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ABSTRACT

Toward Understanding Predictability of Climate:

A Linear Stochastic Modeling Approach. (August 2003)

Faming Wang, B.S., Shandong University;

M.S., First Institute of Oceanography

Chair of Advisory Committee: Dr. Ping Chang

This dissertation discusses the predictability of the atmosphere-ocean climate

system on interannual and decadal timescales. We investigate the extent to which

the atmospheric internal variability (weather noise) can cause climate prediction to

lose skill; and we also look for the oceanic processes that contribute to the climate

predictability via interaction with the atmosphere.

First, we develop a framework for assessing the predictability of a linear stochas-

tic system. Based on the information of deterministic dynamics and noise forcing,

various predictability measures are defined and new predictability-analysis tools are

introduced. For the sake of computational efficiency, we also discuss the formulation

of a low-order model within the context of four reduction methods: modal, EOF,

most predictable pattern, and balanced truncation.

Subsequently, predictabilities of two specific physical systems are investigated

within such a framework.

The first is a mixed layer model of SST with focus on the effect of oceanic

advection. Analytical solution of a one-dimensional model shows that even though

advection can give rise to a pair of low-frequency normal modes, no enhancement

in the predictability is found in terms of domain averaged error variance. However,
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a Predictable Component Analysis (PrCA) shows that advection can play a role in

redistributing the predictable variance. This analytical result is further tested in a

more realistic two-dimensional North Atlantic model with observed mean currents.

The second is a linear coupled model of tropical Atlantic atmosphere-ocean sys-

tem. Eigen-analysis reveals that the system has two types of coupled modes: a decadal

meridional mode and an interannual equatorial mode. The meridional mode, which

manifests itself as a dipole pattern in SST, is controlled by thermodynamic feedback

between wind, latent heat flux, and SST, and modified by ocean heat transport. The

equatorial mode, which manifests itself as an SST anomaly in the eastern equatorial

basin, is dominated by dynamic feedback between wind, thermocline, upwelling, and

SST. The relative strength of thermodynamic vs dynamic feedbacks determines the

behavior of the coupled system, and enables the tropical Atlantic variability to be

more predictable than the passive-ocean scenario.
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CHAPTER I

INTRODUCTION

Several climate phenomena have long been identified as important influences on

the social and economic well-being of our societies on seasonal-to-interannual time

scales: El Niño/Southern Oscillation (ENSO) is the strongest, even remote areas can

feel its impact through teleconnection (Diaz et al., 2001); the rainfall patterns over

sub-Saharan Africa and northeast Brazil are closely related to the tropical Atlantic

variability (TAV), while the European winters are strongly affected by the phase

of North Atlantic Oscillation (NAO) (Marshall et al., 2001b); and global Monsoon

system determines the dry and wet seasons over many regions. One underlying feature

of all these climate modes is the irregularity in their evolution which in turn limits

their predictability.

Generally, the source of irregularity of climate system can be classified into two

categories (Chang et al., 1996; Neelin et al., 1998; Goddard et al., 2001; Dijkstra and

Burgers, 2002):

1. Extrinsic Irregularity – the “slowly” varying climate signals are disturbed by in-

ternal variability of the atmosphere and the ocean which themselves lack order

on the climate scale (Frankignoul and Hasselmann, 1977; Penland and Sardesh-

mukh, 1995; Moore and Kleeman, 1999; Thompson and Battisti, 2000, 2001);

2. Intrinsic Irregularity – the coupling between various components of the climate

system is highly nonlinear just like weather, its chaotic nature gives rise to the

irregularity (Zebiak and Cane, 1987; Jin et al., 1994; Tziperman et al., 1994,

1995).

This dissertation follows the style and format of Journal of Climate.
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In order to explore the limit of climate prediction, a thorough understanding of the

origin of irregularity and its effect on predictability is critically needed and has both

practical and theoretical significance.

In a series of papers, Lorenz (1963, 1965, 1984) examined the predictability of

the atmosphere on the synoptic scale and showed that a weather forecast is limited

to a two week period. As we now know, this is typical behavior of a chaotic system—

small initial error renders the subsequent evolution unpredictable over time even

though the governing equation is deterministic. Such sensitivity to initial condition

is vividly called the “Butterfly Effect”, i.e. a butterfly flipping its wings in Brazil

will cause a tornado in College Station, Texas (Lorenz, 1993). Since weather and

climate are just two paradigms of one system (atmosphere-ocean), both contribute

what we experience, observe, and measure. On the other hand, weather and climate

have different time and space scales.1 Therefore one can simulate one component

with the other component providing the external forcing or boundary condition. If

the interannual and decadal variability is of interest, then weather events can be

represented by white noise forcing with randomness and unpredictability in common.

This is the basic idea of Hasselmann’s (1976) stochastic climate model in which the

natural climate variability is generated by weather forcing due to the integrating

effect of the ocean. In such a system, predictability is defined by two competitors,

order from the slowly responding atmosphere-ocean and disorder from rapidly varying

weather.

The work presented here is inspired by the Hasselmann’s spirit, hence it belongs

1This is where difficulty lies and controversy begins. Although it seems like every-
one knows what is weather and what is climate, no single definition fits all purpose.
The core of stochastic climate model is the observation that the timescales of weather
and climate are well separated, which remains an unsettled issue in theory (Imkeller
and von Storch, 2001).
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to category 1. And it is further assumed that the coupled dynamics may be ap-

proximated as linear processes. Since eventually the ocean affects the atmosphere

through sea surface temperature (SST), predictability of SST is used as an index for

the predictability of climate. With all these assumptions, we propose here to use

a linear stochastic model to attack the fundamental questions: What are the roles

of ocean in defining the climate variability? How does weather “noise” affect the

predictability of climate? And what is the major source of predictable dynamics,

passive ocean-integrator or positive air-sea feedback? Particularly, two case studies

will be addressed in this dissertation. The first one is the effect of ocean advection on

midlatitude sea surface temperature (Chapter III). The other is dealing with tropical

Atlantic variability (Chapter IV). Before pursuing these two studies, a framework of

linear stochastic modeling is first developed (Chapter II).
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CHAPTER II

A FRAMEWORK OF LINEAR STOCHASTIC MODEL ANALYSIS

We usually regard classic physics as deterministic in a sense that given the past,

the future evolution can be predicted with arbitrary precision according to the phys-

ical laws, or at least we were taught so. However, the probabilistic view of natural

phenomena appeared long before the discovery of quantum mechanics. A classic ex-

ample of stochastic process in physics is Brownian motion— random motion of pollen

particles in water. Even the great Albert Einstein studied this phenomenon at the

beginning of 20th century, although it was Paul Langevin who directly derived the

formula about Brownian motion from Newton’s second law. Since then, stochastic

models have been popularized in many fields, from physics, chemistry, biology to engi-

neering, and even finance. In fact, the 1997 Nobel Prize in Economics was awarded to

Robert C. Mertron and Mayron S. Scholes for their stochastic model of the price of an

asset. Although the causes of uncertainty or randomness in these disciplines are dif-

ferent, the underlying mathematics is the same—the stochastic differential equation.

An excellent introductory textbook on this subject is the one written by Øksendal

(2000). In this dissertation, I prefer the word “stochastic model” to emphasize the

physics embodied in it.

For the climate system, as mentioned in Chapter I, the day-to-day weather

changes can be viewed as external driving force which is essentially random in time

and white in spectrum. The climate variability is an integral response to the white

noise forcing. In 1976, Klaus Hasselmann proposed this idea to explain the observed

red spectrum of natural climate variability. His pioneer work has far-reaching im-

portance in climate studies. Even in light of today’s high resolution coupled general

circulation model (CGCM) and much improved observation network, the stochas-
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tic model regains its virtue as a simple conceptual model (Imkeller and von Storch,

2001). The abundance of raw data does not automatically transfer into an abundance

of knowledge. Understanding comes from a comprehensive analysis of a dynamic sys-

tem through simplification, and that is where the stochastic climate model fits in.

The next two chapters will illuminate some aspects of this spirit.

The framework of linear stochastic model is introduced in this chapter. Following

a brief overview of the stochastic model, its characteristics are explored in Section

A. From the very beginning, we will see the interlacing relationship of deterministic

dynamics and noise forcing in determining the system behavior. With that said, the

predictability measures of the linear stochastic model are defined, and the detailed

procedure of predictability analysis is given in Section B. The climate system usually

has high dimensions (millions of grid points for a GCM), it is not practical to deal

with such large dimension matrices . A low-order model can be constructed and

analyzed as an approximation of the total system. Thus, different model reduction

methods and their effects on predictability estimate are discussed in Section C. For

the sake of completeness, a brief introduction to linear inverse modeling (LIM) is

given in Section D.

A. Linear stochastic model

In principle, the evolution of a general dynamic system can be described by a set

of prognostic equations

dx

dt
= Lx+ f , (2.1)

where x is the state variable, L denotes a nonlinear operator, and f represents the

external forcing. For the climate system, x could be air temperature, sea surface

temperature, precipitation, wind stress, or their combination; operator L represents
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the dynamical, thermodynamical, and chemical laws which govern the motions and

interactions within and between atmosphere and ocean; f is the extraterrestrial in-

fluence (e.g. solar radiation, tidal forcing). Given the forcing f , system (2.1) usually

contains one or more equilibrium states xmean about which the system may hover

for a long time. Then linearization of (2.1) for this steady background state can be

nominally written as a governing equation for anomaly xa = x− xmean:

dxa
dt

= Axa + η, (2.2)

where operator A is the linearized L with respect to xmean; and the forcing term η

models the nonlinear effect. We have assumed that the only effect of external forcing

is in defining the mean state, and it does not enter into anomaly equation (2.2). Many

characteristics of the complex nonlinear system can often be inferred from analyzing

the linear model, although its validity is limited as the degree of nonlinearity increases.

For example, we can not use linear model to study turbulence. For the weak nonlinear

climate system, (2.2) may be used to capture the large scale variability. The subscript

is dropped from xa in the following discussion for the sake of simplicity.

The nonlinear term η usually represents the source of irregularity and chaos

within the dynamical system. As a first-order approximation, η might be treated

as random noise. Furthermore, if it lacks persistence, i.e. its autocorrelation drops

sharply as time lapses, then white noise would be an acceptable approximation. Day-

to-day weather perturbations are such example when seen from a climate timescale.

White noise is totally unpredictable, and its autocorrelation is a Dirac-delta function.

Although linear operator A is deterministic in nature, x describes a stochastic pro-

cesses because of the inherent uncertainty in η. Eq. (2.2) becomes a linear stochastic

differential equation

dx

dt
= A(t)x+ η. (2.3)
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Usually, a normal distribution is assumed, η ∼ N (0,Σ) and x ∼ N (0,C).

