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ABSTRACT 

Morphological Investigation of AFR-PEPA-N Imide Oligomers 

 and Their Cured Polyimides and the Remodification of AFR-PEPA-N 

 to Achieve Liquid-Crystalline Behavior. (August 2003) 

                         Lindsay Adams Murphy,  

B.S., Texas A&M University 

Chair of Advisory Committee:  Dr. Roger J. Morgan 

The morphological investigation of AFR-PEPA-N and the development of a new 

polyimide have been established herein. AFR-PEPA-N is an imide oligomer that was 

created out of the need to attain a high temperature polyimide that is also resistant to 

hygrothermal and thermooxidative degradation.  Previously, AFR700B was 

implemented in aerospace applications, but it was found to be hygrothermally unstable.  

It experienced a severe drop in its glass transition temperature and composite blistering. 

AFR700B was improved upon, by altering the chemical structure of the polyimide.  The 

nadic end-cap was removed and replaced by a more hydrolytically stable end-cap. 

However this phenylethynyl-terminated end-group could possibly create semi-

crystallinity or liquid-crystalline characteristics within the polymer. 

 

Previous research suggests further study of the relationships between AFR-

PEPA-N’s oligomer crystallinity and the properties of phenylethynyl-terminated 

polyimides. This understanding is valuable in processing AFR-PEPA-N by resin transfer 

molding (RTM) to obtain its optimum properties. The investigation included the 
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identification of a processing window, temperature overlap between the melting of 

residual crystals and crosslinking reactions, and liquid crystallinity behavior. These 

reactions were investigated primarily through birefringence. 

 

The residual crystals were found to be innate in the oligomer powder and not 

created by preliminary thermal processing.  Therefore a reasonable processing window 

was found based upon the reduction of crystal size by appropriate dissolution techniques. 

Possible nematic liquid-crystalline characteristics were found to be present at 360oC.    

 

A new imide oligomer, which was based upon AFR-PEPA-N’s original structure, 

was synthesized.  The non-linear, flourinated backbone of AFR-PEPA-N was replaced 

with a co-linear backbone, pyromellitic dianhydride (PMDA). These modifications were 

made in hopes to improve upon the network structure by it becoming more regular and 

resistance to nano-sized defects in the final crosslinked structure.  The initial 

characterization found that the new polyimide, AFR-P3, displayed a cure temperature at 

350oC.  The degree of cure reaches about 80 to 90 percent complete based upon the 

consumption of the carbon-triple bond. AFR-P3 did not show signs of liquid-crystalline 

behavior. However, there will be future work in creating a more rigid-rod, self-

assembling oligomer that can attain optimum thermal and mechanical properties. 
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CHAPTER I 

INTRODUCTION 

 

1.1 Focus of Research 

 

This research is part of the Advanced Research Project funded by the State of 

Texas, Materials Science ARP grant number 000512-0190-2001 through the TEES 

Institution of Texas A&M University.1  Dr. Roger J. Morgan served as the head of this 

investigative research and project.  This project also collaborated with the Air Force 

Research Laboratory / Wright-Patterson Air Force Base. 

 

1.2  Background 

 

In the aerospace and automotive industries, there is a demand for high 

performance materials.  The materials must possess a great strength to weight ratio yet 

fulfill the performance and processing criteria.  Composites can usually meet the needs 

of the design, and are the ideal materials for aerospace applications due to their 

lightweight, high strengths, and radar transparency.  The performance of the composites 

often relies on the properties of the polymer matrix.  The polymer is a limiting factor 

together with the fiber-matrix interface in the composite due to the high thermal and 

                                                           
1 This thesis follows the style of Journal of Composite Materials. 
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fatigue endurance of the carbon fibers.  The composites are exposed to a range of 

extreme thermal gradients, hygrothermal and thermo-oxidative service environments, 

fatigue and high stresses.  Polymers commonly implemented in aerospace composite 

matrices, are epoxies, polyimides, and bismaleimides [1, 2, 3]. 

 

Epoxies can be processed at relatively low thermal conditions, unfortunately they 

cannot be used in applications that experience high hygrothermal conditions.  This is 

due to their high moisture intake that eventually leads to plasticization and weakening 

of the epoxy matrix [3].  

 

It has been found that polyimides exhibit excellent thermal and mechanical 

properties for future aerospace applications.  They have an overall mixed hydrolytic 

stability and good resistance to wear and radiation, and inertness to solvents [3, 4].  The 

first aromatic polyimide was synthesized in 1908, but it was not further developed until 

the late 1950’s.  Through the efforts of DuPont, polyimides were more fully developed 

and finally made commercially available in the early 1960’s.  Now many research 

groups have synthesized a variety of new polyimides with varying characteristics to 

meet the needs of specific designs and applications [3,4].   

 

Polyimides are used as high-temperature adhesives, in microelectronics, 

optoelectronics, photoresists, nonlinear optical materials, aerospace applications, 

composites, and fiber optics.  Polyimides are highly used in the optics and electronics 



 3

areas possibly due to their low dielectric constant and low relative permittivity [4]. But 

because of their high thermal capabilities, they can be somewhat troublesome to process 

at high temperatures and viscosity.  

 

 Also polyimides will hydrolytically degrade.  This is when water molecules 

attack their imide ring, and the polyimide will experience a reverse imidization, and/or 

depolymerization.  The polyimide will revert back to the polyamic acid.  Chain scission 

of polyamic acid results in an acid monomer, which will increase the degradation of the 

polyimide [1,5].  The acid is 550 times more susceptible to hydrolysis than the imide 

ring [3].  This overall chemical degradation will decrease the polyimide’s thermal 

capabilities, and overall adversely affect the mechanical properties of the composite.   

 

Thermoset bismaleimides contain some desirable properties relative to 

polyimides and epoxies.  That is, they are easier to process than polyimides, yet have a 

glass transition temperature that is comparable to polyimides.  However, bismaleimides 

are very brittle and some have observed galvanic corrosion in the polymer when in 

conjunction with carbon fibers [3].  

 

From the basis of PMR-15, AFR700B was created, by the Air Force, out of a 

need to have a polyimide perform similar to other polyimides, but can perform at a 

higher service temperature of 371oC.  Its chemical structure is shown below in Figure 1. 

Despite AFR700B’s excellent thermooxidative resistance, thermal capabilities, and 
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mechanical performance, it did not perform well in a hygrothermal environment [3]. 

However, it was found that the norbornene crosslinks associated with the Michael 

addition model created the hydrolyzable weak link in AFR700B [1, 3]. Therefore, 

Lincoln concluded that the AFR700B polyimide must be end-capped with a much more 

hydrolytically stable functional group [3].  This hydrolytically stable group was found in 

PETI-5.  PETI-5 is a thermoset phenylethynyl-terminated imide oligomer that drew 

much attention during the High Speed Civil Transport Program. The phenylethynyl 

oligomer end-caps are considered the ‘strong link’ in the PETI-5 chemical structure as 

seen in Figure 2.   

 

Figure 1.  AFR700B chemical structure, [3]. 

Figure 2. LaRC© PETI-5 chemical structure, [3]. 
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The PETI-5 endcaps were incorporated into the AFR700B structure.  AFR-

PEPA-N was synthesized in hopes of combining the thermooxidative abilities of 

AFR700B with the hydrolytic stability of PETI-5 and is able to withstand prolonged 

temperatures equivalent to AFR700B.  The new polyimide, shown in Figure 3, was 

found to have superior hydrolytic stability similar to PETI-5 and has excellent 

mechanical properties at high temperatures. A correlation was found between the 

polyimide’s mechanical response and its crystallinity, but this relationship was not well-

understood [3]. 

Figure 3.  AFR-PEPA-N imide oligomer chemical structure, [3]. 
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1.3 Program Goals 

 

The thesis will investigate any possible (i) crystalline and (ii) liquid-crystalline 

nature of the precured and cured polyimide oligomer, AFR-PEPA-N, as a function of 

chemical composition, temperature, molecular weight, and oligomer synthesis 

conditions, by birefringence. The results of this research will aid in optimizing the 

structure-property-processing relationships of polyimides for use in resin transfer 

molding (RTM) processing of complex shaped composites.   

The thesis will specifically address several key items: 

♦ Identification of a reasonable processing window. 

♦ Residual oligomer crystals acting as stress concentrators and initiators 

of microcracking. 

♦ A potential temperature overlap between the melting of crystals and 

the curing of the polyimide. 

♦ Possible crystalline and/or liquid crystalline characteristics. 

♦ Synthesis of new polyimide that has a higher potential for liquid-

crystalline characteristics.  

Figure 4 details the optimization of the structure- processing-properties in a 

graphic format. 
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Figure 4: Structure - Processing - Properties of AFR-PEPA-N Polyimide 
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Based on the results and liquid-crystalline characteristics of AFR-PEPA-N, a 

new polyimide will be synthesized in an attempt to create a more rigid-rod molecular 

structure.  The rigidity of the oligomer may determine its liquid-crystalline behavior.  

These modifications are made in hopes to improve upon the network structure and 

resistance to nano-sized defects in the final crosslinked structure.  This network structure 

would be constructed by crosslinkable imide oligomers that self-assemble. 

 

The morphological investigation of AFR-PEPA-N and the development of a new 

polyimide establish the scope of this Master’s Thesis.  The details of the morphological 

investigation contain the identification process of the processing window, residual 

crystals, and liquid crystallinity behavior.  The tools needed to investigate these details 

are the polarizing optical microscope and the wide-angle x-ray (WAX) diffraction 

machine. Using these tools, the crystal morphology of the polyimide can be investigated 

over a spectrum of processing conditions.   

 

This investigation of the morphology will contribute to the ability to process the 

material at reasonable time and temperature.  It will also aid in processing a material 

with excellent mechanical properties, containing no nano-sized defects. This will aid in 

the research that has been developing polyimides, for RTM processing, that have 

superior mechanical and thermal properties [1, 6]. 
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The synthesis of the polyimide, with the modified chemical structure, will further 

facilitate ongoing research for self-assembling nanorod macromolecules that “can be 

crosslinked to form films and fibers with superior thermal, mechanical, and photonic 

properties [7].” 
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CHAPTER II 

LITERATURE REVIEW 

 

2.1 Introduction 

 

In this chapter, I will review the previous research concerning polyimides, liquid-

crystalline behavior and rigid-rod polymers.  In more detail terms, PETI-5, AFR700B 

and Aramid K3B research will be discussed and compared.  The past research on rigid-

rod polymers, especially polyimides, will be looked into, especially the structural 

requirements to achieve liquid-crystalline behavior.  Also the synthesis of the new 

polymer, AFR700C, or AFR-PEPA-N, will be discussed and the critical factor that 

makes it different from AFR700B.  The initial characterization of that polyimide will be 

discussed in further detail.   

 

But before discussing the details of previous research, polyimide history, 

applications, and the fundamentals of polyimide degradation mechanisms will be 

presented.   
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2.2 History and Development of Polyimides 

 

The first aromatic polyimide was synthesized in 1908, but it was not further 

developed until the mid-1950’s.  Through the efforts of DuPont, polyimides were more 

fully developed and finally made commercially available in the early 1960’s [3,4].  

