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and Autonomy: Justifying

Coarse-Graining in

Statistical Mechanics
Katie Robertson

ABSTRACT

While the fundamental laws of physics are time-reversal invariant, most macroscopic

processes are irreversible. Given that the fundamental laws are taken to underpin all

other processes, how can the fundamental time-symmetry be reconciled with the asym-

metry manifest elsewhere? In statistical mechanics (SM), progress can be made with this

question. What I dub the ‘Zwanzig–Zeh–Wallace framework’ can be used to construct

the irreversible equations of SM from the underlying microdynamics. Yet this framework

uses coarse-graining, a procedure that has faced much criticism. I focus on two objections

in the literature: claims that coarse-graining makes time-asymmetry (i) ‘illusory’ and (ii)

‘anthropocentric’. I argue that these objections arise from an unsatisfactory justification

of coarse-graining prevalent in the literature, rather than from coarse-graining itself. This

justification relies on the idea of measurement imprecision. By considering the role that

abstraction and autonomy play, I provide an alternative justification and offer replies to

the illusory and anthropocentric objections. Finally, I consider the broader consequences

of this alternative justification: the connection to debates about inter-theoretic reduction

and the implication that the time-asymmetry in SM is weakly emergent.

1 Introduction

1.1 Prospectus

2 The Zwanzig–Zeh–Wallace Framework

3 Why Does This Method Work?

3.1 The special conditions account

3.2 When is a density forwards-compatible?

4 Anthropocentrism and Illusion: Two Objections

4.1 The two objections in more detail

4.2 Against the justification by measurement imprecision
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5 An Alternative Justification

5.1 Abstraction and autonomy

5.2 An illustration: the Game of Life

6 Reply to Illusory

7 Reply to Anthropocentric

8 The Wider Landscape: Concluding Remarks

8.1 Inter-theoretic relations

8.2 The nature of irreversibility

1 Introduction

Many processes occur in only one direction of time—people age, buildings

crumble, eggs smash and gases spontaneously expand—towards the future.

Rewinding a film of such processes displays an unphysical sequence of events:

eggs cannot unsmash and people cannot become younger. A more technical

way of describing the ‘directedness’ of such processes is to say that the laws

governing these processes are not time-reversal invariant (TRI). That is, the

time-reversal operator T does not send solutions of the equations—histories

of the systems at issue—to solutions. (The time-reversal operator varies across

theories, but here I take T to be the map t � �t.)

In stark contrast, the laws of fundamental physics are TRI.1 The two se-

quences of events displayed by a film playing forwards, and in rewind, are

both physical possibilities. That is, they are both solutions to the laws of

fundamental physics. This leads to a traditional problem: given that the fun-

damental laws are taken to underpin all other processes, how can the funda-

mental time-symmetry be reconciled with the asymmetry manifest elsewhere?

It is not only the processes of our everyday experience that are irreversible.

Many equations within physics are also irreversible. In particular, many equa-

tions in statistical physics are irreversible, such as the Boltzmann equation, the

Langevin equation, the Pauli master equation [. . .] the list goes on.

But within statistical mechanics (SM), much progress has been made with

this traditional problem. The irreversible behaviour exhibited in non-

equilibrium SM can be described by equations collectively called ‘master

equations’, which give ‘a purposefully incomplete account of the conservative

evolution of some underlying microscopic systems’ (Liu and Emch [2002],

1 Well, almost. The relevant symmetry is the CPT-invariance, but the failure of TR-invariance in

subatomic physics doesn’t underpin the asymmetries discussed here. See, for example, (Roberts

[2013], [2017]) for the subtleties of TRI.
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p. 479). This article focuses on one framework, originating in the work of

Zwanzig ([1960]). The idea is that the irreversible equations of SM can be

constructed from the reversible equations (of either classical or quantum

mechanics (QM)). I will dub this the Zwanzig–Zeh–Wallace (ZZW) frame-

work, since Zeh and Wallace are prominent later authors who have developed

this framework.

However, this framework depends upon the procedure of coarse-graining,

which has been heavily criticized. Redhead describes coarse-graining as ‘one

of the most deceitful artifices I have ever come across in theoretical physics’

(Redhead [1996], p. 31; quoted in Uffink [2010], p. 197). Among the list of

accusations against coarse-graining are: protests of empirical inadequacy, sub-

jectivity, and incompatibility with scientific realism. So, if this construction

method is to solve the puzzle of time-asymmetry in SM, a justification for

coarse-graining is needed. The project of this article is to give such a justification.

1.1 Prospectus

I will answer two objections to coarse-graining in SM. In Section 2, I expound

the ZZW framework and in Section 3, I consider why this framework works.

Then I discuss two objections to coarse-graining, namely, that the asymmetry

resulting from coarse-graining is illusory and/or anthropocentric. Section 4.1

outlines these two objections in detail. Section 4.2 describes the most

prevalent—and I argue unsatisfactory—justification of coarse-graining in the

literature, the measurement imprecision (MI) justification, which lies behind

these objections. In Section 5, I outline my alternative justification of coarse-

graining that can answer the two objections. These answers are given in Sections

6 and 7, respectively. In Section 8, I draw a broader consequence from this

alternative justification: the coarse-grained asymmetry is weakly emergent.

2 The Zwanzig–Zeh–Wallace Framework

The ZZW framework provides a recipe for constructing irreversible dynamics

from the underlying reversible dynamics. This framework works with both

quantum and classical mechanics (CM) (Zwanzig [1961]), although I mainly

discuss the classical case. It is clearest to see the framework as constructing an

irreversible equation in three stages: First, move to the ensemble variant of the

underlying microdynamics. Second, pick a coarse-graining projection P̂, whose

nature will be described below. Third, two moves are required to find an irre-

versible and autonomous equation for the coarse-grained probability density.

Stage 1: In classical SM, the state of an individual system is represented

by a point in a phase space, �-space. (For N particles without internal
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degrees of freedom, �-space is 6N-dimensional). The system’s evolution

is determined by Hamilton’s equations. However, there is also an

ensemble variant of this description. Here probability densities over

�-space, �, evolve according to Liouville’s equation, which, like

Hamilton’s equations, is TRI.2

Stage 2: The concept of coarse-graining was originally introduced

in a specific form by Gibbs ([1903]) which I first recall, before

describing the generalized coarse-graining projections used by the ZZW

framework.

Gibbs proposes that the accessible phase-space � is partitioned

into small, finite volume elements �Vm. The coarse-grained density

�cgðq; pÞ is then defined by averaging the original probability density

�ðq; pÞ in each of these boxes. So coarse-graining throws away the

information about how exactly the ensemble is distributed across

each box.

Gibbs describes the evolution of the probability density by analogy

with an ink drop. Dropping blue ink into a glass of water results in the

whole glass appearing light blue. However, a drop of ink is an

incompressible fluid and so its volume is constant. Upon examination

under a microscope, we would see the drop of ink has just fibrillated

into thin filaments across the whole glass; see Figure 1. So Gibbs’s idea

Figure 1. A drop of ink in a glass of water fibrillates throughout the whole

volume, making the water look blue on a coarse-grained level (pictured on the

left-hand side). Likewise, a probability density initially concentrated in one corner

fibrillates across the available phase space (Sklar [1993]).

2 Throughout this article, I leave the interpretation of such probability densities open; but

admittedly, their connection to the behaviour of individual systems is an urgent issue in the

philosophy of SM (see, for example, Sklar [1993], Chapter 3).
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is that like an incompressible fluid, � often fibrillates over the accessible

phase space, as it evolves under the Liouvillean dynamics.

But because � behaves like an incompressible fluid, its volume is

constant despite its fibrillation; and hence its Gibbs fine-grained

entropy, Sfg ¼ �kB

R
��ln �d3N qd3N p where kB denotes Boltzmann’s

constant, is constant. Traditionally, this has been considered problem-

atic, as the thermodynamic entropy increases. However, in a coarse-

grained description, the density spreads smoothly throughout the

available space, and this is well modelled by the coarse-grained

probability density, �cg. This density has a different entropy, the Gibbs

coarse-grained entropy,

Scg ¼ �kB

Z
�

�cgln �cgd3Nqd3Np: ð1Þ

Unlike its fine-grained counterpart, Scg can increase.

Again, the ink analogy illuminates the discussion of time-evolution.

From a macroscopic perspective, the ink smoothly spreads throughout

the glass. In the SM case, this ‘smooth spreading’ of the coarse-grained

density �cg is described by a ‘coarse-grained dynamics’, defined as

follows: �cg evolves forward according to the usual Liouvillean

dynamics for a small time interval �t; and then it is coarse-grained;

and this two-step process is iterated. This gives what Wallace

([unpublished]) terms the ‘coarse-grained forward (C+) dynamics’

(a label I henceforth adopt).

Note, however, that we could equally well have defined the coarse-

grained backwards (C�) dynamics according to which �cg is evolved

backwards for �t by the Liouvillean dynamics, and then coarse-

grained, then evolved backwards again, and so on. However, this C�

dynamics describes anti-thermodynamic trajectories (where entropy

increases into the past) and so is ‘empirically disastrous’. The extent to

which the success of the coarse-grained forwards, but not backwards,

dynamics can be explained (in particular by appealing to cosmological

considerations, such as postulating a ‘past hypothesis’) is controversial

(see Albert [2000], Chapter 4; Earman [2006]; Wallace [unpublished]).

