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ABSTRACT

Sensor Based Localization for Multiple

Mobile Robots Using Virtual Links. (August 2003)

Andrew John Rynn, B.S., Texas A&M University

Chair of Advisory Committee: Dr. Sooyong Lee

Mobile robots are used for a wide range of purposes such as mapping an envi-

ronment and transporting material goods. Regardless of the specific application, the

navigation of the mobile robot is usually divided into three separate parts: localiza-

tion, path planning and path execution. Localization is the process of determining

the location of the robot with respect to a reference coordinate system. There are

many different approaches to localizing a mobile robot which employ a wide variety

of sensors.

The objective of my research is to develop a method for the localization of multi-

ple mobile robots equipped with inexpensive range sensors in an indoor environment.

Each mobile robot will be equipped with a rotating infrared sensor and a rotating

CMOS camera. The multiple mobile robot system will be treated as a linked robot

for localization.

The proposed localization method is verified via both simulation and experiment.

Through the use of the virtual link length and relative heading information, a system

of mobile robots can be effectively localized using detected environmental features.
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CHAPTER I

INTRODUCTION

Mobile robots are used for a wide range of purposes such as mapping an environment

and transporting material goods. Regardless of the specific application, the navigation

of the mobile robot is usually divided into three separate parts: localization, path

planning and path execution. Localization is the process of determining the location

of the robot with respect to a reference coordinate system. There are many different

approaches to localizing a mobile robot which employ a wide variety of sensors.

The objective of my research is to develop a method for the localization of multi-

ple mobile robots equipped with inexpensive range sensors in an indoor environment

(meaning that the environment is known and contains straight lines and vertices).

Through the use of multiple robots, the limited range of inexpensive range sensors

can be overcome and localization becomes possible. As an added benefit, the use of

multiple robots allows for more efficient task completion. Additional robots could

significantly reduce the time required to map an environment or search for an object.

Each mobile robot will be equipped with a rotating infrared sensor and a rotating

CMOS camera. The multiple mobile robot system will be treated as a linked robot

for localization. This requires an unobstructed line of sight between each pair of

robots forming a “link”. An individual robot cannot extract any useful information

solely from individual local sensing due to the limited sensing range. The range of the

infrared sensor is small and susceptible to error. In order to facilitate collaboration

and exploit geometry, a team must be able to extract salient information from the

collective sensing of all its members. By collecting and fusing sensor information

The journal model is IEEE Transactions on Automatic Control.
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from multiple, distinct positions, the effective resolution of the space can be improved

beyond that of the individual measurements. A method will be developed to localize

multiple mobile robots in an indoor environment. It is tested in a simulation and

verified via experiment. Thus, by considering the sensor reading generated by all

the robots as one big virtual sensor, it is successfully shown that the robots can be

individually localized.
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CHAPTER II

BACKGROUND

Omnidirectional cameras are used in [1] and [2] for relative localization of multiple

mobile robots via triangulation. In [3] a method is proposed for the absolute localiza-

tion of multiple mobile robots using omnidirectional cameras. A method to localize

a single robot using an omnidirectional camera and a geometrical matching method

based on the subdivision of the robot’s field of vision is presented in [4]. Omnidi-

rectional cameras are very useful for locating known shapes that contrast with the

environment. However, it is not possible to effectively detect corners in a typical

room where the walls are all the same color.

Ultrasonic range sensors are used to localize a single mobile robot in an indoor

environment in [5], [6] and [7]. A team of miniature mobile robots is localized using

ultrasonic range sensors in [8]. Ultrasonic range sensors are very inexpensive and can

effectively detect walls and corners. However, they have a limited effective range.

The localization method used in [8] was effective in simulation, but the ultrasonic

range sensors’ close proximity to the floor created some difficulty in processing exper-

imental data. The localization method uses dead-reckoning in conjunction with the

sensor data. The developed method has a fair amount of accuracy and is inexpensive

to implement. One drawback to the approach is that the initial position of each robot

must be known.

Multiple robots equipped with laser range sensors are used to create a three

dimensional map of an environment in [9]. Laser range sensors are used in conjunction

with an omnidirectional video camera in [10]. The sensor data is compared to the

global environment map for localization. Laser sensors give very accurate readings

of the environment and have much longer effective ranges than infrared or ultrasonic
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sensors. However, they are far more expensive.

A method to localize a mobile robot in a perfectly known indoor environment

with ideal sensors is presented in [11]. The environment is divided into visibility

sectors which represent the region of points from which the same number of environ-

mental vertices are visible. From the range sensor scan data, a unique label derived

from the critical points of the data is used to determine the current visibility sector for

the robot. Once the visibility sector is determined, the features detected in the sensor

scan can be placed in the environment. Visibility sectors are used in conjunction with

consecutive sensor scans for dynamic obstacle detection in [12]. In this method, it is

required that a local maxima (which indicates a concave corner) be detected by the

robot’s sensor for localization. If a corner is not found, the robot can not be localized.

In [5], the visibility sector localization approach is extended by eliminating the

assumptions of a perfectly known environment and ideal sensors. Relaxed visibility

sectors are employed to localize the robot. They are found by computing the visibility

sectors and merging them using heuristic rules. By using relaxed visibility sectors,

the robot can be localized in a greater portion of the environment. Using the relaxed

visibility sectors, it is no longer necessary to detect a concave corner for localization.