One immediate and profound consequence of the change from (2.2) to (2.3) is that

we no longer know the precise state of the system at any given time. A probabilistic

view has to be taken, i.e. any state (one point in state space) is assigned a probability

density. High probable states mean that the system will stay there longer or visit them

more frequently. Single perfect prediction scenarios must be abandoned and replaced

by ensemble prediction with a statistical measure to gauge its skill.

In this dissertation, the investigation is restricted to a special but useful case—an

n-dimensional, linear, time-invariant system (or autonomous system), i.e. operator

An×n is a constant. It is simple enough to be solved analytically

x(t0 + τ) = eAτx(t0) +

∫ τ

0

eA(τ−s)η(s+ t0) ds; (2.4)

yet it is realistic enough to capture the essential dynamics and find practical appli-

cations in many fields. The Markov model in statistics, the Langevin equation in

physics, and the Ornstein-Uhlenbeck process in mathematics, all belong to this cate-

gory. Before exploring the properties of the linear time invariant (LTI) system, some

mathematical expressions and common usages are defined in Table I.

1. Properties of LTI system

If the real system starts from a static state x|t0=0 = 0, its total energy could be

written as

var(x(t)) = 〈xTx〉 = tr(ΣBt), (2.5)

where Bt =
∫ t

0
eA

T seAs ds is called stochastic operator (Farrell and Ioannou, 1996a).

Next, we try to find the lower and upper bounds for the total variance because they

measure the stability of (2.3) in the Lyapunov’s sense.



8

Table I. Description of mathematical notations and symbols

notation description

a scalar

a∗ complex conjugate of a

|a| absolute value or modulus of a

x state vector

Rn n-dimensional Euclidean space

A linear operator in matrix form

AT transpose of A

A† complex conjugate transpose of A

A−1 inverse of A

A−† (A−1)†

tr(A) trace of a matrix A

det(A) determinant of A

‖A‖ norm of matrix A

λ(A) eigenvalues of A in descending order s.t. <(λi) > <(λj), if i < j

σ(A) singular values of A in descending order s.t. σi > σj, if i < j

〈x〉 expectation of random variable x

〈y|x〉 conditional expectation of y w.r.t. x

x̄ conditional mean 〈x(t0 + τ)|x(t0)〉, or mean 〈x〉

x′ perturbation x′ = x− x̄

var(x) variance of x, 〈(x′)T (x′)〉

Note: No attempt has been made to distinguish a random variable and its realization.
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First, the inequality of trace product (Marcus and Minc, 1992) gives

λn(Σ)tr(Bt) 6 tr(ΣBt) 6 λ1(Σ)tr(Bt) . (2.6)

As to tr(Bt) , Ioannou (1995) proved that variance is lower bounded,

tr(Bt) =

∫ t

0

tr(eAT seAs) ds

>

n∑

i=1

∫ t

0

e(λi(A)+λ∗i (A))s ds

=
n∑

i=1

e(λi(A)+λ∗i (A))t − 1

λi(A) + λ∗i (A)

(2.7)

which is equivalent to a lower bound. A weak upper bound can also be found based

on the simple observation

tr(Bt) =

∫ t

0

n∑

i,j

ci je
(λi(A)+λ∗j (A))s ds

6 n2max(|ci j|)
∫ t

0

e(λ1(A)+λ∗1(A))s ds ,

= n2max(|ci j|)
e(λ1(A)+λ∗1(A))t − 1

λ1(A) + λ∗1(A)

(2.8)

where coefficients ci j are complex numbers. Therefore, (2.6), (2.7), and (2.8) together

show the dynamic importance of A’s eigenstructure (normal modes). If the first

eigenvalue has positive real part <(λ1) > 0, the total response grows exponentially

with time, which means the system is unstable; when <(λ1) < 0, a stationary response

is obtained and the system is asymptotically stable; and the third case is <(λ1) = 0,

in which a pure oscillation is observed if =(λ1) 6= 0. From now on, we will not

distinguish the stability of operator A, normal modes, or the system. Further we

assume A is stable unless stated otherwise.

Stability analysis has become a standard procedure in examining a dynamical

system. The origin and growth of small perturbations are often attributed to the
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existence of unstable modes. In the limit of long times, the first normal mode (least

damped mode) dominates the response. The above classical stability theory has been

extended by Farrell and Ioannou (1996a,b) to explain the transient growth processes.

They argued that mode-mode interaction or nonnormality could give rise to a larger

growth than the one revealed by the first normal mode. Therefore, the behavior of

a highly non-normal system may have little to do with its leading eigenmode. In

studying non-normal operators or matrices, a more powerful tool is the pseudospec-

tral analysis (Trefethen, 1992, 1997, 1999), which is used to explain ‘hydrodynamic

stability without eigenvalues’ (Trefethen et al., 1993). For the nonlinear system, Has-

selmann (1988) proposed principal interaction pattern (PIP) analysis, which is the

counterpart of principal oscillation pattern (POP) or normal mode for the linear case.

Recently, Neumaier and Schneider (2001) developed a procedure to estimate eigen-

modes of high order autoregressive (AR) models, while (2.3) is basically an AR(1)

model.

Traditionally, the least damped eigenmodes are considered to be the most im-

portant dynamical modes and responsible for the error growing or paradigm shift.

This may be true for self-closed deterministic systems. In the linear stochastic sys-

tem (2.3), white noise forcing is spatially coherent. It is often the case that other

normal modes are excited, but not the least damped one. We’ll return to this topic

in Chapter III.

The influence of stochastic forcing is better discussed in terms of the fluctuation-

dissipation relation (Penland and Sardeshmukh, 1995), also known as continuous

algebraic Lyapunov equation (Gajić and Qureshi, 1995). For a stable system (2.3),

the covariance matrix of x, C = 〈xxT 〉, satisfies the Lyapunov equation (see Farrell

and Ioannou, 1996a)

AC+ CAT = −Σ . (2.9)
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So does the stochastic dynamical operator B,

ATB+ BA = −I , (2.10)

where B denotes B∞, and I is the identity matrix. Only for spatial-white (unitary)

noise forcing Σ = I and normal system AA† = A†A, does the stability analysis fully

describe the system characteristics (Farrell and Ioannou, 1996a). For a nonnormal

system or non-unitary forcing, the evolution of (2.3) results from competition (or

combination) between least damped normal modes and the most energetic forcing

modes. Tippett and Chang (2003) showed that a special arrangement of forcing may

selectively excite only certain normal modes. Taking this into consideration, Neumaier

and Schneider (2001) constructed an excitation parameter to measure the relative

importance of normal modes to stochastic forcing. Furthermore, the predictability of

the system (2.3) is also closely related to forcing patterns (see section B).

Another popular statistic technique in studying time series is the spectrum anal-

ysis. The Fourier transform of (2.3)

(iωI− A)F(x) = F(η)

gives the cross-spectrum matrix

〈F(x)F(x)†〉 = (iωI− A)−1Σ(iωI− A)−†. (2.11)

The power spectrum of a dynamical system would be a spatial average over all grid

points S(ω) = 〈F(x)†F(x)〉, and has a simple interpretation for unitary η and normal

A,

S(ω) =
n∑

j=1

1

<(λj)2 + (ω −=(λj))2
.

So, the S(ω) just reflects the eigenspectrum distribution. When oscillatory modes
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exist, =(λ) 6= 0, the spectrum may have peaks; when the system contains only pure

damped modes, a red spectrum results (Hasselmann, 1976). Although a spectral

peak is often used to indicate the existence of an oscillatory mode, its structure can

be largely influenced by the stochastic forcing pattern.

2. EOF, singular vector, and stochastic optimal

In studying the dynamical system (2.3), many optimals have been defined to

emphasize certain aspects of the response. Here, we briefly review the definitions and

applications of three commonly used in meteorology and oceanography: empirical

orthogonal function (EOF), singular vector (SV), and stochastic optimal (SO).

a. EOF

When dealing with a high-dimensional complex system x, for example, a coupled

atmosphere-ocean general circulation model (GCM) with millions of grid points, one

might ask Is there a low-dimensional approximation x̃ that still preserves most of the

information in x? In terms of variance (energy), a confirmative answer is given by

Eckart and Young (1936) and further extended by Mirsky (1960):

min{var(x− x̃)} for x ∈ Rn, x̃ ∈ Rm, m < n . (2.12)

Minimization is achieved when x̃ =
∑m

i=1 aivi, where vi are the eigenvectors of

C = 〈xxT 〉. It is also known as the total least square problem (Huffel and Vande-

walle, 1991). A simpler proof is given by Coope and Renaud (2000). In climatology,

orthogonal vectors vi are called EOFs, and ai are principal component (PC) time

series. The variance captured by the first m EOFs is
∑m

i=1 a
2
i =

∑m
i=1 λi(C). As a

powerful tool of data analysis, visualization, or compression, the first several EOFs

usually explain a large portion of the total variance. See Preisendorfer (1988) for a
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comprehensive discussion of this technique.

b. Singular vector

For any initial state x(t0), deterministic dynamics in system (2.3) determines the

unique final state x(t0 + τ). One can ask: Is there one x(t0) which grows or decays

most rapidly? Mathematically, it is a maximization problem

max‖x(t0 + τ)‖2 s.t. xt0+τ = eAτx(t0), ‖x(t0)‖2 = 1. (2.13)

The answer is the singular vector of the propagator: if x(t0) takes the pattern of

the right singular vector v, then the final stage would be the left singular vector

u with growth rate (the singular value) s. While the singular value decomposition

(SVD) exp(Aτ) = USVT is a standard procedure, it has at least three different uses

in atmospheric science: 1) Finding nonmodal growth (Farrell and Ioannou, 1996a).

For example, Penland and Sardeshmukh (1995) showed that the growing phase of

ENSO can result from optimal perturbation, even though only three damped normal

modes are involved. 2) Predicting uncertainty associated with weather and climate

forecast (Palmer, 2000). Since dominant singular vectors are the most rapidly growing

perturbations, by adding them into initial condition as error, one can estimate the

spreading of probability distribution of x with relatively fewer runs in comparison with

the Monte Carlo method. 3) Providing guideline for adaptive observation strategy

(Palmer et al., 1998), i.e. targeting the sensitive region identified by singular vector

analysis.
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c. Stochastic optimal

Stochastic optimals are a set of particular forcing patterns that give rise to the

maximal energy of the system (2.3),

max{var(x) : η real} = max{tr(ΣB) : Σ = 〈ηηT 〉} . (2.14)

Optimization is attained when the forcing covariance matrix Σ and the stochastic

dynamical operator B have a common set of orthogonal eigenvectors—stochastic op-

timal v. For instance, if the forcing contains only one mode, then the magnitude of

the response is largest when the system (2.3) is driven by its first stochastic optimal.

d. Effect of nonnormality

For a normal system, normal modes vi, which are eigenvectors of operator A, are

orthogonal. According to the Lyapunov equation (2.10) and the property of matrix

exponential, singular vectors and stochastic optimals take the form of vi with growth

rate

σi(e
At) = e<[λi(A)]t

and response variance

λi(B) =
−1

λi(A) + λ∗i (A)
.