But in this article, it will suffice to admit that the asymmetry has been

added in here ‘by hand’ and thus that this project does not involve

locating the ‘ultimate source’ of the time-asymmetry. For as announced

in Section 1, I aim only to defend coarse-graining from various

objections.

So far, I have only described Gibbs’s original coarse-graining. But in

the ZZW framework, a more general notion of coarse-graining is used.

A coarse-graining projection, P̂, acts on the space of possible

Asymmetry, Abstraction, and Autonomy 551

D
ow

nloaded from
 https://academ

ic.oup.com
/bjps/article-abstract/71/2/547/5045454 by guest on 09 June 2020

Deleted Text: <sup>--</sup>
Deleted Text: --
Deleted Text: ; Albert [2000], Chapter 4
Deleted Text: paper


probability density functions.3 The important function of P̂ is to split �

into a ‘relevant’ part �r and an ‘irrelevant’ part �ir.

P̂� ¼: �r; ð1�P̂Þ� ¼: �ir so that � ¼ �r þ �ir: ð2Þ

Below are three examples of a coarse-graining projection P̂ defining a

relevant density �r. In these examples, the density is defined over a

reduced number of degrees of freedom of the systems. Hence we speak

of ‘relevant degrees of freedom’, as well as ‘relevant densities’.

(1) The archetypal Gibbsian coarse-graining discussed above can be

written as a projection, P̂cg. P̂cg averages over small, finite volume

elements �Vmðm ¼ 1; 2 . . .Þ that cover the 6N-dimensional phase

space �. These volume elements �Vm are sometimes referred to

as ‘coarse-grained boxes’ or ‘cells of a partition’. (I write ‘�Vm’

both for the region, and its volume.) Thus for ðq; pÞ 2 �Vm, that

is, the mth cell, we have

P̂cg�ðq; pÞ :¼ �cgðq; pÞ :¼
1

�Vm

Z
�Vm

�ðq0; p0Þdq0dp0 ¼:
�m

�Vm

; ð3Þ

so that for a general (q, p) we sum over the cells with characteristic

functions

P̂cg�ðq; pÞ :¼ �cgðq; pÞ :¼
X

m

��Vm
ðq; pÞ:

�m

�Vm

ð4Þ

The action of P̂cg is to smooth the density � to be uniform across

each box, while leaving the probability of being in any single box

invariant; for all m,
R

�Vm
P̂cg� ¼

R
�Vm

�.

(2) Correlations between particles are discarded by appropriate inte-

gration, that is, by taking a marginal distribution. And this can be

thought of as applying a projection P̂�. This projection takes

you from a probability density on the full phase space, �-space

(6N-dimensional for N point particles), to the one-particle marginal

density, which describes the probability that particle i will be at a

particular point in (six-dimensional) �-space, that is, have a given

ð~q; ~pÞ 2 R6.

Thus, the mapping from �-space densities to �-space densities des-

troys information about the correlations between different particles

and cannot be inverted.

In the BBGKY hierarchy we define a system of correlation functions,

where fs gives the probability that s particles have a given position and

3 P̂ is idempotent: P̂
2
¼ P̂. P̂ is usually linear and time-independent and so commutes with q

qt
.
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momenta. Generally, the evolution of fs depends on fsþ1, and fsþ1 de-

pends on fsþ2 . . . all the way to fN (where N is the totally number of

particles). But—under certain physical conditions—this chain of equa-

tions can be truncated at a given point, that is, all correlations beyond

the three-particle correlations can be thrown away (Huang [1987], p. 65).

A projection akin to P̂� is used in constructing the Boltzmann equa-

tion (see Wallace [2015], p. 292; for an explicit construction of the

Prigogine–Brout equation—a cousin of the Boltzmann equation—see

Zwanzig [1960], p. 1340).

(3) The diagonalization projection P̂dia applies to quantum systems

and removes off-diagonal elements of the density matrix (with re-

spect to some chosen basis). This partitioning into diagonal and

off-diagonal matrix elements (relevant and irrelevant, respectively)

is used in the derivation of the Pauli master equation (Zwanzig

[1960], p. 1339), where discarding the off-diagonal elements

amounts to ignoring interference terms.

Given a coarse-graining projection P̂, the next aim is to find an

equation for just the relevant degrees of freedom described by �r. By re-

arranging the Liouville equation in terms of the two densities, �r and

�ir, we find the pre-master equation (for the steps to the pre-master

equation, see Zwanzig [1960], Section 2):

q�rðtÞ

qt
¼ F̂ �irðt0Þ þ

Z t

t0

dt0Ĝðt0Þ�rðt�t0Þ; ð5Þ

where F̂ :¼ P̂Le�itð1�P̂ÞL and Ĝðt0Þ :¼ P̂Leit0 ð1�P̂ÞLð1�P̂ÞL. L represents

the Liouvillean evolution.

This pre-master equation is formally exact and so the time-reversibility

remains. The first term on the right-hand side depends on the irrelevant

degrees of freedom, �ir. The second term is non-Markovian; the evolution

of �r at t depends on the history of the system between t0 and t as evidenced

by the integral between t0 ¼ t0 and t. This is unlike classical mechanical

trajectories for which, given the current state, the future evolution is

determined without any information about the system’s history.

Stage 3: Next, two assumptions are used to arrive at an autonomous

and irreversible equation for the relevant degrees of freedom.

‘Autonomy’ requires that the dynamical evolution of �r has no explicit

dependence on �ir or t.4 The reversible pre-master Equation (5) is of the

4 The condition for an equation to be autonomous, familiar from mathematics, is that ‘t does not

occur explicitly in the equation, as in dy
dt
¼ f ðyÞ’ (Robinson [2004], p. 13). This is required so that

q�rðtÞ

qt
has no ‘covert dependence’ on �ir.
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form q�rðtÞ

qt
¼ f ð�rðtÞ; �irðtÞ; tÞ and so is not a time-independent or

autonomous equation.

In general, an autonomous dynamics for �r is in no way guaranteed;

since � can be decomposed any way we like, the aspects of � we have

dubbed ‘relevant’ (�r) need not be dynamically autonomous or

independent from the irrelevant aspects. Two steps are required:

(1) The initial state assumption states that the first term vanishes. This

is achieved by stipulating that �irðt0Þ ¼ 0.5 When �irðt0Þ ¼ 0,

Equation (5) becomes a closed equation for �rðtÞ.

(2) The Markovian approximation requires that Ĝðt0Þ decreases to zero

over a certain timescale, the ‘relaxation time’, �. Thus, for times t0

greater than the relaxation time �, Ĝðt0Þ ¼ 0. Furthermore, it re-

quires that �r does not vary much over this timescale �, and so Ĝðt0Þ

drops off more rapidly than the timescales over which �r evolves.

To sum up: the key physical idea of the Markovian approximation

is that there is a relaxation time � over which the integral kernel

drops off and over which �r does not vary much (Wallace [2015],

p. 292).6

5 This is a sufficient but not necessary condition for this term to vanish; the action of P̂Le�itð1�P̂ ÞL

on a non-zero �irð0Þ could also be such that the term disappears.
6 This general assumption of e term disappears.ion for of course used much more widely than just

in the ZZW framework. For example, in (Reif [2009], Chapter 14), the derivation of the

Boltzmann equation requires a similar assumption: that f ð~r; ~v; tÞ does not vary appreciably

during time intervals of the order of the collision time, nor over spatial intervals of the order

of intermolecular forces.

I now offer an intuitive explanation of the general situation, by extending Zeh’s discussion

using a metaphor of a forest. Within the irrelevant information, Zeh ([2007], p. 65) distinguishes

the ‘doorway’ from ‘deep states’, which are in different ‘channels’. So there are three ‘channels’:

(A) ‘relevant’, (B) ‘doorway’, (C) ‘deep’—and these are analogous to (A) a clearing in a wood,

(B) the sunny woodland surrounding the clearing, (C) the dark woods. Zeh gives the following

example: (A) is a one-particle marginal density, (B) encodes two-particle correlations and (C)

encodes three-or-more particle correlations (cf. the BBGKY hierarchy). Now, the non-

Markovian term in the pre-master equations gives the contributions to q�r ðtÞ

qt
at t from the part

of �r that became irrelevant at t�t0 and remained irrelevant until time t: at which point it

becomes relevant again.

This ‘information becoming irrelevant’ is like people in the clearing (A) wandering into the

sunny woodland (B). Thus, the relaxation time � is the time taken for the people who arrived in

the sunny woodland (B) to wander either back to the clearing (A) or into the dark woods (C).

The key assumption is that once in the dark woods (C), no one can find their way back to the

clearing (A) again. In less picturesque terms: the three-or-more particle correlations are not

dynamically relevant for the one-particle marginal density.