In [6], a method is proposed to integrate the relaxed visibility localization scheme

into a navigator. The above localization methods are further extended in [13] where

scannable visibility sectors are used to enable a larger localizable area through the

use of relaxed localization.
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CHAPTER III

LOCALIZATION METHOD

A software environment in which range sensor scans can be simulated for multiple

robots has been developed. The mobile robot localization method treats the robots as

a linked system whereby the distance between the robot centers and relative headings

are known. This information can be found via a rotating camera or by maintaining

the distance between the robots within the range sensors’ effective range. This ne-

cessitates a line of sight between each successive robot in the system.

R
Smax

 

D
R

 

Fig. 1. T-Shaped Environment with Two Robots

The distance between the robots will be found via a rotating camera and is

represented as DR. The limits of the range sensor are RSmin
and RSmax

. The effective

range of the sensor used to determine the distance between the robots is given by

RDmin
and RDmax

. It will be assumed that RSmax
< DR < RDmax

and DR ≥ RDmin
.

Figure 1 shows a T-shaped environment containing two robots; each robot can only
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detect a small portion of the environment.

The initial step of the localization process is to process the sensor scan data.

It is necessary to locate any corners and saturation points in the data. Using this

information, the Cartesian offsets can be determined from the detected environmental

features. Next, a list of potential locations is generated for each robot. Using the

relative distance and heading information, potential location pairs for the robots can

be determined. Once a potential location pair has been found, it is checked for a line

of sight; if one exists, the absolute heading for each robot is calculated.

The localization method was developed using two robots. However, it is easily

extended to work for any number of robots. This is discussed in chapter IV and a

simulation example for a three robot system is shown in chapter VI.

Once the localization method is proven successful in simulation, it is tested ex-

perimentally using an inexpensive range sensor and an inexpensive CMOS camera. A

rotating range sensor and camera are placed in prescribed positions and orientations

in the environment. The environment is scanned and the resulting data is used to

determine the configuration of each robot. The localization results are then compared

to the known locations and headings.
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A. Localization With Two Corners

The following definitions are used in this section.

wall 1 Environment wall clockwise of corner.

wall 2 Environment wall counter-clockwise of corner.

vecwall1
Vector along wall 1 in the counter-clockwise direction.

vecwall2
Vector along wall 2 in the counter-clockwise direction.

vec1 Vector normal to vecwall1 .

vec2 Vector normal to vecwall2 .

veccorner Vector from robot center to corner.

If each robot detects a corner in its sensor scan, a limited number of possible

locations for each robot can be determined by determining the Cartesian offsets from

the corner in the sensor scan for each robot. The relative heading angle, φ is defined as

the counter-clockwise angle from the heading of the first robot to the vector connecting

the two robots. A second angle, γ, is defined as the counter-clockwise angle from the

robot heading to the located corner. Figure 2 shows two robots located in a T-Shaped

Environment and their respective headings. It also illustrates φ and γ for both robots.

To determine the Cartesian offsets from the corners, the located corners were

divided into two categories. The first group contains those corners for which both

walls forming the corner are found in the sensor scan. This condition holds for all

concave corners and for convex corners in which the corner does not block the robot’s

line of sight to a segment of the environment. The second group consists of convex

corners for which only one wall that forms the corner is detected.
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γ

φ

φ

γ

Fig. 2. Two Robots in T-Shaped Environment
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1. Determining the Offset Distances for a Corner with Two Detected Walls

Assumptions

• The wall vectors can be reliably determined for both walls forming the corner.

• From the sensor scan, the saturation points (the points at which the sensor

response transitions to and from its maximum effective range) can be reliably

determined.

The location of the corner is given by equation 3.1, where θ is defined relative

to the sensor scan. The saturation points, given by equations 3.2 and 3.3, are used

in conjunction with the located corner to define the two walls which form the corner.

The wall vectors are defined using equations 3.4 and 3.5.

corner =









r(cornerLoc) cos(θ(cornerLoc))

r(cornerLoc) sin(θ(cornerLoc))









(3.1)

satpt1 =









r(satLoc1) cos(θ(satLoc1))

r(satLoc1) sin(θ(satLoc1))









(3.2)

satpt2 =









r(satLoc2) cos(θ(satLoc2))

r(satLoc2) sin(θ(satLoc2))









(3.3)

vecwall1 =
corner − satpt1

‖corner − satpt1‖
(3.4)

vecwall2 =
satpt2 − corner

‖satpt2 − corner‖ (3.5)

To locate the robot center, the offsets normal to each wall are used. The fist

step in calculating the offsets is to find the vectors normal to each wall as shown in

equations 3.6 and 3.7. The offsets with respect to the corner in the sensor scan are

found using equations 3.8 and 3.9.
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vec1 = [0 0 1] × vecwall1 (3.6)

vec2 = [0 0 1] × vecwall2 (3.7)

offset1 = (corner · vec1)vec1 (3.8)

offset2 = (corner · vec2)vec2 (3.9)

Once the offsets have been determined in the sensor scan, it is necessary to

determine them in the environment. To do this, the coordinates must be transformed.

First, matrices composed of the two wall vectors are defined for both the sensor scan

and environment coordinate systems as shown in equations 3.10 and 3.11. There will

be a unique matrix for each candidate corner in the environment. The transformation

matrix necessary to place the robot in the environment coordinates is found using

equation 3.12 and is given by equation 3.13. One can then find the offsets from the

walls in the environment using equation 3.14. Finally, the Cartesian offsets are given

by equations 3.15 and 3.16.