Clearly, there is no (transient) growing mechanism in this system, all initial pertur-

bations monotonically decay to zero. And resonance does occur when forcing takes

the pattern of normal modes. As mentioned in Section A.1, however, the EOFs relate

not only to normal modes but also to coherent forcing structure. If forcing is unitary,

then EOF analysis correctly identifies the dynamical mode and λi(C) = λi(B).

For a nonnormal system, eigenvectors v are no longer orthogonal, hence mode-

to-mode interference may develop, which causes EOFs, SVs, and SOs to deviate
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from normal modes. Several matrix inequalities help in estimating the underlying

nonnormal effect (see Horn and Johnson, 1985, 1991; Gajić and Qureshi, 1995),

e<[λ1(A)]t 6 σ1(e
At) 6 min{eλ1(

A+AT

2
)t, κ(E)e<[λ1(A)]t} , (2.15)

λn(B), λn(C) 6
1

−2<[λn(A)]
, (2.16)

λ1(B), λ1(C) >
1

−2<[λ1(A)]
, (2.17)

where C is the covariance matrix under unitary forcing Σ = I, and

κ(E) = ‖E‖‖E−1‖ > 1

is the condition number of column eigenvector matrix of A. In (2.15), the lower bound

tells us that nonnormality reduces the decay of the first singular vector. In fact, the

initial perturbation may grow, at least temporally, even though all normal modes

are damped. This is because A + AT is not necessarily stable for stable A, which

means upper bound may be much larger than one for finite lead-time. Farrell and

Ioannou (1996a) and reference herein discussed the importance of such nonmodal

growth in various flows. For stochastic optimals, (2.16) and (2.17) basically show

that nonnormal systems are more extreme. The first SO forcing excites more variance,

while the last SO excites less. Meanwhile, the first EOF gains strength at the expense

of the last EOF, i.e. the nonnormal system accumulates more energy at the low end

of the eigenspectrum of C.

B. Predictability of LTI system

Let x(t) be a multivariate stationary random process. Then the best projection of

future (given past) is the conditional expectation x̄(t0+ τ) = 〈x(t0+ τ)|x(s), s 6 t0〉.

In this dissertation, we call it optimal prediction in mean square sense, which means
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that

var(x− x̄) = min[var(x− x̂)]

among all possible predictions x̂. Furthermore, the process described by (2.3) belongs

to a special branch—Markov process, which has an important property

〈x(t0 + τ)|x(s), s 6 t0〉 = 〈x(t0 + τ)|x(t0)〉 . (2.18)

Therefore, the optimal prediction of system (2.3) is

x̄(t0 + τ) = eAτx(t0), (2.19)

which is also the predictable component in (2.4), namely the signal. The unpredictable

component is due to the white noise forcing

x′ = x− x̄ =

∫ τ

0

eA(τ−s)η(s+ t0) ds , (2.20)

which is called the noise in x.

Given the dynamics of (2.3), x̄ is probably the most reasonable prediction. How-

ever other prediction schemes may be used, which is denoted by x̂. In order to

compare the performance of various models, a metric must be defined. One simple

skill measure is the normalized error variance (NEV)

ε(τ) =
var[x(t0 + τ)− x̂(t0 + τ)]

var[x(t0)]
, (2.21)

where x̂(t0 + τ) = f(xt0 , · · · ,x−∞; τ) represents our forecasting strategy, such as

persistence forecast x̂(t0 + τ) = x(t0).

Using (2.21), (2.4), stationary condition, and the independence between x(t0)

and η(t0 + s), one can show

ε =
var(x̄− x̂) + var(x′)

var(x)
>

var(x′)

var(x)
, (2.22)
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which confirms the above mentioned Markov property—x̄, with smallest prediction

error, is the best prediction. It should be pointed out that x̄ also denotes the most

probable state for normal distribution. The prediction error of a persistence forecast,

εpersist =
var[x(t0 + τ)− x(t0)]

var(x)
= 2[1− ρ(τ)] , (2.23)

relates to another commonly used quantity in time series analysis, autocorrelation

function

ρ(τ) =
〈x(t0)Tx(t0 + τ)〉
〈x(t0)Tx(t0)〉

.

And the Fourier transform of ρ(τ) is the power spectrum S(ω) defined by (2.11).

Although ρ could serve as a rough estimate of predictability: longer (shorter) decor-

relation time means system more (less) predictable. It is not a predictability measure

in a strict sense, as it is not directly connected to a prediction scheme.

1. Predictability measures

According to inequality (2.22), it is natural to define the skill of optimal pre-

diction x̄ as the measure of predictability and view it as an inherent property of a

dynamical system (2.3). A well predictable system is the one with slower error growth

compared to signal decaying. However, we are still free to choose a specific metric to

quantify this.

a. Normalized error variance

Using (2.19) and (2.20), we define a measure of the predictability of system (2.3)

as

ε(τ) =
var(x′)

var(x)
=

tr(Eτ )

tr(C)
= 1− tr(Cτ )

tr(C)
(2.24)
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where the covariance matrix of noise Eτ = 〈(x′)T (x′)〉; the covariance of signal Cτ =

eAτCeAT τ . Since the total response is signal plus noise, C = Cτ + Eτ , predictability

measure ε fall in the range [0, 1] with ε(0) = 0 and ε(−∞) = 1. As lead time goes, the

error increases monotonically, until it reaches a certain limit above which we consider

the prediction loses its value. If the useful skill requires ε 6 0.5, i.e. the signal has

larger variance than the noise. Then the time scale given by ε(τm) = 0.5 would be

a concise measure of the system’s predictability. In this dissertation, we use these

two different definitions (ε(τ) or τm) interchangeably, whose meaning should be clear

from context.

Two other similar statistics are also commonly used in characterizing a dynamical

system (2.3), normalized signal variance (NSV) and signal-to-noise ratio (SNR). They

are simply related to error variance through

NSV = 1− ε, and SNR = NSV/ε. (2.25)

b. Measures from information theory

In information theory, entropy is used to measure the uncertainty of a random

process (Shannon, 1948),

}(x) = −
∫
f(x) lnf(x) dx, (2.26)

where f(x) is the probability density function of x. If the p.d.f. of x is multivariate

normal

f(x) =
1

(2π)n/2
√

det(C)
exp

[
−(x− µ)TC−1(x− µ)

2

]
, (2.27)

where µ and C are mean and covariance of n-dimensional r.v. x. Then

}(x) =
1

2
ln(2πe)

n det(C) . (2.28)
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Furthermore, it can be proved that the Gaussian process actually maximizes the

entropy over all distributions with same covariance (Cover and Thomas, 1991). In

other words, uncertainty in normal distribution is the largest. On the other hand, a

deterministic process has zero entropy } = 0, i.e. no uncertainty.

Within such context, predictability can be defined as the amount of information

that prediction x̄ contains about x (Leung and North, 1990). This is the mutual

information concept (Cover and Thomas, 1991),

I(x̄; x) = }(x)− }(x′) =
1

2
ln

[
det(C)

det(Eτ )

]
, (2.29)

which represents the predictable information(Schneider and Griffies, 1999). In our

case here, it is convenient to work with a derived quantity which we call predictive

power loss (PPL)

PPL(τ) = e−
2
n
I(x̄;x) = det

(
EτC

−1
)1/n

(2.30)

after the predictive power (PP) of Schneider and Griffies (1999). Using the properties

of positive definite matrix, one can show 0 6 PPL 6 1. It is consistent with ε(τ) in

the sense that PPL(0) = 0 and PPL(−∞) = 1.

The predictive power loss has some nice mathematical properties such as invari-

ant under linear transformation, which leads to a tight upper bound on PPL,

PPL(τ) = det

(
1− Cτ

C

)1/n

6

n∏

i=1

(1− e2<[λi(A)])1/n

6 1− exp{ 2
n

n∑

i=1

<[λi(A)]}.

(2.31)

Tippett and Chang (2003) proved the above inequality and further pointed out that

nonnormality or correlated (in normal mode space) stochastic forcing always increase
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the system’s predictability. Such property also holds for other predictability measures,

e.g. relative entropy (Lohmann and Schneider, 1999; Kleeman, 2002; Kleeman et al.,

2002) and a set of more general measures (Tippett and Chang, 2003), but not for

NEV.

c. Predictability of normal system under unitary forcing

If A = Udiag(λi)U
† and Σ = I, then C = Udiag(ci)U

T according to Lyapunov

equation (2.9), where UU† = I and ci = −1/(λi + λ∗i ). Eqs. (2.24) and (2.30) give the

predictability in terms of the normalized error variance

ε = 1−
∑n

i=1
e(λi+λ∗i )τ

λi+λ∗i∑n
i=1

1
λi+λ∗i

(2.32)

and predictive power loss

PPL =
n∏

i=1

(1− e(λi+λ∗i )τ )1/n , (2.33)

respectively.

Now let’s prove ε 6 PPL for a normal system with spatially white stochastic

forcing.

Proof. 1 Let ai = (λi + λ∗i )τ , f(x) =
1−e−x

x
, and g(x) = 1

1−e−x . Then f(ai) and g(ai)

are similarly ordered positive sequences. From Čebyše’s inequality, we know

n∑

i=1

1

ai
=

n∑

i=1

f(ai)g(ai) >
1

n

n∑

i=1

f(ai)
n∑

i=1

g(ai) ,

1This proof is provided by Ioan Gavrea from the Department of Mathematics,
Technical University of Cluj Napoca, Romania, E-mail: Ioan.Gavrea@math.utcluj.ro.
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which is equivalent with the following

n∑n
i=1 g(ai)

>

∑n
i=1 f(ai)∑n

i=1
1
ai

= ε .

While the left hand side is the harmonic mean of 1 − exp(−ai), it satisfies another

elementary inequality

H.M. 6 G.M. =⇒ PPL >
n∑n

i=1 g(ai)
> ε

For the same threshold, such as PPL = ε = 0.5, the PPL measure gives a shorter

time scale of predictability than the error variance measure. Note that PPL > ε does

not hold for the general case, i.e. nonnormal system or nonunitary forcing.