This metaphor also encompasses the famous recurrence theorem. If you wander around a

(finite) woodland for an incredibly long (that is, recurrence) time, you will eventually find your

way back to the clearing. As I will discuss in Section 3.1, on recurrence timescales the ‘deeply’

irrelevant states (C), for example, three-or-more particle correlations, become relevant (A)

again.
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Provided that these physical features hold, then the following math-

ematical moves can be made:

(a) If the integral upper limit t is greater than � extending the integra-

tion interval to1 makes no difference to the value of the integral;R1
t0

dt0Ĝðt0Þ�rðt�t0Þ.
R t

t0
dt0Ĝðt0Þ�rðt�t0Þ.

(b) If �r varies very slowly over �, �rðt�t0Þ& �rðtÞ for t0 < t. (If t0 > t
this approximation does not hold, but since �rðt�t0Þ is multiplied by

Ĝðt0Þ which is & 0 for t0 > t, we can replace �rðt�t0Þ by �rðtÞ.)

(c) Thus, if the Markovian approximation holds, we can replace the

second term
R t

t0
dt0Ĝðt0Þ�rðt�t0Þ of Equation (5) by

R1
t0

dt0Ĝðt0Þ�rðtÞ.

Provided that the initial state assumption and the Markovian approxi-

mation hold, we thus arrive at an autonomous equation—the master

equation—for the relevant degrees of freedom, �r:

q�rðtÞ

qt
& D̂�rðtÞ; ð6Þ

where D̂ :¼
R1

t0
dt0Ĝðt0Þ.

This completes Stage 3.

For our purposes, there are three comments to make. First, the schematic

Equation (6) has specific forms for specific systems (Penrose [1979], p. 1986);

‘various particular cases of it include the (empirically verified) equations of

decoherence, of radioactive decay, and of diffusion and equilibration in dilute

gases’ (Wallace [2015], p. 292).

Second, we can now describe the irreversible behaviour using a generalized

version of the Gibbs coarse-grained entropy. The coarse-grained Gibbs en-

tropy Scg (in Equation (1)) can be written as a functional of � and P̂cg:

Scg½P̂; �� ¼ �kB

Z
P̂cg�ðq; pÞln P̂cg�ðq; pÞd3N qd3N p: ð7Þ

And similarly more generally: we define, for any ZZW projection P̂, obeying

Equations (5) and (6), the entropy:

S½�r� :¼ S½P̂; �� :¼ �kB

Z
P̂�ðq; pÞln P̂�ðq; pÞd3Nqd3Np: ð8Þ

This quantity can increase—like Scg, as noted after Equation (1). Thus Zeh

([2007], p. 65) writes: ‘if P̂ only destroys information, the master equation

describes never-decreasing entropy’:

dS½�r�

dt
� 0: ð9Þ
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For a proof, see (Tolman [1938], p. 171; Huang [1987], p. 74; Reif [2009],

p. 624; and for the quantum context, see Landsberg [1990], p. 145).

Finally, and most importantly for our interests: this closed Equation (6) is

irreversible (Zwanzig [1960], p. 1340).

3 Why Does This Method Work?

Why does the ZZW framework lead to empirically successful equations? This

success is surprising because, after all, the coarse-graining projection (and the

ensuing C+ dynamics) cannot be implemented by the ‘official’ microdynamics.

Given Liouville’s theorem, the microdynamics of the closed system cannot

really cause the velocity correlations to be erased (in the case of the Boltzmann

equation), or really delete the off-diagonal density matrix elements (in the case

of the Pauli master equation). In short: the TRI microdynamics of the closed

system cannot dynamically implement the coarse-graining projection.

In order to explain the success of irreversible equations in SM there have

been three broad strategies:

(1) Interventionists (for example, Bergmann and Lebowitz [1955];

Blatt [1959]; Ridderbos and Redhead [1998]) argue that perturb-

ations from the environment cannot be neglected. Thus, the system

cannot be treated as closed. (In the ZZW terminology, the envir-

onment dynamically implements the projection, so that �r, rather

than �, is the correct description of the subsystem.)

(2) Others advocate changing the underlying microdynamics so that

the coarse-graining projection is dynamically implemented. Albert

([2000]) and Prigogine and Stengers ([1984]) advocate non-TRI

microdynamics in the quantum and classical case, respectively.

(In the ZZW terminology, the non-TRI dynamics yields � � �r.)

(3) Some, such as Wallace ([2012]), propose that under special condi-

tions the irreversible SM dynamics will give the same density over

the relevant degrees of freedom as the microdynamics.

For the remainder of the article, I only focus on the third of these strategies,

which I call ‘the special conditions’ account. In Section 3.1, I consider this

account and the required ‘meshing’ condition. Section 3.2 considers when a

density satisfies this condition and reports Wallace’s proposal. This will lead

into the idea of a past hypothesis; (although, as mentioned in Stage 2 of

Section 2, an in-depth discussion of the controversial past hypothesis is

beyond the scope of this article).

Katie Robertson556

D
ow

nloaded from
 https://academ

ic.oup.com
/bjps/article-abstract/71/2/547/5045454 by guest on 09 June 2020

Deleted Text: paper
Deleted Text: paper


3.1 The special conditions account

The third strategy claims that under certain conditions the microdynamics will

induce the same probabilities for the relevant degrees of freedom, as the C+

coarse-grained dynamics governing �r. On this view, the generalized coarse-

graining projection is not dynamically implemented. Thus, � and �r are two

distinct densities.

How do we find �r at a given time T? There are two ‘routes’. As discussed in

Section 2, the C+ dynamics for a period t0 < t < T is defined by evolving the

density by the microdynamics Û for a very short time �t, then applying the

projection P̂, then evolving under Û for �t, then P̂ . . . and so on. This means

that irrelevant details are thrown away at every step. In contrast, the

Liouvillean microdynamics Û evolves the full density � for the period

t0 < t < T ; and then one finds the relevant part of the density by applying

P̂ at T; so on this ‘route’, coarse-graining occurs only once at the end of the

time-period. Thus, the condition that these two different dynamics give the

same density �rðTÞ can be expressed by the diagram in Figure 2 commuting.

Following the terminology suggested by Wallace ([unpublished]), let us call

those states � for which the diagram in Figure 2 commutes ‘forwards com-

patible’ with coarse-graining P̂. So forwards compatibility means that it does

not matter whether you coarse-grain at every time step �t or just once, at the

end. Note that forwards compatibility is relative to a particular choice of

coarse-graining P̂. Thus this is a condition of ‘harmony’ between the evolution

of � and the coarse-graining P̂. For example, had the size of the coarse-

graining boxes �Vm averaged over in Gibbs’s original example been chosen

to be very large, then � might well not be forwards-compatible with this

coarse-graining, P̂cg. In the wider literature on inter-theoretic relations, such

a forwards-compatible scenario is sometimes described as ‘meshing’ dynamics

(for example, Butterfield [2012]; List [unpublished]).

However, we cannot expect harmony to ‘reign supreme’. Not all densities �

will satisfy Figure 2’s meshing condition: Loschmidt’s reversibility objection

Figure 2. � and P̂ are forwards-compatible if the two routes to �rðtÞ give the same

answer.
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vividly reminds us that if we were to reverse the momenta of the components

of a fibrillating ink drop, it would coalesce back in a manner incompatible

with the ‘smooth-spreading out’ coarse-grained dynamics. (More specifically,

the time-reverse of a density � initially forwards-compatible and on a trajec-

tory of increasing entropy will not itself be forwards-compatible.)

And due to Poincaré’s recurrence theorem, nor will any � satisfy the mesh-

ing condition for all time. (More specifically, in the ZZW framework, recur-

rence implies that the integral kernel Ĝ in Equation (5) must increase again so

that at the recurrence time it has returned to its original value. Therefore the

upper limit of the integral in the Markovian approximation strictly cannot be

taken to 1, but at most to some large—but sub-recurrent—time T.

Consequently, the Markovian approximation is only valid for sub-recurrent

times.)

3.2 When is a density forwards-compatible?

Characterizing those densities � that are forwards-compatible is a harder job

than ruling out candidate densities. A density � will be forwards-compatible

provided that the density �ir (and the details such as correlations encoded in it)

that are thrown away by P̂ do not matter for the forwards-evolution of �r. One

clear case where this is not true is Hahn’s ([1950]) spin-echo experiment. The

application of a radio-frequency pulse causes dephased spins (precessing in a

magnetic field) to realign and thus emit an ‘echo’ signal (for a recent philo-

sophical discussion, see Frigg [2010], Section 3.5.1). The correlations—that

are ignored from the coarse-graining perspective—are crucial for the later

‘echo signal’. Indeed, the spin-echo experiment has been described as a

‘Loschmidt demon’ that reverses the velocities v � �v.7

Given the above discussion of the Loschmidt reversibility objection, here

too the density � is clearly not forwards-compatible. Consequently, the spin-

echo is not a surprising counterexample to the coarse-graining framework—

which we can only expect to be successful when Figure 2 commutes, that is,

when the information (in this case, correlations) thrown away by the coarse-

graining projection P̂ are not crucial—unlike the spin-echo case.