Ascan =









vecwall1

vecwall2









(3.10)

Aenv =









vecwall1env

vecwall2env









(3.11)

AscanT = Aenv (3.12)

T = A−1
scanAenv (3.13)









offseta

offsetb









=









offset1

offset2









T (3.14)
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dxcorner = offseta ·









1

0









+ offsetb ·









1

0









(3.15)

dycorner = offseta ·









0

1









+ offsetb ·









0

1









(3.16)

Figure 3 shows the concave sensor scan for a robot in the top left corner of the T-

Shaped environment shown earlier. A generalized concave corner with the saturation

points, walls and offsets labeled is given by figure 4.

Fig. 3. Sensor Scan in Concave Corner

Figure 5 shows the convex sensor scan for a robot above the lower convex corner

in the T-Shaped environment. Figure 6 shows the sensor scan for a generalized convex

corner with the offsets, walls and saturation points labelled.
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Fig. 4. Concave Sensor Scan with Offsets

Fig. 5. Sensor Scan in Convex Corner with Two Detected Walls
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Fig. 6. Convex Sensor Scan with Offsets
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2. Determining the Offset Distances for a Convex Corner with One Detected Wall

Assumptions

• A wall vector can be reliably determined for only one of the two walls forming

the convex corner.

• From the sensor scan, the saturation points (the points at which the sensor

response transitions to and from its maximum effective range) can be reliably

determined.

The location of the convex corner is given by equation 3.17. The saturation

points are defined using equations 3.2 and 3.3 as in the case where both walls are

detected. Equation 3.18 defines the vector for the detected wall (in the case where

the second saturation point lies on the detected wall). The normal vector is defined

by equation 3.19. The offsets, with respect to the scan coordinates, are found via

equations 3.20 and 3.21. Equations 3.22 and 3.23 are used to define the wall vector

and normal vector for the offsets in the sensor scan and environment coordinates

respectively.

corner =









r(convLoc) cos(θ(convLoc)

r(convLoc) sin(θ(convLoc)









(3.17)

vecwall =
satpt2 − corner

‖satpt2 − corner‖ (3.18)

vecnorm = [0 0 1] × vecwall (3.19)

offset1 = (corner · vecnorm)vecnorm (3.20)

offset2 = (corner · vecwall)vecwall (3.21)

Ascan =









vecwall

vecnorm









(3.22)
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Aenv =









vecwallenv

vecnormenv









(3.23)

Figure 7 shows the convex sensor scan for a robot in the T-Shaped environment

near the lower convex corner. As shown in the figure, the robot can not detect both

walls that form the convex corner. A generalized convex corner with one detected wall

is shown in Figure 8. This figure corresponds to equation 3.18; if the first saturation

point lay on the wall, instead of the second, the equation would have to be modified

slightly as shown in equation 3.24.

vecwall =
corner − satpt1

‖corner − satpt1‖
(3.24)

Fig. 7. Sensor Scan in Convex Corner
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B. Localization with One Corner and One Wall

If only one of the two robots detects a corner and the second robot detects a wall,

localization can still be effectively performed. The relative heading angle, φ, is defined

as it was in the case where both robots detect a corner. For the second robot, which

only detects an edge in its sensor scan, γ is defined as the counter-clockwise angle

from the robot heading to the point on the edge closest to the robot.

For the first robot, a list of possible locations can be generated from the sensor

scan as was discussed previously. In the case of the second robot, where only a normal

offset from a wall is known, the possible locations are given as a range of points offset

from the walls of the environment. Once the possible locations for each robot have

been determined independently, it is necessary to use the known relative distance and

heading information to locate the robots.

This is done by determining the possible location for the second robot corre-

sponding to each potential location for the first robot. Given a possible location for

the first robot, its absolute heading can be determined. First, it is necessary to de-

termine the vector from the robot location to the corner location in the environment

coordinate system as shown in equation 3.25. From this vector the angle from the

robot center to the corner can be determined using equation 3.26 and the absolute

heading for the robot can be calculated via equation 3.27.

veccorner = [cornerx cornery] − [roboti,x roboti,y] (3.25)

θcorner = tan−1

(

veccornery

veccornerx

)

(3.26)

headingabs = θcorner − λrobot (3.27)

Once the absolute heading for the first robot (in that potential location) is known,
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it is possible to determine the absolute value of φ. Using this value of φ in conjunction

with the known distance between the two robots, possible center points for the second

robot can be generated using equations 3.28-3.30. Each pair of robots is checked for

a line of sight; if a line of sight exists, the pair of locations is retained.

φabs = φ + heading (3.28)

dxrobots
= d cos(φabs) (3.29)

dyrobots
= d sin(φabs) (3.30)
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1. Determining the Cartesian Offsets for a Detected Wall

Assumptions

• The robot can reliably detect a wall.

• From the sensor scan, the saturation points (the points at which the sensor

response transitions to and from its maximum effective range) can be reliably

determined.

From the sensor scan for the robot that only detects a wall, it is only possible

to determine regions of points in which the robot may be located. The Cartesian

offset for this range are found similarly to those found for the corners. Equations

3.2 and 3.3 are used to define the saturation points as before. The wall vector and

the vector normal to the wall are defined using equations 3.31 and 3.32 respectively.