2. Most predictable pattern and optimal forcing

Predictability defined by (2.24) is a global-mean measure in the sense that it

characterizes the system as a whole. In order to investigate the spatial variations in

predictability, for example tropical climate being more predictable than extratropics

(Graham et al., 2000) , two new spatial optimal patterns are defined (Schneider and

Griffies, 1999; Chang et al., 2003a,b).

a. Most predictable pattern

The singular vector (2.13) defines the most rapidly growing pattern without tak-

ing stochastic forcing effect into account. In the extreme case, it is entirely possible

that the system does not have any projection on this pattern. Consequently, the

growth mechanism expressed by SV will not act at all. A new approach, the pre-

dictable component analysis, was developed to avoid such problem by focusing on the
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response from the very beginning (Schneider and Griffies, 1999; DelSole and Chang,

2003). Suppose patterns vi form a complete set. We can expand x in terms of vi,

x(t) =
n∑

i=1

ai(t)vi (2.34)

From (2.12), we know that max[var(ai)] is given by the first EOF. In analogy, here

we may define the predictability of ai and ask which one has the highest score (more

predictable). Assume vi and ui are bi-orthogonal sets. We get ai(t) = uT
i x(t) by

using UTV = I. The predictability of ai(t) would be

ε =
var(a′)

var(a)
=
uTEτu

uTCu
= 1− u

TCτu

uTCu
. (2.35)

One who is familiar with linear algebra will recognize that min ε is equivalent with a

generalized eigenvalue problem:

Eτu = εCu , or Cτu = γCu , with ε = 1− γ . (2.36)

For computational efficiency, the patterns V are found though the property of the

generalized eigenvectors V = CU not U−1. From now on, v and u are called predictable

pattern and filter, respectively. And the most predictable pattern (MPP) is the one

with min ε or max γ, while the least predictable pattern is with max ε or min γ. One

intuitively appealing interpretation is that the most predictable pattern identifies the

region with high predictability, in a way just as the first EOF identifies the most

energetic area. Although the predictable component (pattern) analysis is a relatively

new technique (Schneider and Griffies, 1999; Chang et al., 2003a), it is rooted in some

traditional statistical methods, e.g. canonical correlation analysis and autoregressive

models. For that matter, DelSole and Chang (2003) provide a excellent review.



23

b. Optimal forcing with respect to predictability

In terms of variance, the optimal forcing pattern is stochastic optimal given by

(2.14). As far as predictability is concerned, a new set of optimal forcing patterns can

be defined as the following: According to (2.5) and (2.24), the maximum predictability

εmin = min
tr (ΣBτ )

tr (ΣB)
for given B (2.37)

is achieved when the forcing pattern is the generalized eigenvector with the smallest

eigenvalue

Bτv = εBv .

When stochastic forcing takes the pattern of the generalized eigenvector with the

largest εmax, the dynamical system is least predictable. Essentially, it reveals to what

degree the stochastic coherent forcing may affect the system’s predictability. The

range εmin 6 ε 6max is usually large, which implies that two systems with the same

deterministic dynamics may differ substantially in predictability.

3. Summary

First, we adopt the normalized error variance as the default measure of pre-

dictability. With the full acknowledgement of the beautiful mathematical properties

of more advanced measures, we think the normalized error variance gives a more real-

istic estimate of predictive skill. Second, while singular vector and stochastic optimal

serve their own purposes well, they are not the patterns we should look for when

dealing with the predictability issues. Instead, the predictable pattern and optimal

forcing defined through the generalized eigenvalue problem are the optimal patterns

of initial condition and stochastic forcing. Taking a dynamical view of the stochastic

model, we may have a more pedagogical interpretation: during certain periods, the
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system response may resemble the most predictable pattern. According to our theory,

these are also the periods when the system is more predictable. The same applies

to stochastic forcing. Following this viewpoint, Flügel et al. (2003) found that pre-

dictable patterns can be used to explain the decadal modulation of ENSO prediction,

i.e. ENSO is more predictable in the 1980s and less predictable in the 1990s.

For reference, we summarize definitions of various optimals in Table II and pro-

vide the following inequalities:

1− e2<[λ1(A)]τ >εmin > max{0 , 1− eλ1(A+AT )τ} , (2.38)

1− e2<[λn(A)]τ 6εmax 6 1− eλn(A+AT )τ , (2.39)

where ε is the generalized eigenvalue in (2.36) or (2.37), i.e. the score associated

with predictable pattern or optimal forcing. Generally, the predictable pattern and

optimal forcing depend on lead time τ . However, we can define global optimals as

the patterns at ε(τm) = 0.5, which give the maximum predictable time-scale τm.

C. A low-dimensional approximation

The analysis in Sections A and B requires dealing with large matrices. For

example, the global surface temperature, with 1◦×1◦ medium resolution, has n ≈ 6×

104 dimensions (this is what GCMs deal with). Then, with 8 bytes double precision,

one n × n matrix needs about 30 GB (gigabyte) memory to store it (this is what

we are dealing with). Usually there are several climatic variables of interest and

matrix computation (e.g. eigendecomposition) also needs some workspace. The total

requirement for memory would exceed hundreds of GB, which is a formidable task



25

Table II. Common optimals v of linear stochastic system: dx/dt = Ax+ η

name pattern of definition

normal mode x eigenvector of A, Av = λv

EOF of response x eigenvector of C, Cv = λv

Singular vector xinitial SVD of propagator, eAτv = su

most predictable pattern x
generalized eigenvector,

Eτu = λCu, v = Cu

EOF of forcing η eigenvector of Σ, Σv = λv

Stochastic Optimal η eigenvector of B, Bv = λv

optimal forcing for predictability η
generalized eigenvector,

Bτv = λBv

even with today’s supercomputers.2 One way to circumvent this difficulty is to find

a low-order model and hope the properties of the original dynamical system can be

computed, to a certain accuracy, within that subspace. This is also known as a model

reduction problem (Obinata and Anderson, 2000).

In addition to the above technical consideration, there is actually a deep physical

reason behind model reduction. Dynamical system theory tells us that under certain

circumstances, a finite-dimensional manifold may exist in the infinite-dimensional

phase space. Therefore, the full dynamics are in principle determined by a finite

number of equations. For example, turbulence is a highly chaotic system. However,

if some coherent structures appear within a disordered background flow, one can

project the Navier-Stokes equation onto these physical patterns to formulate a low-

2For the record, earth simulator, the fastest supercomputer as to 2002, has 10 Tera
bytes of main memory.
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order model. This is the proper orthogonal method introduced by John L. Lumley

(Holmes et al., 1996). In analogy, Patil et al. (2001) demonstrate that another ex-

tremely high-dimensional dynamical system, the Earth’s atmosphere, also possesses

a local low dimensionality. Hence, a low-order model may be used to evaluate the

predictability of a weather system (Lorenz, 1965, 1969). The climate system exhibits

certain regularities in space and time, e.g. ENSO, Pacific North American (PNA)

pattern, North Atlantic Oscillation (NAO), Arctic Oscillation (AO), Pacific Decadal

Oscillation (PDO), and Tropical Atlantic dipole mode. Just like a coherent structure

in turbulence lays the ground for low-dimensional modeling (Holmes et al., 1996), the

mechanisms of these climate modes may also contain a low order approximation, i.e.

the attractors reside in low-dimensional manifolds. Here, our objective is not to make

a more efficient, accurate, and economical simulation or prediction, but to develop

“simple” models that will lead to better understanding of climate variabilities. Of

course to do this, we ignore their interactions with the weather (higher modes) and

mean circulation(the lowest mode). In the real world, all of them are integrated into

one system which has no boundaries between weather, climate, and global change.

However,

often, science progresses by a kind of creative ignorance in which one

attempts to focus on key phenomena and ignore second order effects

which is especially true in geophysical fluid dynamics (Pedlosky, 1987). On the other

hand, one should be prudent about model reduction: first, not every dynamical system

possesses low-dimensional approximation; second, given the degree of freedom n, the

performance of reduced model may change dramatically with the basis of projection.
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1. Objective

In this section, we assume the dynamical system is precisely described by the

full order model (FOM)

dx

dt
= Ax+ η . (2.40)

Through linear transformation x = Tα, (2.40) is equal to

dα

dt
= Ãα+ ζ ,

where α = T−1x, Ã = T−1AT, and ζ = T−1η. Suppose, according to some criteria,

the first m αs are far more important than the rest. The reduced order model (ROM)

would be

dαm×1

dt
= Ãm×mαm×1 + ζm×1 (2.41)

with α = Lx, Ã = LAR, and ζ = Lη. The low-order model (2.41) may be thought

as a projection (truncation) of FOM into subspace R. While left projector Lm×n is

the first m rows of T−1, the right projector Rn×m is the first m columns of T, and

they satisfy LR = Im×m. Back into original space, (2.41) represents an approximation

x ≈ Rα.

When operator A is linear time-invariant and forcing η is white noise, both FOM

and ROM become the stochastic models discussed in Sections A and B. Within the

context of this dissertation, two intimately related questions can be posed here:

First, if we use ROM to predict the full system, how good is it? To answer

this, we define the normalized prediction error in physical space (see Eqs. (2.21) and

(2.22)),

εp =
var(x− Rᾱ)

var(x)
=

var[eAτx(t0)− ReÃτLx(t0)]

var(x)
+ ε , (2.42)

where ᾱ is the optimal prediction of ROM (2.41), and ε is the predictability of FOM
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(2.40). Eqs. (2.19), (2.20), and (2.24) have been used in derivation. As we know,

smaller εp means better prediction, hence better model reduction.

The second question is more related to the issue addressed in this dissertation:

Do FOM and ROM have similar predictability? A positive answer will ensure the

use of low-order model as a substitute for studying the predictability of a high-order

complex system. A successful example along this line is Lorenz’s work on atmospheric

predictability (Lorenz, 1963, 1965, 1969, 1984). Using double-Fourier series as basis,

Lorenz derived low-order atmospheric (nonlinear) models and found useful weather

forecasts were limited to two weeks. Even with today’s operational numerical weather

prediction, this limit still holds (Kalnay et al., 1998). Of course, the nature of pre-

dictability are fundamentally different for Lorenz’s chaotic model and the stochastic

model used here. As mentioned in Chapter I, the loss of prediction skill in the former

is due to small initial error plus nonlinearity, i.e. butterfly effect (Lorenz, 1993), while

the latter is due to unknown forcing (perfect initial condition). However, the basic ob-

jectives are the same—solve a low-dimensional model for the answer to an intractable

problem, e.g. predictability of weather or climate. Before casting any confidence, we

need to know how the model reduction affects the estimate of predictability.

Noticing that NEV (2.24) depends on coordinates, we define ROM’s predictabil-

ity as the ratio of variance in physical space (space of FOM),

εr(τ) =
var(Rα− Rᾱ)

var(Rα)
= 1− tr(ReÃτ C̃eÃτR†)

tr(RC̃R†)
(2.43)

where C̃ = 〈αα†〉 is determined via Lyapunov equation: ÃC̃ + C̃Ã = −Σ̃ with Σ̃ =

〈ζζ†〉 = LΣL†. We want εr(τ) to approach ε(τ) as close as possible.

The above two problems can be written as variations, min εp(τ) and min |εr(τ)−

ε(τ)|, as they depend on the basis function R. Unfortunately, we do not have definite

answers for them unless the system at hand is very special. Therefore, we will just
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compare the performance of several common model reduction methods via an example

and hopefully return to this general topic in the future.