Ridderbos and Redhead ([1998], p. 1237) and Blatt ([1959], p. 749) gener-

alize from the spin-echo case to reject the coarse-graining framework

altogether.8 However, rather than claiming that the spin-echo case reveals

coarse-graining to be empirically inadequate, it seems fairer to say the density

7 More accurately, the spin’s velocities are unaltered, but the order of the spins is altered by

reflection in the x-z plane. However, ‘the grain of truth in the standard story is that a reversal

of the ordering with unaltered velocities is in a sense ‘isomorphic’ to a velocity reversal with

unaltered ordering’ (Frigg [2010], p. 64)
8 Blatt ([1959], p. 749) concludes that ‘it is not permissible to base fundamental arguments in

statistical mechanics on coarse-graining’.
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� is patently not forwards-compatible and so we do not expect coarse-graining

methods to apply.9

Naturally, the following question arises: why should we expect the spin-

echo (‘correlations-are-crucial’) type of case to be the exception rather

than the rule? To this, the reply can only be that ‘nature is kind’: often—

that is, in the irreversible equations of SM—�ir is irrelevant for the evolution

of �r.

Nonetheless, one might ask what informative condition can be used to pick

out the forwards-compatible scenarios. Since the presence of ‘crucial correl-

ations’ was the problem in the spin-echo case, perhaps removing them is the

answer, that is, ensuring there is no irrelevant information at all is one way to

avoid the failure of compatibility. Indeed, this is what the initial state assump-

tion �irðt0Þ ¼ 0 in Section 2 achieved—and alongside the Markovian approxi-

mation, this was used to construct the C+ dynamics. In similar vein, Wallace

([unpublished], p. 19) stipulates that ‘simple’ initial densities � will not have

crucial conspiratorial correlations encoded in their irrelevant degrees of free-

dom; he defines ‘a simple distribution as any distribution specifiable in a closed

form in a simple way without specifying it as the time evolution of some other

distribution’.10

Note, however, that such a condition—the initial state assumption or

Wallace’s simplicity condition—can only be applied once.11 The initial state

A in Figure 1—confined to four Gibbsian cells, or, in the analogy, the ink

drop’s initial state—is simple (or equivalently it satisfies the ZZW initial state

assumption). However, it then fibrillates over the available phase space and

thus is no longer simple. While initially at t0 there was no irrelevant informa-

tion, this is no longer the case: �irðt1Þ 6¼ 0. Yet—we hope!—�ðt1Þ is still

forwards-compatible. Accordingly, the simple states are a subset of the

forwards-compatible states. Thus, given the microdynamics, imposing such

an initial condition is a sufficient but not necessary initial condition for ensur-

ing that � is forwards-compatible.12

Given that such an initial condition can only be applied once, when should

we apply it? Practising physicists apply it at the beginning of the time of

9 Lavis ([2004], p. 686) further defends coarse-graining.
10 One might object that this definition is vague. Instead, consider this ‘simplicity’ condition as an

overarching condition to capture what is similar across those densities that satisfy the initial

state assumption for different P̂s. A given � satisfying the initial state assumption at t0 will

ensure that—with respect to a given P̂ and thus a given definition of ‘irrelevant’—� is simple at

t0. But of course there are many densities that count as simple in some sense, but not in the

respect required for the initial state assumption (�irðt0Þ ¼ 0) for a particular P̂.
11 Wallace points out that it would be excessive to apply it more than once; the microdynamics are

deterministic and so fixing � at one time fixes � for all times.
12 The plausibility of such initial conditions on probabilities densities will depend on one’s inter-

pretation of probability in SM. Simplicity fits especially well with a Jaynesian account:

Jaynesians interpret � as encoding our ignorance of the system. If all we know is the system’s

macrostate, then claiming that � is uniform across this state ensures that � is simple.
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interest, t0 (option 1). But this leads to a problem akin to that facing

Boltzmann’s combinatoric argument. By parity of reasoning, this licences

the construction of the C� dynamics prior to t0, and the C� dynamics

yields anti-thermodynamic trajectories prior to t0.

Such parity problems motivate the past hypothesis; in the Boltzmannian

case that the initial macrostate of the universe had a ‘low entropy’ (Albert

[2000], Chapter 4). Here, this parity problem motivates Wallace ([unpub-

lished], p. 22) to apply the initial state assumption to the beginning of the

universe (option 2). An in-depth analysis of the past hypothesis—and the

different possible forms it could take; see (Wallace [unpublished])—is not

possible here, but I can allay one worry. Provided Markovian approximation

holds good, the choice between applying this condition in the manner of

physicists (Option 1) and a past hypothesis (Option 2) will not lead to dra-

matic empirical differences.13

In summary, when the forwards-compatibility condition fulfilled, C+ dy-

namics gives the same values for relevant �r as the microdynamics. Not all

densities � are forwards-compatible and nor is any density forwards-compatible

for all times, as shown by the reversibility and recurrence objections, respect-

ively. When considering how to determine whether a given � is forwards-

compatible or not, one suggestion was that a probability density will be

forwards-compatible if it satisfies the initial state assumption at t0 (or in

Wallace’s terminology is simple at t0). However, whether t0 should be taken

to be at the beginning of time of interest (Option 1) or the beginning of the

universe (Option 2) is a contentious matter.

4 Anthropocentrism and Illusion: Two Objections

If coarse-graining is empirically successful (as I have claimed) then perhaps no

further justification is required. This would be a tempting line to take, were it

not for the literature’s containing a barrage of criticisms of coarse-graining.

For example, coarse-graining ‘seems repugnant to many authors’ (Uffink

13 The difference between t0 for Options 1 and 2 is dramatic: 13.7 billion years. One might think

that this should lead to equally dramatic differences in the constructed equations, as t0 appears

in the premaster equation. And thus one might hope to adjudicate between Options 1 and 2 on

these empirical grounds. But the key physical insight behind the Markovian approximation

explains why despite the dramatic difference between t0 for Options 1 and 2, there need be an

accompanying dramatic empirical difference, as follows: Provided that the Markovian approxi-

mation holds good and—as is uncontroversial—the recurrence time is much greater than 13.7

million years, if we apply �ir ¼ 0 at the beginning of the universe, there will not be 13.7 billion

years’ worth of ‘irrelevant information’ (for example, correlations encoded in �ir) that is liable to

be about to become dynamically relevant for �r (and so causing empirical differences between

Option 1 or 2). The only potential difference will be the information � seconds ago. (For more

details, see Zeh [2007], p. 64.)
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[2010], p. 197) and is even claimed to be ‘deceitful’ (Redhead [1996], p. 31). The

coarse-grained time-asymmetry is also called ‘illusory’ (Prigogine [1980]) and

potentially ‘subjective’ (Denbigh and Denbigh [1985], p. 53).

This purported subjectivity of coarse-graining leads to concerns about the

status of the time-asymmetry. According to Davies ([1977], p. 77), ‘it is indeed

a matter of philosophy rather than physics to decide if the coarse-grained

asymmetry is ‘real’ or not’. Furthermore, the potentially unusual or subjective

status of the coarse-grained asymmetry within physics leads Grünbaum

([1973]) to discuss whether scientific realism is incompatible with coarse-

graining approaches in SM. More broadly, determining this status of the

asymmetry is part of a wider philosophical project of untangling ‘what is

genuinely an aspect of reality from what is a kind of appearance, or artifact,

of the particular perspective from which we regard reality’ (Price [1996], p. 4).

Summing up, it seems to me that these objections can be divided into two

camps:

Illusory: First, the asymmetry is a mere artefact of coarse-graining and

so is illusory.

Anthropocentric: Second, it arises from our perspective and so is

anthropocentric.

Given these concerns and objections, coarse-graining requires some concep-

tual, not just empirical, justification.

I propose that this task can be split into two:

Choice: What is the justification for the choice of coarse-graining

projection?

At All: Why is it legitimate to coarse-grain at all?

A justification for coarse-graining may of course purport to answer both

questions. And the answers may be linked. For example, if the justification

for the choice of coarse-graining projection was deemed to be unacceptably

subjective, then this might lead one to believe that coarse-graining at all is

unacceptable. However, the two issues can also come apart. For example, a

justification for coarse-graining might only motivate why it is an acceptable

procedure in general, but remain silent on how to choose a particular coarse-

graining projection.

In Section 4.2, I will consider and reject the ‘measurement imprecision’

justification and discuss how it lies behind the illusory and anthropocentric

objections, followed, in Section 5, by my favoured justification. But first,

I consider the two objections in more detail—in Section 4.1.
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4.1 The two objections in more detail

The claim that the coarse-grained asymmetry is an ‘illusion’ (Prigogine [1980];

as cited in Denbigh and Denbigh [1985], p. 56) is rooted in the action of P̂. The

contention is that P̂ ‘distorts’ � and the gap between � and �r is the source of

the coarse-grained asymmetry. Every time we apply P̂ we edge away from the

correct density �—in particular, we edge away from the correct value of the

Gibbs (fine-grained) entropy by a certain amount: ‘the required increase in

the coarse-grained entropy is obtained by disregarding the dynamical con-

straints on the system’ (Ridderbos, p. 66). By repeatedly coarse-graining (as

is done in the C+ dynamics), we generate the coarse-grained asymmetry: ‘The

repeated coarse-graining operators appear to be added “by hand”, in devi-

ation from the true dynamical evolution provided by Ut’ (Uffink [2010],

p. 197). That is, the coarse-grained asymmetry exists merely in virtue of the

continual coarse-graining in the C+ dynamics—each coarse-graining increases

Scg by some small amount so that eventually an asymmetry is produced:

‘Perhaps most worrying, the irreversible behaviour of Scg arises almost

solely due to the coarse-graining’ (Callender [1999], p. 360). Thus, since the

asymmetry stems from the infidelity of coarse-graining, it is illusory.

