
THE DEVELOPMENT OF A BOVINE INTERSPECIES MODEL FOR THE

ANALYSIS OF GENOMIC IMPRINTING IN NORMAL AND NUCLEAR

TRANSFER DERIVED FETUSES

A Dissertation

by

SCOTT VICTOR DINDOT

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

August 2003

Major Subject: Genetics



THE DEVELOPMENT OF A BOVINE INTERSPECIES MODEL FOR THE

ANALYSIS OF GENOMIC IMPRINTING IN NORMAL AND NUCLEAR

TRANSFER DERIVED FETUSES

A Dissertation

by

SCOTT VICTOR DINDOT

Submitted to Texas A&M University
in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

Approved as to style and content by:

_________________________             _________________________
               James Derr                                                               Jorge Piedrahita
  (Co-Chair of Committee)                                              (Co-Chair of Committee)

_________________________                                  _________________________
           James Womack                                                              George Davis
              (Member)                                                                       (Member)

_________________________                                  _________________________
              Loren Skow                                                       Evelyn Tiffany-Castiglioni
               (Member)                                                            (Head of Department)

_________________________
           Geoffrey Kappler
   (Chair of Genetics Faculty)

August 2003

Major Subject:  Genetics



iii

ABSTRACT

The Development of a Bovine Interspecies Model for the Analysis of Genomic

Imprinting in Normal and Nuclear Transfer Derived Fetuses. (August 2003)

Scott Victor Dindot, B.S., Texas A&M University

Co-Chairs of Advisory Committee:  Dr. Jorge Piedrahita
                                                   Dr. James Derr

The advent of somatic cell nuclear transfer in cattle has provided the opportunity

for researchers to generate genetically identical animals as well as animals that possess

precise genetic modifications for agriculture and biomedical purposes.  However, in

spite of the revolutionary impact this technology presents, problems remain which

hinder the production of healthy animals on a consistent basis.  Research on cloned mice

implicates improper reprogramming of epigenetic modifications and genomic imprinting

for the low pregnancy rates and high incidence of abnormalities that are manifested in

cloned animals; however, a systematic and comprehensive analysis of nuclear

reprogramming in cloned cattle remains undone.

The purpose of this research is to assess and characterize the patterns of genomic

imprinting in normal and nuclear transfer derived bovine fetuses.  To facilitate the

identification of imprinted genes in the bovine, a Bos gaurus/Bos taurus interspecies

model has been incorporated to maximize the genetic heterozygosity that exists between

the alleles of putative imprinted genes for allelic discrimination and parental inheritance.
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The sequence of twenty-six genes, previously reported as imprinted in mice and

humans, was analyzed in Bos gaurus (Gaur) and Bos taurus (Angus) cattle for the

presence of single nucleotide polymorphisms (SNP).  SNPs were detected in the Gene

trap locus 2 (GTL2), Insulin like growth factor 2 (IGF2), Wilms tumor 1 (WT1)  and the

X chromosome inactivation specific transcript (XIST).  Allelic expression analysis in

interspecies hybrids indicated maternal genomic imprinting at the IGF2 and XIST loci,

paternal genomic imprinting at the GTL2 locus and no imprinting at the WT1 locus.

Analysis in cloned hybrids indicated fidelity of allelic expression at the IGF2 and GTL2

loci, however disruption of imprinting was observed at the XIST locus in the placenta of

clones.  These results are the largest identification of imprinted genes in the bovine and

the first identification of the disruption of an imprinted gene in an animal derived from

somatic cell nuclear transfer.
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It is with great pride that I dedicate this work to my father.  I thank you for your

never-ending support of my interests and ambitions, even when you never quite

understood them.
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CHAPTER I

INTRODUCTION AND LITERATURE REVIEW

The agriculture and biomedical applications of nuclear transfer (NT) in cattle are

promising (Piedrahita 2000; Westhusin et al. 2001).  The advent of this technology

provides the ability to generate animals possessing a myriad of valuable commercial and

biomedical traits.  To date, hundreds of calves have been produced through nuclear

transfer using a variety of techniques and donor cell types (Cibelli et al. 2002).

However, in spite of the revolutionary impact this technology has generated, many

problems still remain which hinder the efficient and consistent production of healthy

calves (Cibelli et al. 2002).

Primarily is the inefficient production of cloned calves due to embryonic and

gestational loss. The first somatic cell nuclear transfer calves were generated

approximately four years ago (Cibelli et al. 1998), and since this time, no significant

increases in birth rate percentages have been achieved.  To date, birth rate success in

cloned cattle range from 1-10% on average (Hill et al. 2000; Hill et al. 2001; Hill et al.

1999; Oback et al. 2003; Wells et al. 1999); much lower than rates from other artificial

in vitro techniques implemented in the cattle industry, such as embryo transfer and

artificial insemination. Recently, it has been demonstrated that in bovine clones, a large

percentage of losses occurs during the first trimester (30-60 days) and then diminishes as

__________________________

This dissertation follows the style and format of Genome Research.
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gestation proceeds, but not without further loss of fetuses (Hill et al. 2000).  The low rate

of embryos developing to blastocyst, which is approximately 50%, combined with the

early loss of established pregnancies are costly and time consuming.  Success of cloning

in the bovine will ultimately be determined by the ability to obtain and maintain

pregnancies; therefore, further analysis into these events is crucial.

Secondary to loss of pregnancies are the prevalence of fetal and more often

placental abnormalities that are observed in cloned calves.  A recent review of animals

generated through nuclear transfer indicated that more than half (64%) of all cloned

cattle surviving to term manifest some form of pathological condition (Cibelli et al.

2002).  Our own observations in cloned pigs, which were apparently normal at birth,

lead to the discovery of subtle phenotypes that each pig possessed (Archer et al. 2003).

Although the phenotypes in our cloned pigs were not pathological, they were

“abnormal”, considering each of the pigs was genetically identical.  Aside from

pathological conditions observed in cloned mice, they have been shown to be grossly

obese upon maturity, which is then corrected in resulting offspring (Tamashiro et al.

2002). These reports indicate that different species of animals generated through nuclear

transfer exhibit varying phenotypes, which can range from subtle changes in phenotype

to extreme pathological conditions.  Cloned cattle unfortunately manifest conditions that

are exacerbated relative to other cloned animals (Cibelli et al. 2002).   Thus, for the

expansion of bovine nuclear transfer technology in biomedical and agriculture programs,

the events and mechanisms influencing these problems need to be ascertained.
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It has been presumed for some time that inherent problems exist in the nuclear

transfer process that induce, either entirely or partially, the phenotypes and low birth rate

percentages that are observed in cloned cattle.  Discovery of the event or events that lead

to these problems has been difficult, due to the vast technical requirements demanded by

the NT process and the complexity of nuclear reprogramming.  Improper epigenetic

reprogramming of the donor nucleus has been suggested as a cause for these problems

and has been investigated widely in mice (Humpherys et al. 2001), but in cattle a

systematic and comprehensive analysis remains incomplete.

Epigenetic reprogramming is achieved by direct modifications that are imparted

onto the genome and typically involve methylation of DNA at the 5 carbon position of

CpG dinucleotides as well as acetylation and methylation of H3 histones (Dean et al.

2003).  In the eukaryotic genome however, CpG dinucleotides are under represented as a

consequence of frequent deamination of methylated cytosines into thymines; although

dense regions of CpG dinucleotides are common and can be found in a number of

regions including: X-linked genes in females, germ line specific and tissue specific

genes, repeat elements (LINES and SINES) and imprinted genes (Jackson-Grusby and

Jaenisch 1996).  Recently, DNA methylation and the machinery involved in its

establishment and maintenance have gained much attention because of its apparent role

in nuclear reprogramming (Alberio and Campbell 2003).

Genomic imprinting, resulting from parental specific epigenetic modifications,

involves the preferential expression of alleles based on parental inheritance (Barton et al.

1984).   That is, imprinted genes express either the paternal or maternal allele and
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regulation is presumably mediated by the presence or absence of methylated CpG

islands (Reik et al. 1987).  Imprinted genes identified to date are involved in fetal,

placental and neurological development (Reik and Dean 2001). Establishment of these

genes occurs during differentiation of germ cells and in early stages of embryonic

development. Genomic imprinting is theorized to exist in all placental mammals and, at

present, a number of imprinted genes have been identified in humans (Reik and Dean

2001), mice, sheep (Bidwell et al. 2001; Wylie et al. 2000; Young et al. 2001), cattle

(Killian et al. 2000) and marsupials (Murphy and Jirtle 2003).

Since nuclear transfer circumvents the processes that are normally involved in

establishing epigenetic modifications and genomic imprinting, it requires further

examination in cloned animals.  Dean et al (1998) demonstrated that mice generated

from embryonic stem cells (ES cells) possess disregulation at the imprinted Igf2, H19,

Igf2R and U2af1-rs1 loci.  Although ES cells are typically unstable with respect to

methylation, these results demonstrate the plasticity of imprinted genes when not passed

through the germ line and used directly for the generation of animals.  Xue et al. (2002)

and Eggan et al. (2000) have also demonstrated aberrant patterns of X-chromosome

inactivation (XCI) in the bovine and mouse respectively, which is regulated by the

imprinted Xist locus.  Additional reports from Kang et al. (2002) show abnormal

epigenetic patterns in cloned bovine embryos at repeat elements (LINES) and within

tissue specific promoters (Epidermal cytokeratin).  These reports are connected to Chung

et al (2003) who demonstrated abnormal expression of the DNA methyltransferase,

Dnmt1, and improper nuclear localization of the maternal Dnmt1o isoform in cloned
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mouse embryos. Our own results indicate stochastic patterns of DNA methylation in live

cloned pigs at both centromeric and euchromatic regions (Archer et al. 2003).

Therefore, it is likely that the cloning process alters, through some unknown process or

through the lack of a process, genomic imprinting and DNA methylation in resulting

embryos and offspring.

The focus of this research is to develop an experimental model for the systematic

characterization of genomic imprinting and DNA methylation in the bovine.

Additionally, this model will facilitate analysis of nuclear reprogramming in the bovine

at identified imprinted genes as well as epimutations (epigenetic disregulation) that arise

in the nuclear transfer process.  Development of this model will be achieved using

crosses of Bos gaurus  (Gaur) and Bos taurus (domestic) cattle, in an attempt to increase

the frequency of single nucleotide polymorphisms (SNPs) between parents.  These SNPs

will be used to characterize the allelic expression and parental inheritance of putative

imprinted genes. Methylation analysis of repeat elements and tissue specific promoters

will be utilized so as to characterize nuclear epigenetic reprogramming.

BACKGROUND

Nuclear transfer

Attempts of nuclear transfer in animals extend well beyond the production of

Dolly, the world’s first animal generated through somatic cell nuclear transfer (Campbell

et al. 1996).  Long before, fusion of adult amphibian keratinocytes to enucleated eggs

were performed and were able to support development in culture to the juvenile tadpole
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stage (Gurdon et al. 1975). Afterwards, attempts in mice, sheep, cattle and rabbits

generated live animals using cells from the epiblast (Stice and Robl 1988), and 8-16 cell

blastomeres (Collas and Robl 1990; Prather et al. 1989; Robl et al. 1987).  Recently,

cattle, goats, pigs, zebra fish, rabbits, a cat and a mule have been added to the list of

animals generated through somatic cell nuclear transfer (Baguisi et al. 1999; Cibelli et al.

1998; Lee et al. 2002; Polejaeva et al. 2000; Shin et al. 2002; Woods et al. 2003).

However, generation of all species through cloning is hindered by low viable birth rates

and high incidences of abnormalities (Cibelli et al. 2002).

At present, two methods of nuclear transfer are utilized, a) the electrofusion

method, giving rise to cloned sheep, cattle, goats, cats and mice (Campbell et al. 1996)

and b) the piezo driven method used primarily to generate cloned mice (Ogura et al.

2000).

Various permutations exist within the electrofusion method, but essentially

metaphase II oocytes are enucleated micorsurgically and donor cells are injected into the

perivittaline space.  Following reconstruction, oocyte complexes are aligned within a

fusion chamber and a direct current (DC) pulse is administered, which causes a

temporary disorganization of cell membranes, thus allowing donor cell and cytoplasmic

membrane to fuse.  Fused complexes are then activated to initiate development through

various methods: chemical activation consisting of ionomycin and dimethyl amino

purine (DMAP), cyclohexamide or electrical activation utilizing an alternating current

(AC) pulse.  Reconstructed embryos are either cultured to the blastocyst (day 7) stage

where they are transferred to surrogate mothers, or are transferred directly after
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activation.  The various protocols depend on preference of investigator or species of

animal being cloned.  To date, animals have been generated using all of the methods

described above.

In mice, the method of choice is the piezo driven method (Wakayama et al.

1998).  Metaphase II oocytes are enucleated microsurgically and donor cells are injected

directly into the oocyte cytoplasm.  This is achieved through the use of an injection

pipette housed in a piezo-impact pipette drive unit.  This unit, which drives the pipette a

short distance (approximately 0.5 mm) very rapidly, allows the pipette to easily penetrate

the zona pelucida and plasma membrane without lysing the oocyte.  A thin-walled flush-

ended pipette, approximately 7 mm in diameter, is used for injection.  Additionally, the

cell membrane of the donor cell is disrupted when the cell is drawn in and out of the

pipette a few times; therefore, allowing the nuclei to be injected independent of donor

cytoplasm and cell membrane.  To date, approximately 100 cloned mice have been

generated using this protocol (Perry and Wakayama 2002).

Epigenetics

DNA methylation

Methylation at cytosine-guanine nucleotides (CpG dinucleotides) exists in

virtually all vertebrates, many invertebrates and most plants (Reik et al. 2003b).  In

vertebrate genomes, the 5-carbon position of cytosine within a CpG dinucleotide is

methylated.  The complementary strand of 3’GpC 5’ is methylated as well and these two
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methyl groups exhibit a three dimensional structure prominent in the major groove of the

double stranded DNA.  In most mammals, 60-90% of all CpG sequences in the genome

(approximately 3 X107 methylated cytosines) are methylated and (Walsh and Bestor

1999) these CpG dinucleotides are typically clustered in GC rich regions, termed CpG

islands.  [An equation has been formulated for the prediction of CpG islands within the

genome (observed X expected/ expected > 0.6)], but methylation is not constrained to

these regions (Bestor 2000).  CpG islands are found in a number of genomic regions

including: repeat elements (LINES and SINES), 5’ regions of promoters, inactivating

centers (IC), tumor suppressor genes, proto-oncogenes and in differentially methylated

regions (DMRs) of imprinted genes (Jaenisch and Bird 2003).

The sequence draft of the mouse and human genomes, indicates that of the

30,000-40,000 genes residing in the genome, as many as 20,000 are presumably

associated with CpG islands (Bestor 1998a).  Typically, expressing and non-expressing

promoters are largely undermethylated in tissues under normal conditions, however,

imprinted genes and certain inactive genes on the X chromosome are concomitant with

promoter methylation (Boumil and Lee 2001).  Embryonic lethality by inactivation of

DNA methyltransferases (Dnmt) through knockout strategies has shown the importance

of genomic methylation.  Dnmt -/- mice exhibit genome wide hypomethylation and

typically do not survive past E12.5 (Trasler et al. 1996).  Additionally, localized

disregulation of methylation can result in genomic instability and various forms of

cancer (Eden et al. 2003).  A number of idiopathic diseases have also been associated
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with DNA methylation (Lopes et al. 2003).  Thus DNA methylation in mammals

magnifies the complexity of genetic regulation and disregulation.

Four DNA methyltransferases and derivatives have been identified in mice and

humans: Dnmt1, Dnmt2, Dnmt 3a and Dnmt3b (Bestor 2000).  Inactivation of Dnmt1,

Dnmt3a or Dnmt3b by gene targeting in mice results in varying degrees of

hypomethylation and embryonic lethality (Bachman et al. 2001).  The biological

function of Dnmt2 is unknown, but a role in centromere function is postulated (Dong et

al. 2001).  These methyltransferases can be further classified into two categories: (i)

maintenance DNA methyltransfeases (Dnmt1 and Dnmt2) and (ii) de novo DNA

methyltransferases (Dnmt3a and Dnmt3b) (Reik et al. 2001).