The Cartesian offsets are determined from the robot center to the point on the wall

closest to the robot.

vecwall =
satpt2 − satpt1

‖satpt2 − satpt1‖
(3.31)

vecnorm = [0 0 1] × vecwall (3.32)

The offset from the wall in the sensor scan coordinates is found using equation

3.33. The wall vector and normal vector for the sensor scan and the environment are

given by equations 3.34 and 3.35. The calculation of the Cartesian offset is concluded

as in the case where a corner and two walls are detected; this is shown in equations

3.12-3.16. To determine the regions of potential locations in the environment, the

detected wall segment length is compared to the environment wall lengths. Using

the known wall length, length of the wall segment in the sensor scan and maximum
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effective sensor range in conjunction with the normal offset, the region of points

parallel to each wall that represents the range of possible locations for the robot can

be found.

offset = (satpt1 · vecnorm)vecnorm (3.33)

Ascan =









vecwall

vecnorm









(3.34)

Aenv =









vecwallenv

vecnormenv









(3.35)
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Fig. 9. Environmental Edge Sensor Scan with Offset
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C. Required Information for Localization

The virtual link length and relative heading information is required to localize the

system of robots relative to each other. This information can be found via a rotating

CMOS camera as described in appendix A.

Absolute localization of the robot system is more difficult. If one robot in the

system detects an environmental corner, yielding a set of potential absolute configu-

rations for that robot, the entire system may potentially be localized as all necessary

information is available.

However, locating one corner is not sufficient to guarantee a unique solution (due

to environmental symmetry, multiple solutions may be possible). It is not possible

to accurately quantify the information required to guarantee a unique solution to

the localization method. Environmental complexity and the number of robots in

the environment as well as the configuration of each robot in the system dictate the

amount of information required to localize the system.

D. Over-Determined System

There are two ways in which the system may be over-determined. The first being if

more environmental features are detected than are required to localize the system.

An instance in which there is a surplus of virtual link information (link length and

relative heading), is the second.

For the first case, the extra information would serve to reduce the potential

locations for each robot thereby decreasing the size of the set to be searched for a

solution. In the second case, the extra information can be used to reduce experimental

error. The extra virtual link information may also allow for further reduction of the

solution set from the localization algorithm.
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CHAPTER IV

EXTENSION OF LOCALIZATION METHOD TO MULTIPLE PAIRS OF

ROBOTS

Thus far, the localization method has been discussed primarily for a pair of robots.

The method can easily be extended to accommodate three or more robots. This

is done by localizing successive pairs of robots. Once each pair of robots has been

localized, the intersection of neighboring pairs is found.

A. Determining Which Links to Select When Multiple Options are Available

In the case when there are multiple link configurations available for localization, this

occurs when the system is over-determined as described at the end of the previous

chapter, there are two ways to select the link configuration. One could select each

possible combination of virtual links and find a solution for each system; the local-

ization results for each virtual link combination could then be averaged. This would

serve to reduce any experimental error from the sensor scan and potentially cull the

solution set further.

However, localizing each possible system would be very computationally expen-

sive and often unnecessary. Selecting the configuration with the shortest maximum

link length would increase efficiency and minimize error due to the camera as the

error in the camera increases rapidly as the link length increases.

B. Localization of n Robot System

In order to localize a system of more than two robots, it is necessary that each robot

in the system be a unique color (or have some other unique characteristic identifiable
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with a camera) that contrasts with the walls of the environment. Using the rotating

sensor scan information, the potential locations for each individual robot can be

determined. The potential virtual links for each robot are then sorted in ascending

length order and stored in a list, Li.

The flowchart shown in figure 10 describes an efficient localization method for

a multiple robot system containing n robots. Initially, the localization flag for each

robot is set to false. For each pair of robots that can be uniquely localized, the flags

are set to true. If no potential virtual link yields a unique localization solution for a

robot, another robot is added to the set and the localization for that set of robots is

found as described in the following section. If the three robot set can not be localized,

an additional robot is added to the localization set. This is repeated until a unique

solution is found or the localization fails with an n robot set.

C. Intersecting Solution of Robot Pairs to Localize Set of n Robots

The method used to find the possible locations for each pair of robots in an n robot

system is shown in the following pseudocode:

For i = 1 to n-1

Find possible locations for robots i and i + 1

Store possible locations in possLocsABi in the form [(Xi, Yi) (Xi+1, Yi+1)]

End

Once the possible locations for each pair of robots has been determined, it is

necessary to intersect the solution sets to determine the possible location set for all

robots in the set. The possible locations of the robot set can be written as [(X1, Y2)

(X2, Y2) (X3, Y3) ... (Xn, Yn)]. Where X and Y are the sets of the possible x and y

coordinates for each robot.
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Fig. 10. Localization Algorithm Flowchart
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The set of possible locations stored in the array possLocsAB can be written as

[possLocsAB(1) possLocsAB(2) possLocsAB(3) ... possLocsAB(n-1)] where the third

and fourth column of possLocsAB(i) must coincide with the first and second column

of possLocsAB(i+1) in order for the solution to be a possibility.

For example, let possLocsAB be given by table I. If the possible locations for

robot 2 are intersected, the resulting possible locations for robots 1, 2 and 3 are [(1,1)

(4,4) (3,11)] and [(1,12) (4,7) (1,11)]. By finding the intersection of the possible loca-

tions for robot 3 from the sets robot-robot2-robot3 and robot3-robot4, the solution

for the system of robots can be found as [(1,1) (4,4) (3,11) (1,11)].

