dec 6, 2019 retrieved from
archive.org. https://web.archive.org/web/
20191206233429/https://azure.microsoft.com/
en-gb/solutions/confidential-compute/.

[35] Microsoft. Open Enclave SDK. accessed
September 23, 2020. https://github.com/
openenclave/openenclave.

[36] Microsoft. Azure confidential computing, 2020.

[37] Kit Murdock, David Oswald, Flavio D. Gar-
cia, Jo Van Bulck, Daniel Gruss, and Frank
Piessens. Plundervolt: Software-based fault in-
jection attacks against Intel SGX. In S&P ’20,
2020.

[38] PJRC. Teensy 4 development board. accessed
June 2, 2020. https://www.pjrc.com/store/
teensy40.html.

https://www.infineon.com/dgdl/Infineon-Integrity_Guard_The_smartest_digital_security_technology_in_the_industry_06.18-WP-v01_01-EN.pdf?fileId=5546d46255dd933d0155e31c46fa03fb
https://www.infineon.com/dgdl/Infineon-Integrity_Guard_The_smartest_digital_security_technology_in_the_industry_06.18-WP-v01_01-EN.pdf?fileId=5546d46255dd933d0155e31c46fa03fb
https://www.infineon.com/dgdl/Infineon-Integrity_Guard_The_smartest_digital_security_technology_in_the_industry_06.18-WP-v01_01-EN.pdf?fileId=5546d46255dd933d0155e31c46fa03fb
https://www.infineon.com/dgdl/Infineon-Integrity_Guard_The_smartest_digital_security_technology_in_the_industry_06.18-WP-v01_01-EN.pdf?fileId=5546d46255dd933d0155e31c46fa03fb
https://www.infineon.com/dgdl/Infineon-Integrity_Guard_The_smartest_digital_security_technology_in_the_industry_06.18-WP-v01_01-EN.pdf?fileId=5546d46255dd933d0155e31c46fa03fb
https://cdrdv2.intel.com/v1/dl/getContent/619320
https://cdrdv2.intel.com/v1/dl/getContent/619320
https://web.archive.org/web/20191206233429/https://azure.microsoft.com/en-gb/solutions/confidential-compute/
https://web.archive.org/web/20191206233429/https://azure.microsoft.com/en-gb/solutions/confidential-compute/
https://web.archive.org/web/20191206233429/https://azure.microsoft.com/en-gb/solutions/confidential-compute/
https://github.com/openenclave/openenclave
https://github.com/openenclave/openenclave
https://www.pjrc.com/store/teensy40.html
https://www.pjrc.com/store/teensy40.html

[39] PJRC. Teensyduino arduino library. https:
//www.pjrc.com/teensy/td_download.html.

[40] P. Qiu, D. Wang, Y. Lyu, and G. Qu.
VoltJockey: Breaking SGX by Software-
Controlled Voltage-Induced Hardware Faults.
In AsianHOST ’19, pages 1–6, 2019.

[41] Pengfei Qiu, Dongsheng Wang, Yongqiang Lyu,
and Gang Qu. VoltJockey: Breaching Trust-
Zone by Software-Controlled Voltage Manipu-
lation over Multi-core Frequencies. In CCS ’19,
pages 195–209. ACM, 2019.

[42] Wolfgang Rankl and Wolfgang Effing. Smart
Card Handbook. Wiley, 4th edition, 2010.

[43] Kaveh Razavi, Ben Gras, Erik Bosman, Bart
Preneel, Cristiano Giuffrida, and Herbert Bos.
Flip Feng Shui: Hammering a Needle in the
Software Stack. In USENIX Security ’16, pages
1–18, Austin, August 2016. USENIX Associa-
tion.

[44] Renesas. ISL95712 Datasheet, 2015. avail-
able at https://www.renesas.com/eu/en/www/
doc/datasheet/isl95712.pdf.

[45] Rigol. DS1074Z 70MHz Digital Oscilloscope.

[46] Thomas Roth. TrustZone-M(eh): Breaking
ARMv8-M’s security—Hardware attacks on the
latest generation of ARM Cortex-M processors.
presentation at 36C3, 2019.

[47] Synaptics. Lenovo, Intel, PayPal and Synaptics
announce collaboration to bring FIDO authen-
tication to laptops. accessed June 4, 2020.