Maintenance methyltransferases (Dnmt1) are highly active against hemi-

methylated DNA, such as in the case of replicating DNA.  Dnmt1 provides the correct

pattern of methylation to the newly synthesized daughter strand of DNA based on the

methylation status of the parent strand.  Improper establishment of DNA methylation

during replication has been termed “epimutations” and has the potential to affect an

organism in the same manner as a genetic mutation (Reik et al. 2003b).  In addition to

maintenance function, Dnmt1 has also been shown to repress transcription directly in

cooperation with histone deacetylases (HDACs) (Fuks et al. 2000).  Recently, a sex

specific form of Dnmt1 (Dnmt1o) has been identified in mouse oocytes.  The Dnmt1o

gene possesses a sex specific promoter and a 5’ exon (exon 1) which causes translation

to initiate at an ATG codon in exon 4, resulting in a shorter form of the protein than the

somatic form by 118 N-terminal amino acids.  Dnmt1o accumulates at high levels in the
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oocyte and is nuclear only at the early stages of development.  Dnmt1o is cytoplasmic in

pre-implantation embryos, subsequently localizes to the nucleus for a short time at the 8-

cell stage, and is later replaced by the somatic form of the protein.  The biological

relevance of this unusual form of nuclear/cytoplasmic trafficking is unknown, but it is

intriguing as to what role it has in methylation and why it is localized in this manner

(Ratnam et al. 2002).

  The other class of de novo methyltransferases, DNMT3a and DNMT3b add a

methyl group to unmethylated CpG dinucleotides.  De novo methylation occurs during

gametogenesis in both male and female germ cells, where it is believed to play an

important role in the establishment of genomic imprinting in the gametes.  Additionally,

de novo methyltransferases are responsible for remethylation of the genome after the

asymmetric demethylating events, which occur in the pre-implantation embryo.

Evidence demonstrates that Dnmt3a is required for the establishment of methylation

imprints in the oocyte (Hata et al. 2002).  De novo methylation occurs primarily in

gametes, embryonic stem cells and embryonal carcinoma cells, but is largely suppressed

in differentiated somatic cells (Hajkova et al. 2002).  Due to ramifications of de novo

methylation in adult organisms (cancer, etc), regulation is thought to be under tight

control and limited only to early developmental processes.  Although Dnmt3a and

Dnmt3b are expressed at low levels in somatic cells, high expression of the proteins is

detected in early development, concomitant with the establishment of new imprints

(Bachman et al. 2001).  Chen et al. (1998) have recently identified a truncated form of

Dnmt3a (Dnmt3a2), which exhibits differential localization patterns within the genome
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relative to Dnmt3a.  Dnmt3a localizes predominantly to heterochromatin while Dnmt3a2

localizes predominantly to euchromatin, thus suggesting specific biological functions for

each of the proteins.  Several different Dnmt3b transcripts have been detected resulting

from alternative splicing and appear under the regulation of nuclear trafficking (Chen et

al. 1998).

Methyl donors

Methylation of CpG dinucleotides via methyltransferases depends on the

availability of methyl groups from S-adenosylmethionine (SAM).  Dietary factors which

are likely involved in the production of methyl groups and that influence DNA

methylation include folate, vitamin B12, vitamin B6, vitamin B2, methionine, choline

and alcohol.  Normally in one carbon metabolism, a carbon unit from serine or glycine is

transferred to tetrahydrofolate (THF) to form 5,10-methyl-enetetrahydrofolate.  This

compound is then subsequently used for the synthesis of thymidine, oxidized to formyl-

THF for the synthesis of purines, or reduced to 5-methyltetrahydrofolate and used to

methylate homocysteine to form methionine.  Methionine is then converted to SAM by

an ATP dependent transfer of adenosine to methionine through methionine

adenosyltransferase.   SAM is the primary methyl donor source for most cellular

methylation reactions (DNA, RNA, proteins, histones and neurotransmitters) (Laird and

Jaenisch 1994).

The demethylating activity that occurs during the generation of primordial germ

cells, demethylation of sperm and oocyte genomes post fertilization and in cancers is
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unknown.  There are two theorized mechanisms that might remove methyl groups from

CpG dinucleotides.  The first is a passive mechanism whereby methylation is lost due to

the absence of methyltransferases during DNA replication, resulting in a reduction in

methylation over time as the genome replicates.  The second is a dynamic process in

which an active demethylase catalytically removes methyl groups (Reik et al. 2003b).

Evidence supports both theories, especially when considering the reprogramming of the

sperm and oocyte post fertilization.  In mouse zygotes, the paternal (sperm) genome is

rapidly demethylated upon entry into the oocyte cytoplasm whereas the maternal

genome (oocyte) gradually loses methylation over time as the embryo differentiates into

a blastocyst (Santos et al. 2002).  It seems clear that the demethylation of the maternal

genome results from absence of methyltransferases, which are localized to the cytoplasm

(Oswald et al. 2000), but the mechanism that rapidly demethylates the paternal genome

within minutes of fertilization is unknown.  It is likely that demethytransferases, residing

within the cytoplasm, obtain entry into the paternal pronuclei during decondensation and

protamine to histone transition and demethylate the paternal genome.  However, this is

only speculation and the machinery and specificity of demethylation during this time is

not known.

Understanding the mechanisms of DNA methylation raises another question:

why is DNA methylated in the first place?  The involvement of DNA methylation in so

many different types of organisms, especially prokaryotes, provides a link to genome

defense (Jahner and Jaenisch 1985).  The homology between prokaryotic and eukaryotic

methyltransferase enzymes suggests that these enzymes have evolved to disable foreign
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or invasive DNA sequences.  In eukaryotic genomes, transposable elements are

constantly bombarding DNA moving about without regard to sequence location.  As

much as 35% of the human genome is composed of mobile elements and plant genomes

possess even more.  Therefore, to contain the spread of transposable elements and to

suppress transcription, such as with viral components, it appears that the host genome

has acquired the ability to methylate and thus inactivate such elements (Bestor 1998b).

Interestingly, CpG islands possess elements reminiscent of ancestral retroviruses (Yoder

et al. 1997).  Promoters and introns also contain repeat elements indicative of

transposons and many of these have been shown to affect regulation by their methylation

(Constancia et al. 1998).  It appears that these elements have co-evolved with mammals

and regulate important biological functions.

Genomic imprinting

Genomic imprinting is a phenomenon whereby alleles of particular genes are

repressed or expressed on the basis of parental inheritance.  Although it has been known

for some time that DNA methylation is involved in the mechanisms of imprinting, it is

still unclear as to how exactly these modifications interact with genes to regulate

expression (Lopes et al. 2003).  Regions residing in all imprinted genes identified to

date, termed differentially methylated regions (DMRs), are believed to regulate the

expression of alleles based on the presence or absence of CpG methylation that resides

as islands within these DMRs (Constancia et al. 1998).  Thus, differential methylation of

DMRs is coincident with the differential expression of alleles.
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Characteristic of imprinted genes is their tendency to be found in clusters.  In

humans, two major clusters have been reported on chromosome 11p15.5 and 15q11-13.

In mice both clusters are located on chromosome 7 (Reik and Maher 1997).  One

important aspect of clustering is enhancer competition, whereby adjacent promoters

compete for access to enhancers, such as in the Igf2/H19 domain located on

chromosome 11p15 in humans.  H19 is expressed exclusively from the maternal allele

(Bartolomei et al. 1991) whereas Igf2 is restricted to the paternal allele (Lopes et al.

2003). Further analysis of the region demonstrates an imprinting control region (ICR),

located 2kb upstream of the H19 gene (Bell and Felsenfeld 2000) and its differential

methylation originates from the gametes (Tremblay et al. 1995).   A zinc finger protein

binding the sequence CCCTC, termed CTCF, binds to the unmethylated maternal allele

and activates the boundary function of this unit which further prevents a common set of

enhancers from interacting with the Igf2 locus.  On the paternal allele, methylation

interferes with the binding of CTCF; therefore, the enhancer element, which has a higher

affinity towards Igf2, interacts and mediates transcription of Igf2 and not H19 (Bell and

Felsenfeld 2000).

Another unique characteristic of imprinted genes is regional control or

“spreading”.  A classic example is the X inactivation specific transcript (Xist), which is

located within the X chromosome inactivation center (Xce) (Constancia et al. 1998).

The Xist locus in mice is maternally imprinted in the trophectoderm (extraembryonic

membrane of the placenta), whereas the paternal allele is preferentially expressed (Lyon

1999).  Expression of Xist from the paternal allele results in inactivation of all but a few
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genes within the respective X chromosome (Lyon 1999).  Inactivation of the X linked

genes on the paternal chromosome is accompanied by methylation of CpG islands

located within promoters.   Therefore, expression of the imprinted Xist locus acts in

trans on the other genes and effectively induces inactivation.  XCI is the most extreme

form of “spreading” amongst imprinted genes, but it provides evidence to the

capabilities of imprinted elements and their regulation of other genes (Constancia et al.

1998).

The germ line has a critical role erasing imprints inherited from the previous

generation and in establishing imprints in the next generation, according to the sex of the

germ line (Fig 1.1). In the mouse, primordial germ cells (PGCs) migrate through

extraembryonic regions and the hindgut to the gonads in the genital ridge by E10.5-11.5

(Buehr 1997).  At E13.5 female germ cells enter the meiotic prophase, whereas male

germ cells undergo mitotic arrest until after birth, which is then followed by meiotic

differentiation.  Global demethylation and remethylation events occur in germ cells by

E12.5-13.5.  All non-imprinted genes tested to date are demethylated in both sexes

(Kafri et al. 1993; Sanford et al. 1987) as well as reactivation of the inactive X

chromosome in females (Csankovszki et al. 2001), although it is still uncertain if

complete demethylation of some regions occurs.  Hinting to this idea are few instances

of incomplete demethylation, which occur at repeat elements of ancestral intracisternal

A particles (IAP).  It has been demonstrated that alleles of the agouti locus in mice

(Aiapy, Ahvy and Avy), containing long terminal repeats (LTR) of IAP retrotransposons

upstream of the agouti promoter, maintain variable levels of methylation during
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Fig 1.1. The life cycle of imprints. (A) Methylation imprints are introduced in oocytes and sperm
in different imprinted genes.  Differential methylation is maintained following fertilization.
Methylation imprints are erased during development of the primordial germ cells.  (B) DNA
methylation and reprogramming.  Methylation patterns are reprogrammed genome-wide in
primordial germ cells (and imprints are erased at this time) and reestablished in mature gametes.
After fertilization, the paternal genome is actively demethylated (dark), whereas the maternal
genome is passively demethylated during cleavage divisions of the preimplantation embryo
(grey).  De novo methylation begins in inner cell mass cells of the blastocyst.  (Reik et al. 2002)
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gametogenesis when passed through the maternal germ line (Rakyan et al. 2003).  This

results in variable expression of the agouti locus and is manifested in the pups by

differences in the agouti coat color.  This observation demonstrates that either these

regions are protected from demethylation due to inherent properties of the LTR or that

the machinery has evolved not to demethylate these regions due to the consequences of

active IAPs within the genome.  Either way, this supports the idea of heritable traits

influencing phenotype independent of genetics.

Remethylation of the mouse genome begins at approximately E15.5 in many

gene sequences, with certain sequences maintaining differential methylation between

sperm and oocyte (Piedrahita 2000; Sanford et al. 1987).  In the female, oocytes in

dictyate stage arrest are apparently not methylated until after birth, when methylation

occurs during oocyte growth (Lucifero et al. 2002).   This has been observed in repeat

sequences (Howlett and Reik 1991), Igf2R (Stoger et al. 1993), imprinted transgenes

(Chaillet et al. 1991) and inferred for the imprinted Peg1, Peg3 (Paternally expressed

genes 1 and 3) and Snrpn  from functional studies (Constancia et al. 1998).

Establishment of methylation in these previously mentioned genes is in conjunction with

high levels of expression of Dnmt1, although it is unclear whether all other imprinted

sequences initiate methylation at this time as well (Biniszkiewicz et al. 2002).  In the

male germ line it is also unclear when imprints are erased and reestablished.   In the

paternal germ line, evidence points to remethylation of the Igf2 DMR at approximately

E18.5 and of H19 at approximately E21.5, however, complete demethylation of this
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region is not observed (Constancia et al. 1998).  Additionally, the establishment of

imprints at chromosome 15q11-13 in round spermatids, elongated spermatids and

ejaculated spermatozoa have been identified indicating the timing of imprint

establishment in differentiation of spermatagonia (Manning et al. 2001).  Thus it is clear

that reprogramming of the paternal and maternal genomes occurs before fertilization, but

at different times during development between parents and at different locations in the

genome.

Following imprinting in the germ line, the parental genomes exhibit differential

modes of demethylation in the newly formed zygote.  Upon entry of the sperm into the

oocyte, maternal cytoplasmic factors obtain access to paternal chromosomes for

approximately 5 hours, at which time decondensation of the tightly packaged sperm

DNA occurs resulting from the protamine to histone exchange required of the paternal

chromosomes.  During this time the paternal genome undergoes dramatic demethylation,

although some are protected such as H19 (but not Igf2), Ras, Grf1 and some repeat

elements, while the maternal genome, which contains most of the marks associated with

imprints, undergoes further de novo methylation up to the blastocyst stage and is most

likely regulated by passive demethylation via lack of maintenance methyltransferases

(Oswald et al. 2000; Rougier et al. 1998). Afterwards, the paternal pronucleus forms,

thereby regulating access of cytoplasmic factors to the genome.  Asymmetric

demethylation of the parental genomes has also been observed in cattle, pigs and humans

(Dean et al. 2001).
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Remethylation of the paternal and maternal genome resumes after implantation

and formation of the epiblast and trophectoderm (Santos et al. 2002).  Postzygotic de

novo methylation requires functional Dnmt1, Dnmt3a and Dnmt3b transcripts (Hata et

al. 2002), however, the Dnmt1 and Dnmt3 knockout mice exhibit low levels of

methylation (Fuks et al. 2000; Rhee et al. 2002; Robertson and Wolffe 2000).  A number

of cytoplasmic factors with the potential to modify the epigenetic states of the parental

genomes have been identified (Arney et al. 2001).  Heterochromatin protein HP1, can

bind methylated histone H3 (meH3) via a chromodomain and there is evidence that this

interaction can lead to de novo DNA methylation (Surani 2001).   Mager et al (2003)

have also identified a mouse Polycomb group (PcG) gene Eed (embryonic ectoderm

development), which acts to maintain the imprinted repression of one X chromosome in

females as well as a subset of autosomal imprinted genes.  Eed -/- fetuses exhibited

biallelic expression (of normal maternally monoallelic) of the Cdkn1c, Ascl2, Grb10 and

Meg3, whereas four other paternally repressed genes (Kcnq1, slc22a1l, Tssc3 and Igf2R)

and six maternally repressed genes (Kcnqlot1, Snrpn, Peg3, Dlk1, Nnat and Plagl1)

maintained monoallelic expression.  These results indicate specific trans acting factors,

which are responsible for, or are involved in, inactivation of imprinted loci.  Together

with previous results, this demonstrates the complexity of imprinted gene regulation and

that all sites, although imprinted, are not equal.

Abnormalities associated with nuclear transfer

Presently, cloning by somatic cell nuclear transfer is an inefficient process.

Percent efficiencies of live clones per fused embryos among sheep, cattle, goats, pigs,
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mice, cats and rabbits are 0.4, 0.2, 0.7, 0.5, 0.6, 1.1 and 0.7% respectively (Baguisi et al.

1999; Campbell et al. 1996; Chesne et al. 2002; Onishi et al. 2000; Shin et al. 2002;

Wakayama et al. 1998), although recent efforts in some species report much higher

pregnancy rates (Walker et al. 2002; Wells et al. 2003) .