During the early years, DuPont’s Film Department focused upon creating a new product 

based upon 4,4’dimethylheptamethylene diamine and pyromellitic dianhydride (PMDA).   

These efforts were to create a “convertible polymer” that could be changed easily and 

then converted to a permanent configuration.  After much hardship, Andy Endrey helped 

make this “convertible polymer” a reality in 1956 [4]. The poly (amic acid) film was 

found to have great potential in the marketplace due to its excellent thermal, electrical, 

and mechanical properties.    

 

After further development, the next step was to find potential applications and 

niche markets for placement of a polyimide resin. The Department of Defense, along 

with the electrical and aircraft industry, had a high level of interest in aromatic 

polyimide films.  Large-scale processing of polyimides were researched by Yerkes 

Laboratory, in Buffalo, New York, and were able to propose an acceptable process for 

DuPont’s facilities.  In 1965, DuPont successfully created the first-ever polyimide film 

production line, which produced Kapton film [4]. 
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From the initial research, many new polyimides were emerging.  The National 

Aeronautics and Space Administration (NASA) had a high level of interest in the 

capabilities of polyimides.  They conducted monumental research in this area, while 

creating and developing high-performing materials, such as “bis-maleimide composites, 

the LARC polyimide series, colorless polyimides, and poly (imide/etherketone) 

copolymers [4].”  Due to the versatility and exceptional characteristics of polyimides, 

there are a wide variety of areas that polyimides can be applied to, such as electronics, 

high-performance composites, fibers and foams, coatings, adhesives, and film [4]. 

 

2.3 Polyimide Applications 

 

An advanced composite is a combination of an organic matrix and high-

performance fibers or particles.  These high-performance materials include carbon, 

boron, and Aramid materials that have advanced properties compared to the glass fiber 

commonly used in composite applications.  The matrix limits the performance ability of 

the composite system.  

 

The purpose of polyimides applied to advanced composites is due to the fact that 

polyimides are stable at high temperatures for long periods of time.  The high thermal 

composite would be applied primarily to the aerospace industry, where military aircraft 

and missiles experience long-term high thermal environment [8]. Many polyimides have 

been developed primarily for the advanced composite applications, such as: LaRC-160, 
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PMR polyimides, PMR-II, Avimid K series, Avimid N, LaRC TPI, Polyetherimides 

(PEIs), and Polyamideimides [8]. 

 

Another important arena where polyimides are becoming popular is the 

semiconductor industry.  Two main areas where polyimides are used are for protection 

or shielding and as an interlayer dielectric.  Because of their ease of processability, good 

mechanical and thermal properties, and dielectric properties, polyimides are offer much.  

They do have certain drawbacks compared to other materials used in the industry.  They 

have a high moisture absorption and low thermal stability relative to other insulators.  

Polyimides can be used for a junction coat passivation, buffer coat, and alpha-ray 

shielding applications.  The purpose of the junction coat passivation is to prevent the 

electrical device becoming contaminated.  The buffer coats acts as mechanical stress 

reliever and protects the components from excess moisture.  The interlayer dielectric 

serves as insulation between wires.  The alpha ray shielding is used for memory devices 

and protects against soft errors.   

 

Photosensitive polyimides are very useful for processing in the semiconductor 

components.  They are used as substrates between several layers of electrical devices.  

Photosensitive polyimides can be made to complex patterns using direct ultraviolet laser 

photablation, reactive ion etching (RIE), or scanning laser ablation (SLA) by a soft or 

hard mask, and wet etching [4].  The unexposed areas are removed during the 
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processing. Polyimide properties can be changed by their backbone.  They can be 

covalent, ionic, or intrinsic types depending upon the backbone structure [4].   

 

Polyimide material is most utilized in film form.  The film is cast from polyamic 

acid solution and then is imidized by either thermal or chemical means.  The films are 

one of the easiest to process and have very good properties.  DuPont’s Kapton® has 

been implemented in a number of applications such as aerospace cables and wiring, 

laminates, coatings for chips, capacitors, magnet wire, flexible circuits, transformers, 

and traction motors.  Kapton’s® glass transition temperature is 385oC and its resistance 

to solvents is very good [8].  Film orientation is also very important to the properties 

desired from the product.  A film that is anisotropically oriented will have an increased 

tensile strength and modulus, and also absorb much less water. 

 

Langmuir-Blodgett is a method that applies ultra-thin polyimide films in 

microelectronics.  This technique allows for a single monolayer film with little to no 

defects that is formed on a water surface.  The film is then transferred to a solid [4].  

 

Gas Separation Membranes are another interesting use for polyimides.  

Polyimides were found to have an ability to selectively allow certain gases and vapors 

through its walls.  Oxydianiline (ODA)-PMDA was found to have a high permeability to 

water vapor, oxygen and carbon dioxide.  Further research found that the film could 
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allow a higher gas flow through and has a higher selectivity, by modifying the polyimide 

structure [8].   

 

Polyimide foam is another area that has a large amount of applications due to 

polyimide’s high thermal property, and mechanical strength due to the innate structural 

design that foams possess. Foams are especially valuable to the aerospace market where 

a great strength to weight ratio is highly prized.  The foam could be used in walls, ceiling 

panels, as acoustical, vibration, and thermal insulation [8].   

 

Some polyimides display properties that would make polyimides look like a very 

attractive material to use as a structural adhesive. Adhesives that can join many different 

materials (metals, ceramics, composites, and polymers) together in extreme 

environments are desired in many industries such as the aerospace, electronic, and 

automotive.   Other requirements that the polyimide adhesive may need to fulfill could 

be temperature, thermal expansion limits, toughness, moisture absorption, fatigue limit, 

thermal gradients, chemical reactivity, and lifetime [8]. 

 

Adhesion to metal films is very important especially concerning polyimide use in 

the semiconductor industry.  Typically there is a metal film that is sprayed upon a 

polyimide substrate.  The interfacial adhesion between the two materials depends 

especially on the surface roughness of the polyimide, the chemical and environmental 

history of the polyimide, and how the metal is adhered to the polyimide [4].   
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2.4 Fundamentals of Polyimide Structure-Property Relationships 

 

2.4.1 Polyimide Degradation and Stability 

 

The purpose of reviewing the degradation of polyimides is to give purpose to the 

reasons for continuing the research and to layout a foundation before discussing the 

previous research on which this knowledge is based upon.  The forms of degradation are 

important to understand when applying polyimide matrix composites as key structural 

members in an aerospace application.  It is important to choose the proper polyimide 

based upon the requirements for the desired purpose.  

 

 

2.4.1.1 Effect of the Polyimide’s Dianhydride, Diamine, and End-group Structure on 

Stability  

 

The stability of the polyimide is greatly dependent upon its chemical structure.  It 

is not just the bonding energies that determine the ability to resist degradation but much 

more complicated system of mechanisms that are involved.  These may be the chain 

packing, density, molecular weight, conformation, and location of functional groups.  
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These characteristics can control the opportunity of degradation initiation and the rate of 

degradation of the polyimide [4].   

 

The types of diamines, dianhydrides, and end-groups may determine how the 

polyimide will degrade at a certain rate.  Researchers have attempted to rank 

dianhydrides, diamines, end-group structures based upon the trends from many of the 

degradation studies.  One common observation was that the dianhydride does not 

necessarily have much of an effect upon the stability of the polyimide [4].   

 

However the diamine structure can be more of an influence upon polyimide 

stability than the dianhydride.  Because the diamine has a higher electron density 

compared to the rest of the structure, the diamine can be the ‘weakest’ link.  The high 

electron density acts as a magnet for an oxidation initiation point.  Polyimides based 

upon electron deficient diamines tend to be more stable compared to others.  Also the 

amount of fused rings in the diamine effected the stability of the polyimides.  The 

greater the amount of rings the higher the probability of instability [4]. 

 

Another observation was that diamines containing an ether linkage were very 

stable and flexible.  Flexibility allows for good solubility and polymer melt flow 

characteristics.  These two characteristics make for better processing, and when the 

polyimide can be processed with out flaws the resistance to degradation will be very 

great [4].   
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Reactive end-groups are a very good way of increasing the stability of the 

polyimide.  If the polyimide chains are not terminated, the chains will have either an 

amine or an anhydride at the end of each chain.  Unfortunately these types of end-groups 

can be highly reactive with surrounding conditions that can decrease the polyimide’s 

stability.  A chain ending with an anhydride can cause hydrolytic degradation.   

 

It was also observed that a chain ending with an amine group can be considerably 

more detrimental than a chain ended with an anhydride.  The stoichiometry is very 

important when synthesizing a polyimide.  It is better to have a slightly higher amount of 

dianhydride relative to the amount of diamine [4], [8].   

 

The best way to avoid chain degradation is to add reactive end-groups to both 

ends of the polyimide chains.  End-groups can limit the molecular weight of the 

polyimide.  Limiting the molecular weight decreases the viscosities, which aids in the 

processing capabilities and melt stability of the polyimide.  It also improves upon the 

thermal and oxidative stability.  Several reactive end-caps that are implemented are 

maleimide, nadimines, acetylenes, and biphenylenes [4].  It was found that acetylene and 

biphenylenes offer higher thermal and oxidative stability relative to the malic and nadic 

anhydrides.   
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Acetylene-terminated polyimides can crosslink by the carbon triple bond via 

trimerization.  This creates an aromatic ring that is assumed to be where the excellent 

thermal properties come from.  The trimerization process does not undergo full 

crosslinking especially at the glass transition temperature.  This can create a large 

difference in the properties of acetylene-terminated polyimide [4].   

 

2.4.1.2 Thermal and Thermooxidative Degradation  

 

Even though polyimides are the most thermally stable polymer, they can still 

degrade if the conditions are just so.  They can degrade if exposed to high temperature 

for a very long period of time.  This exposure can lead to physical and chemical aging 

and dramatically effect the thermooxidative stability of the polyimide.  Being exposed to 

high temperatures over a long period of time can increase the polyimide’s density and 

brittleness.  Polyimides are also susceptible to chemical aging.  The chemical structure 

can be modified due to the highly reactive environment the polyimide may be in.  

Excessive crosslinking and chain scission is just a few of the reactions that take place 

during chemical aging [3].   

 

The polyimide’s imide ring is possibly an initiator site for this degradation to 

begin.  Typically there is a release of CO, CO2, and water from these bonding sites, 

when heated at high temperatures.  Thermooxidation is one major form of chemical 
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aging [3].  Lincoln summarizes thermooxidation degradation mechanisms for polyimides 

in composite form at the macroscopic level in further detail, which is in the Appendix. 

 

Not only does thermooxidation take place on the microscopic and macroscopic 

scale, but also on the molecular scale.  Polyimides perform better if their dianhydride 

and diamine are at high oxidation states.  This increases the resistance to 

thermooxidation degradation. 3,3’,4,4’-benzophenonetetracarboxylic dianhydride 

(BTDA), oxydiphthalic anhydride (ODPA), PMDA, and 6F are several dianhydrides that 

are in high oxidation states.  The thermooxidative stability changes for every diamine.  It 

is found that biphenyl diamine units have the best overall thermooxidative stability. 