2. Approximation methods

There are many ways to approximate large-scale dynamical systems, and all have

their attributes and drawbacks (see overview by Antoulas and Sorensen, 2001). In

this study, we are going to chose four kinds of R, namely:

a. Normal mode

Using normal modes as basis functions is called modal reduction. It separates

the n-dimensional system into n unrelated one-dimensional systems, which makes the

computation much easier (Ã is diagonal). It essentially is a similarity transform, hence

preserves the eigenvalues. The traditional wisdom is to choose the least-damped m

modes, with the belief that low modes dominate the long-term response while short-

living high modes control rapid transitions. During reduction, the forcing structure

has been totally ignored, which will cause severe consequences.

Modal reduction can also be applied to a nonlinear system. Hasselmann (1988)

proposed one such method: in general, principal interaction patterns (PIPs) are the

default projection basis, which is degenerated to principal oscillation patterns (POPs,

i.e, normal modes) in the linear case. Kwasniok (1996, 1997, 2001) tested the PIP

reduction method with various dynamical systems, and concluded that PIP is com-

parable to EOF in model reduction and even more efficient in extracting the essential

degrees of freedom (Achatz and Schmitz, 1997).



30

b. EOF

EOF truncation is not unfamiliar to atmospheric scientists and oceanographers.

With a low-order model in EOF space, we can study ENSO dynamics and its pre-

diction (Penland and Magorian, 1993; Xue et al., 1994; Johnson et al., 2000; Tim-

mermann et al., 2001), predictability of climate and extratropical synoptic systems

(Blumenthal, 1991; Schneider and Griffies, 1999; Wang, 2001), barotropic and baro-

clinic flow (Selten, 1995, 1997), midlatitude storm tracks (Zhang and Held, 1999),

and other low-frequency variability in the atmosphere (Achatz and Branstator, 1999;

D’Andrea and Vautard, 2001; Winkler et al., 2001). The popularity of this method is

far beyond atmospheric science and oceanography. It is known as principal compo-

nent analysis, factor analysis, or total-least-squares estimation in statistics and data

processing; proper orthogonal decomposition in the context of turbulence (Holmes

et al., 1996); and Karhunen-Loève decomposition in mathematical physics. The wide

use is partially due to the easy implementation, partially rooted in the firm math-

ematical ground—Eckart-Young-Mirsky theorem guarantees the optimality of EOF

(Eckart and Young, 1936; Mirsky, 1960). Note the problem formulated here is dif-

ferent from (2.12), and therefore ROM in EOF subspace is only sub-optimal at best.

Using the orthogonality of EOF and Lyapunov theorem, however, we can prove the

reduced model is stable and C̃ = diag[λi(C)], where λi s are the variances of m EOFs.

c. Balanced truncation

Another sub-optimal model reduction is the balanced truncation (BT) method

proposed by Moore (1981) in the context of control theory. It has been tested exten-

sively since and proved superior over most other methods (Obinata and Anderson,

2000). It has several useful properties, such as retaining the stability, the truncation
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error being upper bounded, and extendability to nonlinear system. Recently, Farrell

and Ioannou (2001a,b) introduced this idea into atmospheric science and showed that

balanced truncations do improve the performance of ROM.

Even though balanced truncation is a well-known procedure in standard text-

books (Dullerud and Paganini, 2000), some details are given here because of its new

appearance in our field. The autonomous system (2.40) can be written as a trivial

controlled system

dx

dt
= Ax+ η

y = x .

(2.44)

With respect to (2.44), internal balancing is seeking a similarity transformation T

that results in a diagonal covariance matrix and stochastic optimal,

C̃ = B̃ = Φ = diag [h1, h2, . . . , hn]

where C̃ = T−1CT−†, B̃ = T†BT, and the Hankel singular value h1 ≥ h2 ≥ · · · ≥

hn > 0 reflects the relative contribution of the corresponding mode. Using the first k

modes to form L and R, (2.41) would be the BT version of (2.40). Here, it is helpful

to think of the balanced truncation as a combination of EOFs and SOs. Taking both

dynamics and forcing into consideration, balanced truncation is found to be nearly

optimal in fluid flow problems (Farrell and Ioannou, 2001a).

Following Lall et al. (2002), balancing two covariance matrices can be done in

three steps. First, construct a Cholesky factorization of B such that B = Z†Z, where Z

is an upper triangular matrix. Then, let UΦ2U† be a singular value decomposition of

ZCZ†, and let T = Z−1UΦ
1
2 and T−1 = Φ− 1

2U†Z. Finally, T†BT = Φ and T−1CT−† =

Φ.



32

d. Most predictable pattern

In analogy to EOF decomposition, we can project the dynamical system x into

subspace R and define a predictability measure there

γ(L) =
tr{LCτL

†}
tr{LCL†} . (2.45)

where L is the projector, LR = I. Then,

max
L∈Rm×n

γ(L) = max
tr{LCτL

T}
tr{LXXTLT} Cholesky decomposition : C = XXT

= max
tr{LCτL

T}
tr{YYT} Ym×n = Lm×nXn×n

= max{tr
(
YΩYT

)
: YYT = Im×m} Ω = X−1CτX

−T

=
1

m

m∑

i=1

γi >
tr(Cτ )

tr(C)

(2.46)

is attained when R takes the form of the first m most predictable patterns. In other

words, L are the first m filters in (2.36). Note that the measure (2.45) is defined in

an oblique coordinate system, and therefore the maximization of γ does not transfer

back to the physical space. However, MPP does have its own merit: it can be viewed

as a balance between Cτ and C. Let T denote the MPP defined by the generalized

eigenvalue problem, then we have the following property

T−1CτT
−† = diag[γi] and T−1CT−† = I

where γi is the generalized eigenvalue in (2.36) (see, e.g. DelSole and Chang, 2003).

Therefore this method may give a better reduction in terms of ετ and lead to a

deeper understanding of the role of MPP in a linear stochastic system. Again, using

Lyapunov’s theorem, one can show that this method preserves the stability of A.
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3. EOFs are normal modes

EOFs depict normal modes of (2.40) only when the system is normal AA† = A†A

and forcing patterns coincide with normal modes. Assuming the unitary matrix V

consists of these orthonormal modes, we have diagonal forms such as

A = Vdiag[ai]V
† , (2.47)

B = Vdiag[bi]V
† , (2.48)

C = Vdiag[ci]V
† , (2.49)

Σ = Vdiag[di]V
† , (2.50)

where V is arranged in such an order that 0 > <(a1) > <(a2) · · · > <(an). According

to Lyapunov equations (2.9) and (2.10), b and c depend on a and d,

ci =
−di

ai + a∗i
and bi =

−1
ai + a∗i

. (2.51)

Note that di, hence ci, are not necessarily in descending order.

Now, different model reduction methods are simplified to be different ways of

choosing m EOFs from set V = [v1,v2, · · · ,vn]. For example, modal and MPP

reduction use the least damped modes, i.e. v1, · · · ,vm; EOF reduction picks out

the most energetic modes ci; while BC chooses the modes with the largest Hankel

singular values hi =
√
ci bi. Generally speaking, let [l1, · · · , lm] be the permutation of

[1, · · · , n], R = [vl1 , · · · ,vlm ], then L = R†, prediction error of ROM (Eq. 2.42)

εp = εt + ε = 1−
∑m

i=1 e
(ali+a∗li

)τcli∑n
i=1 cli

, (2.52)

and the predictability of ROM (Eq. 2.43)

εr = 1−
∑m

i=1 e
(ali+a∗li

)τcli∑m
i=1 cli

, (2.53)
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where εt = εp − ε is the error due to reduction, and ε is the predictability of FOM.

If m = n, then εp = εr = ε. When m < n, the minimum prediction error (2.52) is

achieved if the reduction is through the first m EOFs of Cτ , i.e. modes with large

variance eai+a∗i ci. Comparing εr with ε, we see that the reduced order model can

either overestimate or underestimate the predictability. The details depend on the

combination of λi and di.

One special case, for which we can obtain some analytical answers, is spatially-

white noise, i.e. d1 = d2 = · · · = dn = 1. Under such forcing, ci = bi, and all the

reduction methods discussed give the same results. The reduction via the first m

modes gives

εmin
p = 1−

∑m
i=1

e(ai+a∗i )τ

ai+a∗i∑n
i=1

1
ai+a∗i

and εmin
r = 1−

∑m
i=1

e(ai+a∗i )τ

ai+a∗i∑m
i=1

1
ai+a∗i

, (2.54)

while the reduction via last m modes has

εmax
p = 1−

∑n
i=n−m+1

e(ai+a∗i )τ

ai+a∗i∑n
i=n−m+1

1
ai+a∗i

and εmax
r = 1−

∑n
i=n−m+1

e(ai+a∗i )τ

ai+a∗i∑n
i=n−m+1

1
ai+a∗i

. (2.55)

One can easily prove εmin
r < ε and εmax

r > ε for arbitrary reduction,

εmin
p 6 εp 6 εmax

p and εmin
r 6 εr 6 εmax

r , (2.56)

where εp and εr are given by (2.52) and (2.53). Therefore, within this case the usual

model reduction (Modal, EOF, BT, or SO) is the global optimal reduction in the

sense that its prediction error is minimal at every lead time τ , although it always

overestimates the predictability.

To illustrate the basic idea, we present an example here.
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Fig. 1. Performance of different model reductions in Example 1. a) Normalized error

variance of prediction; b) predictability of low-order model. Light solid line,

skill of full-order model; dotted line, modal reduction; dashed line, EOF trun-

cation; dot-dashed line, BT reduction. Note two light solid lines in a) and

b) are identical because we define the normalized error variance of optimal

prediction as the predictability.

Example 1

Let us assume the eigenvalues of the dynamical operator A and the stochastic

forcing covariance Σ are

[ai] = −[0.1, 0.2, 0.3, 0.4, 0.5, 0.6] and [di] = [1, 1, 5, 0.1, 10, 0.1] ,

respectively. Then the skill of modal, EOF , BT, and MPP reduction can be calculated

according to Eqs. (2.52) and (2.53). The results for the reduced-order model with

two dimensions are presented in Fig. 1.

Figs. 1 a) and b) show that modal reduction is the worst both in terms of pre-

diction and assessing predictability. This is not a surprising result given the setting

of A and Σ, i.e. the least damped modes are not representative in this system. On

the contrary, taking the forcing effect into account, EOF and BT reduction produce
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much better results. While the EOF truncation overestimates the predictability and

BT underestimates it (Fig. 1b), their performances are comparable. However, there

are some subtle differences in prediction errors (Fig. 1). When τ = 0, εp represents

the error in initial condition due to truncation. From (2.12), we know EOF gives the

smallest error. When τ → ∞, the least damped normal mode dominates, which is

well captured by modal reduction. BT somehow combines the benefits of modal and

EOF reduction, yielding an overall better prediction. In this case, MPPs are the least

damped normal modes, hence it does not give any new information. We have to wait

until the next section to see the pros and cons of MPP reduction.