In a recent article, a comprehensive analysis of the health profiles of cloned

animals produced to date indicates that 64% of cattle, 40% of sheep, 100% of pigs and

93% of mice exhibit some form of abnormality (Cibelli et al. 2002).  A large percentage

of these animals, not reported (100-90%, depending on cell line and species), die during

gestation or shortly after birth (Campbell et al. 1996; Hill et al. 2000; Hill et al. 1999;

Young et al. 1998).  Various abnormalities are manifested in animals derived from

nuclear transfer.  In cattle they include “Large Offspring Syndrome (LOS), diabetes,

pulmonary hypertension, dilated cardiomyopathy, internal hemorrhaging umbilical

artery, viral infection, dystocia, kidney problems, leg malformations, pneumonia, heart

defects, liver fibrosis, osteoporosis, joint defects, anemia and placental abnormalities.  In

sheep abnormalities include LOS, arthritis, kidney, liver and brain defects.  Mice exhibit

obesity, LOS, enlarged placentas (attributed to expansion of the spongiotrophoblast),

umbilical hernias, respiratory failure as well as failure to foster pups.  Goats and pigs

exhibit relatively few abnormalities, but they include bacterial infections of the lungs

(goats) and abnormal teat numbers, cleft lips and malformed limbs (pigs) (Archer et al.

2003; Cibelli et al. 2002).

In cattle, where extensive loss of pregnancies and abnormalities are prevalent, it

has been demonstrated that more than 80% of cloned pregnancies were lost in the bovine
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between days 30-60 and this was attributed to placental aberrations.  Observations in

these experiments indicated a reduction in the number of expected cotyledons (placental

units responsible for fetal/maternal exchange of nutrients, oxygen, etc.) and marked

decrease in allantoic blood vessels (Hill et al. 2000; Hill et al. 2001).  These findings are

consistent with other reports in cloned cattle, (Stice et al. 1996), where no placentome

formation was observed in the placentas of NT fetuses that died in utero between days

35-55.  These findings were also consistent other first trimester losses reported in

previous cloning experiments (Kubota et al. 2000; Wells et al. 1997; Wells et al. 1998;

Wilmut et al. 1997).

Aside from gross physical abnormalities prevalent in nuclear transfer, genetic,

epigenetic and mitochondrial aberrations have been observed in cloned animals as well.

Humpherys et al (2001) demonstrated, through use of microarray technology, that of

10,000 genes examined in the placentas of cloned mice derived form embryonic stem

cells and cumulus cells, approximately 4% of genes differed dramatically in expression

levels from those in controls, and this was consistent for animals derived from both cell

types.  Dean et al (1998) also demonstrated abnormal expression of imprinted genes

(Igf2R, H19, Igf2 and U2af1-rs1) in ES cell derived fetuses and this was accompanied

by changes in methylation patterns as well as gross physical abnormalities

(polyhydramnios, poor mandible development and interstitial bleeding). Kang et al and

Reik et al (2002) examined the methylation patterns of repeat elements in cloned bovine

embryos, donor cells and control embryos, produced in vitro and in vivo.    This

experiment determined that the methylation patterns observed in cloned embryos were
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similar to that present in the donor cells, and this pattern was dramatically different than

that exhibited in both in vitro and in vivo derived control embryos (Fig 1.2).  The

abnormal methylation patterns observed in cloned animals and embryos prompted others

to examine the expression of methyltransferases in cloned mouse embryos.  Reports

demonstrate expression of the somatic Dnmt1 methyltransferase during embryonic

development, which is normally repressed during this time, and instead the improper

nuclear trafficking of the oocyte specific Dnmt1o during embryonic development

(Chung et al. 2003).  Other experiments in cattle (Steinborn et al. 2002) demonstrate the

coexistence of donor cell and recipient cytoblast mitochondrial DNA within cloned

calves.
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Figure 1.2 Genomic imprinting in normal and nuclear transfer derived bovine embryos.
Deficient reprogramming in cloned embryos.  A number of studies have shown that in cloned
embryos, the reprogramming process is aberrant.  Although there is some rapid demethylation of
donor nuclei initially, further demethylation does not occur and nuclei end up with abnormally
high levels of methylation and a nuclear organization reminiscent of the donor nucleus.  (Reik et
al. 2002)
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Bovine interspecies hybrid

Over the past ten years, several strategies have been utilized to investigate

genomic imprinting in various species ranging from disruption of parental alleles to

subtractive hybridization between cDNAs from normal and parthenogenetic embryos

(Feil et al. 1998).  Recently, Villar and Pedersen et al (1997) described a relatively

simple interspecies approach to “mRNA phenotyping”, which discriminates parental

alleles based on single nucleotide polymorphisms  (SNPs) that exist in coding regions of

genes under investigation.  Through the use of SNPs and subsequent direct sequencing

of products obtained through RT-PCR reactions, the parental allelic expression profiles

of genes can be characterized.  Thus, interspecies models maximize the heterogeneity

between parents and facilitate the wide scale identification of SNPs in resulting

offspring.  To perform a systematic analysis of imprinted genes within an individual

experimental model, interspecies approaches are ideal candidates to utilize.

In mice, where approximately 80 imprinted genes have been identified to date,

use of interspecies hybrids (Mus musculus, Mus spretus and Mus casteneus) to facilitate

identification of SNPs for parental allelic expression is prevalent (Adler et al. 1997;

Hardt et al. 1999; Hemberger et al. 1998; Hu et al. 1995; Jong et al. 1999; Leco et al.

1997; Mayer et al. 2000; Pulford et al. 1999; Schmidt et al. 2000; Villar et al. 1995;

Villar and Pedersen 1997; Vrana et al. 2000; Vrana et al. 1998; Vrana et al. 2001;

Yevtodiyenko et al. 2002)
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Interspecific hybrids of cattle have also been widely utilized as experimental

models to maximize the genetic heterogeneity and allow for the discrimination of alleles

and chromosomes. Bos gaurus (Gaur) and Bos taurus (domestic cattle) interspecific

hybrids have recently been utilized for backcross panels as a method in optimizing the

resolution of the bovine gene map Bos gaurus gaurus (Gaur) and Bos gaurus laosienies

(Seledang) cattle (2n=58) (are native to South and Southeast Asia and are currently

endangered) are characterized karyotypically by a 2;28 Robertsonian translocation.

Crosses between Gaur and domestic cattle (2n=60) have been reported to produce

apparently normal offspring (Bongso et al. 1988; Gao and Womack 1997; Riggs et al.

1997; Yang and Womack 1997).
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CHAPTER II

DEVELOPMENT OF A Bos gaurus/Bos taurus INTERSPECIES MODEL FOR

THE ANALYSIS OF GENOMIC IMPRINTING IN THE BOVINE

INTRODUCTION

Genomic imprinting is the parental control over expression of alleles of particular

genes.  Genes involved in this rare form of allelic expression and repression, presumably

0.1-0.2% of the total genes in the genome, are involved in a myriad of processes

including fetal, placental and neurological development (Reik et al. 2003b). A large

proportion of imprinted genes in humans and mice reside within clusters and exhibit

enhancer competition and regional inactivation through “spreading” from cis acting

regulatory elements (Lopes et al. 2003).  Evidence to date suggests that genomic

imprinting is regulated in part by DNA methylation, which is achieved by sequence and

developmental stage specific DNA methyltransferases (Dnmt1, Dnmt1o, Dnmt2,

Dnmt3a, Dnmt3a2, Dnmt3b) (Ehrlich 2003).  Differential expression of alleles within a

cell is achieved by differential methylation of CpG islands located within or near

imprinted genes (Constancia et al. 1998).   Allelic repression, in the presence of

transcription factors, results from the recruitment of methylation specific proteins

(MeCP2, MBD2, MBD3 and HDACS) that insulate regions from the initiation of

transcription (Fuks et al. 2003).
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  Genomic imprinting is believed to exist in all placental mammals and has been

shown to exist in some marsupials (Murphy and Jirtle 2003).  Approximately fifty

imprinted genes have been identified in humans and seventy in the mouse (Surani 2001).

In livestock, eleven imprinted genes have been identified in sheep (Gtl2, Dlk1, Dat,

Peg11, Peg1, Mest, Meg8, Igf2, H19 and Igf2R) (Bidwell et al. 2001; Charlier et al.

2001; Feil et al. 1998; Young et al. 2001), one in cattle (Igf2R) (Killian et al. 2000) two

in pigs (Igf2 and Igf2R) (Jeon et al. 1999; Killian et al. 2001; Nezer et al. 1999), and

none in horses or goats; although the differential phenotype exhibited between mules

and hinnies is thought to be a consequence of genomic imprinting (Short 1997).

In somatic cell clones, improper reprogramming of genome wide DNA

methylation and imprinted genes has been implicated as the reason for the increased

incidences of death and placental and fetal abnormalities.  Recent reports of abnormal

genomic imprinting in cloned mice derived from cumulus and embryonic stem cells as

well as aberrant patterns of X chromosome inactivation in female bovine clones support

this hypothesis (Dean et al. 2001; Eggan et al. 2000; Xue et al. 2002).

Currently, the limitation of identifying imprinted genes in cattle is due to the lack

of informative polymorphisms in coding regions.   In mice and other species, a number

of protocols have been implemented to facilitate the identification of imprinted genes

including the use of parthenogenetic embryos, subtractive cDNA hybridizations assays,

uniparental disomies (UPD) and interspecific hybrids (Mus musculus X Mus spretus)

(Feil et al. 1998; Hagemann et al. 1998; Villar et al. 1995; Villar and Pedersen 1997).



28

To facilitate the identification of imprinted genes in the bovine, we have utilized

interspecific crosses between Bos gaurus (Gaur) and Bos taurus (domestic) cattle.

Crosses between Gaur and domestic cattle have been used extensively to increase

the genetic variation that exists between alleles.  Riggs et al. (1997), Gao et al. (1997),

and Ya-Ping and Womack (1997), have utilized offspring from Gaur bulls crossed with

Limousine and Holstein cows (Bos taurus) for the generation of backcross panels for

linkage analysis studies.  The use of interspecific hybrids in this model maximizes

heterozygosity within coding regions, so that the frequencies of single nucleotide

polymorphisms (SNPs) between parents are increased. Parental SNPs can then be used

to assess allelic expression and parental inheritance of genes in resulting offspring.

Information obtained from this Bos gaurus/Bos taurus interspecies hybrid will facilitate

the wide scale identification of imprinted genes in the bovine as well as serve as an

experimental model to better understand nuclear reprogramming in the bovine.

The purpose of this experiment is to characterize the allelic expression patterns

of genes previously identified as imprinted in humans and mice, and to serve as a model

for analysis of genomic imprinting in cloned pregnancies.

Materials and Methods

Identification of single nucleotide polymorphisms within putative imprinted genes

in Bos gaurus and Bos taurus cell lines

Male and female Bos gaurus and Bos taurus cell lines were obtained as a

generous gift from Dr. James Womack (Texas A&M University).  Cell lines were
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cultured until confluent and genomic DNA was extracted (Promega DNA isolation kit).

A total of twenty-six candidate genes were chosen from those previously identified as

imprinted in humans and mice.  Additionally, 3 genes were chosen that reside on the X

chromosome (Table 2.1), and undergo inactivation in females.  Bovine sequence for the

IGF2 (Accession # AJ320234, AF416605, Z68151), WT1 (Accession # AF202074,

AF201738), IGF2R (Accession # NM_174352, AF342811), SNURF (Accession #

NM_174463, AF101040), SNRPN (Accession # NM_174463, AF101040), GABRB3

(Accession # NM_17542), CDKN1C (Accession # NM_174016, L26548, L26547), XIST

(Accession # AF104906, AJ421481l) and DLK1 (Accession # NM-174037) loci are

published in Gene Bank, whereas sequence for the remaining genes was obtained

through BLAST (Gene Bank) searches of bovine Expressed Sequence Tags (ESTs)

using known genes in either mouse, human or sheep and include GTL2 (Accession #

gi24333950), MEG3 (Accession #  gi29736097), PLAGL1 (Accession #  gi4505854),

PEG9 (Accession #  gi30054643), MAGEL2 (Accession #  gi18765721), GABRA5

(Accession #  gi6031207), NCD (Accession #  gi6754805), UBE3A (Accession #

gi19718763), ARH1 (Accession #  gi10835048), P73 (Accession #  gi4885644), HTR2A

(Accession #  gi10835174) and ZNF215 (Accession #  gi 7019582).  Positive EST

matches were subsequently aligned to all known available sequences to ensure that the

correct sequences were utilized for primer design.

Primers were designed on MacVector 6.0 (Table 2.1), and if possible, designed

so as to flank introns.  50 ml PCR reactions were run in duplicates and consisted of 5 mls

10X PCR buffer (Promega), 4 mls 25 mM MgCl2, 1.25 mls 10mM dNTPs, 2.5 mls 3 M
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forward primer, 2.5 ml 3 M reverse primer, 2 mls DNA and 1 mls Taq (Promega) PCR.

All reactions were initially run with cycling parameters of: 94oC (5min) (denaturation);

94oC (30 sec), 60oC (30 sec), 72oC (3 min) [10 cycles]; 94oC (30 sec), 60oC (30 sec),

72oC (3 min) [25 cycles].  Those primer sets that did not amplify under these conditions

were then amplified on a Techne Thermocycler that is capable of cycling reactions on an

annealing temperature gradient.  The cycle parameters were: 94oC 5min

(denaturation);94oC (30 sec), 55oC ∆ 12oC (30 sec), 72oC (3 min) [25 cycles].

Amplicons resulting from PCR were resolved on a 2%  EthBr agarose gel and gel

purified (Qiagen Gel Purification Kit).  Two to four mls of purified product, depending

on intensity of bands, were then used as templates for sequencing reactions.  Forward

primers used to amplify regions were also used as sequencing primers.  Twenty-five ml

sequencing reactions using Big Dye Terminator mix (ABI Biosystems) and forward

primers used for amplification were run on a Perkin Elmer Thermocycler at 94oC (30

sec), 50oC (30 sec), 60oC (4 min) [25 cycles].  Sequences were then analyzed on either

an ABI 370 or 3700.  Sequences obtained for each of the genes from DNA extracted

separately from Bos gaurus and Bos taurus cell lines were aligned on MacVector Pustell

(Oxford Molecular) query and analyzed for polymorphisms between sequences.
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Table 2.1.  Putative imprinted genes in the bovine selected for the analysis of SNPs between Bos
gaurus and Bos taurus species of cattle. Forward and reverse primers used for amplification in
the bovine.