Table I. Possible Locations for 4 Robot System

Pair 1 Pair 2 Pair 3

possLocsAB(1) possLocsAB(2) possLocsAB(3)

Robot A1 Robot B1 Robot A2 Robot B2 Robot A3 Robot B3

(Robot 1) (Robot 2) (Robot 2) (Robot 3) (Robot 3) (Robot 4)

(1,1) (4,4) (4,4) (3,11) (3,2) (1,8)

(1,12) (4,7) (4,7) (1,11) (9,7) (3,10)

(4,1) (1,4) (7,8) (4,13) (3,11) (1,11)

(4,12) (1,7)
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CHAPTER V

SIMULATION EXAMPLES

A. Two Robots

For the first simulation example, robot 1 is located at (1.2, 1.2) with a heading of 30◦

and robot 2 is located at (0.3, 2.5) with a heading of 75◦. Figures 11 and 12 show

simulated sensor scans for the two robots in a T-Shaped Environment.
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Fig. 11. Convex Corner Sensor Scan with Offsets for Robot 1

Using the sensor scans, the potential locations of the robots are found as shown
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Fig. 12. Edge Sensor Scan with Offset for Robot 2
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Fig. 13. Possible Locations for Robots 1 and 2
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Fig. 14. Localization Result for Two Robots in T-Shaped Environment

in Figure 13. The localization results are given in Figure 14 and show that the correct

solution has been found.
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B. Three Robots

1. Two Robots with Multiple Solutions

In the second simulation example, robot 1 is located at (1.3, 0.2) with a heading of

157.5◦ and robot 2 is located at (0.15, 3.25) with a heading of 45◦. Figures 15 and 16

show the sensor scans for the two robots with the determined offsets.
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Fig. 15. Concave Corner Sensor Scan with Offsets for Robot 1

Using the information from the sensor scans, potential locations for the center

of each robot are determined as shown in figure 17. As shown in figure 18, the
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Fig. 16. Edge Sensor Scan with Offset for Robot 2
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Fig. 17. Possible Locations for Robots 1 and 2
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localization method returns two possible sets of locations due to symmetry in the

environment. In this scenario, a third robot could be used to uniquely localize the

robot system.
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Fig. 18. Multiple Localization Results for Two Robots in T-Shaped Environment

2. Addition of Third Robot to Find Unique Solution

If a third robot is added at (1.4, 2.4) with a heading of 90◦, a unique location can be

determined for each robot. Figure 19 shows the sensor scan for the third robot with

the calculated offsets. The possible locations for the second pair of robots, robots 2
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and 3, are show in figure 20.

The localization result for the second pair of robots is shown in figure 21. By

finding the location of the second robot in the localization result for the first pair

of robots (shown in figure 18) corresponding to the location of the first robot in the

result for the second pair of robots, a unique solution for the system of three robots

is found as shown in figure 22.
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Fig. 19. Convex Corner Sensor Scan with Offsets for

Robot 3
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Fig. 20. Possible Locations for Robots 2 and 3
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Fig. 21. Localization Results for Second Pair of Robots
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Fig. 22. Localization Results for Three Robot System
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CHAPTER VI

EXPERIMENTAL VERIFICATION

The proposed localization method has proven effective in simulations. The next step

is to test it experimentally. The virtual link length and relative heading information

can be determined using a rotating CMOS camera. The method used to be to find

the corners, edges and saturation points in the simulated sensor scans is no longer

valid. The approach used for the experimental data will be presented in the ensuing

sections.

Although a rotating CMOS camera can be effectively used to determine the

virtual link length and relative heading information as shown in appendix A, the

effective range of the available camera (CMUCam) is insufficient.

The CMUCam is an inexpensive vision system for mobile robots. It includes an

Omnivision OV6620 CMOS camera on a chip and a Ubicom microcontroller running

at 75 MHz for on-board image processing. The image size acquired by the vision

system is 80 x 143 pixels. Using this vision system, it is only possible to accurately

measure the link length for distances up to 1.1 m.

As a result of the vision system’s limitations, the virtual link length and relative

heading information will be calculated from the known locations of the robots so the

virtual link information can be provided to the localizer.

A rotating Sharp GP2D12 Infrared range sensor is used to detect the walls in the

environment. The sensor contains an IR transmitter and receiver and has a nominal

effective range from 10-80 cm.
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A. Calibration

The first step in the experimental verification of the localization method is the cal-

ibration of the infrared sensor. The infrared sensor was affixed to a plexiglass base

which was mounted to a servomotor.

The nominal effective range of the sensor is from 10 cm to 80 cm. The sensor

was calibrated from 9 cm to 55 cm. The distance to the wall was measured from the

plexiglass base which was about 1 cm closer to the wall than the sensor. For each

distance, the sensor was placed normal to the wall and 2000 values were read. Figures

23 and 24 show the normalized histogram and normal probability density functions

for the calibration data. The plots indicate that although the data is not precisely

Gaussian, the distribution can be approximated as such.

The mean and variance for the 2000 sensor readings taken at each distance are

found. The calibration curve is determined using the MATLAB function pchip which

finds the Piecewise Cubic Hermite Interpolating Polynomial for each interval. Figure

25 shows the calibration curve for the sensor.