Benzophenone and p- or m-phenylene groups also follow.  It has also been observed that 

high molecular weight polyimides have better thermooxidative resistance than lower 

molecular weight counterpart [8].   

  

And as mentioned in the previous section, the use of reactive end-caps can 

greatly improve upon the thermal and thermooxidative resistance of the polyimide.  

Acetylene terminated polyimides have outstanding thermal properties  [3], [8].   

 

2.4.1.3 Hygrothermal Degradation  

 

It is known that most polyimides can tolerate high thermal conditions, however 

these materials can degrade rapidly in an hygrothermal environment.  This section will 
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cover what goes on during the hygrothermal environment to cause such degradation, and 

what results from the degradation.  In general a hygrothermal environment is a 

combination of moisture and high temperature conditions.  Lincoln lists the number of 

ways this degradation can occur by “moisture induced microcrack formation, hydrolytic 

degradation, molecularly ‘locked-in’ water, blister formation and subsequent composite 

delamination, and a variety of mechanisms resulting from hydrolysis and galvanic attack 

[3].”  

 

Due to the high thermal integrity of the polyimide, it seems that the moisture 

content (in the surrounding environment and within the material itself) is the culprit for 

the polyimide degradation.  One particular problem that polyimides suffer is that of 

hydrolysis and subsequent depolymerization.  Polyimides chemically degrade when 

exposed to water.  The amount of degradation due to hydrolysis greatly depends upon 

the chemical structure, diffusivity properties, and how the polyimide was processed.  

Hydrolytic attack can occur at the imide ring.  Here the ring will open to an amide 

formation and that will lead to chain scission of the amide group [3].   
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2.4.2 Effect of Polyimide Structure on Crystallinity  

 

Polyimides have been observed to exhibit crystallinity in many instances.  X-ray 

diffraction, FTIR, and optical methods have been used to observe the semi-crystalline 

morphology.  Understanding the crystalline morphology of polyimides is important 

because the necessary properties of the polymer are directly influenced by the 

morphology [4, 8].    

 

The backbone of the polyimide may influence the crystalline morphology.  

Researchers found that significant levels of crystallinity were found with some 

backbones and not so with other backbones, while using the same amine groups.  Table 

1 shows a brief list of combinations of different backbones and amine groups, along with 

their physical characteristics, that affect the polyimide’s crystal morphology.  Biphenyl 

dianhydride (BPDA) and OPDA did not have very significant levels of crystallinity.  

However, BTDA and PMDA backbones created a high amount of crystallinity in the 

polyimide [8].    The more linear and stiff the polyimide backbone is, there will be a 

higher amount of chain orientation within the material [4].  
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   Table 1. Chemical structure related to crystallinity [4]. 

Polyimide Name Physical Structure 
Crystalline / Amorphous 

Results 

BPDA/PPD Stiff/Rigid Semi-crystalline 

PMDA/ODA Rigid/Flexible Semi-crystalline 

BPDA/ODA Stiff/Flexible Semi-crystalline 

BTDA/PPD Flexible/Rigid Semi-crystalline 

BTDA/ODA Flexible/Flexible Amorphous 

ODPA/ODA Flexible/Flexible Amorphous 

 

 

 X-ray diffraction studies found that polyimides exhibit peaks in the (00L) 

domain.  However, this result can only be found in transmission, but not in the reflective 

mode.  This is due to the high amount of alignment in the molecular chains that are in 

the film’s plane.  The lack of detail can create confusion to the crystalline system of the 

polyimide material [4].   
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2.4.3 Effect of Polyimide Structure on Solubility  

 

When crystallinity develops in a polyimide, the solubility of the polyimide will 

decrease.  It has been hypothesized that crystals act as physical crosslink sites, which 

inhibit dissolution [8].  This has been observed when partially imidized polyimides 

swell, but do not dissolve, when exposed to an organic solvent.  It has also been 

suggested that partially imidized polyimides may contain premature crosslinks.  These 

crosslinks would disappear after further imidization [4].   

 

Solubility also depends upon the physical chemical structure of the polyimide.  In 

general, the polyimides that are found to be quite soluble have very flexible chains.  

Three requirements or items that would give a polyimide a higher possibility of being 

soluble is that the backbone structure should contain polar groups.  Bulky pendant or 

bridging groups and a higher flexibility allow for an improvement in solubility.   The 

type of catenation of the polyimide is also important.  Ortho catenation gives a 

polyimide a better solubility relative to meta catenation.  2,4’-catenation in a two-ringed 

diamine was able to improve the solubility in PMDA [4].   
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2.5 Liquid-Crystalline Polymers and Their Properties 

 

There has been a high level of interest in liquid-crystalline polymers (LCP) 

especially in the last two decades.  Liquid-crystalline behavior was first discovered by 

Reinitzer in 1901, and was researched primarily in France and Germany for the next 

three decades [9].  It was not until the early 1980’s when liquid-crystalline polymers 

were commercialized.  It has been suggested that LCP’s extraordinary properties open 

up a new realm of materials that can have superior properties relative to engineering 

thermoplastics.  This is due to the ordering of the molecular backbones, oriented in a 

particular direction.  This anisotropy produces exceptional mechanical, optical and 

electrical properties.  Thermosetting LCPs can have a highly ordered; crosslinked matrix 

that creates an anisotropic material that could potentially perform in high stress and 

thermal environment [9].  

 

There are two types of low molecular mass liquid crystallinity (LMMLC).  They 

are thermotropic and lyotropic behavior.  These types are divided by how the liquid 

crystal phase comes into being.  The thermotropic behavior is that material transforms 

into the liquid crystal phase via a thermal process, whereas the lyotropic liquid crystals 

form by a solvent influence [9].  
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There is also another categorical way in which liquid crystals are divided.  These 

three categories are based upon the ordering of the individual molecules, which are 

named: nematic, smectic, and cholesteric [9, 10]. Nematic is where the molecular centers 

are aligned in one particular direction.  However this is only found in the microscopic 

volume, one the macroscopic level, the arrangement becomes much more disordered, 

because the intermolecular forces are quite small [9].  

 

The cholesteric phase is similar to that of the nematic phase.  However the phase 

is rotated about a single axis which is normal to the orientation of the molecules.  This 

creates a helical path.  The smectic phase is much more complex.  The ordered 

molecules are layered upon each other, where each layer is a certain distance away from 

one another [9].  These three arrangements of liquid crystals are shown in the first row of 

Figure 5 [10]. 

 

The smectic phase can be separated even further into three conditions.  Smectic 

A is similar to nematic, but the molecules tend to be more linear in direction, but be the 

least ordered compared to Smectic B and C. Smectic C’s molecules are aligned and tilted 

at a particular angle.  Smectic B has the highest amount of ordering, where the ordering 

takes place in two dimensions, rather than in just one [9].   

 

The most common molecular shapes that create these types of phases are rods, 

discs, and lath-like molecules.  Typically rods and discs are the most common geometric 
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forms that create liquid-crystalline behavior.  Rods are found in all three types of phases.  

They have also created a cubic mesophase, however the reason for this behavior is 

unknown.   The disc geometrical forms pack one on top of the other creating column-

like structures.  These columns will be found in a two-dimensional array, termed a 

columnar mesophase.  These will orient in different geometrical forms having certain 

types of symmetries.  Discs will also form nematic and smectic phases.  Lath-like 

molecules create nematic phases where there is little rotation around the long axis of the 

molecule [9].   

 

There are two basic types of LCPs.  There can be main-chain or side-chain LCPs.  

The main difference between the two is how the mesogens are attached to the polymer 

backbone.  There can also be combinations of the two designated types such as 

combined side-chain and main-chain LCPs.  There are also LC elastomers and LC 

networks [9]. 

 

The optical microscope is an excellent tool in understanding the LC properties of 

a material.  The polarizing optical microscope can be implemented to observe the liquid-

crystalline “textures” of a thin layer of LC.  These textures originate from the 

characteristic defects.  These textures are unique and are a valuable tool in identifying 

the type of LC phase [10].     
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The textures differ between the three types of packing patterns for liquid crystals, 

(a) nematic (b) cholesteric and (c) smectic.  These unique textures show up very 

differently under the polarizing optical microscope, which are shown in Figure 5 [10]. 

 

These textures are given specific names and are modeled based upon the 

molecular configurations.  There are four main textures observed in the nematic phase, 

which are the homogeneous (monodomain), Schlieren, Nematic droplet, and the 

Inversion wall [9].  There are other types of textures observed in the nematic liquid 

crystals such as a string-like texture and a marbled look.   

Figure 5.  Arrangement of molecules in liquid crystals (1st row) and textures of liquid crystals in 
polarized light (2nd row).  (a) nematic, (b) cholesteric, (c) smectic. [10] 
 

a b c 

a b c
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The homogeneous texture has no specific texture observed in the microscope.  

Typically there is a homogeneous color observed.  The monodomain texture can be 

viewed by “rubbing” the LC substrate along a glass surface [9].  The rubbing can be 

executed by placing the substrate in between to glass slides.  The slides can be rotated 

and the phase becomes optically active due to the rotation about the molecules’ axes 

[10]. 

 

The Schlieren texture, which is shown in Figure 2(a), is the most observed 

texture in nematic LCs.  The nuclei (dark points) are characteristic to the texture.  There 

are large brushstrokes originating from these nuclei.  The points are actually vertical 

defect lines that are termed disclinations.  Depending upon the orientation of the 

disclinations and the molecular axes, the polarizer can be rotated and the position of the 

bands will move relative to the angle of the polarizer [9, 10].  
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There is also a special type of Schlieren texture.  Typically when a glass substrate 

is rubbed a very straight band will be noticed in the polarizing microscope.  This texture 

is known as the inversion wall. The molecules are aligned parallel to glass surface, but 

will not be straight at any walls.  This texture is created mostly due to the activity 

between the layer and the encompassing walls [9]. 

 

The Nematic Droplet is another type of figure seen in the polarizing microscope 

that is only found in the nematic phase.  The droplets form when the melt cools and 

begins to separate.  It separates into an isotropic and nematic phases.  The droplets are of 

the nematic phase and are completely surrounded by the isotropic phase.  The molecular 

orientation in each drop can be different from one another.  There are two types of 

orientations: bipolar and radial.  As their names suggest, the molecules in the radial 

configuration are fanned out from the center of the droplet.  The bipolar molecules are 

parallel to the surface wall of the droplet [9].   
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2.6 Previous Research  
 
 
2.6.1 AFR700B 

 
 

AFR700B was created, by the Air Force, out of a need to have a polyimide 

perform like similar polyimides, such as PMR-15, yet at an elevated service temperature 

of 371oC.  PMR-15’s backbone structure was changed from BTDE to 6FDA to improve 

the thermal stability.  The diamine was changed to a p-PDA to decrease the toxicity 

levels.  Only one end of the chain was capped with NE, with an amine on the other end 

of the chain as seen in Figure 6[3].   

 

The results of these changes were very successful.  AFR700B had a glass 

transition temperature greater than 400oC.  Compared to other polymer matrices, it had 

an additional heat tolerance of 150oC. Because of the great success, AFR700B was used 

immediately on the fuselage trailing edges on the F-117A Stealth Fighter [3]. 