Locus Forward primer (5’-3’) Reverse primer (5’-3’)

Gene trap locus 2
(GTL2)

CCCACCAGCAAACAAAGCAAC CATCAAGGCAAAAAGCACATCG

Insulin like growth
factor 2 (IGF2)

CAAGGCATCCAGCGATTAG TTCAAGGGGGCTGATTGAG

Maternally expressed
gene 3 (MEG3)

CCCATCATTATTGCTAAGCGTCC CCATCATCTGGAATCCTCCGTG

Impact (IMPT) CCTGCCTTCCAAACAGTATCTGC TGCCAGTATGAAAGAGCCAGTAGC

Wilms tumor 1
 (WT1)

ATCACAAGCAACCCCATTCAAC GGAGAGCAAAGTCCCATCTGTAGTG

Pleiomorphic
adenoma gene-like 1
(PLAGL1)

GCTATCCTGCCTCATTTCCAACC TCCAAACCTTCCACAGTTCCC

Insulin like growth
factor 2 receptor
(IGF2R)

TCCCCCACCACCAACACTC ACGGCGACGAGCAGGATAG

Small nuclear RING
finger protein
(SNURF)

GGGACCGTTTACACTTGAGAC TGAGTTCTGCCTGGAAATCC

Small nuclear
ribonucloprotein
polypeptide N
(SNRPN)

GTTTTGGGTCTGGTGTTGTTGC GGGTCATTACCTGTTGAGATGGC

Paternally expressed
gene 9 (PEG9)

CCCTCCCACTACATTTGCATAG GCTGCATGTTCTGCTGC

MAGE like protein 2
(MAGEL2)

GYGGGCAGGTGTGTCCTATTTG TGGTGGGGTCATCGGTTTTATC

Gamma amino
butyric receptor acid
5 (GABRA5)

CGCCTTCCACTCAACAATCTCC ATCTTCTGCCACCACCACTGAC

Gamma amino
butyric receptor base
3 (GABRB3)

GGGCTGCTTTGTCTTTGTGTTTC GTAGATGGGTCTTCTTGTGCGG

Neruonatin (NNT) GAAACCTACCAGCAGTTCTTGGAC CTTGCCATTCTTCTTCCGATTG

Necdin (NCD) GCTTTGACCAGCGAAAAC CATCGGCAGTTACAAGAAGTG

E6-ubiquitin-protein
ligase gene (UBE3A)

TCTGAGGGGCAATGTGTATGTTC ATTTTCCATCGGGTCACTGGGCAG
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Table 2.1 continued

Locus Forward primer (5’-3’) Reverse primer (5’-3’)

P73 CCCAGCTCCACCTTCGACACC CAGGCATGGCCCGGATGGC

H19 CCAGGCATGAGCTGGGTAGC CACTTCACCCACTGTAATTCC

X- chromosome
inactivation specific
transcript (XIST)

GAACATTTTCCAGACCCCAAC AAACCAGGTATCCACAGCCG

Serotonin 2-A receptor
(HTR2A)

CCTGTTTGTGGTGATGTGGTGC TTGACTGCTGAAAAGAGGTAACCG

Delta like gene 1
(DLK1)

TTCTGCGACGATGACAGTTGTTGC TTCCTGACAATCCTTTCCTGAG

Zinc finger 215
(ZNF215)

AAATGTCAGGAATGTGAGAGAGCC CGTTTGTGCTTTTGGAAGGAAGTG

Growth factor bound
receptor 10 (GRB10)

AGAAGATGCTGCTGTGGTGGAG CCAGTAGTTGTCCTGAGATTCAAGG

CD81 TGTGGGCATCTACATCCTTATCG ACAGAGGTGGTCAGTGTCATCAGC

Aplysia ras homolog 1
(ARH1)

TTCCTCTCCTCCTCCAATGTCC ACCCTCTTCTTTAGTGTGCCG

Cyclin dependent
kinase inhibitor
(CDKN1C)

CCGACAGCCAGCACATTGG GCCCCGAAATCCCTGAGTG

Three prime repair
exonuclease 2  (TREX2)

GGCAAGTACATGGGCTCGATG CTCTTCCACCGCTACTTCC

L1 cell adhesion
molecule (L1CAM)

GGTGTAGTGGACACATAGGG GAGACCTCCAGGCCAATGACAC

Androgen receptor
(AR)

GCCTCAATGAACTGGGTGAAAG GCAGGTCAAAAGTGAACTGATGC
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Generation of day 72 control Bos gaurus /Bos taurus hybrids

Bos gaurus semen was obtained as a generous gift from the Dr. Nadia Luskotoff

at the Henry Doorly Zoo in Omaha, NE.  Six Bos taurus (Angus) cross heifers of

approximately 18 months of age (7/8 Angus 1/8 Brangus) were synchronized for estrous

by serial injections of Prostaglandin F2alpha (Lutalyse) (2 shots 11 days apart with

estrous detection 3 days post second shot).  Upon detection of estrus, heifers were

transvaginally inseminated following the am/pm rule (a.m. detection of estrous, pm

insemination/ p.m. detection of estrous, a.m. insemination).  Heifers were checked for

establishment of pregnancy at day 28 through transrectal ultrasonography.  Pregnancy of

the six heifers was established after two rounds of insemination.  At day 72 of gestation,

pregnant heifers were slaughtered at the Texas A&M Meat Science Center, at Texas

A&M University, College Station, TX, and reproductive tracts removed.  Reproductive

tracts were transported to a lab on ice for processing and tissue collection.  Weights and

measurements were taken so as to monitor development of hybrid animals.  Chorion,

allantois, liver, lung and brain samples were isolated and flash frozen in liquid nitrogen

to preserve RNA and DNA.
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RNA and DNA extraction

RNA was extracted from frozen samples utilizing the Ambion RNA aqueous kit

and resuspended in 10 mg aliquots in DEPC H2O and stored at – 80 oC.  2 mg of RNA for

each sample was DNase I treated using the Ambion DNase I Kit and subsequently

converted to cDNA through the Ambion First Strand Synthesis Kit for all RT-PCR

reactions.  DNA was extracted from frozen tissues using the Promega Wizard DNA

Extraction Kit and resuspended at 20 ng/ml and stored at –20 oC until further use.

Analysis of allelic expression through direct sequencing method

RT-PCR of the IGF2, GTL2, WT1 and XIST loci was performed on chorion,

allantois, liver, lung and brain.  Amplicons resolved on 2% EthBr agarose gels were gel

extracted (Qiagen Gel Extraction Kit), resuspended in 50 mls of dH20 and used directly

as sequencing template.  Sequencing primers consisted of forward primers used in the

amplification of each of the four RT-PCR reactions.   Twenty-five ml sequencing

reactions using Big Dye Terminator mix were run on a Perkin Elmer Thermocycler at

94oC (30 sec), 50oC (30 sec), 60oC (4 min) [25 cycles].  Cleanup of sequencing reactions

was performed in 800 ml Sephadex columns (Sigma).  Sequences were then run on either

an ABI 370 or 3700 and sequence chromatograms were visually analyzed for the

presence or absence of both SNPs.  RT-PCR and sequencing reactions were run in

triplicates.  To confirm the absence of genomic contamination in cDNA samples, an

internal control was utilized through the IGF2 amplicon, which spanned intron 6.
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Genomic contamination results in the presence of an additional 1kb band (Figure on pg.

48).

Bisulfite treatment of genomic DNA

Genomic DNA was isolated (Promega Wizard DNA Isolation Kit) from the

chorion of hybrid females (n=4).  The sodium bisulfite reaction was carried out with one

mg of DNA from each sample using the CpG DNA Conversion Kit (Intergenco).

Sodium bisulfite catalyzes the deamination of cytosines to uracils (thymines), where as

methylated cytosines (m5C) are protected.  This technique allows for the rapid

identification of m5C in genomic DNA. Genomic DNA was denatured through

incubation of 3M NaOH at 37oC.  Denatured DNA was then incubated for 16-20 hrs at

50oC in the presence of 3 M Sodium bisulfite and 0.5 mM hydroquinone.  Carrier

glycogen was added to bisulfite treated DNA and incubated at room temp for 5 min.

DNA was then washed, centrifuged (13,000 rpm) and vortexed in successive (3X)

volumes of 90 % and 70% ethanol.  DNA was then resuspended in 50 ml TAE and

incubated at 60oC for 15 min.  The DNA samples were centrifuged at 13,000 rpm for 30

sec and the supernatant containing DNA removed to a new tube.  1.5 ml of the

supernatant was used in subsequent PCR reactions.

Comparative sequence analysis of Xist/XIST regulatory regions

At the Xist locus in mice, regulation of expression is associated with differential

methylation of CpG dinucleotides located in the promoter (- 44 to – 36) and in the 5’
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region of exon 1 (+ 828 to +1183), thereby allowing comparative analysis in the bovine

through available sequences of these regions (Accession # AF104906, AJ421481l).

Sequence was obtained from Gene Bank for the XIST promoter, gene and 3’ regions

extending approximately 45 kb downstream in the human (Accession # U50908), mouse

(Accession # AJ421479), horse (Accession # U50911), rabbit (Accession # U50910) and

bovine (Accession #AJ421481).  Each region was analyzed for the presence of CpG

dinucleotides through the European Bioinformatics Institute, CpG plot/CpG

report/Isochore software program (www.ebi.ac.uk/emboss/cpgplot/).  This program

identifies CpG islands within large sequences (40 kb), based on the observed number of

CpG dinucleotides relative to the expected number of CpG dinucleotides in a given

sequence (expected = # Cs X # Gs) [observed / expected = < 0.60].  For comparative

sequence analysis between the bovine and mouse, sequences were aligned using

PipMaker software (http://bio.cse.psu.edu/cgi-bin/pipmaker?basic)  (Schwartz et al.

2000).  PipMaker software allows for the alignment of two sequences over a

considerable length (>100 kb), and summarizes the homology as a “percent in plots”

(PIP) graph ranging from 50-100%.

DNA methylation analysis of the XIST Differentially Methylated Region (DMR) in

exon1

PCR primers were designed flanking the bovine XIST CpG island at +828 to

+1183, which was previously detected using the CpG prediction software (XIST5Bis1,

XIST5Bis2 and XIST5Bis3).   Primers flanking the region were designed by converting
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all cytosines in the sequence that are not adjacent to guanines to thymines.  This is the

predicted sequence after bisulfite conversion of DNA with all CpG dinucleotides

protected (methylated).  Cycle sequencing parameters were: 95oC (5 min) (denaturation);

95oC (30 sec), 52oC (30 sec) 72oC (2min, 30 sec)  [35 cycles]; 72oC (10 min).  Products

were resolved on a 2% EthBr agarose gel and gel purified (Qiagen Gel Purification kit).

Purified products were then cloned into TOPO4 sequencing vectors.  Plasmids from an

average of 20 colonies were extracted (Qiagen Mini prep) and sequenced separately.

Sequencing reactions consisted of varying primer concentrations (3 mM to 3 pM) of M13

universal primers (5’-CTGGCCGTCGTTTTAC-3’).  25 ml sequencing reactions using

Big Dye Terminator mix were run on a Perkin Elmer Thermocycler at 94oC (30 sec),

50oC (30 sec), 60oC (4 min) [25 cycles] and products were subsequently sequenced on

an ABI 3700 sequencer.

.
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Table 2.2. Sequence of the CpG island in exon 1 of the bovine XIST.  (A) Sequence of the
bovine XIST DMR (top strand) and bisulfite converted sequence (bottom strand).  CpG
dinucleotides are in bold.  (B) Primer information for XIST5Bis1, XIST5Bis2 and XIST5Bis3 used
to amplify the XIST DMR.

(A)

(B)

TGGATATCATGGCAGTTTGTCACGTGGATATCGTGGCAGGGGTGTTTGAC
TGGATATTATGGTAGTTTGTTACGTGGATATCGTGGTAGGGGTGTTTGAT

CGTTACATTCTTGGCGGGCTTTGCATCAGGAGGGCCTGCCGCATTGTTAA
CGTTATATTTTTGGCGGGTTTTGTATTAGGAGGGTTTGTCGTATTGTTAA

AGATGGCGTGCTTTGCCGCGGACAAAGTGAAAGGAGGGATTGGCAATGTT
AGATGGCGTGTTTTGTCGCGGATAAAGTGAAAGGAGGGATTGGTAATGTT

AGATTGCCGCGTGTCCCACCCAATCAGAAAGGGTGGTAGAATCGGTCACA
AGATTGTCGCGTGTTTTATTTAATTAGAAAGGGTGGTAGAATCGGTTATA

GCCAGTT
GTTAGTT

Locus Forward primer (5’-3’) Reverse primer (5’-3’)

XIST5Bis1 GGAAGGTAAGATGAATAATGYG AACAATACRACAAACCCTCC

XIST5Bis2 GGGTTTTTGTTTTTGTYGTGT CCTCCTTTCACTTTATCCRC

XIST5Bis3 TTTGTTGTAGGGATAATATGGT CCACCCTTTCTAATTAAATAAAA
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RESULTS

Identification of Single Nucleotide Polymorphisms (SNPs) within candidate

imprinted genes in the bovine

A total of twenty-six genes were randomly selected from a list of previously

identified imprinted genes in other species (Table 2.1).  Bovine sequences of candidate

genes were obtained from published sequences (Gene Bank), or human, mouse and

sheep sequences were obtained from Gene Bank and a BLAST search was performed

against bovine EST libraries.  High percent homology matches were selected and aligned

with the sequences of other species to ensure the correct sequences were chosen for

primer design. Two independent Bos gaurus and two independent Bos taurus fibroblast

cell lines served as genomic templates for amplification and determination of SNPs.

Amplification of genomic DNA using the 29 primer pairs resulted in products from

approximately 24 genes and readable sequences were obtained from 20 of these genes

(GTL2, IGF2, MEG3, IMPT, WT1, IGF2R, SNRPN, PEG9, MAGEL2, GABRA5,

GABRB3, NNT, NCD, P73, H19, XIST, HTR2A, DLK1, ZNF215 and AR).
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Sequence analysis of the coding regions of twenty putative imprinted genes in the bovine

identified four informative SNPs between the Bos gaurus and Bos Taurus, (Fig 2.1).

Insulin like growth factor 2 (IGF2) the major somatomedin in fetal development, Gene

trap locus 2 (GTL2) an untranslated transcript associated with the callipyge overgrowth

syndrome in sheep, Wilms tumor 1 (WT1) associated with fetal kidney tumors and X

inactivation specific transcript (XIST), a RNA transcript directing inactivation of one of

the two X chromosomes in females, all contained at least one or more polymorphisms

between the two species.

Sequence of the bovine IGF2 gene is available on Gene Bank (accession

AF416605), however only partial sequence of mRNA exists in this database, therefore, a

BLAST search was performed against bovine EST libraries using the mouse Igf2

sequence and a more complete sequence of the gene was obtained.  Three primer sets

(IGF2-1, IGF2-2 and IGF2-3, IGF2-4) were designed within exon 5, 6 and the 3’

untranslated region (UTR) in an attempt to locate SNPs between species.  A SNP was

located in primer set IGF2-3 and IGF2-4 at position 226 of the sequence chromatogram

in the 3’ UTR and was utilized for parental discrimination between alleles (Fig 2.1).
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Figure 2.1. Sequence chromatograms of the IGF2, GTL2, WT1 and XIST loci. Sequence
chromatograms of genomic amplified (A) GTL2: Bos gaurus (C allele) Bos taurus (A allele), (B)
IGF2: Bos gaurus (C allele) Bos taurus (A allele), (C) XIST: Bos gaurus (C allele) Bos taurus (T
allele) and (D) WT1 Bos gaurus (C allele) Bos Taurus (T allele) loci from Bos gaurus/ Bos
taurus hybrid fetuses.
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The allele possessing an (C) polymorphism, termed IGF2 allele C, is inherited from the

Gaur (paternal transmission) and the (A) polymorphism, termed IGF2 allele A, is

inherited from the Angus (maternal), as was confirmed through subsequent sequencing

of Gaur and fetus IGF2-4 (Fig 2.1).  IGF2-4 primers span exon 5 through exon 6 (as was

determined through homology with known mouse and human exon/intron boundaries)

into the 3’ UTR.  The size of genomic amplification is approximately 1kb (Fig 2.4) and

when RNA is spliced, results in product of approximately 750 bp (Fig 2.4). This primer

set (IGF2-4) provided a genomic contamination control for all remaining reactions in all

tissues.

Sequence for the GTL2 locus in the bovine is not published in Gene Bank,

therefore, a BLAST search was performed against bovine EST libraries using the

published sheep sequence (Accession # AY017222) and then confirmed with the human

and mouse sequence.  One primer set was designed within exon 1 of the GTL2 gene and

C/A polymorphism was detected at position 123 of sequence chromatograms between

the Bos gaurus and Bos taurus cell lines as well as animals utilized for model.  The (C)

polymorphism, termed GTL2 allele C, is inherited from the Gaur (paternal) and an (A)

polymorphism, termed GTL2 allele A, is inherited from the Angus (maternal) (Fig 2.1).

Sequence for the bovine WT 1 exons 8 and 9 are published in Gene Bank

(Accession # AF202074, AF201738) and a single primer set was designed in exon 9.  A

C/T polymorphism was detected at position 160 of the WT1 sequence chromatogram

with the paternal allele, termed WT1 allele T, and maternal allele, WT1 allele C.
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The bovine XIST sequence and adjoining regions are available on Gene Bank

(accession # AF104906).  Four primer sets were designed within exon 1 (XIST1, XIST2,

XIST3 and XIST4) and a T/C SNP was detected between the Gaur and Angus within

XIST4 primers.  The (C) polymorphism, termed XIST allele C, is paternally inherited

(Gaur) and the (T) polymorphism, termed XIST allele T is maternally inherited (Angus).

Generation of Bos gaurus/Bos taurus interspecies hybrids

Bos gaurus (Gaur) and Bos taurus (Angus) hybrid fetuses and placentas were

obtained at day 72 of gestation (Fig 2.2).  Samples derived from the placenta (chorion

and allantois), and fetus (lung, liver and brain) were isolated, weighed and frozen for

future analysis of allelic expression of candidate genes possessing SNPs.  A total of six

hybrid fetuses were produced: four female and two male.  By day 72 of gestation,

placental and fetal components are entirely established.  Table 2.3 summarizes weights

and measurements obtained from each of the hybrid fetuses.

Additionally, biparietal (BP) and crown rump length (CRL) growth curves of

three of the fetuses (fetuses A, B and C) were obtained starting at day 36 of gestation

(day 0= day of insemination) through trans rectal ultrasonography and were taken again

every 6 days until day 60, and are summarized in Table 2.4.
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Table 2.3. Weights and measurements of the Bos gaurus/Bos taurus day 72 hybrids (Fetus A, B,
C, D, E and F).