An issue of concern is the accuracy of the sensor towards the end of the calibrated

range (0.5 m). One way to determine the effective operating range of the sensor is to

determine the confidence interval for each point on the calibration curve. This was

done by calculated the 95 percent confidence interval for each of the data points using

equation 6.1.

CI95 = x̄ − 1.96σ√
n

≤ µ ≤ x̄ +
1.96σ√

n
(6.1)

Figure 26 shows the calibration curve along with the 95 % confidence interval.

From this curve, it can be seen that as the nominal sensor reading decreases (i.e. the

sensor is further from the wall) the 95 % confidence interval for the distance from the
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Table II. Nominal Distance and Confidence Interval for Various Nominal Sensor Read-

ing Values

Nominal Sensor Nominal Distance Lower Limit Upper Limit Range

Reading Value (cm) (cm) (cm) (cm)

800 11.41 11.20 11.62 0.42

450 22.52 21.89 23.14 1.25

350 30.00 29.08 31.29 2.21

275 39.82 37.67 44.50 6.83
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wall increases significantly. Table II shows how the confidence interval for the distance

corresponding to the sensor reading widens as the sensor reading value decreases. As

the confidence interval gets larger, the sensor readings become too inaccurate to be

used in the localization method. Therefore, all experimental data was truncated at

30 cm. While this limits the effective range of the infrared sensor, it greatly increases

the likelihood of usable experimental data.
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Fig. 26. Calibration Curve for Infrared Sensor with 95 % Confidence Interval
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B. Determining the Cartesian Offsets for Experimental Data

The method used to determine the offsets from the experimental data is significantly

different from that used for the simulation data. In the experimental data, determin-

ing the corner point is much more difficult than it is for the simulation data. To find

the corner point in the experimental data, it is necessary to calculate a least squares

linear fit for each wall. Once an equation for each wall is found, the corner point is

best approximated by the intersection point of the two lines.

In order to determine an equation for each wall, it is necessary to filter the data.

Figures 27 and 29 show raw experimental sensor scans for convex and concave corners.

The data is filtered by replacing the value for each point with the average of itself

and a specified number of points before and after the point. Figures 28 and 30 show

the corresponding filtered sensor scans. In this case, the five points before and after

each data point were averaged with the data point value to determine the new value.

Once the sensors scan is filtered, an equation can be found for each detected wall

in the y-intercept form as shown in equation 6.2. The least squares equation was

determined using the polyfit function in MATLAB. To find the intersection point of

the two lines, equation 6.3 is used.

ywall = mwallxwall + bwall (6.2)








cornery

cornerx









=









mwall2
bwall1

−mwall1
bwall2

mwall2
−mwall1

cornery−bwall1

mwall1









(6.3)

θ1 = tan−1 (mwall1) (6.4)

θ2 = tan−1 (mwall2) + π (6.5)

vecwall1 =
[cos(θ1) sin(θ1)]

‖cos(θ1) sin(θ1)‖
(6.6)
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Fig. 27. Raw Experimental Sensor Scan of Convex Cor-

ner
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Fig. 28. Filtered Experimental Sensor Scan of Convex

Corner
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Fig. 29. Raw Experimental Sensor Scan of Concave

Corner

  0.1

  0.2

  0.3

30

210

60

240

90

270

120

300

150

330

180 0

Experimental Sensor Reading

Radial Distance (m)

A
n

g
le

 (
d

eg
re

es
)

Fig. 30. Filtered Experimental Sensor Scan of Concave

Corner
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vecwall2 =
[cos(θ2) sin(θ2)]

‖cos(θ2) sin(θ2)‖
(6.7)

Once the cartesian coordinates for the corner are determined, the vectors for the

walls are determined using equations 6.4-6.7. The vectors normal to each wall are

found via equations 6.8 and 6.9. The offsets are found by projecting the vector to the

corner along these vectors as shown in equations 6.10 and 6.11. Equations 6.12-6.16

are used to transform the offsets into environmental coordinates for each potential

corner. The Cartesian offsets are found using equations 6.17 and 6.18. Figures 31

and 32 show experimental sensor scans with the calculated offsets superimposed for

both the convex and concave corners.

vec1 = [0 0 1] × vecwall1 (6.8)

vec2 = [0 0 1] × vecwall2 (6.9)

offset1 = (corner · vec1)vec1 (6.10)

offset2 = (corner · vec2)vec2 (6.11)

Ascan =









vecwall1

vecwall2









(6.12)

Aenv =









vecwall1env

vecwall2env









(6.13)

AscanT = Aenv (6.14)

T = A−1
scanAenv (6.15)


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T (6.16)

dxcorner = offseta ·









1
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+ offsetb ·
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(6.17)
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dycorner = offseta ·


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+ offsetb ·




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1


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

(6.18)
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Fig. 31. Filtered Experimental Sensor Scan of Convex Corner with Offsets
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C. Localization Results using an Infrared Range Sensor

For the experimental validation, the infrared sensor was placed in two different loca-

tions and scans were recorded. The virtual link length and relative heading informa-

tion was calculated from the known location information, as explained earlier. Robot

1 was placed at (0.65, 0.85)m with a 180◦ degree heading and robot 2 was placed at

(0.1, 0.1)m with a 180◦ degree heading. Figures 31 and 32 show the filtered sensor

scans and the determined corner point for robots 1 and 2 respectively. Using the

information from the sensor scans in addition to the virtual link length and relative

heading information, the robots can be accurately localized.