   

Figure 6.  AFR700B chemical structure, [3]. 
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Unfortunately AFR700B was found not to perform well in a hygrothermal 

environment, although it had an excellent thermooxidative resistance.  The polyimide 

experienced a significant amount of hydrolysis, which lead to a large drop in Tg and 

mechanical properties.  It has been postulated that this hydrolysis occurs at the crosslink, 

creating scission along critical intersection points.  When the intersection is broken, the 

segments can not support the applied load.  These scissions can create a major difficulty 

in the performance of the polyimide [3].  

 

Lincoln researched how Avimid K3B and AFR700B hydrolytically degrade in 

pressure bomb experiments.  Although AFR700B had excellent mechanical and thermal 

properties, it exhibited the worst overall hydrolytic degradation.  Its glass transition 

temperature experienced a decrease of 25 to 200oC in an hygrothermal environment. The 

changes are due to hydrolytic degradation and plasticization via the entrapment of water 

molecules.  

 

Blistering, a degradation mechanism was also found in the K3B and AFR700B 

specimens during the pressure bomb test.  Blistering is controlled by several different 

variables such as (i) specimen geometry, (ii) high thermal gradients due to a high amount 

of heat over a short amount of time, and (iii) thermal-humidity-time history and the 

amount of contained moisture.  Blistering eventually leads to delamination of the 

polyimide composite systems.  After the pressure bomb tests, AFR700B experienced a 

dramatic change in dimensions, and several blisters were observed in its matrix.  It was 
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found that only a small amount of moisture, in the AFR700B specimens, was needed to 

begin the blistering process.  Only 0.4-wt.% moisture content was required to initiate 

blister formation [3]. 

 

Lincoln examined several different types of model compounds that make up the 

AFR700B system to understand what makes AFR700B hydrolytically unstable.  The 

main crosslinking occurs within the norbornene and maleimide reactions.  The 

norbornene reaction is made up of biradical homopolymerization and retro Diels-Alder 

reactions.  But as the retro Diels-Alder experiences a temperature above 200oC it will 

release a cyclopentadiene [3]. If there is little to no pressure placed upon the polyimide, 

the norbornene crosslinking will create a high amount of Michael addition reaction 

products.  The maleimide model groups contain the Michael addition reaction, 

aminolysis reaction, and the bismaleimide homocrosslink.   Nadimide crosslinks, 

maleimide homocrosslinks, and the flourinated backbone were all found to be 

hydrolytically stable.   

 

However, it was found that the norbornene crosslinks associated with the 

Michael addition model created the hydrolyzable weak link in AFR700B [1, 3].  These 

norbornene crosslinks originate from the nadic end-caps.  Therefore, Lincoln concluded 

that the AFR700B polyimide must be end-capped with a much more hydrolytically 

stable functional group [3]. 
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2.6.2 LaRC® PETI-5 

 

The PETI-5 is a thermoset phenylethynyl-terminated imide oligomer that drew 

much attention during the High Speed Civil Transport Program.  It has been found to 

have excellent mechanical strength and toughness with a glass transition temperature at 

270oC.  It crosslinks between 320oC to 371oC range and at a pressure of 1 MPa and can 

be easily processed by resin transfer molding (RTM) [11].  

 

 

 

In a comparative hygrothermal aging study with AFR700B and K3B, Lincoln 

concluded that PETI-5 was the most hydrolytically stable polymer.  He also found that 

Figure 7. LaRC© PETI-5 chemical structure, [3]. 
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there was 1013 magnitude difference on the rates of degradation between AFR700B and 

PETI-5 [3].  This may be due to the phenylethynyl end-cappers.     

 

The phenylethynyl oligomer end-caps are thought to be the ‘strong link’ in the 

PETI-5 chemical structure, as seen in Figure 7.  It crosslinks via a carbon-triple bond 

mechanism within its phenylethynyl oligomer end-caps [11].  Acetylene-terminated 

polyimides were thought to cure via acetylene trimerization, yet later the curing kinetics 

was found to be much more complex [11].  The trimerization produces an aromatic ring 

at the crosslink site.  This aromatic ring gives the polyimide the tolerance to high 

temperatures, stresses, and hygrothermal environments.  Unfortunately the acetylene 

group only experiences 30% of the trimerization curing reaction and does not perform 

well when it nears its glass transition temperature [3, 8].  

 

The PETI-5 network structure contains a high degree of chain extension and a 

low degree of crosslinking [5].  The high amount of chain extension gives PETI-5 an 

excellent toughness.  PETI-5 can be either amorphous or semi-crystalline morphology 

due to how it is processed.  It has also been found that PETI-5 will crystallize if the cure 

temperature is insufficient (350 + 360oC cure).  The exact mechanism for this 

crystallization is unknown, but the reason for the semi-crystalline morphology is that 

crystallization inhibits crosslinking at this temperature range [3], [11].  Similar 

crystallization behavior has been observed in other phenylethynyl-terminated polyimides 

with different backbone structures [7]. 
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The processing and curing mechanisms are complex and vary under different 

conditions.  A semi-crystalline, partially crosslinked morphology is formed when cured 

at or below 350oC. The reason for this occurrence is that material consists of amorphous 

and crystalline phases.  This system makes the processing of PETI-5 more complicated 

in that the crosslinking inhibits the growth of crystals.   

 

Also it has been hypothesized that crosslinks and crystals both form by the 

phenylethynyl oligomer end-caps.  When cured at 371oC, the material is completely 

amorphous [11].  At this temperature, the crosslinking kinetics of the system overpowers 

the crystal nucleation rate therefore giving rise to an amorphous polymer [3].   

 

Lambert et. al. [3] suggests that crosslinking and crystallization in 

phenylethynyl-terminated polyimides is connected by three ways. 

“ (i) Crosslinking eliminates reptation in its conventional sense, and only 

‘reptation slack’ is available for movement along the polymer chains 

exceeding nanometers. 

(ii) The need for exclusion of the bulky crosslinks for crystallization to occur 

significantly reduces the rate of secondary nucleation, which results in a 

growth rate that decreases exponentially with crosslink density. 

(iii) The concentration of crosslinks controls the upper limit possible for 

lamellar thickness [3].” 
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Lincoln also concludes that there is a solubility limit upon how many crosslinks 

can exist in a crystal.  This is based upon that if “the molecular weight between 

crosslinks is high, then the crosslinks can be incorporated into the crystals [3].”  The 

opportunity for the polyimide to crystallize decreases when its crosslink density is too 

high.   

 

The presence of the crystals gives a 10% increase in the materials mechanical 

toughness.  Also the presence of crystals leads to a 170% decrease in ductility, relative to 

the amorphous material [11].  The crystals also create a higher concentration of defect 

sites cause a decrease in the strain to failure rate [3].  It was determined that PETI-5 has 

these properties due to the unique properties of the end-caps [11].  Replacing 

AFR700B’s hydrolytically unstable nadic end-caps with the phenylethynyl-terminated 

end-caps, a new material was designated AFR700C or AFR-PEPA-N [2, 3]. 

 

2.6.3 AFR700C 

  

 AFR700C was synthesized in hopes of combining the thermooxidative abilities 

of AFR700B with the hydrolytic stability of PETI-5 and be able to withstand prolonged 

temperatures equivalent to AFR700B.  This combination is hoped to have the strengths 

of both materials and yet have no weakness in an hygrothermal environment.  Later on 

the imide oligomer, AFR700C, was termed AFR-PEPA-N due to that it is terminated on 
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both chain ends with 4-(phenylethynyl) phthalic anhydride, PEPA.  The nadic end-cap 

was removed and no amine groups were left unterminated.  The flourinated backbone 

was kept because of its high thermal properties and hydrolytic stability as seen here in 

Figure 8[3]. 

 

 

 

In the synthesis of AFR-PEPA-N imide oligomer, 4-(phenylethynyl) phthalic 

anhydride (PEPA), 2,2’-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride 

(6FDA) and para-phenylenediamine (p-PDA) were reacted together in N-1Methyl 2 

Pyrollidone (NMP).  Four imide oligomers were created from this reaction (n=1,2,4,8) as 

seen here in Figure 9[3].   

 

Figure 8.  AFR-PEPA-N imide oligomer chemical structure, [3]. 
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It was assessed that phenylethynyl terminated AFR700B had Tgs up to 435 to 

455oC.   It was found that this polyimide had improved hydrolytic stability relative to the 

AFR700B.  It experienced only a 3 to 5% drop in Tg compared to AFR700B’s 20% 

N = 1, 2, 4, or 8 
AFR-PEPA-N 

 
Figure 9.  Synthesis of AFR-PEPA-N imide oligomers [3]. 
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decrease in Tg, when subjected to a hygrothermal environment.  It also had superior 

mechanical properties compared to AFR700B in a 300oC environment [3]. 

 

Lincoln completed several initial characterization studies of the structure-

property-processing relationships of the AFR-PEPA-N polyimide.  The purpose of these 

studies was to confirm that this material meets the specifications set out by the United 

States Air Force.  The ultimate goal was to ascertain a material that could be processed 

by resin transfer molding, display the necessary mechanical properties under a high 

temperature of 300oC and be hydrolytically and thermooxidatively stable.  In detail 

Lincoln researched the “(i) rheological properties, (ii) mechanical properties, (iii) glass 

transition temperature, (iv) cure kinetics, (v) thermal stability, and (vi) possible 

crystallization (as observed in PETI-5) [3].” 

 

The polyimide was found to have superior hydrolytic stability similar to PETI-5 

and has excellent mechanical properties at high temperatures.  He found that there was a 

correlation between the mechanical response and crystallinity, but this relationship was 

not well understood.  The viscosity characteristics were acceptable for processability, in 

some instances, but it was recommended to put additives in the polymer system to lower 

the polyimide’s viscosity in order to ease processing [3]. 



 41

 

2.6.4 Liquid-Crystalline and Rigid-Rod Polymers 
 
 

Liquid crystalline behavior is the two-dimensional ordering of molecules.  The 

nature of the ordering lies somewhere between the random behavior of a liquid and the 

three-dimensional ordered crystals of a solid.  As mentioned in Section 2.5, there are 

three types of packing patterns for liquid crystals, (a) nematic (b) cholesteric and (c) 

smectic [10].  The compositions are determined by the geometric packing of the rods.  

The alignment also depends on the attractive and repulsive forces from the molecular 

structure [12].  

 

Liquid crystallinity is due to the behavior of rigid-rod type molecules.  The 

molecular structure is what gives it its rigidity.  Dowell predicts that rigidity is based on 

the “sequence of conjugated aromatic, double and triple bonds in a molecule [12]”.  It 

also can be distinguished by how much the pi-orbitals overlap and the large amount of 

carbon-carbon bonds.   