[48] System Management Interface Forum, Inc. Sys-
tem Management Bus (SMBus) Specification
Version 3.0. accessed June 9, 2020. http:
//smbus.org/specs/SMBus_3_0_20141220.pdf.

[49] System Management Interface Forum, Inc.
PMBusTM Power System Management Proto-
col Specification, Part I, Revision 1.2X. ac-
cessed June 9, 2020, September 2010.

[50] Adrian Tang, Simha Sethumadhavan, and Sal-
vatore Stolfo. CLKSCREW: Exposing the per-
ils of security-oblivious energy management. In
USENIX Security ’17, pages 1057–1074, Van-
couver, BC, August 2017. USENIX Association.

[51] Texas Instruments. SN74LVC1G07 Single
Buffer/Driver With Open-Drain Output, 2016.

[52] Michael Tunstall, Debdeep Mukhopadhyay, and
Subidh Ali. Differential Fault Analysis of the
Advanced Encryption Standard Using a Single
Fault. In Claudio A. Ardagna and Jianying
Zhou, editors, Information Security Theory and
Practice. Security and Privacy of Mobile De-
vices in Wireless Communication, pages 224–
233. Springer, 2011.

[53] Bilgiday Yuce, Patrick Schaumont, and Marc
Witteman. Fault Attacks on Secure Embed-
ded Software: Threats, Design, and Evaluation.
Hardware and Systems Security, 2(2):111–130,
2018.

[54] ZEROPLUS. Protocol Analyzer SVID 1.04.00.
http://www.zeroplus.com.tw/logic-analyzer_
en/news_detail.php?news_id=1755, 2014.

A Glitch Configuration and Results
for Multiplication and CRT-RSA

1 0x3c , 0xf7 , 0x21 , 0x56 , 0xe7 , 0x59 , 0x69 , 0x06 ,
2 0x08 , 0x06 , 0x01 , 0x69 , 0xf0 , 0xa3 , 0x0c , 0xb9 ,
3 0x0d , 0x3b , 0x75 , 0xe9 , 0x02 , 0xb3 , 0xe0 , 0x05 ,
4 0xef , 0x59 , 0xbf , 0x05 , 0x54 , 0x0f , 0xec , 0xc3 ,
5 0xc8 , 0x90 , 0x7b , 0x45 , 0x90 , 0x9c , 0x4b , 0x4e ,
6 0xfc , 0x8d , 0xed , 0x0f , 0x31 , 0xaa , 0xad , 0xae ,
7 0x40 , 0x0d , 0xf3 , 0xc4 , 0x6c , 0x00 , 0x3b , 0xdd ,
8 0x7a , 0xf6 , 0x22 , 0x61 , 0x53 , 0x2a , 0xcc , 0xf2 ,
9 0x16 , 0xb9 , 0xa7 , 0x3e , 0x98 , 0xbb , 0x8f , 0x56 ,

10 0xad , 0x4c , 0x35 , 0xa2 , 0x6e , 0x47 , 0xd8 , 0x80 ,
11 0x36 , 0x4c , 0x9a , 0x2b , 0xab , 0x25 , 0x08 , 0x63 ,
12 0x93 , 0x28 , 0x6b , 0x98 , 0xad , 0xda , 0x74 , 0xab ,
13 0x8b , 0xd2 , 0x04 , 0xeb , 0x4e , 0x76 , 0xc5 , 0x09 ,
14 0xe7 , 0xd8 , 0x5f , 0x97 , 0xf3 , 0x13 , 0x75 , 0x29 ,
15 0xd3 , 0xa6 , 0x07 , 0xb5 , 0x1f , 0x9f , 0x07 , 0xfc ,
16 0x82 , 0x19 , 0x70 , 0x04 , 0xda , 0x12 , 0x71 , 0x3e