4. EOFs aren’t normal modes

Generally, there are two reasons for EOFs 6= Normal modes: the system is non-

normal and the stochastic forcing patterns differ from the normal modes. Such a

system is too complex to be solved analytically. We mainly illustrate some ideas with

the help of a simple Tropical Atlantic model (Chang et al., 2003b). Before proceeding,

let us first consider a very special case where the system is represented by one mode.

When m = 1, L and R would degrade to row vector l and column vector r, and

εr is simply an exponential function of τ ,

ε(τ) = 1− e(ã+ã∗)τ (2.57)

where ã = lAr is a number. The exponent ã+ ã∗ satisfies the (elementary) algebraic

Lyapunov equation,

(a+ a∗)lCl† = −ll† , (2.58)

under unitary forcing Σ = I. For modal and EOF reduction, we have simple solutions,

a+ a∗ = 2<[λ1(A)] and
−1
λ1(C)

.
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However, the optimization property of eigenvalues tells us that a+ a∗ is bounded,

−1
λmin(C)

6 a+ a∗ =
−ll†
lCl†

6
−1

λmax(C)
. (2.59)

In other words, among all reduction methods, the one-dimensional model from EOF

truncation possesses maximum predictability.

To make sense of these mathematical concepts, let us turn to a simple but phys-

ically more relevant model – a coupled climate model of tropical Atlantic variability

(see Chang et al., 2001, for details). The purpose of this model is to study the inter-

hemispheric SST variability with a set of reduced physical elements: a zonal averaged

temperature equation with northward oceanic mean transport, oceanic damping, and

positive air-sea feedback. With all these simplifications, one arrives at a simple linear

stochastic climate model,

∂T

∂t
+ V

∂T

∂y
+ λT − κ∂

2T

∂y2
= βS(y)TITCZ + η (2.60)

where mean current V , damping rate λ, and coupling pattern S are spatial functions

based on GCM analysis as well as observations; TITCZ denotes the SST over the active

coupling region—ITCZ; diffusion κ = 1×104m2/s; coupling strength β = 1/200day−1;

and η is the spatial-white noise. Here, it is the coupling between atmosphere and

ocean that makes the system nonnormal, i.e. the normal modes are not orthogonal.

The least damped mode, a dipole, is an oscillatory one with period of about 6 years,

which is determined by the mean current. If we define ε 6 0.5 as a useful skill, TAV

is predictable up to two seasons (light solid line in Figs. 2 and 3). However, the

predictability comes mainly from coupling (nonnormality) and less from oscillating

modes. See Chang et al. (2003b) for an extensive discussion about predictability ,

including predictable component analysis, of model (2.60).

In this study, we are more interested in the influence of model reduction on
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evaluation of predictability. More precisely, do the reduced order models agree well

with the full order model in terms of predictability? To answer that question, let us

consider a severely truncated model with only one mode (Fig. 2). Similar to Example

1, here we see the same trend in prediction error (panel a.): EOF truncation gives

a better prediction at small lead time, while modal reduction does well at longer

lead time; BT balances these two, hence perform better overall. However, the large

error of short-term prediction by modal reduction and long-term prediction by EOF

truncation is due to the nonnormal effect, not the forcing effect as shown in Example

1. When the most predictable pattern at τ = 6 months is used in reduction, the

prediction error grows like EOF truncation, albeit with larger amplitude. Unlike the

reduction of a normal system (Example 1), Fig. 2b shows EOF, MPP, and BT reduc-

tions of TAV overestimate its predictability while modal reduction underestimates its

predictability. And EOF truncation produces the most predictable one-dimensional

model, which is proved in inequality (2.59). Another interesting finding from Fig. 2

is that the full system (TAV, light solid line) is more predictable than the least-

damped normal mode (dipole, dotted line). This is due to nonnormality induced by

the coupling, which can be firmly established by following two inequalities (Gajić and

Qureshi, 1995),

Normal System 1− e(λn(A)+λ∗n(A))τ > ε > 1− e(λ1(A)+λ∗1(A))τ , (2.61)

Nonnormal system 1− eλn(A+A†)τ > ε > 1− eλ1(A+A†)τ . (2.62)

where λn(A) + λ∗n(A) > λn(A+A†) and λ1(A) + λ∗1(A) 6 λ1(A+A†). Basically, (2.61)

and (2.62) tell us that a normal system can not be more predictable than its first

normal mode, while the nonnormal system can. In other words, the nonnormal system

is more extreme, i.e. more or less predictable than the normal system. Although the
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Fig. 2. Reduced order model of tropical Atlantic variability (m=1). a) Normalized

error variance of prediction; b) predictability of low-order model. Light-thick

solid line, full-order model; dotted line, modal reduction; dashed line, EOF

truncation; dot-dashed line, BT reduction; solid line, MPP reduction.

predictability of TAV is roughly captured by one normal mode, such agreement does

not hold as more modes are included in the reduced order model.

Fig. 3 shows the skill of a truncated model of TAV with four modes. As the

number of modes increases, the truncated models using EOF, BT, and MPP meth-

ods all give a more accurate description of TAV, both in terms of prediction error

and predictability. Nevertheless, there are still some subtle differences: while BT pro-

duces the best prediction, MPP reduction preserves the predictability of TAV better.

However, a surprising result comes from modal reduction. It does not converge to the

full system at all. When four normal modes are used, not only does prediction get

worse, except for longer-lead time (Fig. 3 a), the predictability estimate also further

deviates from its real value. The poor performance of modal reduction is due to the

lack of nonnormality: when we project the full system onto its normal mode space,

a nonnormal operator A becomes a normal operator. In other words, modal reduc-

tion does not preserve nonnormality. However, it is the nonnormality (coupling) that
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Fig. 3. Reduced order model of tropical Atlantic variability (m=4). a) Prediction

error; and b) predictability of various lower order model. Line styles are same

as that of Fig. 2.

determines the error growth of TAV. Without this air-sea feedback, tropical Atlantic

variability is far less predictable. As we said before, nonnormal growth only dominates

the short-time prediction, but for the long lead-time, only the least normal modes

survive. This explains the almost perfect prediction made by four normal modes for

lead time greater than 9 months.

5. Some thoughts

Four model reduction methods — modal truncation, EOF truncation, balanced

truncation, and MPP truncation, have been tested with two examples. Among them,

modal reduction is not an encouraging technique. It ignores the forcing effect and

destroys the nonnormality, hence the inherent properties of the full system is lost.

EOF truncation has long been used in prediction and predictability analysis because

of its robustness and easy implementation. However, one should keep in mind that

EOF truncation only keeps the leading modes which are usually large-scale and long-

lived. Such low-pass filtering of the data is likely to artificially enhance the persistence
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and the predictability (Munk, 1960). In our context, EOF truncation overestimates

the system’s predictability, the degree of which depends on the number of EOFs being

used. Balanced truncation, introduced to atmospheric science recently (Farrell and

Ioannou, 2001a,b), is another promising method. It combines the merits of modal

reduction and EOF truncation and creates an overall better representation of the full

dynamical system. Its use, however, largely depends on how easy it is to find the

stochastic operator B. In climate studies, usually at least one realization is available,

so we know the covariance matrix C by assuming ergodicity. Finding B, on the other

hand, is not a trivial task. It is equivalent to solving the covariance matrix of its

adjoint system. At last, we propose a new method, MPP truncation, which is the

default pattern for predictability analysis. Again, computational difficulty may limit

its use in practice.

Some insight of the dynamical system (2.3) is also gained from this study. Three

factors interact in a linear stochastic system, normal modes, forcing patterns, and

nonnormality (e.g. air-sea feedback in TAV). Normal modes and coherent forcing

together determine the system’s response. Therefore, the leading EOF may not be

consistent with the least damped normal mode. Through stochastic resonance, forcing

affects the predictability: if the least (most) damped modes are excited, the system

is most (least) predictable. For the prediction problem, short-term error growth is

mainly caused by nonnormality, which is revealed by an SVD analysis of the propa-

gator. As a consequence, a nonnormal system could be more predictable than that

indicated by its first normal mode. In general, predictability of one dynamical sys-

tem can not be inferred from its normal modes, i.e. the stability analysis. This seems

against the conventional wisdom that the system’s predictability is determined by

the leading oscillating mode. This issue will be investigated in the next chapter. We

think, as many have advocated already (e.g. Farrell and Ioannou, 1996a; Neumaier
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and Schneider, 2001), that a systematic strategy has to be taken in order to achieve

a profound understanding of the climate system: Stability + Stochastic Optimal +

Predictable Component (SSP) analysis. This strategy has been applied to the study

of the predictability of tropical Atlantic variability (Chang et al., 2003b). The fol-

lowing two chapters give two more examples on how the predictability of a climate

system can be understood.

D. Numerical recipes

Given a dynamical system y, our first task is to decide whether a linear model

dx

dt
= Ax+ η (2.63)

is a good approximation, i.e. y ≈ x. Very often, it can not be answered until the

linear model has been built and tested against y. If we assign an answer yes, the

next step is to estimate dynamical operator A and forcing η. Depending on one’s

knowledge of y, one may proceed in two ways,

Forward approach We assume that a set of nonlinear equations describing climate

variability is known. Then a linear approximation can be defined with respect

to certain mean state;

Inverse approach We assume that only observation y is known. Then a linear

equation describing y can be estimated via a linear inverse modeling (LIM).

Linearizing a dynamical system is a classical procedure. The advantage is that from

the beginning we know clearly which physical processes are included. The difficulty

is that, often in practice, the governing equation is either unknown or too complex to

be linearized. The LIM method avoids such difficulty by estimating A directly from

observation. Its computational algorithm is briefly reviewed here, and interested
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readers are referred to a series of papers by Cécile Penland and her collaborators

(Penland and Magorian, 1993; Penland and Ghil, 1993; Penland and Sardeshmukh,

1995; Penland and Matrosova, 1998; Penland et al., 2000; Penland and Matrosova,

2001).

Suppose that observation y(t) is stationary, and we want to find the best fit of a

linear model (2.63). According to Eq. (2.4), the fitting is equivalent to constructing

an autoregressive (AR) model

x(t0 + τ) = Px(t0) + ξ (2.64)

where unknown noise ξ is assumed independent of x. The best-fit propagator is found

through least squares estimator,

P =
〈y(t0 + τ)yT (t0)〉
〈y(t0)yT (t0)〉

. (2.65)

Then, eigen-decomposition of P yields the dynamical operator A,

P = eAτ = Udiag(γi)U
−1 =⇒ A = Udiag(λi)U

−1 (2.66)

where λi = ln(γi)/τ . Here, one needs to test whether A is independent of lag τ . For

the non-autonomous operator, the analysis laid out in this chapter does not apply

(Blumenthal, 1991; Farrell and Ioannou, 1996b).