 

The liquid-crystalline structure may lead to a more uniformly crosslinked 

network structure due to the alignment of the oligomer end groups.  The liquid crystals 

could be oriented and when the polymer is cured, the crosslinks will be created along the 

orientation axis of the crystals.  This allows for anisotropic liquid crystalline structure 

that is a self-assembled structure [7].  
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For a nematic solution to create a material with a very high, nearly theoretical 

modulus, the solution must satisfy three requirements:  (a) good lateral packing, (b) the 

rods are nearly flawlessly oriented, and (c) the defects are held at a minimum [13].  For 

liquid crystalline material to form, the mesogens must orient [14].   

 

Odell et. Al studied the orientability of rigid-rod molecules in solutions using 

computer modeling programs and experimentally.  They found that “the rods are much 

less hindered in their rotations” than previously thought [15]. Liquid-crystalline 

thermosets were aligned in a magnetic field by Rozenberg et al.  They observed that as 

the thermoset cured, the polymer decreases in order [16].  

 

The Air Force has put a considerable amount of effort and research into ordered 

polymer technology.  Arnold “uncovered a unique film forming precipitate in the form 

of a two-dimensional sheet from nematic solutions of PBO and PBT [17].  These were 

synthesized from a “highly fused aromatic heterocyclic polymer system” for high 

temperature applications [17]. 

 

Lusignea realized the possibilities of applying these unique rigid-rod-like 

polymer systems.  These could be used for “structural, electronic, thermal, and optical” 

applications [18].  The films could be applied to multi-ply laminates for aerospace 

applications.  PBO and PBZT were found to have excellent capabilities such as a high 
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tensile strength and modulus, high thermooxidative resistance, self-reinforcing, and were 

very lightweight relative to other composites.  The materials do have a very low 

compressive strength [18].  It was also found that PBT and PBO have excellent thermal 

stability and their onset of degradation was at 620oC [19]. 

 

 Most of the research relies heavily on wide-angle x-ray scattering (WAXS), 

transmission electron microscopy (TEM), small-angle x-ray scattering (SAXS), and the 

optical microscope when characterizing liquid crystalline material.  WAXS can be used 

to observe three-dimensional texturing by localized Bragg scattering.  SAXS can be used 

to observe the materials voids.  DF imaging is used to find the size and shape of the 

crystallite [20].  Crystalline oligomers’ unit cell was observed by x-ray diffraction while 

undergoing solid-state transition.  The unit cell exhibited contractions under thermal 

stressing.  The crystalline oligomers also exhibited a high melting temperature but a low 

solubility [21].   

 

Solubility seems to be a problematic issue for liquid-crystalline material.  Martin 

and Thomas concluded, “the solubility of the polymer depends upon the complexity of 

the backbone [20].”  Cheng and Lee observed phase separation when using rigid-rod 

polymers.  To guard against separation, they blended a rigid-rod polymer with a coil-like 

polymer [22].  Rigid-rod polyimides and PEI were found to be completely miscible due 

to their similar backbone structure.  It was also found that a small amount of rigid-rod 
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like polymer could be added to increase the tensile modulus of a material by a significant 

amount [23].   

 

Understanding the possibilities and limitations in manipulating a polymer’s 

chemical structures, to ensure the possibility of liquid-crystallinity, is important in the 

next steps of developing the high-temperature polyimide.  These requirements and 

procedures could be implemented to modify AFR-PEPA-N so that producing a liquid-

crystalline; rigid-rod polymer would be a possibility. 
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CHAPTER III 
 

MORPHOLOGICAL INVESTIGATION OF AFR-PEPA-N IMIDE 
OLIGOMERS  

AND THEIR CURED POLYIMIDES 
 
 

3.1 Introduction  

 

As mentioned in the previous chapter, AFR700B had excellent thermooxidative 

and toughness properties, however it failed to be a hydrolytically stable material in 

combine high temperature, pressure, and moisture environments.  The AFR700B 

composite suffered from severe blistering.  It was found that only a small amount of 

moisture, in the AFR700B specimens, was needed to begin the blistering process.  Only 

0.4-wt.% moisture content was required to initiate blister formation [3]. 

 

However, the research did not end there.  AFR700B was improved upon, by 

altering the chemical structure of the polyimide.  The nadic end-cap were removed and 

replaced by, a more hydrolytically stable end-cap. 4-(phenylethynyl) phthalic anhydride, 

PEPA, was placed at both ends of the backbone, instead of just one end.  In the previous 

design, one nadic end-cap was place on one end of the chain, and an amine was placed at 

the other end of the chain.  
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 Previous research has found that amines at the ends of polyimide chains can be 

extremely detrimental to the stability of the polymer.  This new end-cap promises a more 

hydrolytically stable polyimide, while keeping the excellent properties of AFR700B.  

AFR700C was very successful in the preliminary characterization studies.   

 

From the previous research it has been suggested to further study the 

relationships between oligomer crystallinity and the properties of phenylethynyl 

terminated polyimides. This understanding is valuable in processing a polyimide to 

obtain its optimum properties.  The figure below shows the differential scanning 

calorimetry study that Jason Lincoln performed on AFR-PEPA-2.  

 

 In Figure 10, this DSC trace shows the thermal transitions that this imide 

oligomer experiences when heated from 100oC to 450oC at a rate of 20oC per minute.  

DSC is a thermal analysis tool used to analyze the characteristics and behavior of most 

materials.  The DSC measures the change in latent heat and heat capacity, over a 

temperature range.  From the change in latent heat, crystallinity, crosslinking 

temperatures, and melting temperatures can be determined.  The glass transition can be 

found from the change in slope.  DSC is not the best tool for determining the glass 

transition temperature.   
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The glass transition temperature is shown here before the oligomer is cured. This 

plot shows the endothermic crystal melting and crosslinking taking place in a small 

temperature window [3].  During the melting and curing processes the oligomers become 

less aligned, releasing different amount of energy depending upon the movement when 

being heated. This figure will aid in understanding how to further study the processing 

window of the polyimide. 

 

 

 

 

 

 

 

 

Temperature (oC) 

H
eat Flow

 (A
rbitrary) 

Tg melting 

Crosslinking 
reaction 

Figure 10.  Typical DSC trace of imide oligomer at heating rates  
       of 20oC/min (AFR-PEPA-2) [3]. 
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The objective of this study is to investigate any possible liquid crystalline nature 

of the precured and cured polyimide oligomer as a function of chemical composition, 

temperature, molecular weight, and oligomer synthesis conditions, by birefringence. The 

results from this research will aid in the “optimization of structure-property-processing 

relationships” of the polyimide for use in resin transfer molding (RTM) of complex 

shaped composites [6]. 

 

This research described in this chapter will focus upon: 

♦ identification of a reasonable processing window,  

♦ residual oligomer crystals acting as stress concentrators and initiators 

of microcracking, 

♦ a potential temperature overlap between the melting of crystals and 

the curing of the polyimide, 

♦ and possible crystalline and/or liquid crystalline characteristics. 
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3.2 Experimental Techniques 

 

The experimental techniques are based upon the layout discussed in Chapter I, 

Figure 4.  These tests are to access the crystal morphology, melting crystal and curing 

kinetics, and liquid-crystalline behavior. 

 

3.2.1 AFR-PEPA-N Imide Oligomer Film 

 

AFR-Pepa-N (-2, -4, -8) were cast into ~0.2 mm thick films onto glass cover 

slides.  In a small glass beaker, the powder was dissolved using N-1Methyl 2 

Pyrollidone (NMP).  The solution was stirred vigorously for approximately five minutes.  

A pipet was used to place several drops of the solution on a glass cover slide.   

 

These substrates were heated at 150oC, 200oC, and 250oC, on a Corning Hot 

Plate – Stirrer, until all of the NMP had evaporated.  Using digital temperature readout 

from carefully placed thermocouple monitored the temperatures.  The films were cooled 

slowly, so that no additional cracking would form from a high thermal gradient.  The 

films were then analyzed under cross-polarized light using the Olympus BX60 optical 

microscope. Micrographs were taken of the film morphology using FlashPoint FPG, a 

software package. 
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3.2.2 AFR-PEPA-N Melting and Curing Characterization 

 

The films were then heated over a range of temperatures.  The purpose of this 

test was to understand the melting and curing kinetics of the AFR-Pepa-N system.  There 

is a need to find a large processing window, between oligomer crystal melting and the 

onset of cure and associated crosslinking, where the best possible chance to implement 

the resin transfer molding (RTM) process.   

 

The groups of film were annealed in a Lindberg/Blue Oven (courtesy of Dr. 

Karaman and his research group) at an isotherm of 325oC, 350oC, 355oC, 360oC, or 

375oC for fifteen minutes.  The films were taken out of the oven immediately, and the 

crystal structure was characterized under polarized light using the Olympus BX60 

optical microscope. As before, micrographs were taken of the new film morphology 

using FlashPoint FPG. 

 

Also other film was heated with respect to temperature and time and the 

morphology was analyzed in real time.  The film substrate is placed onto a heating 

element within the Mettler FP84 Thermal Analysis Microscopy Cell.  This equipment 

allows light to pass through the element so that the heated substrate could be monitored 

by optical microscopy.  The Mettler FP80 Central Processor is programmed to start at 
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150oC and increase up to 10oC per minute.  It will shut off at 375oC.  Over this time, the 

morphology of the film will be observed using the Olympus BX60 optical microscope.   

 

3.2.3 AFR-PEPA-N Ratio Film 

 

A molar mass-based ratio of Pepa-4 and Pepa-8 was prepared.  It was observed 

that Pepa-8 does not contain any crystals unlike Pepa-2 and Pepa-4 under the polarizing 

microscope.  Unfortunately AFR-PEPA-8 cannot be processed because its viscosity is 

extremely high.  It was decided to create a blend of PEPA-8 and PEPA-4 in hopes that 

the PEPA-8 would terminate the nucleation of crystals, yet the presence of PEPA-4 

would decrease the viscosity.   

 

A 50:50 and a 25:75 ratio of Pepa-4 and Pepa-8 were blended together, and the 

films were cast from the mixtures using the same methods as previously described in 

Section 3.2.1.  The crystalline morphology of the films was studied at under cross-

polarized light using the Olympus BX60 optical microscope. 

 

3.2.4 Crystal Dissolution Characterization 

 

The Pepa-2 oligomer powder was vigorously stirred in N-Methyl 2-pyrollidone 

for approximately five minutes at room temperature.  The solution was observed under 
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cross-polarized light using the Olympus BX60 optical microscope.  Undissolved powder 

crystals were found from these observations shown in Figure 11.  

 

Several tests were run to see if the oligomer would dissolve under a certain 

circumstances and constraints.  A low concentrated solution (1 gram to 1 L) was blended 

for 24 hours at room temperature in a round bottom flask with a Teflon® coated stir bar. 

Several other solutions were run for different times and temperatures using a Glas-Col 

Series O Heating Mantle and a round bottom flask with a Teflon® coated stir bar. The 

systematic tests are shown below in Table 2. 

 

 Samples were taken from the solution and monitored under cross-polarized light 

by the Olympus BX60 optical microscope.  Micrographs that describe the general 

makeup of the crystals within the solution were taken using FlashPoint FPG. Crystal 

Figure 11.  (a) Micrograph of AFR-PEPA-2 imide oligomer powder in NMP at room 
temperature, undissolved oligomer crystals.  (b) Micrograph of AFR-PEPA-2  
imide oligomer powder in NMP at room temperature: same crystals that are stressed 
 and broken up. 