* X indicates no measurement was obtained.

F
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(lbs)

A X X 11 400 220 69 X X X X F 900

B 52.2 60.8 11.7 420 295 52 X X X X F 920

C 61.7 66.7 12.3 350 240 87 X X X X F 945

D 55.7 76.2 11 485 235 67 2.01 1.66 2.0 .34 F 960

E 62.9 75.7 11.7 360 260 47 2.28 2.19 1.83 .635 M 970

F 66.82 125.0 11.9 450 270 96 2.11 1.42 2.38 .445 M 1158
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Table 2.4. Biparietal and crown rump length measurements of the Bos gaurus/Bos taurus day 72
hybrid control fetuses. (A) Biparietal diameter and (B) crown rump length measurements of
hybrid fetuses from day 25 (day 36 biparietal) to day 60 of gestation.

* X indicates measurements were not obtained.

Biparietal (mm) Fetus A Fetus B Fetus C
Day 25 X X X
Day 30 X X X
Day 36 8.3 8 8
Day 42 9.9 9.5 9
Day 48 13.9 15 12
Day 54 15.1 15.8 14
Day 60 18.7 19.2 20.3

Crown-Rump(mm) Fetus A Fetus B Fetus C
Day 25 3.5 3.6 4
Day 30 11.2 8.9 8
Day 36 16.8 15.8 17
Day 42 28.8 25.1 26
Day 48 37.1 37.5 36
Day 54 53.5 57.8 57
Day 60 68 69.2 62.5
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(A) (B)

(C)

Bos gaurus (Gaur) Bos taurus (angus)

Day 72 hybrid fetus and placenta

Figure 2.2. Schematic of Bos gaurus and Bos taurus animals utilized for the production of day
72 hybrid fetuses. (A) Bos gaurus sire (Gladys Porter Zoo, Brownsville TX) and (B) Bos taurus
Angus dam (Texas A&M University) utilized for the production of interspecific hybrids.   (C)
Day 72 Bos gaurus/Bos taurus placenta and fetus isolated for the analysis of genomic imprinting
in the bovine.  Six fetuses (4 female and 2 male) were generated.
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Allelic expression analysis of putative imprinted genes in the bovine

Insulin like growth factor 2

Amplification of the each IGF2 primer set (IGF2-1, IGF2-2, IGF2-3 and IGF2-

4) produced strong bands for tissues examined.  IGF2-4 spans intron 6 and thus gave

two different size bands when amplified from cDNA and genomic DNA (Fig 2.4).  The

C/A SNP was detected in genomic amplified products for all of the fetuses (n=6).

Allelic expression analysis of directly sequenced RT-PCR products using the IGF2-3

primer set in chorion, allantois, liver, lung and brain in all fetuses showed preferential

expression of the paternal allele (C allele).  These results indicate maternal genomic

imprinting at the IGF2 locus in the bovine.  Figure 2.3 demonstrates the inheritance of

the C allele from the Gaur (A) and the presence of the C/A SNP in genomic amplified

DNA from hybrids (B).  Differential expression of the locus is demonstrated in (C),

where the A allele (maternal) is absent from the sequence chromatogram.
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          (A) Gaur genomic PCR           (B) Hybrid genomic PCR      (C) Chorion RT-PCR

Figure 2.3. Sequence chromatogram of the IGF2 transcript. (A) Sequence chromatogram of
IGF2-3 amplified from Bos gaurus genomic DNA. (B) Sequence chromatogram of hybrid fetus
A IGF2-3 amplified from genomic DNA. A A/C SNP exists between the Bos gaurus (C) and Bos
taurus (A) parents. (C) Sequence chromatogram of hybrid fetus A liver IGF2-3 from cDNA. The
paternal (A allele) is preferentially expressed in liver (shown), lung, brain, chorion and allantois
(data not shown).
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Figure 2.4. RT-PCR amplicons of the IGF2 transcript. (A) 2% agarose gel of IGF2-4 amplified
from: Hybrid chorion, allantois, liver lung  brain, Bos gaurus cultured fibroblast cells and Bos
taurus cultured fibroblast cells.  (B) 2% agarose gel of amplified IGF2-4 from genomic DNA
(lanes I and II amplified from Bos gaurus fibroblast cell line and lanes III and IV amplified from
Bos taurus fibroblast cell line). Primers flank intron 5 and can be used as an internal control for
genomic contamination.
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Gene trap locus 2

High levels of expression of GTL2 were detected in brain, liver, lung, chorion

and allantois. The C/A SNP was detected in all animals investigated (n=6).  The

maternally inherited GTL2 allele A, was preferentially expressed in all sequences for all

tissues examined (chorion, allantois, liver, lung and brain) thus indicating paternal

imprinting at this locus (Fig 2.5).

          (A) Gaur genomic PCR           (B) Hybrid genomic PCR      (C) Chorion RT-PCR

Figure 2.5. Sequence chromatograms of the GTL2 transcript (A) Sequence chromatogram of
GTL2  amplified from Bos gaurus genomic DNA. (B) Sequence chromatogram of GTL2
amplified from hybrid fetus A genomic DNA.  An A/C single nucleotide polymorphism exists at
position 119 between the Bos gaurus (C) and Bos taurus (A). (C) Sequence chromatogram of
GTL2 amplified from hybrid fetus A cDNA. The maternal A allele is preferentially expressed in
liver (shown), brain, lung, chorion and allantois (data not shown) (paternal imprinting).

Wilms tumor 1

Expression of WT1 was detected faintly in chorion and allantois, but exhibited

strong bands in liver, lung and brain.  Serial rounds of PCR were performed on chorion

and allantois so that sufficient template could be obtained for the sequencing reaction.
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          (A) Gaur genomic PCR           (B) Hybrid genomic PCR      (C) Chorion RT-PCR

Figure 2.6. Sequence chromatograms of the WT1 transcript. (A) Bos gaurus WT1 amplified from
genomic DNA, (B) Fetus A hybrid WT1 amplified from genomic DNA and (C) Fetus A chorion
amplified from cDNA.  A T SNP is inherited paternally inherited (Gaur) and C SNP is inherited
maternally (Angus).  Chromatogram analysis of the WT1 in chorion (shown), allantois, liver,
lung and brain (data not shown) indicates lack of genomic imprinting at the WT1 locus in the
bovine.

The T/C SNP was detected in all animals (n=6) and analysis of the chorion, allantois,

liver, lung and brain in all demonstrated biallelic expression of WT1.  To confirm these

results, multiple sequencing reactions were performed using RNA that was DNaseI

treated 2X to ensure no false reports were obtained.  These results indicate an absence of

genomic imprinting at the bovine WT1 locus (Fig 2.6).

X chromosome inactivation specific transcript

Expression of the XIST locus was detected faintly in males while strong bands

were detected in chorion, allantois, liver, lung and brain of all females (Fig 2.8). The C/T

SNP was only detected in females (as expected) and was detected in the four used for

analysis. The allelic expression analysis of the bovine XIST4 within chorion (placenta) of

hybrid females shows preferential paternal expression, whereas in all other tissues
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          (A) Gaur genomic PCR           (B) Hybrid genomic PCR

(C) Chorion RT-PCR               (D) Liver RT-PCR

Figure 2.7. Sequence chromatograms of the XIST transcript. (A) Sequence chromatogram of
XIST 4 amplified from Bos gaurus genomic DNA. (B) Sequence chromatogram of hybrid fetus
A XIST 4 amplified from genomic DNA. A C/T polymorphism exists between the Bos gaurus (C
allele) and Bos taurus (T allele). (C) Sequence chromatogram of hybrid Fetus A chorion (shown)
(female) amplified from cDNA. Paternal allele (C) is preferentially expressed in chorion.
Biallelic expression occurs in allantois (not shown), liver (shown), lung and brain (not shown)
(chorion specific maternal imprinting).
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Fig 2.8. RT-PCR amplicons of the XIST transcript. (A) 2% agarose gel of XIST4 amplified from
chorion, allantois, liver, lung and brain.  (B) Internal control for genomic contamination of Fetus
A chorion resolved on an 8% Polyacrylamide Gel (PAGE). Lanes 1 and 2 are XIST4 amplified
from chorion, lanes 3 and 4 are IGF2-4 amplified from the same cDNA sample of chorion and
lanes 5 and 6 are IGF2-4 amplified from genomic DNA. IGF2-4 spans intron 6, thus genomic
contamination in cDNA samples can be detected by presence of two bands.

examined (allantois, liver, lung and brain) biallelic expression was observed (Fig 2.7).

These results indicate tissue specific maternal genomic imprinting of the XIST locus in

the bovine.

Comparative sequence analysis of the XIST locus

Comparative sequence analysis of the entire region spanning the XIST and TSIX

genes was performed using PipMaker dot plots (Fig 2.9).  Since our previous findings

indicated genomic imprinting at the XIST locus within the chorion, demonstrating

concordance with the mouse, an attempt was made to assess the conservation that

existed between mice and cattle at regions presumably involved in imprinting at the

XIST locus.  PipMaker plots indicate partial homology in the 5’ region of the XIST
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Figure 2.9. PipMaker dot plot schematic of the bovine and mouse XIST/Xist locus. PipMaker percent
identity plot of the bovine XIST region and 3' sequence relative to the mouse XIST and TSIX genes.
Nucleotides 0-40,000 are shown of the X chromosome sequence ranging from 116,296-156,296 in the
bovine compared to the corresponding region in the mouse. The dot patterns show the percent homology
(50-100%) with the comparable mouse Xist and Tsix region.  The XIST sequence is denoted with the black
line and exons 1-8 are represented by black boxes.  The dashed line denotes the mouse TSIX antisense.
CpG islands found present in the bovine are denoted by white boxes and mouse CpG islands are denoted
by grey boxes.
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between bovine and mice, but homology diminishes as the sequence proceeds into the 3’

region and into the TSIX 5’ region and promoter.  Sequence comparison of the –45

minimal promoter region between the horse, human, rabbit, bovine and mouse indicates

greater homology between bovine, horse, rabbit and human than between the bovine and

mouse (unreported).  These finding indicate relatively low levels of homology between

the mouse and bovine XIST and virtually no homologous regions in the 3’ region

extending into the TSIX promoter.

Comparative analysis of the mouse and bovine was extended to regions

presumably associated with the imprinting of the XIST locus in the preimplantation

embryo and placenta.  CpG island prediction of 40 kb of DNA extending from the XIST

promoter into the adjacent XIST antisense, TSIX, revealed that only one island located in

the 5’ region of exon 1 is conserved between the mouse and bovine (Fig2.9).  This is

consistent with our earlier finding of relatively low or no homology in the 5’ region of

TSIX.
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Figure 2.10. Schematic of CpG island prediction in exon 1 of the bovine and mouse XIST/Xist locus.  CpG island
prediction of the (A) Bovine and (B) Mouse XIST/Xist and 3' downstream regions. 45 kb of DNA were analyzed from
start of exon 1 (0) into the Tsix promoter (45kb).  Horizontal boxes: (Top) indicate observed/expected CG within
regions, (Middle) percent CG in region and (Bottom) presence of CpG island (observed/expected > 0.60) denoted by
vertical boxes. Primers were designed to flank the bovine CpG island region detected in this analysis.
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Fig 2.10 Continued



57

Analysis of the minimal promoter (-45 to –36) between the mouse, bovine,

human, horse and rabbit demonstrated high conservation between the bovine, human,

horse and rabbit, but little homology in the promoter region and no homology in the –45

minimal promoter region (Fig 2.11), which has been shown to be differentially

methylated in mouse gametes and presumably associated with imprinting at this locus.

Mouse Xist        GGCCACTCCTCTTCTGGTCTCTCCGCCTTC-AGCGCCGCGG-----ATCA
Bovine XIST   GGCCACTCCTCTTCTATTCCCTCCGCCCTC-AGTCCCCTCCCTCTCACT
Human XIST  GGCCACGCCTCTTATGCTCTCTCCGCCCTC-AGCCCCCCCTT---CAGTT
Horse Xist     GGCCACGCCTCTTCTACTTCCTCCACCCCCCAGTCCCCTCCCCCTCACT
Rabbit Xist         GGCCACGCCTCTTGT--TCACCCCGCCCCC-AACCCCCCCT----CAATT

Figure 2.11. Comparative sequence analysis of the – 45 region of the XIST/Xist promoter
between the mouse, bovine, human, horse and rabbit.

DNA methylation analysis of the bovine XIST DMR

In the bovine a CpG island was detected at + 1475 to +1681 in exon 1, as was

determined by CpG island prediction software (www.ebi.ac.uk/emboss/cpgplot/) (Fig

2.10) and three primer sets (XIST5Bis1, XIST5Bis2 and XIST5Bis3) were designed for

amplification of bisulfite treated DNA encompassing this area. Samples from a female

liver and chorion were chosen since this region had previously been identified as

biallelic and monoallelic respectively in all females analyzed.  Sequencing of the

amplified regions however proved to be difficult; it became apparent after analyzing
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multiple sequences from each of the three primer sets, that a secondary structure had

formed from the bisulfite conversion and was inhibiting the sequencing reaction from

proceeding past a similar region in all sequences.  Difficulties sequencing the same

region in mice have also been reported (McDonald et al. 1998).  Their attempts to

bisulfite sequence the region resulted in a failure to obtain a positive cloned transcript.

This suggests a structure or motif created in this region after bisulfite modification that

makes the sequence difficult to clone and sequence.  However, after modifying the

cycling parameters, 4, full-length sequences were obtained from XIST5Bis3 allowing for

analysis of methylation and use of the SNP to determine parental origin; however, this

was only obtained from sequences resulting from liver samples. These results indicate

differential methylation of the XIST DMR in exon 1 in female livers, in concordance

with the mouse and human.
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Figure 2.12. Amplification of the bovine XIST CpG island in exon 1. PCR amplification of
bisulfite treated DNA flanking the XIST CpG island in exon 1.  Three primer sets (XIST5Bis1,
XIST5Bis2 and XIST5Bis3) gave correct band sizes and were subsequently cloned into a plasmid
for sequencing.
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DISCUSSION

Our results validate the use of Bos gaurus and Bos taurus interspecies hybrids for

the analysis of allelic expression.  Since the identification of genomic imprinting nearly

12 years ago (Bartolomei et al. 1991; Ferguson-Smith et al. 1991), Mus musculus X Mus

spretus and Peromyscus polionotus X Peromyscus maniculatus interspecific crosses of

mice have been widely used to identify numerous imprinted genes and are ideal

experimental models due to their high levels of heterozygosity within coding regions

(Hemberger et al. 1998; Jong et al. 1999; Mayer et al. 2000; Schmidt et al. 2000; Villar

et al. 1995; Yevtodiyenko et al. 2002).  Although Mus musculus X Mus spretus and

Peromyscus polionotus X Peromyscus maniculatus exhibit parental specific phenotypes

in their offspring (Dawson 1971; Hemberger et al. 1999; Vrana et al. 2000; Vrana et al.

1998; Zechner et al. 2002), no apparent abnormalities were detected in day 72 Bos

gaurus X Bos taurus hybrids.  Placental structure (cotyledon number, chorio-allantoic

fusion), placental fluid and fetal weights and lengths, were consistent with measurements

from intraspecies crosses in the bovine.  Therefore, the Bos gaurus/Bos taurus hybrid is

an ideal experimental model for allelic expression analysis of genes due to lack of

phenotypic abnormalities in offspring and high incidence of SNPs in the hybrids.  The

use of these animals can be further expanded into systematic and comprehensive

analysis of genomic imprinting and nuclear reprogramming in the bovine.
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The Igf2/IGF2 locus has been the most widely investigated imprinted gene in all

mammals.  It is located within the human and mouse imprinting cluster on chromosomes

11p15 and 7 respectively (Reik et al. 2003a).  In the bovine, conservation of this region

has been indicated by radiation hybrid mapping and is found on chromosome 29.