This illusory objection has the following form:

P1: The action of P̂ is to deliberately distort the correct density �.

P2: The asymmetry only arises from the repeated coarse-graining every

�t in the C+ dynamics.

Conclusion: The coarse-grained asymmetry is an illusion.

Next I consider the anthropocentric objection. According to this objection,

the coarse-grained asymmetry, in particular the coarse-grained entropy, is not

an objective physical quantity, like energy or mass but rather is ‘agent-centric’.

For example, Wigner and Jaynes have called entropy ‘anthropocentric’

(Jaynes [1965]). The terms ‘subjectivity’ and ‘anthropocentrism’ are used inter-

changeably in this debate. Denbigh and Denbigh ([1985]) helpfully distinguish

two kinds of objectivity (and thereby of subjectivity). Objectivity1 is intersub-

jective agreement. Objectivity2 is stronger. It requires the phenomena in

question to be independent of human cognition. In the debate about coarse-

graining, intersubjective disagreement is not the issue. Rather it is the second

kind of subjectivity (:Objectivity2) that is at stake, which I earlier dubbed

anthropocentrism.

The reason for this charge of anthropocentrism is as follows: In the case of

the archetypal Gibbsian coarse-graining P̂cg the size of the boxes is chosen by

us. ’There are no laws of physics which determine the size of the [cells]’

(Denbigh and Denbigh [1985], p. 51), it is merely our preference that
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determines the choice. Furthermore, ‘the increase of entropy and the approach

to equilibrium would thus apparently be a consequence of the fact that we

shake up the probability density repeatedly in order to wash away all infor-

mation about the past, while refusing a dynamical explanation for this pro-

cedure’ (Uffink [2010], p. 196). In addition, the partition is chosen by us: ‘the

occurrence and direction of a temporal change of the entropy [. . .] depends

essentially on our human choice of the size of the finite equal cells of boxes into

which we partition [. . .] phase space’ (Grünbaum [1973], p. 647). The objection

extends to all instances of P̂; ‘a Zwanzig projection (describing generalized

coarse-graining) can be arbitrarily chosen for convenience’ (Zeh [2007], p. 67)

Grünbaum ([1973]) points out that the charge of anthropocentrism here

differs from the more general claim that scientific theories are human con-

structs. It seems that the Standard Model could describe the world, even if

there were no (human) observers. Yet, according to the anthropocentric cri-

tique, this would not be the case for entropy, and the coarse-grained

description.

Lying behind these objections is a particular justification of coarse-graining,

the MI justification, to which I now turn.

4.2 Against the justification by measurement imprecision

In the literature, the most common justification for coarse-graining is that our

measurements have limited precision: ‘The coarse-graining approach makes

essential use of the observation that we only have access to measurements of

finite resolution’ (Ridderbos [2002], p. 66). Thus, we can never locate a system

precisely in phase space; we only know p and q to a certain degree of accuracy.

The cells over which we average with the P̂cg for the archetypal Gibbsian

coarse-graining have a size that corresponds to ‘the limits of accuracy actually

available to us’ (Tolman [1938], p. 167). Because we could never, ex hypothesi,

measure the system accurately enough, we are unable to distinguish between

the coarse and fine-grained distributions � and �r. Thus, according to this MI

justification, the answer to choice is that we must pick the coarse-graining P̂

that matches our observational capacities. For those coarse-grainings P̂

whose selection is justified by the indistinguishability between � and �r, the

MI justification also answers why (for those particular projections) coarse-

graining at all is justified—because we cannot tell the difference.

Appealing to appearances originates from Gibbs’s ink analogy. While the

ink drop’s volume is constant, it fibrillates throughout the water, and so it

appears to us to be uniformly distributed. Our limited powers of observation

cannot distinguish between the fibrillated case and the locally uniform distri-

bution resulting from coarse-graining.
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A similar argument arises in the Boltzmannian approach to SM, where

phase space is partitioned into ‘macrostates’. Every microstate corresponds

to one macrostate. A particular macrostate is defined by values of macrovari-

ables, such as volume, temperature and pressure. These macrostates are sets of

microstates that are ‘empirically indistinguishable’. Thus, an appeal is once

again made to our observational capacities.14

The illusory and anthropocentric objections arise from this justification of

coarse-graining (rather than coarse-graining itself). The claim that the coarse-

grained asymmetry is illusory is bolstered by the MI justification, since it

implies that if we were to be able to measure the system more precisely (in

the idiom of Gibbs’s analogy to see the thin fibrillating tubes of ink rather than

the smooth spreading) then the asymmetry would disappear. The coarse-

grained asymmetry would thus be an illusion stemming from the imprecision

of our measuring devices. The claim that the asymmetry is anthropocentric is

also underwritten by the MI justification. If the coarse-grained � distribution

is indistinguishable from the fine-grained � distribution to us and thus the

choice of P̂ depends our capabilities, then the asymmetry would be

anthropocentric.

However, the MI justification is unsatisfactory. This is not (only) because it

leads to the illusion and anthropocentric objections, but also, even on its own

terms: it is both insufficient and unnecessary for justifying coarse-graining.

(However, other purposes for which MI may be important will be briefly

discussed in Sections 7 and 8.1).

The imprecision of our measurements is not a sufficient justification for

implementing a coarse-graining projection P̂, since choosing a projection

that fits with the limits of observation will not always lead to autonomous

irreversible dynamics of the type given by the ZZW framework: ‘Observability

of the macroscopic variables is not sufficient [. . .] It is conceivable (and occurs

in practice) that a particular partition in terms of observable quantities does

not lead to a Markov process’ (Uffink [2010], p. 196). That is, a coarse-

graining could reflect our measurement precision but not lead to an example

of useful dynamics—in particular, to autonomous C+ dynamics. Therefore,

MI is not sufficient for answering choice.

Furthermore, appealing to MI is not necessary for explaining why we

should choose any particular coarse-graining P̂. If it were, we would in

every case have to ascertain the imprecision of particular measuring devices

and accordingly choose a coarse-graining P̂. Yet, in Section 2, this is not how

coarse-graining projections were chosen; and the details of particular measur-

ing devices (or the resolution of our eyes) are in fact never used in constructing

14 But the Boltzmannian partition is not necessarily the same as the Gibbsian cells.
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equations in the ZZW framework. It seems unlikely that advances in the sci-

ence of microscopy will lead to different choices of P̂.15

Thus appealing to the limited precision of our measurement devices is in-

capable of justifying the choice of coarse-graining projections (choice). The

MI justification only answers at all in virtue of answering choice in particular

cases, and thus its failure to answer to choice means that it automatically does

not answer at all. With MI thus rebutted, I now outline my proposed alter-

native justification.

5 An Alternative Justification

Applying P̂ throws away details. Why would throwing away details ever be a

good move? One motivation for moving to the coarse-grained description is

that modelling the evolution of � under the Liouvillean dynamics is compu-

tationally intractable, because solving the equations of motion for some 1023

particles is unfeasible.

Were this the only motivation for coarse-graining, one might be misled into

believing that in an ideal world where we were equipped with a sufficiently

powerful computer and the initial states of each of 1023 particles, the coarse-

grained description would be dispensed with. Yet something would be lost, if

upon receiving all the information and extraordinarily powerful computers,

we ditched the discipline of SM. And this reveals a general point about the

assumptions in SM: as I argue in Section 5.1, computational intractability is

not the only motivation for such approximations and assumptions. In Section

5.1, I distinguish between Galilean idealization and abstraction, and then

classify coarse-graining as abstraction to a higher level of description. This,

plus the desideratum that the dynamics at this level be autonomous, allow me

to justify coarse-graining. Then, in Section 5.2, I illustrate these ideas of ab-

straction and autonomy with the Game of Life.

5.1 Abstraction and autonomy

There are two reasons that such leaps in our computational capacity would

not make SM ‘superfluous’. First, it is unclear in what sense solving some 1023

coupled equations would constitute an explanation of the behaviour of the

15 My rebuttal of the necessity of the MI justification takes its proponents at their word. But

perhaps this is uncharitable, for in reality, typical discussions of the construction of autonomous

equations are often schematic—they merely assume there is such a projector that satisfies the

required assumptions, without a detailed demonstrations that the projector does indeed fulfil

these assumptions. As I have not investigated such demonstrations, it is an open question

whether for that project—rather than the construction of autonomous dynamics—measurement

imprecision is necessary.