(a) (b) 
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sizes were measured from each solution using these micrographs.   The measurements 

were used to compare how well the crystals dissolved into the N-Methyl 2-pyrollidone. 

 
Table 2.  Dissolution tests as a function of time and temperature. 
 

Dissolution Tests 
1 5 minutes at 23oC 
2 24 hrs. at 23oC 
3 24 hrs. at 60oC 
4 72 hrs. at 50oC  
5 72 hrs. at 50oC; Ground 
6 24 hrs. at 100oC 

 
 

 

3.2.5 Liquid Crystal Characterization 

 

The films are stressed under the optical microscope, with cross-polarized light, in 

order to identify any of these unique liquid-crystalline patterns that were shown 

previously in Chapter II, Section 5.  A ‘shear’ test was conducted to ascertain for any 

liquid crystalline nature in the Pepa-2 film specimens.  The films are cast using the same 

method for the previous tests in Section 3.2.1.  We investigated for any shear banding 

that appeared under cross-polarized light.  Figure 12 shows the manner in which the 

characterization procedure was set up.  Two Pepa-2 film specimens were used for the 

shear test.  Specimens were sheared at 360oC, above the oligomer crystal melting point, 

after being exposed to this temperature for (i) five minutes and  (ii) fifteen minutes.  A 

0.025-in thick aluminum sheet substrate was used because of its high thermal 

conductivity.  As seen in Figure 12, a groove was cut out of the aluminum sheet.   
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Figure 12.  Shear experimental apparatus setup. 
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This groove held the film firmly enough so that the slide, when moved across the 

film, did not drag the specimen along with it.  The groove was 0.007-in which was 

slightly shallower than the 0.010-mm glass cover the film was on.  The furnace 

temperature was set at 360oC.  The film has a low viscosity at the isotherm.  The low 

viscosity allows the glass slide to shear the film with as little adhesion as possible.  

 

After the film was exposed to the temperature, for a specific amount of time, the 

slide was forced over the film substrate.  This applied stress may cause alignment of the 

molecular rods, if the polyimide is in liquid-crystalline phase.  The alignment may be 

observed using the cross-polarized light from the optical microscope.   
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3.3 Results and Discussion  

 

3.3.1 Crystal Structure and Morphology Results 

 

Films were cast prior to the knowledge of the solubility problem associated with 

the AFR-PEPA-N imide dissolving into NMP. Crystals were found in the Pepa-2 and 

Pepa-4 films at all of the processing temperatures.  There were no crystals present in all 

of the Pepa-8 film.  Microcracking was observed in all of the films.  The cracking is due 

to the thermal stresses experienced during the processing of the films.   

 

3.3.1.1  Crystal Size as a Function of Imide and Temperature 

 

Optical micrographs were taken of the films at each annealing-processing 

temperature. Figures 13 and Figure 14 show AFR-PEPA-2 and AFR-PEPA-4 imide 

oligomer film morphology that were cast at each different temperature and then viewed 

at room temperature.  The pictures do vary from each other due to variations in 

concentration, however the crystals seemed to have similar shapes for each temperature 

exposure and imide oligomer.  One interesting observation is that in most of the 

pictographs of the film, there are several large crystals surrounded by a large crowd of 

small crystals.   
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Figure 13. AFR-PEPA-2 imide oligomer film morphology with average crystal 
length as function of temperature, viewed at room temperature. 

Cast at T = 150oC 
 
Average Crystal 
Length = 0.825 µm 

Cast at T = 200oC 
 
Average Crystal 
Length = 0.907 µm 

Cast at T = 250oC 
 
Average Crystal 
Length = 0.645 µm 
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Figure 14. AFR-PEPA-4 imide oligomer film morphology with average crystal 
size as function of temperature, viewed at room temperature. 

Cast at T = 150oC 
 
Average Crystal 
Length = 1.134 µm 

Cast at T = 200oC 
 
Average Crystal 
Length = 0.696 µm

Cast at T = 250oC 
 
Average Crystal 
Length = 1.459 µm 
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Approximately a sample size of twenty crystals was randomly selected from a 

representative picture from the films.  A single crystal’s largest dimension and shortest 

dimension were measured and averaged.  The measurements were then averaged.  Table 

3 for Pepa-2 and Pepa-4 shows the crystals sizes of the film at the different processing 

temperatures. There appears to be no consistent dimensional change with annealing 

temperature. 

 
 

Table 3.  Crystal dimensions as a function of oligomer and processing temperature. 
 

Pepa-2 

Temperature Averaged Length 
(µm) Area (µm2) 

150oC 0.825 0.535 
200oC 0.907 0.646 
250oC 0.645 0.328 

 
Pepa-4 

Temperature Length (µm) Area (µm2) 
150oC 1.134 1.010 
200oC 0.696 0.380 
250oC 1.459 1.671 

 
 

In Figure 15, AFR-PEPA-8 showed an interesting morphology at each 

temperature.  At 150oC, there were small brown clumps scattered throughout the film.  

These seem to have been undissolved oligomer powder that were ‘frozen’ into the film.  

At 200oC and 250oC, there are no brown clumps noticed, however there are several 
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‘crystal-like’ forms.  This could be contamination, but overall there were no large 

amount crystal forms relative to the AFR-PEPA-2 and AFR-PEPA-4 films.  

 

 

 

 

 

Figure 15. AFR-PEPA-8 imide oligomer film morphology cast at different 
isotherms and viewed at room temperature. 
 
 
 
 
 
 
 

Cast at T = 150oC 

Cast at T = 200oC 
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3.3.1.2  Ratio-Morphology 

 

Pepa-4 and Pepa-8 were blended at different ratios of 50-50 and 25-75 to achieve 

a low viscosity polyimide with no crystals present.  This could potentially achieve a 

large enough processing window where there would be ample time to make a quality 

product via RTM. These films were also viewed in the polarizing optical microscope at 

room temperature.  The micrograph of each ratio is shown in Figure 16 and Figure 17.  

Figure 17.  75% AFR-PEPA-8 combined with 25%  AFR-PEPA-4. 

Figure 16. 50-50 Ratio of AFR-PEPA-4 and AFR-PEPA-8. 
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Unfortunately, the film did not show any significant changes relative to the Pepa-

4 film.  It still contained a large amount of crystals and had a similar appearance to Pepa-

4 and Pepa-2.  From these results we can infer that Pepa-8 and Pepa-4 are becoming 

mutually immiscible.  As can be seen in Figure 16 and Figure 17, both ratio blends 

contain a high concentration of crystals.   

 

 The left micrograph, of both Figure 16 and Figure 17, shows a separation 

between bands of crystals.  This separation may be due to the presence of AFR-PEPA-8 

imide oligomer in the blend.  Results from the rheological tests completed by Lincoln et. 

al. [3] conclude that the mixing of the ratios do not give the desired processing viscosity 

appropriate for RTM.  

 
 
3.3.2 Furnace Curing Results 
 
 
Table 4.  Observed oligomer film morphology at different annealing temperatures. 
Curing 
Isotherm at 
15 minutes  
(oC) 

Film Morphology under Cross-Polarized Light Optical 

Microscope 

325 No discernable melting, microcracks widen.  
350 Crystal Melting observed 
355 Still are a large amount of crystals present; most of the smaller 

crystals have melted. 
360 Most crystals melted. 
375 Few crystals observed. 
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Table 4 gives a brief synopsis of the crystal behavior at each isotherm.  We 

observed that the larger crystals took a higher annealing temperature to melt, which will 

decrease the processing window.  If the crystals do not completely melt fast enough, the 

material will crosslink with several crystal defects in the matrix.  If the crystal size can 

be reduced, the processing window to melt the crystals could significantly widen. 

 

In Figure 18, these pictographs show the film morphology change at each 

different isotherm. These processed films were viewed via polarizing optical microscope 

at room temperature.  From Figure 18(a) to Figure18(b) there seems to be no 

development of amorphous regions nor any signs of crystal melting.  A dramatic change 

is noticed between Figure 18(c) and Figure 18(e).  The film that was cured at 355oC was 

to establish a gradual change between these two isotherms.  From Figure 18(d), the 

smaller crystals begin to melt between 350 and 355oC.  The melting occurs at the edges 

of the crystal groupings and slowly works its way to the center of the crystal clusters. 

The clusters ‘break up’ and the melting occurs at a faster rate. This rate is noticed by the 

dramatic difference between Figure 18(d) and Figure 18(e).  In Figure 18(f), there is 

only one or two crystals remaining within the completely crosslinked material.  Another 

interesting artifact to note is the wisp-like characteristics in Figure 18(e).  These wisps 

were found in most of the film at this specific temperature.  This could be evidence of 

liquid-crystalline behavior.  This specific type is similar to Figure 5(a) in Chapter II, 

which shows that there would nematic behavior in this material. 
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(a) No Anneal / Cure: Film cast at 150oC.       (b) Cure at 325oC, 15 minutes. 

 

(c) Cure at 350oC, 15 minutes.    (d) Cure at 355oC, 15 minutes. 

 

(e)  Cure at 360oC, 15 minutes.   (f)  Cure at 375oC, 15 minutes. 

Figure 18. AFR-PEPA-2 film morphology at varying isotherms held at fifteen minutes 
each, viewed at room temperature (a-f). 
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The cure at 360oC produced interesting artifacts in the film shown in Figure 19.  Some of 

these could be evidence of nematic liquid-crystalline behavior.   

 
 

   PEPA-2, 200oC, cured at 360oC. 
 

  PEPA-4, 200oC, cured at 360oC 
 

  PEPA-4, 200oC, cured at 360oC. 
 
Figure 19.  Liquid-crystalline behavior at 360oC cure for both PEPA-2 and PEPA-4, 
viewed at room temperature. 
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3.3.3 Shear Test Results 

 

After being heated in the Lindberg/Blue oven at 360oC, for five minutes, the film 

substrates were manually sheared in the oven, as shown in Section 3.2.  The films were 

viewed at room temperature via the polarizing optical microscope. In Figure 20, AFR-

PEPA-2 is shown to have one or two places where shear banding occurred.   

 

 

 

 

 

 

 

 

 

 

 

This is where bands occur that is approximately 45o from the direction of the 

applied force.  However, looking at the overall picture (on the left), the bands do not 

follow this direction, but change direction in every piece of the film.  There are 

significant signs of liquid-crystalline behavior from previous crystal morphology studies 

in Section 3.3.2. The figure showed no consistency in the banding.  This would lead us 

Direction of Applied Force 
Location where the glass substrate 
stopped due to the high viscosity of 
the film. 

       Figure 20. AFR-PEPA-2 film morphology result of manually applied 
shear, viewed at room temperature.



 67

to the conclusion that the liquid-crystalline behavior is not as ordered as it could be.  It 

may contain nematic liquid crystals.  

 

3.3.4 X-Ray Results 

 

  The purpose of the x-ray diffraction test was to assure what was being observed 

visually in the optical microscope was, in fact a crystalline structure.  The oligomer unit 

cell is observed using a wide-angle x-ray diffraction technique.  