Maternal imprinting of the locus has been identified in humans, mice, sheep, pigs, rats

and opossums (Feil et al. 1998; Killian et al. 2000; Nolan et al. 2001).  In all species

investigated to date, maternal genomic imprinting has been demonstrated in most tissues

analyzed except for the choroids plexus and leptomeninges in mice and the livers of

adult humans and sheep (McLaren and Montgomery 1999; Pham et al. 1998). Allelic

expression analysis of the bovine IGF2 locus in prenatal day 72 chorion, allantois, liver,

lung and brain demonstrated preferential paternal expression in all animals investigated

(n=6).  In contrast to findings in the mouse, where the Igf2 locus in the choroids plexus

and leptomeniniges is biallelic, allelic expression of the IGF2 in prenatal bovine brain

was determined to be preferentially paternal.   It should be noted, however, that analysis

in the fetal bovine brains consisted of whole brain and not specific regions and it is

possible that biallelic expression of IGF2 in the choroids plexus and leptomeninges went

undetected due to the prevalence of other monoallelicly expressed brain tissues in the

samples used for analysis.  Therefore, further examination of this locus in postnatal

livers and in specific regions of the brain will give further insight to the conservation that

exists in the bovine with other species.

The Gtl2/GTL2 locus has been reported as imprinted in humans, mice and sheep

and resembles the organization and regulation of the Igf2/H19 locus, where it is
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reciprocally imprinted with the downstream Dlk1 gene (Bidwell et al. 2001; Wylie et al.

2000).  The bovine GTL2 locus maps to chromosome 18 and has been demonstrated to

have a similar organization of this region to the sheep suggesting high levels of

organization with other species (Shay et al. 2001).  Our results show preferential

maternal expression of the GTL2 locus in the chorion, allantois, liver, lung and brain in

all animals investigated.

At the WT1 locus, our results in the bovine are the only systematic allelic

expression analysis done so far aside from humans.  Analysis of all animals in the

chorion, allantois, liver, lung and brain indicates that genomic imprinting does not exist

in the bovine at this locus, in contrast to human data reporting it as an imprinted gene.

In humans, WT1 has been reported as both paternally and maternally as well as

polymorphic in individuals within the human brain, lymphocytes, fibroblast tissue and

preterm placental villi.  The data is conflicting, but Jinno et al (1994) have demonstrated

paternal expression of WT1 in human brain and placenta, and Mitsuya et al (1997) have

demonstrated maternal expression of fibroblast and lymphocytes, and in each scenario,

the allelic expression was polymorphic; that is half of the patients in both assays

displayed monoallelic expression, whereas the others displayed biallelic expression.  It

was further determined that this did not result from developmental stage switching of the

imprint.  In humans, the WT1 gene maps at the proximal end of the imprinting cluster on

chromosome 11p15 and the corresponding region in cattle maps to chromosome 29 and

15, as determined through radiation hybrid mapping analysis.  Interestingly, the bovine

WT1 locus has been separated from upstream IGF2/H19 and KCNQ1 imprinting centers
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(IC), which induce “spreading” of imprints to adjacent genes.  In cattle, a chromosomal

rearrangement has occurred, resulting in dissociation of the WT1 gene (chromosome 15)

from the imprinting cluster (chromosome 29).  This is speculative, but might indicate

that the dissociation from the region resulted in protection from the “spreading”

mechanisms that are observed within this region.  Further analysis of the locus is

required in humans and mice to determine if it is under the control of the two IC regions

or if it possesses its own regulatory elements that act independent of location, but it is

plausible that the imprinting status in cattle is different to that in humans due to

dissociation from adjacent imprinting centers.

Our findings of genomic imprinting at the XIST locus in cattle is especially

exciting, since this is the only other placental mammal reported to be imprinted other

than the mouse (Graves 1996).  In females, X chromosome inactivation is initiated by

expression of the Xist locus, where as in males this locus is silent.  The expression of the

Xist gene, in conjunction with other elements such as hypoacetylation of lysine residues

of histone H3, induces the bidirectional inactivation of one of the two chromosomes

(Csankovszki et al. 2001).  Allelic expression patterns of the Xist/XIST locus have been

examined in mice, humans and marsupials, and imprinting at this locus is only observed

in the mouse preimplantation embryo and polar trophectoderm.  Analysis in the bovine

reveals that the Xist is preferentially expressed in the chorion of all females tested, but is

biallelic in the allantois, liver, lung and brain; demonstrating conservation of genomic

imprinting with the mouse, but not the human.  Furthermore, random expression the

Xist/XIST locus in females has been associated with DNA methylation of the promoter
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and 5’ region of exon 1 in mice and humans.  Through the use of bisulfite sequencing

and PCR based techniques, we established that the bovine XIST is also methylated in the

liver and chorion.

Identification of genomic imprinting at this locus in the bovine presented us with

a unique opportunity to compare two regions between mice and bovine, believed to

induce imprinting.  Huntriss et al (1997) have identified a minimal promoter region in

the mouse (5’-GCGCCGCG-3’) located at – 44 to – 36.  This element is differentially

methylated in gametes and is bound by a nuclear protein in the presence of methylation,

which inhibits transcription.  In humans, this region has been replaced by a (5’-

GCCCCCCT-3’), which is incapable of methylation due to the lack of any CpG

dinucleotides.  We compared this corresponding region to the bovine and human and

found no conservation of this region (Fig 2.11), indicating that this site is unique to the

mouse.  Although this is not a proven site for imprinting in the mice, its binding activity

to a nuclear protein in a methylation dependent manner has implicated it as one.  Our

results suggest that it is not the imprinting site or that is not at least in the bovine.

Others have suggested an alternate region, which they is capable of imprinting

the Xist locus, and involves an antisense transcript to the Xist, termed Tsix, which

encompasses the entire Xist locus into the promoter region in mice (Fig 2.10). In mice,

Tsix has been shown to inhibit the maternal Xist allele in placental cells and of the future

active X chromosome in embryonic stem cells (Migeon 2003; Migeon et al. 2001;

Migeon et al. 2002).  Antisense transcripts are commonly identified with imprinted

genes, but their exact role in suppressing one allele in the presence of another is unclear.
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In mice the Tsix promoter region contains a CpG island that is differentially methylated

whereas the human TSIX does not.  Additionally, the human TSIX does not span into the

XIST promoter, but prematurely terminates in exon 5.  Analysis in the bovine reveals

that there is no corresponding CpG island in the TSIX promoter (Fig 2.10).  To ensure

that the parameters were the same when identifying CpG islands in these regions, we

analyzed the mouse Tsix promoters and obtained the same results as previously reported

(Fig 2.10).  In light of evidence indicating that all known imprinted genes are associated

with CpG islands, we predict that the bovine TSIX in not differentially expressed.

Furthermore, evidence from other reports suggest that the bovine TSIX does not span

into the promoter region and this is supported by the homology observed in Fig 2.9

(Chureau et al. 2002).  This would further suggest that TSIX in the bovine does not

regulate the imprinting that was observed in the chorion.  These findings suggest a

different mechanism for the establishment of XIST imprinting in the placenta of the

bovine and mouse. Moreover, we are confident that the imprinting observed at the XIST

locus in our hybrid females is not a consequence of the interspecies cross, since

preferential paternal X chromosome inactivation have already been demonstrated by

Xue et al in intraspecies crosses of cattle (Xue et al. 2002).  Furthermore, it is unlikely

that the mouse and bovine XIST have evolved to show similar patterns of tissue specific

expression of the XIST, but by different mechanisms.  Therefore, the bovine XIST

presents a unique experimental model for the identification and analysis of genomic

imprinting at this locus.
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CHAPTER III

EPIGENETIC AND GENOMIC IMPRINTING ANALYSIS IN NUCLEAR

TRANSFER DERIVED Bos gaurus/Bos taurus HYBRID FETUSES

INTRODUCTION

In the sexually undetermined primordial germ cell, genomic imprinting and DNA

methylation are erased and are reprogrammed during gametogenesis.  Furthermore, after

gametic marks are imparted onto the genome, additional demethylation occurs in an

asymmetrical pattern between parental genomes (Surani 2001). During the period of

epigenetic reprogramming in the early embryo, the totipotent epiblast and trophectoderm

undergo differentiation and ultimately produce all the cell lineages in the body and

placenta (Surani 2001). Presumably, proper epigenetic reprogramming and genomic

imprinting at this time is necessary so that the fetus and placenta develops properly. Yet,

the nuclear transfer (NT) process completely circumvents the events that normally

reprogram the genome (Rideout et al. 2001).

It is apparent that the generation of cattle through nuclear transfer leads to

embryonic and fetal death as well as high incidences of abnormalities in animals born to

term.  Improper epigenetic reprogramming of donor nuclei has been implicated and

widely investigated in mice as a cause for this, either entirely or partially, but a

systematic and comprehensive analysis has not been performed in bovine.  Previously

we identified conservation of genomic imprinting at the GTL2 and IGF2 loci in the
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bovine with humans, mice and sheep and at the XIST  locus with mice.  In this

experiment, we demonstrate the use of the interspecies hybrids as a model for

elucidating the reprogramming capacity of imprinted genes and epigenetic modifications

in the fetuses and placentas derived by nuclear transfer.

A day 72 female Bos gaurus/Bos taurus hybrid was used as the donor cell for

nuclear transfer in this experiment and resulting fetuses were analyzed for fidelity of

allelic expression of the imprinted IGF2, GTL2 and XIST loci.  In addition, methylation

analyses in the chorion and livers of cloned fetuses were performed within a single copy

promoter region, a differentially methylated region and a repeat element.

MATERIALS AND METHODS

Production of day 40 control Bos gaurus/Bos taurus hybrids

Heifers and mature (approximately 16 months to 3 years) Angus and Angus cross

cows housed at the NC State Beef Center Complex in Raleigh, North Carolina were used

to generate day 40 control hybrid fetuses.  Cows were synchronized for estrous by serial

injections of Prostaglandin F2alpha (Lutalyse) (2 shots 11 days apart with estrous

detection 3 days post second shot).  Upon detection of heat, heifers were transvaginally

inseminated following the am/pm rule (a.m. detection of estrous, pm insemination/ p.m.

detection of estrous, a.m. insemination).  Heifers were then checked for establishment of

pregnancy at day 28 through transrectal ultrasonography.
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Isolation of fetal fibroblast from Bos gaurus/Bos taurus hybrids

Day 72 Bos gaurus/Bos taurus hybrid fetus D was used as the donor genotype for

nuclear transfer in this experiment.   The head and viscera were removed and the

remaining tissue was minced with a sterile razor blade.  The tissue was added to 10 ml of

0.05% trypsin (Gibco) supplemented with 0.9 mM potassium chloride, 0.9mM dextrose,

0.7mM sodium bicarbonate, 0.1mM EDTA (Sigma), and 20mM sodium chloride (EM

Science).  The tissue/trypsin solution was shaken at 37ºC for 15 minutes a total of three

times.  After incubation, the supernatant was collected, pooled, and pelleted.  The cell

pellet was resuspended in DMEM/F12 media (Gibco Laboratories Inc) supplemented

with 10% fetal bovine serum (FBS) and 5% calf serum (CS) (Hyclone), 30mM sodium

bicarbonate, 0.5mM pyruvic acid, and 2mM N-acetyl-L-cysteine (all from Sigma).  In

addition, 100 units (U) penicillin, 100 micrograms (ug), and 250 nannograms (ng)

amphotericin (Gibco) were added to inhibit microbe growth.  The cells were placed in

the appropriate number of 10cm tissue culture plates (Corning) and placed in a 5% CO2

incubator (Nuaire) at 38ºC, allowed to attach and grow to confluency and then passaged

(1:2 or 3).  The cells were then trypsinized and frozen in 50% FBS, 40% media, and

10% DMSO (Sigma), placed in -80ºC overnight and in liquid Nitrogen for long time

storage and future use.
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Production of day 40 cloned Bos gaurus/Bos taurus hybrids

Ooctye maturation

  Oocytes were obtained from a commercial supplier (Ovagenix, San Angelo, TX)

and matured in Medium 199 (M199; Gibco Laboratories Inc. Grand Islands, NY)

supplemented with 10% FBS (Hyclone), 0.1 U/ml LH (Sioux Biochemical, Sioux City,

IA), 0.1 U/ml FSH (Sioux Biochemical), and 1% penicillin-streptomycin (P/S; Sigma)

for 20-22 hrs.    

Preparation of donor cells 

Bovine fetal fibroblast were seeded in a four well plate at 35% confluency and

grown in Dulbecco modified Eagle medium-F12 (Gibco Laboratories Inc) containing

10% FCS at 37oC in air containing 5% CO2 until contact inhibited.  Cells were then

trypsinized and resuspended in DMEMF-12 in preparation for reconstruction. 

Nuclear transfer

Following maturation, cumulus cells were removed from the oocyte by vortexing

in 0.1% hyaloranidase (Sigma) in Hepes-M199 (H-M199).  Denuded oocytes were

rinsed through three drops of manipulation media (H-M199 containing 10% FCS) and

then incubated for 10 minutes in culture media (B-M199 supplemented with 10% FCS)

containing 5 µg/ml Hoechst 3342 (Sigma).  Oocytes were then placed in manipulation

media containing 7.5 µg/ml cytochalasin B (Sigma) and enucleated by aspiration of the
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first polar body and metaphase plate utilizing a 22-µm beveled glass pipette.  Absence of

the metaphase plate was visualized by exposure to ultraviolet florescent light.

Reconstruction was conducted in manipulation media.  The cells were placed in a

separate drop of manipulation media and groups of 15-20 cells were loaded in the

pipette. A single cell was then placed in the perivitelline space of each enucleated

oocyte.  Following reconstruction, the oocytes were placed in a 1-mm fusion chamber

and fused by two DC pulses of 220 V for 10 µsec in 275 mM mannitol (Sigma), 0.1 mM

CaCl2 (Sigma), and 0.1 mM MgSO4 (Sigma).  Following fusion, the oocytes were

placed in culture media for 4 hrs prior to activation.   

Oocyte activation

Reconstructed oocytes were activated by exposure to 5 µm ionomycin

(Calbiochem, San Diego) for 4 minutes, rinsed three times in manipulation media and

placed in culture media containing 2 mM 6-dimethylaminopurine (Sigma) for 4 h. 

Following activation embryos were placed in G1 culture media (Vitrolife) for four days

then transferred to G2 culture media (Vitrolife) for an additional 2 days.  On day six,

compact morula were loaded into a tube containing pre-equilibrated G2 media and

shipped to North Carolina State University for transfer on day 7.

Synchronization of recipients

Heifers and mature Angus and Angus cross cows (approximately 16 months to 3

years) housed at the NC State Beef Center Complex in Raleigh, North Carolina were
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used as recipients for the cloned Bos gaurs/Bos taurus embryos.  Cows were

synchronized for estrous by serial injections of Prostaglandin F2alpha (Lutalyse) (2 shots

11 days apart with estrous detection 3 days post second shot).  Cows were monitored for

estrous twice daily and at the onset of estrus, cows were categorized as day 0 of estrus.

At day 7 of estrus, cloned blastocysts were transvaginally transferred into the gravid

horn.

Embryo transfer

Cloned embryos were shipped from Genetic Savings and Clone, College Station

TX in a 39oC heated incubator at day 6 of embryo culture and embryos arrived in North

Carolina within 24 hours (day 7).  The cloned embryos were maintained in the pre-

equilibrated G2 media at 39oC until time of transfer.  Upon time of transfer, cloned

embryos were moved to ViGro™ Holding (hepes buffered) media and washed 2X to

remove residual G2 media.  Embryos were maintained within loading media in a 39oC

incubator, until time of transfer, at which time two embryos were drawn into a 0.5 cc

embryo transfer straw.  Embryos were then transvaginally loaded into the gravid horn.

Isolation of control and nuclear transfer derived Bos gaurus/Bos taurus hybrid

fetuses

At day 40 of gestation, recipient cows were slaughtered at a local abattoir,

reproductive tracts were transported to the NC State Veterinary School on ice and tissues

isolated. Weights and measurements were taken so as to monitor development of hybrid
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animals.  Chorion, allantois, liver and brain samples were isolated and flash frozen in

liquid nitrogen to preserve RNA and DNA until further use.

RNA and DNA extraction

RNA was extracted from frozen samples utilizing the Ambion RNA aqueous kit

and resuspended in 10 mg aliquots in DEPC H2O and stored at – 80 oC.  2 mg of RNA for

each sample was DNase I treated using the Ambion DNase I Kit and subsequently

converted to cDNA through the Ambion First Strand Synthesis Kit for all RT-PCR

reactions.  DNA was extracted from frozen tissues using the Promega Wizard DNA

Extraction Kit and resuspended at 20 ng/ml and stored at –20 oC until further use.