For time-invariant stable A, the covariance matrix of noise is computed via Lya-

punov equation

−Σ̂ = AĈ+ ĈAT ,

where sampling covariance Ĉ = 〈yyT 〉. However, the above estimation does not guar-

antee the positive-definiteness of Σ̂. It should be adjusted by replacing the non-

positive eigenvalues with small positive numbers. The new forcing covariance Σ is
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then used to solve for a new C, because A, C, and Σ of linear stochastic model (2.63)

have to satisfy the Lyapunov equation:

AC+ CA = −Σ .

Once we know C and A, the rest of the analysis follows.

Another issue related to stochastic models is the white noise assumption. Based

on time-scales separation, Hasselmann (1976) argued that the weather system is a

white noise generator for the climate system. A rigorous test of that idea is challeng-

ing, if not impossible. Furthermore, the stochastic forcing may include some climate

noise which is red(Roulston and Neelin, 2000). Therefore, it is an essential step to

check the whiteness of η in our linear stochastic modeling framework. Here is a simple

testing procedure based on autocorrelation (Lütkepohl, 1993):

Let η(t) be a univariate stochastic time series of length N , its sample autocorrelation

function is

ρ(τ) =
1

N−τ

∑N−τ
t=1 η(t)η(t+ τ)

1
N

∑N
t=1 η(t)η(t)

.

Now, the null hypothesis for white noise is posed as

H0 : ρ(τ) = 0 against H1 : ρ(τ) 6= 0 . (2.67)

On the other hand, the asymptotic distribution of ρ(τ) is proved to be a normal

distribution ∼ N (0, 1
N
). Therefore, if |ρ| > 1/

√
N , then H0 is rejected with 70%

confidence intervel; if |ρ| > 2/
√
N , H0 is rejected with 95% confidence interval. In

layman language, if we calculate autocorrelation at 20 lags τ = 1, · · · , 20 and find two

of them greater than 2/
√
N , then the stochastic process η is unlikely to be a white

noise. Since red noise can always be simulated by another linear stochastic model,

this issue does not invalidate our fundamental strategy here, but it does affect the
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Fig. 4. Flowchart of linear stochastic modeling.

predictability of a dynamical system (see Appendix A for possible solution).

The above building blocks plus model reduction form the backbone of linear

stochastic modeling framework. Depending on one’s needs, these blocks can be com-

bined to create different tactics. We summarize the main point in a flow chart (Fig. 4).
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CHAPTER III

EFFECT OF OCEANIC ADVECTION ON THE PREDICTABILITY OF

MIDLATITUDE SST

A. Introduction

On climate timescales, the day-to-day weather events seem uncorrelated. This

leads to the idea of the stochastic climate model: certain slow variables of the climate

system, such as SST, can be modeled as a response of the ocean mixed layer to

weather fluctuations. By approximating weather fluctuations as a white noise forcing,

Hasselmann (1976) proposed a stochastic climate model which is able to explain the

red background spectrum of SST

dT

dt
= −λT + ξ , (3.1)

where T is SST anomaly, λ is the thermal damping of the mixed layer, and ξ is a white

noise. The predictability of climate system (3.1) is given by e−2λτ , and thus depends

only on the local damping λ. Studies have shown that much of the midlatitude SST

variability can be described by this simple stochastic model (Frankignoul and Hassel-

mann, 1977; Frankignoul, 1985; Manabe and Stouffer, 1996; Czaja and Frankignoul,

2002; Kushnir et al., 2002a; Deser et al., 2003).

A number of recent studies have extended Hasselmann’s simple stochastic climate

model by including additional physics. For example, Barsugli and Battisti (1998) con-

structed a simple coupled stochastic model to study the effects of atmosphere-ocean

thermal coupling. Their results show that the coupling will enhance the variance by

reducing the thermal damping through air-sea feedback. Thus, the predictability of

the atmosphere will be enhanced by the coupling, but the predictability of SST is still
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governed by the local ocean mixed layer damping (Bretherton and Battisti, 2000).

Saravanan and McWilliams (1998) added the advective effect to the Hasselmann

model and showed the possibility that a spatial coherent atmospheric white noise

forcing can give rise to a decadal mode of variability through a stochastic resonance.

The timescale of this mode is determined by the spatial scale of the atmospheric

forcing and the velocity of the ocean circulation. If the damping is weak relative to

the advective effect, a spectral peak can be detected around that timescale. This

has been proposed as one of the potential mechanisms for decadal variation in the

climate system. An interesting question arising from the study by Saravanan and

McWilliams (1998) is how this decadal mode can potentially affect the prediction of

SST. More generally, how does the oceanic advection affect the predictability? Does

the existence of a decadal mode necessarily lead to an enhancement of predictability?

The role of oceanic advection in enhancing the predictability of SST has been

suggested by a number of recent studies. For example, Sutton and Allen (1997),

based on an empirical analysis of observed SST, showed that SST anomaly can be

tracked along the Gulf Stream and North Atlantic current system for several years,

and thus hinted that the climate of North Atlantic may be predicted several years in

advance. A more recent study by Scott (2003) explicitly addressed the effect of oceanic

advection on SST predictability from a theoretical perspective. Using an idealized

one-dimensional advective stochastic model, Scott showed that the advection can

enhance the predictability in certain areas through a so-called stochastic cancellation

process, while in other areas the predictability is reduced.

The purpose of this study is to take a further look at the role of oceanic advection

in predictability of SST under a more realistic setting, using the tools recently devel-

oped for the study of predictability of a linear coupled system (Chang et al., 2003a,b).

In Section B, a general advective stochastic model of midlatitude SST anomalies is
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formulated, and the magnitude of key parameter is assessed. In Section C, the pre-

dictability of an idealized one-dimension model, similar to the one used by Scott

(2003), is solved analytically and discussed in a more general context with the aid of

Predictable Component Analysis (Schneider and Griffies, 1999). In Section D, a more

realistic two-dimensional advective model is derived along with realistic parameters;

the predictability of the system is analyzed fully and contrasted to the nonadvective

version of the model to obtain a quantitative estimate of the effect of North Atlantic

circulation gyres on SST predictability. Finally, in Section E some conclusions of the

study are drawn, and their implication to the real climate system is discussed.

B. A stochastically forced ocean mixed layer model

In oceanic mixed layer, the first law of thermodynamics takes the form

h
∂T

∂t
+ hv · ∇T + we(T − Th)− κh∇2T =

Q−Qh

ρCp

(3.2)

where T , v, and h denote temperature, velocity, and mixed layer depth; Th is the

temperature of the lower layer; ρ and Cp the water density and specific heat, respec-

tively; Q the net surface heat flux into the mixed layer which is the sum of latent heat

flux, sensible heat flux, shortwave radiation and longwave radiation; Qh is the heat

flux at the bottom of the mixed layer. The diffusivity κ parameterizes the horizontal

turbulent mixing. The vertical turbulent mixing at the base of the mixed layer is

parameterized by an entrainment velocity we

we ≡ H( ∂h∂t +∇·(hv)) (3.3)

where H(x) = x if x ≥ 0, H(x) = 0 if x < 0.

Each variable in Eq. (3.2) can be decomposed into two components: climatology
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and anomaly. To the first order of approximation, the equation of SST anomalies can

be written as

∂T ′

∂t
+ v̄ · ∇T ′+

T ′ − T ′
h

h̄
w̄e − κ∇2T ′ =

Q′

ρCph̄
− v′ · ∇T̄ − h′

h̄
v̄ · ∇T̄ − T̄ − T̄h

h̄
w′

e

A B C D

(3.4)

where overbars denote mean fields; primes denote anomalies. For the sake of sim-

plicity, the seasonal cycle is omitted in our model. The terms on the right hand side

(RHS) are: anomalous atmospheric forcing via heat flux (A), anomalous currents (B),

mixed-layer perturbations (C), and entrainment anomalies (D), respectively (Frankig-

noul, 1985). Among them, heat flux Q′ is the primary driving force (Cayan, 1992),

though anomalous advection also plays a significant role (Latif and Barnett, 1994;

Marshall et al., 2001a); both C and D are highly correlated with the anomalous

winds and may not be negligible (Alexander and Penland, 1996).

In order to close Eq.(3.4), the details of atmosphere-ocean thermodynamic and

dynamic coupling should be known. However, in the extratropics the experiments

of coupled GCMs show that the main effects of coupling are an increase of climate

variance and a decrease of heat flux; it does not alter the large-scale spatial pattern

of atmospheric variability (Manabe and Stouffer, 1996; Bladé, 1997; Saravanan, 1998;

Seager et al., 2000). This characteristic is approximated well by a local linear air-

sea feedback (Barsugli and Battisti, 1998). Therefore, the RHS of Eq.(3.4) could

be written as a sum of linear feedback −λaT
′ and atmospheric internal variability

F , which is independent on SST anomalies by definition. Eq.(3.4) can be greatly

simplified as

∂T ′

∂t
+ v̄ · ∇T ′ +

w̄e

h̄
(T ′ − T ′

h)− κ∇2T ′ = F − λaT
′ (3.5)
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where T ′
h denotes temperature anomaly below the mixed layer. Associated with sea-

sonal shoaling and deepening, water detrains out of or entrains into the mixed layer.

This reemergence mechanism effectively reduces the thermal damping and enables

SST anomalies to persist longer (Alexander et al., 1999; Watanabe and Kimoto,

2000). Consequently, T ′
h can be approximated as a small fraction of T ′ in the sense

of annual mean,

T ′
h ≈ δT ′

where δ ≈ 0.3 (Watanabe and Kimoto, 2000). Then, Eq.(3.5) can be written in the

familiar form

∂T ′

∂t
+ (λa + λo)T

′ + v̄ · ∇T ′ − κ∇2T ′ = F (3.6)

where λo = (1 − δ)we

h̄
. And λa could be negative which means a positive air-sea

feedback. Note both λo and F are inversely proportional to the mean mixed layer

depth h̄.

Dropping the prime and overbar from Eq. (3.6), we write the governing equation

as

∂T

∂t
+ λT + v · ∇T − κ∇2T = F , (3.7)

where T is the temperature anomaly within the mixed layer, v is the mean surface

current, κ is the eddy-diffusivity coefficient, λ = λo + λa represents a local damping

rate determined by the strength of the air-sea feedback and oceanic mixing, and F

denotes atmospheric stochastic processes that are internal to atmospheric dynamics

and independent of SST anomalies.