Listing 8: Example faulty result obtained on i3-
7100-AZ170 for CRT-RSA

1 0x41 , 0xbf , 0xa9 , 0x4d , 0x96 , 0xae , 0x2d , 0x35 ,
2 0xe4 , 0xa8 , 0xc7 , 0x24 , 0xaa , 0x8c , 0xc2 , 0x05 ,
3 0x0f , 0x32 , 0x56 , 0xe5 , 0x37 , 0x56 , 0x5d , 0x94 ,
4 0x31 , 0x82 , 0x62 , 0xd8 , 0xbc , 0x32 , 0x34 , 0xc0 ,
5 0x70 , 0xdb , 0xfe , 0x98 , 0xcc , 0x6e , 0x26 , 0x75 ,
6 0x58 , 0xa8 , 0x2a , 0x84 , 0xe7 , 0x14 , 0xe2 , 0x4a ,
7 0x93 , 0x3b , 0xc2 , 0x4d , 0xe9 , 0xcb , 0xa2 , 0x61 ,
8 0x07 , 0x62 , 0x88 , 0xcb , 0x01 , 0x36 , 0x58 , 0x1d ,
9 0x8d , 0x09 , 0x9b , 0x0a , 0x0b , 0x7e , 0x42 , 0xd0 ,

10 0x68 , 0xbb , 0x16 , 0x28 , 0x60 , 0x14 , 0x78 , 0x3d ,
11 0x73 , 0x0a , 0xf5 , 0x62 , 0x2d , 0xbd , 0x22 , 0xf0 ,
12 0x59 , 0x96 , 0x39 , 0x5c , 0xbc , 0xe1 , 0x46 , 0x0b ,
13 0x99 , 0x3e , 0x04 , 0x4a , 0x69 , 0xbc , 0xdf , 0xc0 ,
14 0x5b , 0xb3 , 0x98 , 0x11 , 0x56 , 0xea , 0x03 , 0xa2 ,
15 0x3a , 0x80 , 0xc9 , 0xd3 , 0xe0 , 0x7c , 0x55 , 0xe6 ,
16 0x5c , 0x20 , 0x13 , 0x86 , 0x7b , 0xba , 0x87 , 0x6d

Listing 9: Example faulty result obtained on i3-
9100-MZ370 for CRT-RSA

1 0x6e , 0x35 , 0xea , 0x8c , 0xac , 0xe4 , 0xe8 , 0x1d ,
2 0xc0 , 0x3f , 0x52 , 0xe7 , 0xf8 , 0x27 , 0x21 , 0xd1 ,
3 0x75 , 0x86 , 0x1e , 0x30 , 0xe7 , 0xe6 , 0x90 , 0x07 ,
4 0x5a , 0xc6 , 0xed , 0x97 , 0x21 , 0x59 , 0xad , 0x4d ,
5 0x61 , 0x64 , 0x43 , 0x5f , 0x70 , 0x78 , 0xbc , 0x78 ,
6 0x1a , 0x82 , 0x1e , 0x0d , 0x8f , 0xd3 , 0x6d , 0x27 ,

https://www.pjrc.com/teensy/td_download.html
https://www.pjrc.com/teensy/td_download.html
https://www.renesas.com/eu/en/www/doc/datasheet/isl95712.pdf
https://www.renesas.com/eu/en/www/doc/datasheet/isl95712.pdf
http://smbus.org/specs/SMBus_3_0_20141220.pdf
http://smbus.org/specs/SMBus_3_0_20141220.pdf
http://www.zeroplus.com.tw/logic-analyzer_en/news_detail.php?news_id=1755
http://www.zeroplus.com.tw/logic-analyzer_en/news_detail.php?news_id=1755

Device Clock Td N Vp Tp Vf Tf Vn Iteration Temp.
i3-7100-AZ170 2 GHz 1000µs 1 0.83 V 35µs 0.64 V 29µs 0.83 V 90236 23◦ C
i3-9100-MZ370 3.4 GHz 300µs 1 1.050 V 35µs 0.81 V 83µs 1.05 V 126490 26◦ C
i3-7100U-NUC 2 GHz 200µs 1 0.94 V 35µs 0.71 V 8µs 1.05 V 41827 32◦ C

Table 4: Parameters for successful fault injection with the Plundervolt PoC for userspace multiplication

Device Clock Td N Vp Tp Vf Tf Vn Temp.
i3-7100-AZ170 2 GHz 100µs 1 0.83 V 35µs 0.63 V 29µs 0.83 V 24◦ C
i3-9100-MZ370 3.4 GHz 10µs 1 1.050 V 10µs 0.81 V 43µs 1.05 V 27◦ C
i3-7100U-NUC 2 GHz 10µs 1 0.94 V 35µs 0.75 V 9µs 1.05 V 22◦ C