PCR-based sexing determination of day 40 control Bos gaurus/Bos taurus fetuses

PCR-based sex determination reactions (Y chromosome specific) were

performed on all fetuses and was carried out in 50 ml reactions consisting of:: 30.75 ml

dH2O, 5 ml 10X PCR buffer (Promega), 4 ml MgCl2 (25 mM), 1.25 ml dNTP (10mM),

2.0 ml Forward primer (3 mm), 2.0 ml Reverse primer (3 mM), 0.5 ml Taq (Promega) and

2.0 ml DNA (100 ng) and cycled on a Perkin Elmer Thermocycler at 94oC (5min); 94oc

(30 sec), 54oC (30 sec), 72oc (2 min) [30 cycles].  Products were resolved on 2% EthBr

agarose gels and analyzed for the presence (male) or absence (female) of approximately

200 bp.  Internal positive and negative controls consisted of known male and female

genomic DNA
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Microsatellite analysis of cloned Bos gaurus/Bos taurus fetuses

Genotyping of clones and donor cells was performed at the DNA Technologies

Lab, Department of Veterinary Pathobiology, Texas A&M University, College Station

TX (Schnabel et al. 2000).

Analysis of allelic expression of the GTL2, IGF2, and XIST loci

RT-PCR of the IGF2, GTL2, and XIST loci was performed on chorion, allantois

and liver (Table 3.1).  Amplicons resolved on 2% EthBr agarose gels were gel extracted

(Qiagen Gel Extraction Kit), resuspended in 50 m ls of dH20 and used directly as

sequencing template.  Sequencing primers consisted of forward primers used in the

amplification of each of the four RT-PCR reactions.   Twenty-five ml sequencing

reactions using Big Dye Terminator mix were run on a Perkin Elmer Thermocycler at

94oC (30 sec), 50oC (30 sec), 60oC (4 min) [25 cycles].  Cleanup of sequencing reactions

was performed in 800 ml Sephadex columns (Sigma).  Sequences were then run on either

an ABI 370 or 3700 and sequence chromatograms were visually analyzed for the

presence or absence of both SNPs.  RT-PCR and sequencing reactions were run in

triplicates.  To confirm the absence of genomic contamination in cDNA samples, an

internal control was utilized through the IGF2 amplicon, which spanned intron 6.

Genomic contamination results in the presence of an additional 1kb band.
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Table 3.1. Primer sequences for the amplification of IGF2, GTL2, and XIST loci.

Allelic quantification of the XIST locus

RT-PCR products of the XIST4 from chorion of clones and controls was cloned

into TOP4 sequencing vectors (Invitrogen) and were transformed into TOP10

(Invitrogen) chemically competent E. coli cells.  Plasmids were purified and sequencing

reactions run using M13 universal primers (5’-CTGGCCGTCGTTTTAC-3’) (3.25 pM)

in 25 ml sequencing reactions with Big Dye Terminator mix and were run on a Perkin

Elmer Thermocycler at 94oC (30 sec), 50oC (30 sec), 60oC (4 min) [25 cycles].

Sequences were examined individually for the presence or absence of the paternal (C)

SNP located at position 220 of the sequence chromatogram.  Results are expressed in

percentages of total sequences.

Locus Forward primer (5’-3’) Reverse primer (5’-3’)

X- chromosome
inactivation specific
transcript (XIST)

GAACATTTTCCAGACCCCAAC AAACCAGGTATCCACAGCCG

Gene trap locus 2 (GTL2) CCCACCAGCAAACAAAGCAAC CATCAAGGCAAAAAGCACATCG

Insulin like growth factor 2
(IGF2)

CAAGGCATCCAGCGATTAG TTCAAGGGGGCTGATTGAG



74

Bisulfite treatment of genomic DNA

Genomic DNA was isolated (Promega Wizard DNA Isolation Kit) from the

chorion and liver of control (n=3) and clones (n=3).  The sodium bisulfite reaction was

carried out with one mg of DNA from each sample using the CpG DNA Conversion Kit

(IntergenCo).  Sodium bisulfite catalyzes the deamination of cytosines to uracils

(thymines), where as methylated cytosines (m5C) are protected.  This technique allows

for the rapid identification of m5C in genomic DNA. Genomic DNA was denatured

through incubation of 3M NaOH at 37oC.  Denatured DNA was then incubated for 16-20

hrs at 50oC in the presence of 3 M Sodium bisulfite and 0.5 mM hydroquinone.  Carrier

glycogen was added to bisulfite treated DNA and incubated at room temp for 5 min.

DNA was then washed, centrifuged (13,000 rpm) and vortexed in successive (3X)

volumes of 90 % and 70% ethanol.  DNA was then resuspended in 50 ml TAE and

incubated at 60oC for 15 min.  DNA sample was centrifuged at 13,000 rpm for 30 sec

and the supernatant containing DNA transferred to a new tube and 1.5 m l of the

superernatant was used in subsequent PCR reactions.

DNA methylation analysis of the XIST Differentially Methylated Region (DMR) in

exon1

DNA methylation analysis of the XIST DMR in exon 1 was performed by

digestion of 500 ng of genomic DNA with AciI and Bst UI restriction enzymes.  20 ml

reaction consisting of 2 ml 10X buffer and 2 ml (10 units) of the restriction enzyme AciI
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(TGNC/GCGG) or Bst UI (CGCG) for approximately 24 hours.  1.5 ml of digested DNA

was run in a 50 ml PCR reaction consisting of   5 mls 10X PCR buffer (Promega), 4 mls

25 mM MgCl2, 1.25 mls 10mM dNTPs, 2.5 mls 3 M forward primer, 2.5 ml 3 M reverse

primer, 2 mls DNA and 1 mls Taq (Promega) using primers flanking the CpG island.

Cycle parameters were: 94oC (5min) (denaturation); 94oC (30 sec), 60oC (30 sec), 72oC

(3 min) [10 cycles]; 94oC (30 sec), 60oC (30 sec), 72oC (3 min) [25 cycles].  Products

were resolved on 2% EthBr agarose gels and analyzed for the presence or absence of

bands.  Negative controls consisted of undigested DNA and positive controls consisted

of digestion with sperm DNA, which possesses no methlyation (Goto and Monk 1998;

Monk 1995; Zuccotti and Monk 1995).

Bisulfite sequencing of the epidermal cytokeratin and satellite I regions

Bisulfite sequencing of the epidermal cytokeratin promoter (Table 3.2) was

performed on chorion and liver obtained from control and cloned pregnancies. Hemi-

nested amplification of the epidermal cytokeratin promoter was carried out in two 25 ml

reactions consisting of : 15.375 ml H2O, 2.5 ml 10X PCR buffer (Promega), 2 ml MgCl2

(25mM), .625 ml dNTP, 1.25 ml Forward primer (3 mM), 1.25 ml Reverse primer A (3

mM), 1.256 ml Taq (Promega) and 1.25 ml bisulfite treated DNA (100 ng) and cycled at

94oC (10 min); 94oC (30 sec), 55oC (60 sec), 72oC (30 sec) [35 cycles] and then two mls

of this reaction was added to another PCR mix consisting of the same reagents, but with

the heminested primer B and cycled under the same parameters.  Bands were resolved on

2% EthBr agarose gels and were subsequently gel purified (Qiagen Gel Purification Kit).
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Bisulfite sequencing of the satellite I region (Table 3.2) was performed on

chorion and liver obtained from control and cloned pregnancies.  Amplification of the

region was carried out in 50 ml reaction consisting of:  30.75 ml dH2O, 5 ml 10X PCR

buffer (Promega), 4 ml MgCl2 (25 mM), 1.25 ml dNTP (10mM), 2.5 ml Forward primer

(3 mm, 2.5 ml Reverse primer (3 mM), 0.5 ml Taq (Promega) and 2.0 ml DNA (100 ng)

and cycled on a Perkin Elmer Thermocycler at 94oC (5min); 94oC (60 sec), 46oC (60

sec), 72oC (30 sec) [35 cycles].   Bands were resolved on 2% EthBr agarose gels and

were subsequently gel purified (Qiagen Gel Purification Kit).

Products from each epidermal cytokeratin and satellite I amplification for liver

and chorion of all animals generated were cloned into a sequencing vector (TOPO4,

Invitrogen).  Positive colonies containing plasmid and insert (cytokeratin and satellite I)

were isolated and grown in 96 deep well plasmid culture plates (Invitrogen) overnight.

Plasmids were purified using a 96 well plasmid isolation kit (Invitrogen). Approximately

20 plasmids were purified for each sequencing reaction for each sample and animal.

Sequencing reactions were performed using M13 universal primers (5’-

CTGGCCGTCGTTTTAC-3’) (3.25 pM) in 25 ml sequencing reactions with Big Dye

Terminator mix and were run on a Perkin Elmer Thermocycler at 94oC (30 sec), 50oC

(30 sec), 60oC (4 min) [25 cycles].  Products were sequenced on an ABI 3700 sequencer.

Sequences were analyzed on MacVector 6.0 Clustall query for presence or absence of

methylated CpG dinucleotides.
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Table 3.2. Primer sequences for the amplification of the epidermal cytokeratin promoter and
satellite I repeat element.

Statistical analysis

Mean comparisons of values obtained from bisulfite sequencing and allelic

expression analysis was determined using an unpaired t test using significance level of

P< 0.05.

RESULTS

Production of day 40 control Bos gaurus/Bos taurus fetuses

Bos gaurus and Bos taurus hybrid fetuses and placentas were obtained at day 40

of gestation (Fig 3.2).  Samples derived from the placentas (chorion and allantois) and

fetuses (liver) were isolated.  A total of three, day 40 hybrid fetuses were obtained (1

female and two male).  Table 3.6 summarizes weights and measurements obtained from

each of the hybrid fetuses.  Additionally, Y chromosome specific PCR reactions (sexing

reactions) were performed on the three control fetuses (Fig 3.3).

Locus Forward primer (5’- 3’) Reverse primer (5’ –3’)

Epidermal cytokeratin
promoter

GTGGAYGGTAAGTTATTTAAAA A: CCTCTTTCTACCAAACAAACCA
B:  ACAAACCAAAAACTAATAATACC

Satellite I
AATACCTCTAATTTCAAACT TTTGTGAATGTAGTTAATA
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Table 3.3. Weights and measurements of the Bos gaurus/Bos taurus day 40 hybrid control
fetuses.

*X indicates measurement was not obtained.

Fetus
Fetus
weight

(g)

Placental
weight

(g)

Allantoic
fluid
(mls)

Cotyledon
number

Heart
weight

(g)

Liver
weight

(g)
Sex

G 1.17 X 92 25 .027 .09 Male
H 1.28 X 64 16 .028 .10 Female
I .091 10.211 71 4 .029 .11 Male
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Figure 3.1. Bos gaurus/Bos taurus day 40 control fetus and placenta (Fetus G).
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Figure 3.2. PCR-based sex identification of Bos gaurus/Bos taurus day 40 control fetus. Y
specific PCR reactions of the three day 40 Bos gaurus/Bos taurus hybrid fetuses (Fetus G, H, I)
and control fetus of known sex (male).
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Production of day 40 nuclear transfer derived Bos gaurus/Bos taurus hybrids

Two-hundred oocytes were fused with Bos gaurus/Bos taurus lung fetal

fibroblast cells derived from Fetus D, and lead to the generation of thirty-two grade one

blastocysts.  At day 28 of gestation, recipient cows were checked for pregnancy and

three recipients (#35, 8010 and 27) were determined pregnant (Table 3.4). At day 40 of

gestation, cloned fetal and placental tissues were isolated (Fig 3.1).  Table 3.5

summarizes weights and measurements obtained from each of the pregnancies.

Table 3.4. Grade and developmental stage of cloned Bos gaurus/Bos taurus hybrid blastocysts.

(EB= Early blastocyst, MB= Mid blastocytst and XB= Expanded blastocytst)

Embryo
Number

Stage
(Development)

Embryo grade Recipient # Pregnant at
day 28

Pregnant at
day 40

1, 2 MB 1 8029 Yes Yes
3, 4 XB 1 8012 No No
5, 6 EB 1 8010 No No
7, 8 EB 1 35 Yes Yes
9, 10 MB 1 8005 No No
11, 12 EB 1 8013 No No
13, 14 EB 1, -1 27 Yes Yes
15, 16 MB 1 8040 No No
17, 18 MB -1 41 No No
19, 20 XB 1 9012 No No
21, 22 MB 1 28 No No
23-27 MB n=1

XB n=4
1 32 No No

28-32 EB n=1
MB n=1
XB n=1
XB n=2

1 9033 No No
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Table 3.5.  Weights and measurements of the three cloned Bos gaurus/Bos taurus fetuses (1A,
1B, 2A, 2B, 3) obtained at day 40 of gestation.

A and B (1A, 1B, 2A and 2B) indicate twin pregnancies.

Fetus Fetus
weight

(g)

Placental
weight

(g)

Allantoic
fluid
(mls)

Cotyledon
number

Heart
weight

(g)

Liver
weight

(g)

Sex

1A
1B

.822

.290
17.88 87 0 .030

.013
.030
.017

Female

2A
2B

.843

.822
21.237 58.5 0 .014

.016
.014
.015

Female

3 1.067 16.929 91 0 .012 .010 Female
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(A)

(B)

Figure 3.3. Bos gaurus/Bos taurus day 72 donor fetus and placenta and day 40 nuclear transfer
derived fetus and placenta.  (A) Day 72 Fetus D (donor cell line: lung fibroblast).  (B) Day 40
cloned Bos gaurus/Bos taurus hybrid fetus and placenta (Clone 3).
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Table 3.6. Genotype analysis of Bos gaurus/Bos taurus day 40 nuclear transfer derived fetuses
and donor cell line.

Locus Fetus
1A

Fetus 1B Fetus
2A

Fetus 2B Fetus 3 Donor
cell line

BM1225 236 236 236 236 236 236
267 267 267 267 267 267

BM1706 243 243 243 243 243 243
251 251 251 250 251 251

BM17132 88 88 88 88 88 88
88 88 88 88 88 88

BM1905 169 169 169 169 169 169
177 177 177 177 177 177

BM2113 127 127 127 127 127 127
138 137 138 138 137 137
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Genotyping of day 40 cloned Bos gaurus/Bos taurus hybrids

Microsatellite analysis at six loci (BM1225, BM1706, BM17132, BM1905,

BM2113) from the five cloned fetuses indicates all are identical at loci examined and

match the genotype of the donor cell line derived from Fetus D (Table 3.7).  These

results indicate all animals generated are clones.

Allelic expression profiles of the IGF2, GTL2 and XIST loci

IGF2

Amplification using the IGF2-3 primer set from day 40 control and cloned

chorion, allantois and liver indicated expression in all tissues sampled.  The C/A SNP,

previously identified in day 72 hybrid controls, was also detected in the IGF2-3

amplified from genomic DNA of the three day 40 control hybrids.  Allelic expression

analysis of IGF2-3 in control liver, chorion and allantois showed preferential expression

of the paternal allele (allele C).  When analysis of IGF2-3 was extended to the liver,

chorion and allantois of the five cloned fetuses, preferential paternal expression of the

locus was also observed.  These results indicate fidelity of imprinting at the IGF2 locus

in bovine clones (Fig 3.3 and Fig 3.4).
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(A)  Fetus G liver RT-PCR                  (B)  Clone 1A liver RT-PCR

(C)  Fetus G chorion RT-PCR             (D)  Clone 1 chorion RT-PCR

Figure 3.4.  Sequence chromatograms of the IGF2 locus amplified from control and nuclear
transfer derived fetus and placenta. Sequence chromatograms of Bos gauru/Bos taurus control
day 40 hybrid and day 40 clone IGF2 transcripts.  (A) IGF2-3 amplified from Fetus G liver
cDNA, (B) Clone 1A liver, (C) Fetus G chorion and (D) Clone 1 chorion. This pattern of
expression was observed for all controls and clones in the chorion, allantois and liver (not
shown).
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Figure 3.5. RT-PCR transcript of the IGF2 locus amplified from control and nuclear transfer
derived fetus and placenta. 2% agarose gel of IGF2-3 amplified from chorion, allantois and liver
from all clone and control fetuses.
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(A)  Fetus G liver RT-PCR                  (B)  Clone 1A liver RT-PCR

(C)  Fetus G chorion RT-PCR             (D)  Clone 1 chorion RT-PCR

Fig 3.6. Sequence chromatograms of the GTL2 locus amplified from control and nuclear transfer
derived fetus and placenta. (A) Fetus G liver, (B) Clone 1A liver, (C) Fetus G chorion and (D)
Clone 1 chorion.  GTL2 transcripts from three control liver and chorion exhibited preferential
maternal expression as well as all samples sequenced obtained from chorion and livers of
controls.
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Fig 3.7. RT-PCR amplicons of the GTL2 locus amplified from control and nuclear transfer
derived fetus and placenta.
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GTL2

Amplification of GTL2, using primers previously used to determine genomic

imprinting in day 72 hybrid fetuses, was extended to day 40 controls and cloned hybrid

chorion, allantois and liver.  The C/A SNP was first identified to exist in day 40 controls

and allelic expression analysis of chromatograms revealed that the maternal allele was

preferentially expressed in chorion, allantois and liver in both controls and clones

indicating maintenance of imprinting at the GTL2 locus in cloned day 40 hybrids.