Figure 33 shows the expected locations for robots 1 and 2 in the T-Shaped

environment. Table III compares the experimental results to the nominal values.

Table III. Experimental Results in Localization

Robot 1 Robot 2

Category
Location Heading Location Heading

Nominal (0.65, 0.85) m 180◦ (0.10, 0.10) m 180◦

Experimental (0.64, 0.86) m 181◦ (0.10, 0.098) m 181◦

Although the experimental results are encouraging and verify the localization

method, there are some inherent limitations with both the camera and the IR range

sensor. The limited distance over which the camera can effectively measure the virtual

link length severely limits the utility of the proposed method. It is possible, that

a camera with a higher resolution may mitigate this problem. With the continuous

improvement in optical sensors and communications protocols, it is quite possible that

a higher resolution camera in conjunction with a wireless network card to transfer
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Fig. 33. Experimental Localization Results

the vision data to a PC will become available in the near future. Alternatively, a less

hardware intensive localization method could be developed that only requires use of

the relative heading information and not the virtual link length. This method would

not require a higher resolution camera as the current available camera is capable of

accurately determining the relative heading information over a significant range.

The experimental issues with the range sensor most likely can not be solved

via improved hardware. As shown in figure 34, the walls of the environment appear

curved. The figure is the same experimental data used to find the experimental results.

However, the data was truncated at 0.5 m instead of 0.3 m. The walls appear curved

due to the changing incidence angle of the IR sensor with respect to the wall. As is

evident by the experimental sensor scans shown earlier, this effect can be reduced if
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the sensor remains close to the wall and its measured range is limited. However, this

solution would severely restrict the movement of the robots. It would be better to

develop another way of detecting the walls and/or corners in the environment that is

not as sensitive to the “curved” walls.
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CHAPTER VII

CONCLUSION

A localization method for multiple mobile robot systems using virtual links has been

developed and verified. The method can be implemented using inexpensive rotating

infrared range sensors and a rotating CMOS camera. A method that can be used to

determine the virtual link length and relative heading information has been presented.

However, due to limitations in available hardware the method was not implemented.

The simulation and experimental results verify that the localization method is

sound. The issues of concern are hardware related. If an inexpensive higher resolution

CMOS camera is not available for use in the localization process, a method which

does not require the link length must be developed.

There is also a challenge associated with the infrared range sensor. The walls

of the environment appear curved due to the changing incidence angle as the sensor

rotates. This problem can be mitigated by maintaining a short distance between the

sensor and the walls. However, this solution is not attractive as it limits the flexibility

of the robot system. As an alternative to restricting the operating region of the robot

system, it would be better to develop a more flexible method for detecting the walls

and corners in the environment that is not sensitive to the curved appearance of the

walls in the sensor scan.



52

REFERENCES

[1] K. Kato, H. Ishiguro and M. Barth, “Identifying and Localizing Robots in a

Multi-Robot System Environment,” in International Conference on Intelligent

Robots and Systems Proceedings Record, IEEE/RSJ, Kyongju, South Korea,

pp. 966-971, 1999.

[2] J. Spletzer, A.K. Das, R. Fierro, C.J. Taylor, V. Kumar and J.P. Ostrowski,

“Cooperative Localization and Control for Multi-Robot Manipulation,” in In-

ternational Conference on Intelligent Robots and Systems Proceedings Record,

IEEE/RSJ, Maui, Hawaii, pp. 631-638, Oct 29 - Nov 3, 2001.

[3] T. Nakamura, A. Ebina, M. Imai, T. Ogasawara and H. Ishiguro, “Real-time Esti-

mating Spatial Configuration between Multiple Robots by Triangle and Enumer-

ation Constraints,” in International Conference on Intelligent Robots and Sys-

tems Proceedings Record, IEEE/RSJ, Takamatsu, Japan, pp. 2048-2054, 2000.

[4] E. Mustapha Mouaddib and B. Marhic, “Geometrical Matching for Mobile Robot

Localization,” IEEE Transactions on Robotics and Automation, vol. 16, no. 5,

pp. 542-552, October 2000.

[5] J. Kim, R. Pearce and N. Amato, “Robust Geometric-Based Localization in

Indoor Environments using Sonar Range Sensorsm,” in International Conference

on Intelligent Robots and Systems Proceedings Record, IEEE/RSJ, Lausanne,

Switzerland, pp. 421-424, October 2002.

[6] J. Kim, N. Amato and S. Lee, “An Integrated Mobile Robot Path (Re)Planner

and Localizer for Personal Robots,” in International Conference on Robotics and



53

Automation Proceedings Record, IEEE, Seoul, South Korea, pp. 3789-3794, May

21-26, 2001.

[7] Z. Feng-ji, G. Hai-jiao and K. Abe, “A Mobile Robot Localization Using Ulatra-

sonic Sensors in Indoor Environment,” in International Workshop on Robot and

Human Communication, IEEE, Sendai, Japan, pp. 52-57, 1997.

[8] R. Grabowski and P. Khosla, “Localization Techniques for a Team of Small

Robots,” in International Conference on Intelligent Robots and Systems Pro-

ceedings Record, IEEE/RSJ, Maui, Hawaii, pp. 1067-1072, Oct 29 - Nov 3,

2001.

[9] S. Thrun, W. Burgard and D. Fox, “A Real-Time Algorithm for Mobile Robot

Mapping With Applications to Multi-Robot and 3D Mapping,” in International

Conference on Robotics and Automation Proceedings Record, IEEE, pp. 321-

328, San Francisco, California, April 2000.