 

Figure 21. Wide-angle x-ray diffraction plot of AFR-PEPA-2 film. 

 

The wide-angle x-ray diffraction test shows, in Figure 21, that there was 

evidence of crystallinity in the AFR-PEPA-2 film.  The d-spacing ranged between seven 
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and eight Angstroms.  The graph shows two predominate peaks, which indicate the 

crystallinity in the specimen.  

 
3.3.5 Solubility Results 

 

After it was discovered that the crystals were innate in the powder form of the 

AFR-PEPA-N, dissolution tests were conducted to find at what circumstances the 

powder dissolved completely. 

 

 

At 24 hours at room temperature, a concentration of 0.01 gram of AFR-PEPA-2 

was blended with 10 ml of NMP.   Figure 22 shows that there is still a small quantity of 

crystals remaining in the low concentrated solution.  However, this is a significant 

reduction in the amount of crystals relative to a solution blended for several minutes.   

 

Figure 22.  AFR-PEPA-2 imide oligomer:  0.01 g / 10mL NMP blended for 
24 hr. at 23oC. 
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At 24 hours at 100oC for a concentration of 0.01 gram into 10 ml, it was found 

that the Pepa-2 powder completely dissolved.  From here film was cast at 200oC and 

250oC.  There were no crystals found in either film.  From this observation, it was 

realized that the crystals from the prior films were produced not by the heating of the 

solutions, but were inherent from the formation of the oligomers.   

 

This discovery potentially opens the processing window widely, without concern 

of crystals creating defects in the crosslinked structure.  If the crystals cannot be 

completely dissolved at higher concentrations, the crystal size can be reduced to a 

certain degree.  There could be a link between smaller crystal size and a widened 

processing window.  
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3.4 Conclusions  

 

♦ The initial results show that the crystal melting occurs between a small processing 

window of 350oC and 360oC.  There is approximately 50% cure at 355oC for fifteen 

minutes.  The material cures completely by 371oC.  From these initial results, the 

processing window is very small and cannot produce a fully cross-linked material 

free of crystal defects.  It is also concluded that larger crystals take more time to 

melt, than the smaller surrounding crystals.  If the overall crystal size can be reduced 

the melting can be effectively complete before the material crosslinks. 

 

♦ If not properly dissolved, Pepa-2 and Pepa-4 oligomer's inherent crystals do not melt 

quickly enough, giving undesirable defects in the final crosslinked product.  

However, if the oligomer is completely dissolved, the processing window is greatly 

widened, allowing a more complete crosslinked matrix with no defects.  A solution 

of 1 gm with 10 ml of NMP, blended at 100oC for 24 hours, is completely dissolved.  

If a higher concentrated solution is desired, the solution will have to blended for a 

longer period of time.  However, not all of the crystals need to be dissolved to create 

a defect-free material.    If the crystal size is reduced initially in the dissolving stage, 

the film’s small crystals will melt before the material becomes fully crosslinked. 
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♦ There is optical microscope evidence to conclude that AFR-PEPA-N oligomers have 

liquid-crystalline behavior, however the nematic liquid-crystalline behavior is weak.  

That is there is room for great improvement for the higher, ordering of the oligomer 

rods.  This may be due to its bulky chemical structure. Since AFR-PEPA-N has 

liquid-crystalline characteristics, the structure will need to be improved upon in order 

to achieve a higher ordered liquid-crystalline form. 
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CHAPTER IV 

REMODIFICATION OF AFR-PEPA-N TO ACHIEVE  
LIQUID-CRYSTALLINE BEHAVIOR 

 

4.1 Introduction 

 

As mentioned in the previous chapter, AFR-PEPA-N establishes itself as a high 

temperature polymer that has hydrolytic and thermooxidative stability.  It can be 

processed if the concentrations are made correctly.  It acts as a thermotropic, nematic 

liquid-crystalline polymer (LCP) at 360oC.  However it does not display a very highly-

ordered liquid-crystalline behavior.  It has been suggested to make several modifications 

to the structure of AFR-PEPA-N to achieve a highly-ordered LCP. 

 

The purpose of creating a highly-ordered LCP structure is to attain equal-length, 

rigid-rod segments that are nearly flawlessly oriented in a particular direction with little 

to no defects within the system. This structure is represented in Figure 23. The new 

structure development is to in effect allow the polyimide to have an equal-length, rigid-

rod oligomer.  

 

 

 

 Figure 23. Morphology of self-assembled rigid-rod oligomers. 
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This structure may lead to a more uniformly crosslinked network structure due to 

the alignment and self-assembly of the oligomer end groups. The rods could be oriented, 

either by force or by a magnetic or electric field.  The rods could also self-align via ionic 

salts placed in the oligomer end-groups.  After self-assembly, the crosslinks would form 

along the orientation axes of the oligomer end-groups. This anisotropy produces 

exceptional mechanical, thermal, optical and electrical properties. Each rod would 

experience an equal load amount, therefore eliminating any stress-raisers.  Thus this 

would create a material with a near theoretical physical properties.  These new materials 

should have superior thermal and mechanical properties relative to the other polymeric 

materials currently available.   

 

A new ultra-high temperature polyimide needs to be developed from the 

modifications to AFR-PEPA-N’s chemical structure in order to achieve a higher 

potential for liquid crystallinity.  The objective of this research was to first modify the 

backbone structure of AFR-PEPA-N.  Later development will include modifications by 

introducing an acetylene reactive group and substituting the hydrogen with a magnesium 

or lithium metal. 
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The 6FDA fluorine groups give the polyimide a high level of stability; however, 

these groups are non-linear and exceedingly bulky.  It has been suggested that this 

bulkiness is one particular reason the rods do not align properly.  The fluorine groups 

repel other rods quite possibly due to the fluorine atoms’ low polarity.  Fluorinated 

polyimides typically have disadvantages in adhering to different substrates due to this 

low polarity of the fluorine atom [4].   

 

It has been suggested to replace this bulky monomer, with a more stiff and co-

linear monomer.  As mentioned briefly in Section 2.5, an aromatic dianhydride, 

pyromellitic dianhydride (PMDA), is a very stiff and stable monomer.  It “is the most 

reactive” out of all dianhydrides due to its strong electron accepting properties [4].  

PMDA might allow for liquid-crystalline attributes, as mentioned in previous research 

there has been strong evidence that PMDA creates semi-crystalline type polyimides and 

quite possibly liquid-crystalline polyimides as well.   

 



 75

 

4.2 Experimental Technique 

 

The synthesis involved reacts an aromatic diamine, para-phenyldiamine (p-

PDA), to an aromatic dianhydride, pyromellitic dianhydride (PMDA), and is capped 

with 4-(phenylethynyl) phthalic anhydride (PEPA), a reactive endgroup in N-

methylpyrrolidinone (NMP).  PMDA and p-PDA both exhibit a co-linear structure that is 

more suitable for liquid-crystalline characteristics.  Their chemical structures are 

displayed in Figure 24.   

 

 

 

 

PMDA      p-PDA 

 

Figure 24. Co-linear chemical structure exhibited by PMDA and p-PDA. 

 

 

4.2.1 Synthesis Preparation 

 

The 97% pure pyromellitic dianhydride (PMDA), 1,2,4,5-benzenetetracarboxylic 

dianhydride, from Aldrich, was dried under vacuum at 100oC for 24 hours.   

O 

O 

O 

O

O

O NH2 H2N 
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Para-phenylenediamine (p-PDA) flakes were purchased from Spectrum Quality 

Products, Inc.; Lot number MJ0071 and is 98% pure. 4-(phenylethynyl) phthalic 

anhydride, PEPA, was obtained through the Air Force Research Laboratory / Wright-

Patterson Air Force Base.  Its melting temperature is at 157oC and it becomes volatile 

around 350oC. It was dried for 24 hours at 60oC in a vacuum oven.  N-1 Methyl 2 

Pyrollidone (NMP) was the solvent used for the dissolution of the monomers.   

 

4.2.2 Synthesis Procedure 

 

The monomers solutions were measured 10% solids by weight.  A molar ratio of 

1:1 for PMDA and p-PDA was used, and two PEPA was measured.  In a three-necked 

round bottom flask, a solution of p-PDA and NMP under a nitrogen atmosphere and 

stirred at room temperature, using a Teflon® coated stir-bar, until the p-PDA is 

completely dissolved.  
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Another solution is made combining PMDA with NMP in a nitrogen atmosphere 

at room temperature.  After this powder is completely dissolved, the solution is added to 

the p-PDA at one-third portion each hour.  The exothermic reaction is monitored by a 

thermocouple and is not allowed to exceed 60oC.  The solution is continued mixing for 

twenty more hours at room temperature and in a nitrogen atmosphere.  This results in the 

generation of polyamic acid with NMP.   

 

After the PEPA is removed from the oven, it is added as a solid into the 

PMDA/p-PDA solution still under a nitrogen atmosphere at room temperature. This is 

blended for four hours. The solution is poured into a beaker and is heated in a vacuum 

oven at 185oC for twelve hours.  This is to remove the water and imidize the polyamic 

acid.  From this the mixture should be in a slurry-type form.  The mixture is added to 

distilled water, filtered and then washed in boiling water.  Warm methanol is added and 

filtered to remove the NMP.  The remainder is dried under vacuum for 24 hours at 

200oC.  This yielded a light-brown powder.  The synthesis of TAMU-P3-1 is shown 

below in Figure 25. 
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Figure 25. Synthesis of TAMU-P3-N. 
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4.2.3 Initial Characterization 

 

Several initial tests were conducted in order to find out if the synthesis was 

successful and to characterize the new oligomer.  A Fourier Transform Infrared test, a 

Differential Scanning Calorimetry test, and dissolution test were conducted.  Below is a 

description of how each test was conducted and what was desired from each test. 

 

4.2.3.1  Differential Scanning Calorimetry (DSC) 

 

The Differential Scanning Calorimetry (DSC) technique employs the 

endothermic or exothermic processes the material experiences as to measure critical 

points that the specimen may contain.  The DSC compares the specimen to an empty 

reference pan and heats the specimen to a desired temperature over time and the 

temperature difference is measured through the use of thermocouples.   

 

The TAMU-P3-1 oligomer powder was measured out to be ~5 mg and placed in 

a tin plate.  The test was run using the Perkin Elmer Pyris 1:  DSC machine-, from 25oC 

to 500oC at a rate of 10oC per minute and then at 20oC per minute.  
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4.2.3.2   Fourier Transform Infrared (FTIR) 

 

The Fourier Transform Infrared (FTIR) test essentially emits a beam towards the 

specimen.  The beam interacts with the bonds in the specimen and a resultant beam is 

collected.  The FTIR scan gives a ‘fingerprint’ of the chemical bonding within the test 

specimen.  The resultant peaks are at a particular intensity and wavelength.  The type of 

bonding can be inferred from these intensities and wavelengths.  Thus, the polymer 

synthesis can be found to be a success or not based upon the bonding discovered from 

the FTIR scans.   