XIST

Expression of the XIST was not detected in day 40 hybrid males (Fetus G, I), but

strong bands were detected in the hybrid female control (Fetus H) and in all clones

(Clone 1, 2, 3).  The C/T SNP was also detected in Fetus H, as previously detected in all

female day 72 hybrids, and allelic expression analysis indicated biallelic expression of

the XIST in liver and allantois, and monoallelic expression (paternal) in the chorion of

Fetus H.  In the clones (1A, 1B, 2A, 2B and 3), biallelic expression was detected in the

liver and allantois, however, biallelic expression was detected in the chorion of clone 2

and 3, whereas monoallelic expression (paternal) was detected in clone 1 (Fig 3.7).
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(A)  Fetus H chorion (B) Clone 1 chorion (C) Clone 2 chorion (D) Clone 3 chorion (E) Clone 3 liver

Figure 3.8. Sequence chromatograms of the XIST locus amplified from control and nuclear
transfer derived fetus and placenta. (A) Fetus H chorion, (B) Clone 1 chorion, (C) Clone 2
chorion, (D) Clone 3 chorion and (E) Clone 1A liver. Chromatograms indicate monoallelic
expression of the XIST4 in chorion in Fetus H and Clone 1, however biallelic expression is
observed in Clone 2 and 3.
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Figure 3.9. RT-PCR amplicons of the XIST locus. 2% agarose gel of the XIST4 amplicon from
Fetus H chorion and liver and Clones 1-3 chorion and liver.
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In an attempt to quantify the levels of XIST4 parental expression from the

chorion of Clones 1-3, RT-PCR products were cloned into TOPO4 sequencing vectors

and multiple plasmids were sequenced (45-83 on average) to more accurately determine

the ratio of paternal to maternal transcripts present.  In sequences obtained from Clone 1,

83.7 % were paternally derived (36/43), in Clone 2, 65.9 % were paternally derived

(29/44) and in Clone 3 71.4 % were paternally derived (40/56), whereas in controls, 94

% (78/83), 97 % (36/37) and 95% (40/42) of the sequences were paternally derived in

fetuses A, B and H respectively.  These results indicate abnormal monoallelic vs.

biallelic expression of the XIST locus deriving from increased expression of the maternal

allele in the chorion of cloned fetuses 1-3.  Overall, the expression at the XIST locus was

significantly different (P<0.02) with the paternal expression of clones equaling 73.6 ±

5.2 (Mean ± S.E.) versus the controls whose paternal expression was 95 ± 0.8 (Mean ±

S.E.) (Fig 3.9).
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transfer derived fetus and placenta.
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Figure 3.11. Amplification of the CpG island in exon 1 of the bovine XIST locus after digestion
with AciI and BstUI. 2 % agarose gel of XIST 5 PCR products amplified from undigested
genomic DNA, Aci I digested, and Bst UI digested. Note that all produce products except for
hypomethylated Gaur sperm (AciI & Bst UI).

AciI AciI AciI AciI AciI AciI

Bst UI Bst UI

Xist 5RXist 5F

            fl  300 bp  ‡

Figure 3.12. Schematic of the CpG island in exon 1 of the bovine XIST locus representing
AciI and BstUI restriction sites.
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Methylation analysis of the XIST DMR in exon 1

To determine the methylation status of the XIST DRM in exon 1, the digestion of

the genomic DNA with the restriction enzymes AciI and BstUI was expanded to include

the animals derived from nuclear transfer.  Genomic DNA isolated from the chorion and

livers of cloned animals was digested and used as template for a PCR reaction spanning

the XIST DMR in exon 1 (Fig 3.11).  Results indicate that the methylation status of these

animals is in concordance with controls (Fig 3.10).  This indicates that there is not a loss

of methylation in this region in any of the clones or tissues.  Digestion with AciI and Bst

UI encompasses eight of the eleven CpG dinucleotides present in this region.

Methylation analysis of the epidermal cytokeratin promoter and satellite I repeat

element

In order to understand the effects of nuclear reprogramming, it was essential to

assess imprinted gene expression in conjunction with DNA methylation analysis.  Since

the DNA sequence of the bovine DMR regions regulating imprinting at the IGF2 and

GTL2 are not available, the DNA methylation analysis of the epidermal cytokeratin

promoter, which is methylated in a tissue specific manner and the bovine Satellite I

repeat element, which is a relic of retrotransposons and is heavily methylated, were

incorporated into the experiment.  Bisulfite sequencing of the cytokeratin promoter in

control livers and chorion indicated the region was hypermethylated in the control liver:

Fetus G 73%, Fetus H 75 % and Fetus I 73 %, with overall methylation at 73.7 % ± .7



95

(Mean ± S.E.). In the chorion of control fetuses the promoter was hypomethylated: Fetus

G 5 %, Fetus H 18 % and Fetus I 11.5 % with overall methylation at 11.8 % ± 4.0.

Analysis of the clones revealed that the methylation of the liver was in relative

agreement with the controls: Clone 1A 52 %, Clone 1B 79 %, Clone 2A 52 %, Clone 2B

56 %, Clone 3 56 %, with overall methylation at 63.8 % ± 6.2; however, in contrast

hypermethylation was observed in the chorion of clones: Clone 1 24 %, Clone 2 50 %

and Clone 3 and overall was 37 % ± 13.0, although this value was not significantly

different (P= 0.10). These results indicate normal methylation patterns at the cytokeratin

promoter within the liver, but slight variation (hypermethylation) in the chorion of

clones (Fig 3.12).

When analysis was extended to the Satellite I region, similar results were

observed.  Analysis indicated hypermethylation of control livers: Fetus G 50 %, Fetus H

65 % and Fetus I: 62.5 %, with overall at methylation 56.0 % ±3.5 (Mean ± S.E.) and

hypomethylation in control chorion: Fetus G 8 %, Fetus H 11 % and Fetus I 18 % with

overall methlyation at 12.9 % ± 2.8.  Similarly, hypermethylation of clone livers was

observed: Clone 1A 54.5 %, Clone 1B 68.4 %, Clone 2A 63 %, Clone 2B 75.6 and

Clone 3 51.0 %, with overall methylation at 65.4 % ± 4.5, whereas in contrast to

controls, analysis of the chorion in clones indicated hypermethylation at these regions:

Clone 1 33.9 %, Clone 2 48.3 % and Clone 3 64.6 % with overall methylation at 49.9 %

± 8.9, and these values are statistically significant (P = 0.01). These results indicate

improper reprogramming of the Satellite I repeat element of the clones within the

chorion (Fig 3.13).
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Figure 3.13. Percent methylation analysis of the bovine epidermal cytokeratin promoter.
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Figure 3.14. Percent methylation analysis of the bovine satellite I repeat element.

DISCUSSION

Here we demonstrate the ability to generate day 40 hybrid Bos gaurus/Bos taurus

clones from somatic cell nuclear transfer of day 72 hybrid fetuses and analyses of

genomic imprinting and DNA methylation.  These results are the first report of a

systematic and comprehensive analysis of genomic imprinting and DNA methylation in

cloned bovine fetal and placental tissue and the first use of an interspecies model to

address these questions in the bovine.

Observations of the three cloned pregnancies established indicated that no

abnormalities of the fetuses were apparent except the reduced size of Clone 1B, whereas

Clones 1A, 2A, 2B and 3 were in concordance with control animals.  However, analysis
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of the placenta of each clone indicated differences in cotyledon number between the

three clones and controls (Clones 1-3 = 0, 0, 0 cotyledons, Controls G-I = 25, 16, 5

cotyledons).  These finding are similar to Hill et al. (2000) in that clones between day 35

and 55 have reduced placentome number and reduction in chorio-allantoic fusion.

However, it should be noted though that we made no attempt to characterize

pathological conditions in the pregnancies, but only made gross physical observations

between animals.  Furthermore, after observing differences in cloned vs. control

pregnancies it was realized that proper control animals consisting of in vitro produced

embryos, such as through in vitro fertilization that are cultured in media for an

equivalent amount of time as clones, would have been better for comparison of

phenotypes, since the nature of reduced cotyledon number in clones cannot be

determined without knowledge of the effect of culture on the pregnancies.

Allelic expression analysis of the imprinted genes identified in the previous

experiment indicated fidelity of expression of the IGF2 and GTL2 in the somatic tissue

(liver) and placenta (chorion) of Clones 1-3. In contrast we observed abnormal biallelic

expression at the imprinted XIST locus in the placenta (chorion) of Clones 1-3, but

proper biallelic expression of the locus in the soma (liver).  This demonstrates the first

report of loss of imprinting (LOI) at a locus in an animal derived from somatic cell

nuclear transfer.  Analysis of chromatograms obtained from sequencing the XIST in the

chorion indicated biallelic expression in Clone 2 and Clone 3 (Fig 3.7).  These results

were confirmed after multiple sequences were obtained from multiple sets of RNA preps

and were additionally confirmed to be free from genomic contamination through the
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sequencing of the IGF2 locus from the same cDNA sample (and observing monoallelic

expression at this locus).  Further examination of the XIST locus through the cloning of

RT-PCR products and subsequent sequencing of multiple plasmids revealed that all three

clones had skewed allelic expression of the XIST locus, with the paternal transcript

predominating, but with higher levels of maternal expression than expected (Clone 1

16.3 % maternal, Clone 2 34.1 % maternal and Clone 3 28.6 % maternal) in comparison

to controls (Fetus H 6% maternal, Fetus A 3% maternal and Fetus B 5% maternal),

which exhibited maternal expression as well, although overall the levels of expression

were significantly different (P<0.02) between clones and controls. Observation of

abnormal XIST expression in the chorion of clones can be further supported by

observations from Xue et al (2002), which demonstrated aberrant patterns of X

chromosome inactivation in the placenta of cloned cattle.  In this experiment, analysis of

10 genes located on the X chromosome, which undergo inactivation, were observed for

allelic expression in live and deceased clones, and results demonstrated that some

deceased clones exhibited biallelic expression of genes.  They expanded their analysis to

the XIST DRM in exon 1 and found correlation between hypomethylation of the region

and biallelic expression. However, when we analyzed the XIST DMR in exon 1 of

cloned hybrids, through digestion with AciI/Bst UI and subsequent PCR across the

region (XIST5), no apparent loss of methylation was observed.  This can be explained in

part by the lack of information we have about the biallelic expression of the XIST locus

in our clones.  In the chorion of control animals, presumably, the paternal XIST is

preferentially expressed within each individual cell.  In our assay, we are unable to
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determine if the biallelic expression of XIST is resulting from both alleles being

expressed in an individual cell or if parental expression is random in a subset of cells.

These two situations are theoretically possible, but ascertaining which one is occurring is

difficult.  Therefore, detection of biallelic expression of XIST was observed in the

chorion of clones and is abnormal, but identifying which situation it arose from our

assay is not possible.

Results of the methylation status of the epidermal cytokeratin and satellite I

region further support disregulation of reprogramming in the chorion of Clones.  In the

liver of Clones 1-3 and Control fetuses G-I, DNA methylation analysis of the epidermal

cytokeratin promoter and satellite I region were in agreement between clones and

controls respectively (clones: 63.8 and 65.4 % vs. Controls: 73.7 and 56.0 %).  Analysis

of the chorion revealed that the methylation of clones was greater at the epidermal

cytokeratin promoter (Controls: 11.8 % and Clones: 37.0 %), but was not significantly

different.  However, hypermethylation was observed at the Satellite I region in the

chorion (Controls 12.9 5 vs. Clones 49.8 %) and this value was significantly different

(P< 0.02).  In contrast to Xue et al. (2002), our results suggest that hypermethylation of

the DNA occurs in the placenta, as shown by hypermethylation of the multi-copy

satellite I (>100,000 copies), and is possibly associated with the biallelic expression that

is observed at the XIST locus, although only speculation.  Our observations are further

supported by DNA methylation analysis of cloned bovine embryos.  Kang et al. (2002)

has demonstrated hypermethylation of the bovine trophectoderm (cells giving rise to

chorion) in day 7 NT derived embryos and Dean et al. (2001) has demonstrated



101

incomplete demethylation of cloned bovine genomes during early embryonic

development  (Fig 1.2).

These results suggest that nuclear reprogramming of the cells giving rise to the

placenta (trophectoderm) are improperly reprogrammed during early embryonic

development, and potentially induce the placental abnormalities that are prevalent in

cloned animals.  This is not to say there are other areas in which improper

reprogramming may occur, but DNA methylation and genomic imprinting have been

shown to be crucial for the development in the early embryo when these lineages are

established.
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CHAPTER IV

SUMMARY AND FUTURE WORK

Due to the high incidences of abnormalities and the inefficiency of generating

calves, the development of a model system in cattle to investigate potential problems is

warranted.  In nuclear transfer, where genomic imprinting has been implicated as the

cause for these problems, use of an interspecies model is ideal since the parental

inheritance of alleles can be easily ascertained.  Here we have reported the use of a Bos

gaurus/Bos taurus interspecies bovine model, which has facilitated the identification of

three imprinted genes in the bovine and has allowed for their analysis in cloned fetuses.

Interspecies models are commonly used for the identification of imprinted genes

in the mouse, in spite of abnormalities that are created from crosses in some species.

The use of the Gaur crossed with domestic cattle has been used extensively for linkage

analysis and frequent mating between the two species have also been reported for

commercial purposes. The use of Bos gaurus/Bos taurus hybrids for the identification of

imprinted genes as well as for the analysis of cloned fetuses was ideal since imprinting

was shown to be normal and fetuses possessed no abnormalities.

Information obtained from use of these animals revealed conservation of

genomic imprinting at the IGF2 and GTL2 loci with humans, mice and sheep and the

XIST locus with mice.  Additionally, it was demonstrated that the WT1 locus is not

imprinted in cattle, in contrast to reports in humans.  To date, this is the largest
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identification of imprinted genes in the bovine and further use of the Bos gaurus/Bos

taurus interspecies model will undoubtedly identify more.

Additionally, this model has facilitated the first report of abnormal imprinting at

a locus from somatic cell nuclear transfer.  Abnormal biallelic expression of the XIST

locus in the chorion of clones demonstrates the inability of cloning to properly

reprogram certain loci.  These results are supported by other observations of improper X

chromosome inactivation in the bovine, which is regulated by the XIST locus.  Further

research will look into what specifically caused this abnormal allelic expression.

 In future experiments, a more wide scale analysis of known imprinted genes can

be obtained through identification of SNPs in regions that were not analyzed, such as the

5’ and 3’ untranslated regions (UTR).  Also, as more sequence in the bovine is made

available, differentially methylated regions will be identified and a comparative analysis

performed with mice and humans so as to determine conserved necessary for

establishing imprints.  The analysis of imprinting in the bovine can also be expanded

into the identification of novel imprinted genes. Gynogenetic and androgenetic embryos

have facilitated the identification of imprinted genes in mice and can be expanded into

the bovine where these are readily made and can be confirmed with the interspecies

model.  Further analysis of the cloned hybrid will facilitate the identification of other

improperly reprogrammed genes.  The model can also be used to adjust current nuclear

transfer protocols and analyze the effects on imprinted genes.
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