[10] D. Laurent, Mouaddib El Mustapha, Pgard Claude and Vasseur Pascal, “A Mo-

bile Robot Localization Based on a Multisensor Cooperation Approach,” in In-

ternational Conference on Industrial Electronics, Control and Instrumentation

Proceedings Record, IEEE, Taipei, Taiwan, pp. 155-160, Aug 5-10 1996.

[11] S. Lee, N. Amato and J. Fellers, “Localization based on Visibility Sectors using

Range Sensors,” in International Conference on Robotics and Automation Pro-

ceedings Record, IEEE, San Francisco, California, pp. 3505-3511, April, 2000.

[12] J.Y. Lee and S. Lee, “Consecutive Scanning Scheme: Application to Localization

and Dynamic Obstacle Detection for a Mobile Robot,” in Proceedings of the

International Mechanical Engineering Congress and Exposition, ASME, New

Orleans, Louisiana, Nov 17-22, 2002.



54

[13] J. Kim, R. Pearce and N. Amato, “Feature-Based Localization using Scannable

Visibility Sectors,” in Proceedings of the IEEE International Conference on

Robotics and Automation (to appear), Taipei, Taiwan, 2003.

[14] K. Joarder and D. Raviv, “Autonomous obstacle avoidance using visual fixation

and looming,” in Proceedings of SPIE, vol. 1825, Boston, Massachusetts, pp.

733-744, 1992.

[15] D. P. Huttenlocher, M. E. Leventon, and W. J. Rucklidge, “Visually-guided nav-

igation by comparing edge images,” in Algorithmic Foundations of Robotics, pp.

85- 96, Ken G old b er g, Ran d all Wilson an d Dan Halp er in m, Ed s. S an Fr an cisco,

California, 1994. Publisher: Wellesley, Massachusetts: A.K. Peters, 1995.

[16] T. D. Williams, “Depth from camera motion in a real world scene,” in IEEE

Transactions on Pattern Analysis and Machine Intelligence, Vol. 2 No. 6, pp.

511-516, 1980.

[17] E. Sahin and P. Gaudiano, “Visual looming as a range sensor for mobile robots,”

in Fifth Intl. Conf. on Simulation of Adaptive Behaviour, Zurich, Switzerland,

pp. 114-119, 1998.



55

APPENDIX A

USING A ROTATING CAMERA TO DETERMINE VIRTUAL LINK LENGTH

AND RELATIVE HEADING

A. Image Sensor

We have seen so far that by using the infrared range sensor reading we can detect

the occurrence of edges, corners and points of interest near individual robots. These

information are of little use if we cannot find the relative distance and heading between

the robots. In the majority of the mobile robots that use sonar sensors, the range

information is obtained from the time-of-flight. However from these measures, the

only information that can be obtained is the distance to the closest point to the robot

that reflected the wave, back to the sensor. This is not sufficient to characterize the

object, whose presence was detected. In our example, the sonar sensor will not be able

to differentiate between the edges, the walls, the corners and other robots. Moreover,

the wide opening angle presented by most sonar sensors introduces a uncertainty

factor along the direction of measure. From a range value we can only say that

there is a region in which every point is a possible location for the detected obstacle.

Considering real sensors, that are subject to errors, the result is that for each range

measure, instead of having one arc where every point has the same probability of

being the echo generator, we have a spacial probability distribution. Due to these

reasons, we have decided to use a CMOS camera to find the distance to other robots.
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1. Technical Details

Visual looming has been used to extract distance information from images in the

mid nineties. Visual looming technique estimates the distance to an object using the

change in the projection size of the object that results from known robot displace-

ments. Visual looming has been used for obstacle avoidance [14]. Extracting the

depth of an object from an image is dealt in [15] [16] [17]. We have used a modifica-

tion of the visual looming technique, in which we calculate the pixel width of a known

cylindrical object mounted on top of the robot. This pixel width is inversely propor-

tional to the distance from the camera, Eq. A.1. The geometric relations shown in

Figure 35, assumes the camera is viewing an object of width ’w’. Two different posi-

tion of the object is shown, at distances ds1 and ds2 from the camera. The equation

for a fixed width, w, of the cylinder and the constant focal length, f , is

p1

f
=

w

ds1

(A.1)

The object should be along the focal axis of the camera. The camera needs to

be calibrated beforehand for a given width of the cylindrical object. A calibration

figure for the experimentation performed is shown in the Figure 36.

Focal

Point

P1P2

Width of

Object

d s1 d s2

Fig. 35. Geometric Representation of Two Configurations

Given the width of the object in any picture, the distance can be calculated by

interpolating along the curve shown in Figure 36.
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2. Using a CMOS Camera to Determine the Length and Relative Orientation of

the Virtual Link

To find the distance and heading between robots, we have used a CMOS camera. The

image size is 80X143 pixels and allows for serial communication with the computer or

a microcontroller. The camera is mounted on a stepper motor and image processing

part of the camera can successfully track an object of a given color at 15 fps. The

encoder reading provides us with the relative heading between two robots and an

extension of The Looming effect provides us with the distance to the other robot.

Pictures from the image processing is shown in Figure 37. Calculating the width of

the image from Figure 37 is easier and less computationally extensive compared to

stereoscopic imaging.
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Fig. 37. Grayscale Image of the cylinder used to Calibrate the camera
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