 

Roughly 2 mg of TAMU-P3-1 are finely ground in a mortar and pestle with 100 

mg of ground KBr.  This is layered into a mini-press and a thin film disk is pressed and 

placed into the Nicolet Avatar 360 FT-IR E.S.P. machine.  A FTIR spectrum was 

gathered from the original specimen by the EZ Omni E.S.P. data collection computer 

program.  To observe the carbon-triple bond decreasing as the crosslinking increased; 

FTIR scans were taken of the material to the point of full cure. To accomplish this task, 

the disks were heated in Lindberg/Blue furnace near the curing temperature.  Each film 

was kept in the furnace at a certain amount of time.  A spectrum was produced for each 

disk exposed to the high temperature over a certain amount of time and compared to its 

original spectrum obtained prior the curing time.  
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4.2.3.3   Dissolution and Liquid-Crystalline Test 

 

A 1gm-1L ratio of TAMU-P3-1 / NMP was blended in a round bottom flask for 

approximately one hour at room temperature.  The solution was observed under the 

polarizing Olympus BX60 optical microscope.  The solution was cast onto circular cover 

glasses and heated to 150oC as to evaporate the NMP and leave behind a thin film of 

TAMU-P3-1.  The film was then heated from room temperature to 360oC with a Mettler 

FP80 heating stage and processor and observed in real time using the polarizing optical 

microscope.   

 

4.3 Results and Discussion 

 

4.3.1 Differential Scanning Calorimetry (DSC) Results 

 

This section will cover the results from initial tests described in the previous 

section.  Firstly, the results from the DSC test are crucial because that result determines 

how each other test will be run and what should be looked for.  In Figure 26, the DSC 

test showed an endothermic peak at 351oC.  This displays that a certain amount of curing 

is taking place.  At a higher rate of 20oC per minute, the peak becomes more prominent.  
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There was no baseline applied to the DSC plot of TAMU-P3-1. It was not 

necessary to apply a baseline. The purpose of this DSC plot was to ascertain a 

crosslinking temperature range that could be used in the Fourier Transform Infrared 

Spectroscopy degree of cure test.  The lack of a baseline gives the plot a different 

appearance to the DSC plot of AFR-PEPA-2.  Several observations can be made.  What 

is strikingly different from this DSC plot relative to the DSC plot from AFR-PEPA-2 

(shown in Chapter III, Section 1), there is no Tg or melting of oligomer crystals found in 

the TAMU-P3-1 DSC plots.  This change warrants that the TAMU-P3 may not contain 

any crystals. Also it has been found that the PMDA used in the new oligomer does not 

Figure 26.  DSC plot of TAMU-P3-1 from 23oC to 500oC at a rate of 20oC per 
minute. 
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have a Tg or Tm point.  That is, these points are too high to be found by the typical 

thermal analysis methods.  The material will degrade, before any point is discovered.  

 

 

4.3.2 Fourier Transform Infrared (FTIR) Spectroscopy and Degree of Cure Results 

 

A FTIR spectrum was taken of the TAMU-P3-1 oligomer in its initial state, 

shown in Figure 27. There was significant evidence shown in the spectrum that the 

synthesis had been successful.  There were several imide peaks that showed the specific 

bonding, especially Imide III, where the C-N bonds occurs.  The presence of this bond 

shows that there was a successful linkage and imidization between the PMDA and p-

PDA monomers.  

 

 

 

IMIDE I 

IMIDE II IMIDE III 

IMIDE IV 

C≡C 

Figure 27. FTIR plot of TAMU-P3-1, uncured, showing significant imides and 
carbon-triple bond peak intensities. 
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Since the DSC plot showed a crosslinking peak at 351oC, the foot of the curve 

began around 340oC.  The FTIR tests were employed at 340oC.  The cure was chosen to 

be at four different lengths of time: 5 minutes, 15 minutes, 30 minutes, and one hour.  

The degree of cure is determined using the equation below: 

 

α = (IC≡C / In)t  / (IC≡C / In)t=0 [3]    (1) 

 

where α is the degree of cure, I is the peak intensity of either the carbon triple 

bond or the normalizing peak, n is the peak used to normalize the results, and t is the 

given length of time the specimen was cured. The peaks used in the calculations are 

explained in Table 5.  The table explains what type of bonding exists at the displayed 

frequencies.  The carbon-triple bond occurs around 2210 (1/cm).  Over time, as the 

material cures, the carbon-triple bond is consumed. The degree of cure is plotted with 

respect to time and normalization peaks.  
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Table 5. Peak assignments to normalize the intensity of the crosslink reaction. 

Peak Assignment Wavenumber 
(1/cm) Description of Imide 

Imide I 1777 C=O Asymmetrical Stretching 
Imide II 1724 C=O Symmetrical Stretching / 

Aromatic Imide 
Imide III 1360 C-N Stretching / Aromatic Imide 
Imide IV 741 C=O Bending / Aromatic Imide 
Crosslinking Reaction 2210 Carbon triple bond Absorption 

  

 

As in AFR-PEPA-N, the carbon triple bond peak at 2210 1/cm slowly decreased 

in intensity as the cure time increased.  Another interesting peak arose at 2359.58 and 

2340.52 1/cm.  These two grouped peaks decreased as the cure time increased.  The 

interesting subject to note here is that these peaks did not exist in the original FTIR scans 

prior to the curing of the test specimens. This could be that there is additional bonding 

occurring and decreases at the cure time increases.  Another possibility is that the 

chemistry of the compressed disks changed over the period of time of when it was 

produced and when it was cured.  A week-long period had passed before these 

specimens were cured.  The amount of cure changes with respect to imide peak intensity 

that was used to normalize the data.  

 

In Figure 28, the initial degree of cure is varies greatly between the different 

normalization imides used.  But the degree of cure levels off between 80 to 90 percent 

cure.  The Imide 2 curve warrants the most conservative degree of cure, only reaching 

80% degree of cure at 60 minutes.  If given more time, the degree of cure could possibly 
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slightly increase, however in Lincoln’s study AFR-PEPA-N only reached approximately 

50 to 60 percent degree of cure. Lincoln’s experiment does differ in specimen 

preparation and may not be a suitable comparison. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70

Curing Time (min)

D
eg

re
e 

of
 C

ur
e 

at
 3

40
o C

 (%
)

Imide I

Imide II

Imide III

Imide IV

 

Figure 28.  Degree of cure of TAMU-P3-1 at 340oC over time, comparing normalizing 
imides. 
 

 

4.3.3 Dissolution and Liquid-Crystalline Test 

 

The 0.01 gm of TAMU-P3-1 and 10 ml of NMP were blended together at room 

temperature for a 24 hour period.  The TAMU-P3 did not completely dissolve in the 

NMP solvent solution.  Powder crystals remained at the bottom of the solution. The 
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solution should be dissolved at an elevated temperature to find at what point the 

oligomer will dissolve. 

 23oC   355oC 

     360oC at 10min 

 

Figure 29.  Pictographs of undissolved TAMU-P3-1 imide oligomer crystals and heated 
to 360oC and held at 360oC for10 minutes (seen in real time). 
 

 

There was no image change within the film as it was being heated over time as 

seen in Figure 29. No special artifacts arose during the heating.  No crystal melted as 

well. Based on other liquid-crystalline studies, there were no liquid-crystalline behavior 

noticed as the film was heated and viewed in real time. 
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4.4 Conclusions 

 

♦ The remodification of AFR-PEPA-N was completed by substituting the flourinated 

backbone with a more rigid rod-like monomer.  The synthesis of this new polyimide 

oligomer deemed successful in the following initial characterization studies. 

 

♦ Initial characterization of TAMU-P3 showed that the oligomer cures at a temperature 

of 350oC from DSC findings. The degree of cure reaches about 80 to 90 percent 

complete based upon the consumption of the carbon-triple bond. 

 

♦ TAMU-P3 has difficulties in completely dissolving within NMP.  This could lead to 

problems in processing this oligomer, allowing defects within the cured structure. 

 

♦ TAMU-P3 has not shown any signs of liquid-crystalline behavior due to the lack of 

typical signs of LC characteristics in pictures taken from film shown in cross-

polarized light inconjuction with a heating stage. 
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CHAPTER V 

CONCLUSIONS 

 
5.1 Conclusions 
 

 

In this thesis, the precured and cured polyimide, AFR-PEPA-N oligomer’s 

special characteristics were investigated for any possible (i) crystalline and (ii) liquid-

crystalline characteristics using birefringence and other methods. A reasonable 

processing window was found due to the finding that the crystal size could be reduced 

by appropriate dissolution techniques.  The residual oligomer crystals were found to be 

innate in the powder and not created by thermal processing. 

 

  The potential temperature overlap was found to be between 360oC and 375oC 

and the crystals could not melt entirely before the material began crosslinking.  Possible 

nematic liquid-crystalline characteristics were found to be present at 360oC and that a 

new polyimide that originates from this structure could contain the high thermal, 

mechanical, degradation stability as well have the optimum properties due to its liquid-

crystalline nature. 

 

Chapter IV introduces a new polyimide based upon AFR-PEPA-N’s original 

structure. The remodification of AFR-PEPA-N was completed by substituting the 

flourinated backbone with a more rigid rod-like monomer.  
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Initial characterization of TAMU-P3 showed that the oligomer cures at a 

temperature of 350oC from DSC findings. The degree of cure reaches about 80 to 90 

percent complete based upon the consumption of the carbon-triple bond.  TAMU-P3 did 

not completely dissolve within NMP.  If heat is applied to this solution TAMU-P3 could 

possibly dissolve completely. TAMU-P3 did not show signs of liquid-crystalline 

behavior that AFR-PEPA-N showed when held at a high isotherm.  

 

5.2 Suggestions for Future Work 
 

To further develop the high temperature polyimide, which is, will have a higher 

possibility for liquid-crystalline behavior.  One approach is to create rigid-rod imide 

oligomers that will self-align and assemble by developing oligomers that contain ionic 

ends.  The hydrogen within the acetylene endgroups can be replaced with an ionic salt.  

The advantages of these self-assembling linear rods would create an anisotropic product 

with exceptional mechanical, optical and electrical properties. The oligomer rods could 

be oriented and when the polymer is cured, crosslinks will be created along the 

orientation axis of the crystals, resulting in networks with segments of equal load 

bearing characteristics.                                                                                                                                     
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APPENDIX 

 

Lincoln summarizes thermooxidation degradation mechanisms for polyimides in 

composite form at the macroscopic level as stated: 

 

(i) Oxidation begins at the surface of the polymer matrix, forming an 

oxidation layer that has a different chemical composition than the original 

matrix and can be seen in the microstructure.  Weight loss occurs 

primarily in the surface layer. 

(ii) If the temperature is high enough chemical degradation or reaction by-

products and volatiles will diffuse out of the resin. 

(iii) Over time, the surface layer increases and microcracks and voids begin to 

form at the surface.  Voids increase in size, density, and act as points for 

microcracks to grow. 

(iv) Microcracks also form in the composite interior due to the mechanisms 

mentioned earlier.  Cracks in the laminate enhance oxidation of the 

composite by providing additional paths for oxygen penetration, leading 

to a vicious circle, with oxidation promoting cracking, allowing more 

oxidation, and so on [3]. 
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