Asymmetry, Abstraction, and Autonomy 565

D
ow

nloaded from
 https://academ

ic.oup.com
/bjps/article-abstract/71/2/547/5045454 by guest on 09 June 2020

Deleted Text: <sup>15</sup>
Deleted Text: a
Deleted Text: A


gas.16 Second, a statistical mechanical system such as a gas exhibits ‘perfectly

definite regularities in its behaviour’ (Tolman [1938], p. 2). Such regularities

would be lost amongst the morass of detail at the fundamental (or lower) level.

This difference in levels of description is particularly vivid in the case of

coarse-graining; by moving to the lower-level Liouvillean dynamics, we not

only lose explanatory power but also some very useful equations that deter-

mine transport coefficients and relaxation times.

At this point, we need to distinguish different strategies for simplifying sci-

entific descriptions. This is a large topic and the words at issue—idealization,

abstraction and approximation—are terms of art that different authors con-

strue differently, but I will crudely categorize strategies as Galilean idealizations

or abstractions. A Galilean idealization introduces ‘deliberate distortions’

(Frigg and Hartmann [2006]), familiar from the standard examples of friction-

less planes and perfectly rational economic agents. A common way to think

about such idealizations is by analogy to a perturbative series. The behaviour of

the target system is veridically described by the full series, but a successful

idealized description is akin to the first term of the series. Adding the higher-

order terms renders the idealized description more accurate and furthermore,

explains the success of the idealization even if these terms are not actually

calculated (Batterman [2010], p. 17). Often Galilean idealizations are used in

order to render a problem more tractable—and in an ideal world, we would

remove the idealization (and so add all the terms of the series in)—and this

would lead to a more accurate representation.17

In contrast, I take abstraction to be the omission, or throwing away, of

certain pieces of information (Thomson-Jones [2005]; Knox [2016]). This cor-

responds to a broad category in the literature: Weisberg’s ([2007]) minimal

modelling, Cartwright’s abstraction, and Aristotelian idealization (Frigg and

Hartmann [2006]). This category involves ‘throwing away details, stripping

away, keeping only the core causal factors’.18

Thus I claim that coarse-graining is not a Galilean idealization. If it were,

there would be certain details those inclusion would improve the coarse-

grained description. Yet, in the ZZW framework, this is not so. Indeed, we

know exactly which details would need to be added to render a more complete

description—the information about the irrelevant degrees of freedom that we

16 Some might argue that while the solution of the 1023 equations might not be the best explan-

ation, it is nonetheless an explanation. However, the details of the vast debate about explanation

are not needed for what follows.
17 In Weisberg’s ([2007], p. 642) terminology, the ‘representation ideal’ would be to remove the

idealization.
18 Of course, there are other categorizations—for example, McMullin ([1985]) has six types of

idealization. Norton ([2012]) discusses approximation and idealization in a different sense.

Notably, different P̂s might be (sub)-categorized differently according to a more fine-grained

classification. However, all that matters here is that coarse-graining is not a Galilean

idealization.
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threw away! But clearly if we were to add �ir back in, we would no longer have

the coarse-grained, and useful, equations found in Section 2.

Instead, coarse-graining is abstraction. �r omits irrelevant information,

which has been discarded by P̂. For instance, in the archetypal Gibbsian

case, the action of the coarse-graining projection P̂cg is to omit exactly how

the probability varies across the coarse-graining cell as only the probability of

the entire cell is relevant: ‘how full the cell is, rather than how it is filled’. Some

projections take a density in a given equivalence class to be an exemplar of that

class (Wallace [unpublished], p. 9). In such cases, only the fact that the density

is in the equivalence class is relevant, not which member of the class it is. In the

case of P̂�, information about the correlations between particles is omitted.19

Thus �r is a new variable germane to this higher-level of description implicitly

defined by a given P̂, rather than a distorted replacement of �, which is how an

idealization conception of coarse-graining would interpret �r. As �r forms part

of a higher-level of description it need not be in tension with �, just as descrip-

tions in biology need not be in tension with descriptions in psychology. �r is not

an ‘idealized’ version of � containing false elements, as omission need not get in

the way of telling a true causal story (Lewis [1986]; Strevens [2008]). Thus,

coarse-graining at all is justified because it allows us to abstract to a higher-

level of description. This is my proposed answer to Section 4’s at all.

P̂ abstracts to a higher level of description. Yet we don’t just want to ab-

stract to a higher level; we want a theory of the goings-on at this level. For

example, suppose P̂cam coarse-grains the position and mass distribution of

people in Cambridge to the centre of mass of this population. The information

about the masses and locations of individuals has been thrown away, leaving a

more abstract description of the population. However, discussing the centre of

mass of Cambridge’s population is not going to be useful, if the only way to

find out how this centre of mass moves is to consider the movement of all the

individuals and then re-average. If we cannot say anything about what is going

on a higher level of description without invoking information from the lower

level, then the higher level of description is not going to be useful.20

But not having to refer to the lower-level details in describing the goings-on

at the higher level of description is precisely what the autonomy condition in

the ZZW framework captures. Recall that the dynamics are autonomous if

19 Of course, adding in some correlations (that is, adding in the third tier of the BBGKY hierarchy)

may lead to a more empirically successful autonomous equation than the autonomous equation

describing the evolution of the one-particle marginal density. Indeed, for example, doing so can

provide corrections to the Boltzmann equation. But of course, we wouldn’t want to add in all the

correlations in the BBGKY hierarchy—in the limit, doing so would take us back to the revers-

ible dynamics. And indeed, truncation at first or second equations in the hierarchy is the key

benefit of the BBGKY approach—it is useful because we can get away with only considering the

lower hierarchy.
20 List and Pivato ([2015], p. 135) go further. In their framework, the lower-level language is by

definition unavailable at the higher level.
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they were of the form f ð�rÞ rather f ð�r; �irÞ; the dynamics for the relevant

degrees of freedom have no functional dependence on �ir. In other words,

�ir is not a ‘difference maker’ for the evolution of �r (Woodward [2005];

Strevens [2008], Chapter 3). Note, however, that while the idea of different

descriptions is contained in the concept of autonomy, no notion of hierarchy is

implied. There could be different descriptions without one being ‘higher’ than

another (see List and Pivato [2015], p. 150, Footnote 41). Thus the ‘higher-

level’ aspect of this justification comes from taking P̂ as abstracting from

irrelevant details. The terminology of ‘relevant’ and ‘irrelevant’ degrees of

freedom is highly appropriate; for if the dynamics weren’t autonomous then

the so-called ‘irrelevant’ details would indeed be relevant.

Now, by taking this cue from the ZZW framework, it is clear what justifies

the choice of any particular coarse-graining map. While any coarse-graining

map can be used to find a pre-master equation, not every P̂ will lead to coarse-

grained irreversible dynamics. Only those coarse-grainings of a system that

satisfy the two conditions (in Stage 3 of Section 2) will lead to autonomous

dynamics.21 Thus, the choice of coarse-graining map is determined by whether

it results in successful C+ dynamics. I agree that this criterion will not help

physicists discover new, useful maps. The class of successful P̂s will not look

especially unified. But this is to be expected; each case requires details of the

particular system at hand. Thus as Uffink ([2010], p.195) says: ‘it is ‘the art of

the physicist’ to find the right choice, an art in which he or she succeeds in

practice by a mixture of general principles and ingenuity, but where no general

guidelines can be provided’.22

To summarize, this alternative justification answers Section 4’s two justifi-

catory questions as follows:

Choice: The choice of a particular map is determined by the desideratum

of finding autonomous dynamics.

At All: Applying a map P̂ abstracts to a higher level of description.

5.2 An illustration: the Game of Life

The key ideas of autonomy and abstraction are vividly illustrated by

Conway’s Game of Life—a standard example of the complexity science,

21 Autonomy in the sense of ‘not referring to �ir’ is achieved by the initial state assumption. But for

autonomy in the sense of not depending at all on t, the Markovian approximation needs to be

satisfied.
22 Of course, in individual cases, there will be the further explanatory project of showing that the

two required assumptions are satisfied by a chosen P̂—and this will give us further insight into

why in these particular cases autonomous dynamics are possible, that is, why our desideratum is

fulfilled. But as a general answer to (Choice)—the only rationale for picking any P̂ is that it leads

to an autonomous dynamics.
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and emergence, literature (see, for example, Bedau and Humphreys [2008],

Chapters 8, 9, 11, 16, 17). The Game of Life is a cellular automaton that

operates via a simple rule: at each time step, whether a cell of the grid is

‘on’ or ‘off’ is determined by how many of its eight neighbours are ‘on’.

Despite the extreme simplicity of the dynamical rule, a rich variety of patterns

can evolve in the grid. These stable shapes have characteristic movements and

so are given vivid names: glider guns spawn gliders moving across the grid,

eaters destroy other shapes they ‘encroach’ on, and puffer trains move across

the grid leaving behind debris in their wake, to name but a few. While the sheer

variety of the Game of Life cannot be easily conveyed in words (and is best

appreciated by viewing a video of the evolution of a life grid), to give an idea of

the complexity that can arise: the Universal Turing Machine has been con-

structed in the life grid (Poundstone [2013], p. 213).