Table 5: Parameters for successful fault injection with the Plundervolt PoC for CRT-RSA

Run Td N Vp Tp Vf Tf Vn Temp. Iteration
1 200µs 1 0.95 V 35µs 0.76 V 29µs 0.95 V 24◦ C 97702
2 200µs 1 0.95 V 35µs 0.76 V 29µs 0.95 V 23◦ C 92286
3 500µs 1 0.95 V 35µs 0.76 V 29µs 0.95 V 23◦ C 174087

Table 6: Parameters for fault injection into the initial memory access PoC on i3-7100-AZ170 at 3 GHz

7 0x78 , 0x28 , 0x72 , 0x6f , 0xf9 , 0x63 , 0x6e , 0x8e ,
8 0x92 , 0x98 , 0x40 , 0x96 , 0x2e , 0xde , 0x28 , 0x0a ,
9 0x14 , 0x1d , 0xc0 , 0xc3 , 0x27 , 0xf3 , 0x44 , 0xa8 ,

10 0x8d , 0xf5 , 0xb5 , 0xe5 , 0x1c , 0x96 , 0xed , 0xe4 ,
11 0xf6 , 0x11 , 0xa4 , 0xa6 , 0x26 , 0x7f , 0xf1 , 0x82 ,
12 0xaf , 0x33 , 0x85 , 0x24 , 0xc5 , 0x3d , 0x67 , 0x2a ,
13 0x55 , 0x69 , 0xd9 , 0xc3 , 0x9b , 0xcb , 0x25 , 0xfc ,
14 0xa4 , 0x9a , 0x2a , 0x5d , 0x6e , 0xa6 , 0x92 , 0x97 ,
15 0xf0 , 0x14 , 0x3f , 0x8e , 0x91 , 0x33 , 0x65 , 0xa1 ,
16 0x61 , 0x0f , 0x75 , 0xbf , 0xc1 , 0x08 , 0xec , 0x61

Listing 10: Example faulty result obtained on i3-
7100U-NUC for CRT-RSA
B Example Results for Faults during

Memory Accesses

The following out-of-bounds overflow fault happened
at iteration 769170 with -172 mV undervolting and
the CPU running at 2 GHz on i7-7700HQ-XPS dur-
ing computation inside SGX.

1 [Enclave] FAULT : array [00]: 0 x00000000
2 [Enclave] FAULT : array [01]: 0 xabababab
3 [Enclave] FAULT : array [02]: 0 xabababab
4 [Enclave] FAULT : array [03]: 0 xabababab
5 [Enclave] FAULT : array [04]: 0 xabababab
6 [Enclave] FAULT : array [05]: 0 xabababab
7 [Enclave] FAULT : array [06]: 0 xabababab
8 [Enclave] FAULT : array [07]: 0 xabababab

Listing 11: Overflow on i7-7700HQ-XPS
The following out-of-bounds underflow happened at
iteration 210612 with -175 mV undervolting on the
same system during computation inside SGX.

1 [Enclave] FAULT : array [00]: 0 xabababab
2 [Enclave] FAULT : array [01]: 0 xabababab
3 [Enclave] FAULT : array [02]: 0 xabababab
4 [Enclave] FAULT : array [03]: 0 xabababab

5 [Enclave] FAULT : array [04]: 0 xabababab
6 [Enclave] FAULT : array [05]: 0 x00000000
7 [Enclave] FAULT : array [06]: 0 x00000000
8 [Enclave] FAULT : array [07]: 0 x00000000

Listing 12: Underflow on i7-7700HQ-XPS

C Details of SVID

The 1-byte VID value for a target voltage U (in volt)
is computed as:

VID =
⌊
U −0.245

0.005

⌋
SVID commands are 5 bit. We used SetVID-Fast

(0x01) for setting the voltage. We also discovered
other commands shown in Table 7 with the help of
a screenshot of an SVID protocol analyzer [54].

Command name Value
Extended 0x00
SetVID-Fast 0x01
SetVID-Slow 0x02
SetVID-Decay 0x03
SetPS 0x04
SetRegADR 0x05
SetRegDAT 0x06

Table 7: 5-bit SVID commands based on [54]