When discussing the life grid, we can abstract to a higher level of description

and, as done above, describe the goings-on in terms of the menagerie of

‘gliders’ and ‘blinkers’ rather than in terms of the cells. For example, the

glider moves across the grid with velocity c=4, where c is the ‘speed of light’

(in the sense of being the ‘speed limit’—this maximum speed is one cell per unit

time). This alternative description of gliders ‘has its own language, a trans-

parent foreshortening of the tedious descriptions one could give at the physical

level’ (Dennett [1991], p. 39). Discussing the gliders’ motion in this way is

predictively successful. Furthermore, often these descriptions are autono-

mous: we need not keep referring back to the lower-level—that is, cell-level—

details.23 But, of course, theoretically we could have calculated the evolution

of the grid at the cell-level and then, at the end, abstracted to the higher-level,

for example, glider-level, of description. Thus, as in the ZZW framework,

there are two routes to predictions about later times; see Figure 2.

In both cases—ascending to the glider level of description from the cell level

of description and ascending to a coarse-grained level of description (�r) from

the fine-grained description (�)—new and surprising features emerge.24 In the

Game of Life at the glider-level of description, there is ‘motion’. At the cell-

level there is no motion. Likewise in SM. At the coarse-grained higher-level of

description, many features are different. The coarse-grained probability dens-

ity �r, the C+ dynamics, and the coarse-grained entropy Scg are very different

from their fine-grained counterparts: the fine-grained distribution �, the

microdynamics, U(t), and the fine-grained entropy, Sfg. In the paradigmatic

case of N particles in a box, the two descriptions give different answers

23 This is akin to autonomy in the SM case, although not literally as there are no differential

equations.
24 Of course, in both cases, finding these features will depend sensitively on how the higher-level

variables are defined, that is, on how we abstract; see (Knox [2016], p. 45).
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regarding whether the dynamics is reversible or not, in particular, about

whether the Gibbs entropy increases over a period of time or not.

Admittedly, there are differences. In the SM case, there are no patterns that

can be ‘seen at a snapshot’. And because SM describes the evolution of prob-

ability densities there is no clear ontology at the higher-level description like

Life’s menagerie.25 The pattern is the non-decreasing value of a particular

quantity: the coarse-grained entropy, Scg. This is not a synchronic pattern

but a dynamical pattern. Furthermore, unlike the Game of Life case this is

not a visual pattern. However, patterns at higher levels of description need not

be ‘visual patterns but, one might say, intellectual patterns’ that are ‘there for

the picking up if only we are lucky or clever enough to hit on the right per-

spective’ (Dennett [1991], p. 41).

Yet, this in no way undermines its credentials as a pattern. One criterion for

a higher-level pattern is predictive success, and betting that the coarse-grained

entropy associated to an irreversible process will increase is a safe bet.

Consequently, there ‘are macroscopic patterns running through those very

microscopic interactions’ (O’Connor and Wong [2015], Section 1.4) in both

the SM and Game of Life cases.

To summarize, the important consequence of coarse-graining, that is, of

abstracting, is that autonomous dynamical patterns—structural features—

once obscured by irrelevant details are revealed. Equipped with this alterna-

tive justification, I can now give a reply to the illusory objection in Section 6;

and to the anthropocentric objection (in Section 7).

6 Reply to Illusory

Recall that two premises were required to establish the conclusion that the

asymmetry is illusory. According to the illusory objector’s P1, coarse-graining

distorts the correct density �. Furthermore, the coarse-grained asymmetry

exists merely in virtue of the repeated coarse-graining every �t in the C+

dynamics (P2). Thus, as the asymmetry is rooted in the infidelity of coarse-

graining, it is illusory.

The immediate reply to illusory is surely—the irreversible equations of SM

are empirically adequate. If the asymmetry were illusory then we could not

expect such success. While this removes much of the force behind illusory, the

illusory objector might deny our assumption of empirical adequacy. In any

case, in this Section I argue that P2 is false and this refutes illusory.

Furthermore, the considerations of Section 5 reveal that P1 is also false.

25 Note, also, that Life differs in another way: the patterns in Life are noise-intolerant—‘debris’

can easily destroy the menagerie.
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Contra to P2, the asymmetry is not generated merely in virtue of the continual

coarse-graining—provided that the forwards-compatibility condition is met, the

asymmetry is robust with respect to the number of applications of P̂. Even if we

eschew the C+ dynamics, we could determine �r at particular times t1; tn by

evolving � under the microdynamics then projecting up to �r at tn. Call this

route 1 (as shown in Figure 3, a version of the forwards-compatibility diagram

in Section 3.1). Taking route 1, we would still find that the coarse-grained vari-

ables, �r increase in entropy toward the future; Sð�rðt0ÞÞ � Sð�rðt1ÞÞ � Sð�rðt2ÞÞ.

As such, we find an asymmetric pattern in �r without using the C+ dynamics.

Thus, the asymmetry is not solely due to the repeated coarse-graining in the C+

dynamics and so, P2 is false.

P1 claims that the action of P̂ is to deliberately distort the correct density.

That is, coarse-graining is a Galilean idealization. On such a conception, �r

and � are analogous to the first term and full series, respectively. According

to illusory, neglecting these higher-order terms is the source of the asym-

metry. However, Section 5 revealed that coarse-graining is not a Galilean

idealization but rather an abstraction. �r is not a distorted replacement but a

new variable germane to a higher-level of description. Consequently, P1 is

false.

Ultimately, however, the falsity of P2 is key to rebutting illusory. The

forwards-compatibility condition shows that the irrelevant degrees of freedom

do not matter as they do not influence the evolution of the relevant degrees

of freedom; they are not difference makers. As such, the coarse-grained

asymmetry would be robust—even if coarse-graining were a Galilean

idealization.

Figure 3. Route 1: To find the coarse-grained distribution �r at any given time,

evolve the full-distribution under the microdynamics U(t) until this time and then

apply the coarse-graining map P̂.

Figure 4. Route 2: To find the coarse-grained distribution �r at any given time,

evolve �r under the C + dynamics until that time. Recall the C+ dynamics is com-

posed of applying U for �t, applying P̂, applying U for �t . . ., where �t is much

smaller than t1�t0.
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7 Reply to Anthropocentric

The anthropocentric objection is that no law determines the size of the cells

and so we have a choice over which P̂ to pick, and thus the coarse-grained

quantities such as Scg are anthropocentric. The concern was that this marks

SM out as a theory worryingly different from the rest of physics.

However, my proposed alternative justification (Section 5.1) claims that the

choice of coarse-graining map depends upon whether it uncovers successful

autonomous dynamics, not our limited capacities. Thus it is not that we have a

choice over which P̂ to pick (and consequently the resulting equations and Scg

are ‘tainted’ by anthropocentrism). Rather it is a matter of whether �r and �ir

dynamically decouple and ‘we are lucky or clever enough to hit on the per-

spective’—P̂—that reveals the patterns that are ‘there for the picking up’

(Dennett [1991], p. 41). There is no freedom in the choice that makes it

depend upon our cognition (in a way that differs from the rest of the scientific

enterprise). Only for particular choices of P̂ is there an autonomous dynamics

—the choice needs to be ‘just right’ (Uffink [2010], p. 195). And this situation

is not special. Like countless moves in physics—in particular, countless def-

initions of good variables—the use is justified by its success, where here ‘suc-

cess’ means that autonomous dynamics are found.

Consequently, coarse-grained features need not be anthropocentric in a way

different from other physical quantities and so in this matter, SM has the same

status as any other scientific theory. Hence, coarse-graining does not lead to a

specific anthropocentrism (which one might have been concerned would

render SM incompatible with scientific realism).

However, as discussed in Section 5, different levels of description are useful

for different purposes and what is deemed useful may be relative to our human

interests. Here our measuring capacities and imprecision are certainly rele-

vant. Were we the size of a Maxwell demon and endowed with an ability to

manipulate gas molecules, violations of the second law of thermodynamics

might be expected. From their microscopic perspective, the second law might

not seem like an obvious regularity in nature.

In addition, which patterns are uncovered might depend upon our limited human

capacities—whether we can ‘hit on the right perspective’. For instance, there may be

regularities in the movement of the centre of mass of Cambridge’s population, but

our cognitive abilities may make us unable to pick up these patterns. Which vari-

ables we find useful depends on which variables we can access, that is, measure and

manipulate. Thus, our measuring capacities will clearly influence the construction

and confirmation of our scientific theories. But—crucially—the details of our mea-

suring limitations are not needed to justify coarse-graining in SM.

The above considerations highlight a potential general anthropocentrism.

Our scientific theories may be irrevocably entwined with our cognitive abilities
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and pragmatic interests. But this is not the return of the earlier anthropocen-

tric objection, which was specific, namely, that the coarse-grained features are

anthropocentric in a way that differs from the other putative physical quan-

tities. The alternative justification shows that coarse-graining need not mark

out SM as subjective and so different from other theories, but this conclusion

is nonetheless compatible with scientific theories in general containing some

element of anthropocentrism.

8 The Wider Landscape: Concluding Remarks

In Section 4, one of the concerns about coarse-graining was whether the

coarse-grained asymmetry is ‘real’ or not. Recall that Davies claims that

this was ‘a matter of philosophy’, and indeed, in Section 8.1, I explain why

this is so—briefly, whether the asymmetry is real or not depends on one’s views

about inter-theoretic relations. Then in Section 8.2, I consider what my pro-

posed justification reveals about the nature of irreversibility in SM.

8.1 Inter-theoretic relations

To some extent, the ZZW framework provides a case study in inter-theoretic

relations; SM is a distinct, higher-level theory from either of CM or QM. In

the wider literature on inter-theoretic relations, one key issue is the nature of

the connections between the different levels. For instance, biology and psych-

ology could be disunified descriptions operating at different levels of general-

ity; in addition to not being ‘reducible-in-practice’, they could even be not

reducible-in-principle (Bedau and Humphreys [2008], p. 215). That is, there

may be disunity between the psychological and biological levels of description.

Cartwright ([1999]), for example, advocates such a patchwork view of the

scientific enterprise.

Different philosophical accounts of reduction make different requirements

on the notion, and some are more stringent than others. (For instance, there is

debate about whether any bridge laws invoked by the reduction must ensure

the lower-level theory explains the higher-level theory). I will leave aside the

details of different accounts of reduction, since I think that independently of

any given account of reduction, this is a case of reduction-in-practice. After

all, the ZZW framework allows us to construct the equations of one theory

(SM) from another (CM or QM).

But there is a further issue concerning inter-theoretic relations: what atti-

tude should one have to the higher-level entities, realism or instrumentalism?

Hence, as Davies says, whether one believes the coarse-grained asymmetry is

‘real’ is a matter of philosophy; it depends on your prior philosophical

convictions about higher-level entities in the special sciences.
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Furthermore, such philosophical convictions may also have a general

impact on one’s views about the nature of the asymmetry. Had the MI justi-

fication been the best justification of coarse-graining, then the coarse-grained

asymmetry would have been revealed to be inescapably subjective or

anthropocentric.

While I hope to have established (in Sections 6 and 7) that one is not

compelled to consider the asymmetry to be anthropocentric, motivated by

general themes in inter-theoretic relations, one might still want to conclude

that it is, in fact, anthropocentric.

For example, an instrumentalist about higher-level theories might maintain

that the instrumental value of these descriptions is inextricably bound up with

our measuring and cognitive capacities and thus, all higher-level entities are

anthropocentric. The key message of this article is that the justification of

coarse-graining need not mark SM out from other scientific theories for

that discussion (as we saw in Section 7).

Next, there is a final philosophical issue about the nature of the coarse-

grained asymmetry to discuss: its emergent nature.

8.2 The nature of irreversibility

Finally, I turn to irreversibility. As a foil for this discussion, I choose a passage

from (Sklar [1993], p. 217), which puts very well a general doubt, namely,

whether a strategy such as the one outlined in this article, can really succeed in

reconciling the time-symmetry of micro-processes with the asymmetry of

macro-processes: ‘Do the procedures for deriving kinetic equations and the

approach to equilibrium really generate fundamentally time-asymmetric re-

sults?’ (emphasis added).

However, contra to Sklar’s phrasing, the ZZW construction method does

not generate a fundamental time-asymmetry. The coarse-grained asymmetry

is a feature of a higher-level description. Higher-level descriptions can have

features that differ substantially from the lower-level descriptions (without

there being a contradiction). Often these features are described as ‘emergent’.

‘Emergence’ is a murky word and is used in many different ways (for a

survey, see Silberstein [2002]). Very roughly, emergent entities or processes

‘arise’ out of more fundamental entities or processes and yet have ‘distinctive’

features in their own right. It is contentious what the ‘distinctive’ features are;

proposals in the literature include ‘novelty’ (Butterfield [2011], p. 1065) and

being ‘unexpected’ (Chalmers [2006], p. 244).26 Furthermore, how substantively

26 Both of these examples are definitions of ‘weak emergence’ (a use of the word ‘emergence’

popular with scientists and philosophers of physics) as opposed to the philosopher’s ‘strong

emergence’, which is a logically stronger notion. Although authors vary about exactly what the

distinction between weak and strong emergence is, the idea is that this stronger sense implies a
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a phrase such as ‘in their own right’ must be read also varies across authors—

some maintain that emergence is the failure of reduction while others

(for example, Butterfield [2011]) deny this.

The menagerie of the Game of Life, such as gliders and blinkers, are often

cited as key examples of emergent entities that have certain emergent proper-

ties and evolve under certain emergent processes (Bedau and Humphreys

[2008]).

The sense in which I use ‘emergent’ is mild; it is merely that there is ‘novel

and robust behaviour with respect to some comparison class’ (Butterfield

[2011], p. 1065). (Butterfield’s account is especially apt for this case, since he

shows his definition to be compatible with (Nagelian) inter-theoretic reduc-

tion, and as discussed above, the ZZW construction is a case of reduction).

Of course, as mentioned above, there are many accounts of emergence that

one could favour. An alternative account that might seem apt here is Wilson’s

([2010]). Her key idea is that some phenomena are ‘weakly ontologically emer-

gent from physical phenomena’ ([2010], p. 280) when some degrees of freedom

are eliminated.

Note that eliminating functional dependence of one set of degrees of free-

dom from another was exactly the autonomy condition of the ZZW frame-

work. Furthermore, her accounts fits well with the general topic of abstraction

and talk of levels of description (such as that made precise by List and Pivato

[2015]). However, Wilson’s focus is on weakly emergent entities and as men-

tioned at the end of Section 5.2, one of the disanalogies with the Game of life is

that is unclear in our case what the candidate emergent entities would be.

Moreover, Wilson’s aim is defend non-reductive physicalism, which is con-

tentious. Thus, I will not pursue Wilson’s account further here. Instead,

I submit that the broad gist of Butterfield’s account captures the main

intuition common to all accounts of ‘emergent phenomena’: robust, because

a putative case of emergence must not be too flimsy in order to count as a bona

fide phenomenon, and novel in order to earn the name ‘emergent’.

Thus, my response to Sklar’s concerns above is as follows: The irreversibil-

ity generated by these methods is not fundamental but emergent.

Irreversibility emerges when one abstracts from the fine-grained level of de-

scription to the coarse-grained level of description by applying a P̂ that leads

to autonomous dynamics.

Note finally that this mild conclusion that the coarse-grained asymmetry is

weakly emergent is not ‘toothless’. It is in direct opposition to Prigogine and

Stengers ([1984], p. 285) who claim: ‘Irreversibility is either true on all levels or

on none: it cannot emerge as if out of nothing, on going from one level to

lack of reduction or supervenience of the emergent phenomenon on the lower level. See

(Chalmers [2006]) for more detail on the weak/strong distinction.
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another’. While the lower-level dynamics is reversible, the coarse-grained dy-

namics at the higher level of description is irreversible. True, this emergent

irreversibility does not arise ‘as if out of nothing’. Time-asymmetric assump-

tions were required when constructing the C+ dynamics (and when ruling out

the C� dynamics) in Section 2. But this is to be expected; if no asymmetry is

put in, then we cannot expect asymmetry out.27

To sum up: The ZZW framework constructs the irreversible equations of SM

from the underlying reversible microdynamics thus reconciling the higher-level

asymmetry with the lower-level symmetry. The procedure of coarse-graining—

key to this reconciliation but thought to be suspicious by many—was justified

provided that coarse-graining allows us to abstract to a higher-level autono-

mous description (in a manner illustrated by the Game of Life). I used my

justification of coarse-graining to show that the coarse-grained asymmetry is

neither illusory nor anthropocentric; instead, it is weakly emergent.
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27 Since the time-asymmetry is not fundamental and was ‘put in by hand’ (as discussed earlier), this

project won’t satisfy those seeking to locate the source of time-asymmetry. To the extent that

this project answers that question, it claims the asymmetry arises because of particular initial

conditions (the initial state assumption). Some want an explanation of such initial conditions,

especially when in the guise of a past hypothesis (see Callender [2004]; Price [2004]), especially

since such initial constraints seem ad hoc or unnatural from ‘the mechanical world-view’ (Sklar

[1993], p. 368). Moreover, there is a debate over whether such an initial state is a law or a ‘de

facto’ condition (Reichenbach [1991]; Grünbaum [1973]; Sklar [1993], p. 370). Some, such as

Krylov ([1979]), are unhappy with the centrality of such initial conditions in explaining irrever-

sibility. But I believe my conclusion about the emergent nature of the asymmetry helps us to see

which explanatory projects are likely to be fruitful. In particular, my conclusion eases the worry

that the initial conditions required do not look especially natural nor form a unified class.

Because these higher-level patterns are weakly emergent, they are unexpected from the

lower-level mechanical perspective. Thus, the moves required at the lower-level in constructing

SM equations may often look unnatural; otherwise, the higher-level pattern would have been

expected.
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