Parameters of the governing system can be estimated either directly or indirectly

from the observation. The parameter taken from the observation is the mean surface

current. Other parameters, such as the damping rate λ, can not be estimated from

direct observation and must be derived from empirical analysis. The estimation of
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the damping rate λa is often based on properties of the lag correlation between SST

and heat flux anomalies. Frankignoul et al. (1998) estimated that the turbulent heat

flux feedback contributes 20Wm−2K−1. It is equivalent to a negative atmospheric

damping λa = 1
8
mon−1 for a 100m mixed layer with 1K temperature anomaly. On

the other hand, the oceanic damping rate λo is largely determined by subsurface en-

trainment. And the estimated entrainment rate is typically on the order of 10−5ms−1

based on regression analysis of the mixed layer temperature (Ostrovskii and Piterbarg,

2000) and kinematic diagnosis of the mixed layer (Marshall et al., 1993; Hazeleger

and Drijfhout, 2000). This value leads to an estimation of the oceanic damping rate

λo to be about 1
4
mon−1. Thus, a typical time scale of mixed layer damping λ is on

the order of 3 months.

The forcing term on the right hand side of Eq. (3.7) is due to atmospheric internal

variability. Beyond two weeks, the atmospheric internal variability is unpredictable

(Lorenz, 1969, 1984). Therefore, F can be treated as white noise in Eq. (3.7). The

random atmospheric forcing gives the unpredictable component of the system. Note

that even though the atmospheric forcing can be approximated by a white noise

process in time, the spatial structure of the forcing is generally coherent. These spatial

coherent structures have important implication to the variability and predictability

of the coupled system, as will be illustrated in Section C and Section D.

C. Analytical solution to 1D advective model

To begin our exploration of advective effects on predictability, it is instructive

to first consider a simple 1D model for which an analytical solution can be obtained.

A similar solution was presented by Scott (2003), but in this study we discuss the

solution in a somewhat different perspective with the aid of PrCA analysis. Assuming
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Fig. 5. Schematic sketch of oceanic gyre and atmospheric forcing. The characteristic

velocity of the gyre is U . The atmospheric forcing, although random in time,

has a spatially fixed structure of characteristic length L. Together, they give a

characteristic timescale L/U .

a uniform oceanic current and a dipole atmosphere forcing (see Fig. 5), we formulate

a one-dimensional version of (3.7) as

∂T

∂t
+ λT + U

∂T

∂x
− κ∂

2T

∂2x
= f0 sin(

2πx

L
)ξ , (3.8)

where U and L are the characteristic velocity and length scale of ocean circulation,

f0 is the magnitude of atmospheric forcing, and ξ is the standard white noise. For

simplicity, we assume a periodic boundary condition which is, strictly speaking, unre-

alistic because in the real ocean the water parcels, instead of being advected around

a gyre in the surface layer, are subducted into the subsurface. This issue is discussed

in Saravanan and McWilliams (1998). This boundary condition, however, will not

fundamentally alter the results of this study.
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1. Solving the 1D model

In the absence of forcing, (3.8) supports a set of normal modes given by

ψm = exp(−αmt)
(
sin(βm(

x

U
− t)), cos(βm(

x

U
− t))

)
, m = 0, 1, · · · (3.9)

where eigenvalues αm = λ+ κ(2mπ)2/(L)2 and βm = 2mπU/L are the damping rate

and frequency of the normal modes. These normal modes describe a series of damped

traveling waves with different zonal scales, which have the same propagating speed

determined by the characteristic velocity U .

Usually we will not see all these normal modes because the response depends

on the excitation from external forcing. If the spatial scale of the forcing is large,

only the normal modes with large spatial scale will be excited. In particular, if the

forcing structure resembles the structure of one of the normal modes, as we assumed

in this study, then a resonance occurs despite the fact that the forcing is random in

time. The resonant response has a stationary structure with a time scale determined

by the spatial scale divided by the advective speed. Saravanan and McWilliams

(1998) proposed that this resonance may be regarded as one of the mechanisms for

the generation of low-frequency variations in the ocean. The forced solution of (3.8)

clearly exhibits such property.

Assuming T to evolve long enough to lose the memory of the initial condition,

only the specific solution of Eq. (3.8) would be left

T (x, t) = a(t) sin(
2πx

L
) + b(t) cos(

2πx

L
) , (3.10)

where a(t) and b(t) are stochastic processes driven by white noise ξ(t). Generally, they

are not white due to the integrating effect of the oceanic mixed layer. Substituting

Eq. (3.10) into Eq. (3.8) gives the solutions of a(t) and b(t). This can be done in



54

spectral space via Fourier transform

T (x, ω) = f0
W(ω)

(α + iω)2 + β2

[
(α + iω) sin(

2πx

L
)− β cos(

2πx

L
)

]
, (3.11)

where α and β are α1 and β1 in Eq. (3.9), W(ω) is the Fourier transform of white

noise ξ(t), and i =
√
−1.

The predictable signal is the evolution of initial condition under the reduced ho-

mogeneous equation (3.8), which is essentially an initial value problem. The solution

T̂ (x, t0 + τ) = e−ατ

[
a(t0) sin(

2πx

L
− βτ) + b(t0) cos(

2πx

L
− βτ)

]

= e−ατT (x− Uτ, t0)
(3.12)

shows how to make a prediction— using upstream information predicts downstream

area. After some mathematical manipulation and tedious Fourier inverse transform,

its covariance function can be written as

C(x1, x2; τ) =
f 20
4α

exp(−2ατ)
(
sin(

2πx1
L
− βτ) sin(2πx2

L
− βτ)

+ sin(
2πx1
L
− βτ − θ) sin(2πx2

L
− βτ − θ)

)
,

(3.13)

where θ = arctan (β/α) is the rotational angle. The eigenfunctions of C(x1, x2; 0) are

the EOFs. And the projection of T (x, ω) onto these EOFs gives the corresponding

spectra.

For the linear system, the total response is signal plus noise, i.e. C = Eτ + Cτ .

Therefore, the predictability is given by

ε(τ) = 1−
∫ L

0
C(x, x, ; τ)dx

∫ L

0
C(x, x; 0)dx

, (3.14)

and the predictable patterns are defined through the generalized eigen problem

∫ L

0

q(τ, x′)C(x, x′; τ) dx′ = γ(τ)

∫ L

0

q(τ, x′)C(x, x′; 0) dx′ , (3.15)
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where q is the filter, and p =
∫
qC(x, x′; 0) dx′ is the predictable pattern with skill

ε = 1− γ.

In our problem, the response is confined in the space spanned by sin( 2πx
L
) and

cos(2πx
L
), so are the p and q

q1,2 = sin(
2πx

L
+ φ1,2)

p1,2 = sin(
2πx

L
+ ϕ1,2) .

(3.16)

Eq. (3.15) gives the relationships for the phase angle φ1,2

cos θ cos(βτ) + cos(βτ + θ + 2φ) = 0 (3.17)

and skill γ. Finally, p is found by using the orthogonality property of the generalized

eigenvectors, p1 ⊥ q2 and p2 ⊥ q1, which gives ϕ1,2(τ) = φ2,1 − π
2
.

2. Variance analysis

The solution (3.11) can be conveniently expressed as a sum of EOFs which are the

eigenfunctions of covariance matrix C (3.13). For the problem at hand, C is singular

with only two nonzero eigenvalues. The response T can be described completely by

the two EOFs and the associated Principal Component (PC) time series. These EOFs

(Fig. 6) and the spectra of their PC time series are given by:

1st EOF sin(
2πx

L
− θ

2
) ,

Spectrum
f 20L

4

(
1

(ω − β)2 + α2
+

1

(ω + β)2 + α2

)
cos2 (

θ

2
) ,

2nd EOF cos(
2πx

L
− θ

2
) ,

Spectrum
f 20L

4

(
1

(ω − β)2 + α2
+

1

(ω + β)2 + α2

)
sin2 (

θ

2
) ,

(3.18)
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where the phase angle θ = arctan(β/α) gives a measure of downstream shift of the

location of the maximum response relative to the maximum forcing. The shift is

determined by the relative importance of the advective effect to the damping effect.

In the absence of advection, the location of the maximum response, as expected, co-

incides the location of the maximum forcing. The total energy excited by a white

noise is given by f 20L/(4α) and is independent of the advection. Of the total en-

ergy, EOF 1 and EOF 2 contribute cos2(θ/2) and sin2(θ/2), respectively. Without

advection (v = 0), the oceanic response is a direct footprint of atmospheric forcing

(θ = 0), and all the energy is contained in EOF 1. Therefore, the advection effect

causes the system to partition its total energy onto two uncorrelated components.

The center of action of each components shifts downstream relative to the maximum

forcing location (Fig. 6) even though the total energy remains unchanged.

Since the energy of the system is represented by two uncorrelated components,

the total power spectral density is equal to the sum of the two power spectral density

functions associated with the two EOFs,

S(ω) =
α

(ω − β)2 + α2
+

α

(ω + β)2 + α2
. (3.19)

The spectrum has pronounced peaks only when the advection effect is sufficiently

stronger than the damping effect, i.e. β >
√
3
3
α. When this happens, the system

can be said to have a strong resonant response to the stochastic forcing, although

the period of the response is usually longer than the period of the normal modes.

This finding is consistent with result of Saravanan and McWilliams (1998). In their

study, the ocean-atmosphere system shows a preferred timescale only in the so-called

fast/deep regime, i.e. current is strong and mixed layer is deep. This parameter regime

is equivalent to large β and small α in our solution. The autocorrelation is the inverse
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Fig. 6. Schematic drawing of SST EOFs in the 1D system. First EOF, denoted by

big ellipses, counts cos2(θ/2) of total variance; while second EOF, represented

by small ellipses, contributes sin2(θ/2). The spatial structure is inherit from

the coherent forcing. The phase angle θ (0 ≤ θ < π/2) is determined by

the advection of the oceanic gyre. The stronger the current, the larger the

downstream shift.

Fourier transform of power spectrum, ρ(τ) = F−1
[
S(ω)

]
= exp (−ατ) cos (βτ). This

is consistent with our physical intuition that advection enhances the local damping

effect by moving the anomaly away from its initial location, making it less persistent.

3. Predictability analysis

Like the total variance, the normalized error variance of the optimal prediction

defined by (3.14),

ε(τ) = 1− exp (−2ατ) , (3.20)

is also independent of advection and solely determined by the damping and diffusion

time scale. Scott (2003) analyzed the normalized error variance at every grid point x

and showed that the predictability in certain areas can be enhanced due to stochastic

cancellation. Here, we take an alternative approach to analyze the heterogeneity of

predictable variance based on PrCA analysis.
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As shown in the previous section, PrCA requires solving a generalized eigenvalue

problem. Since the covariance function C has only two nonzero eigenfunctions, the

generalized eigenvalue problem can be solved in the 2× 2 eigenfunction space (3.16).

The resulting predictable patterns are

p1,2(τ) = cos(
2πx

L
+ φ2,1) ,

where φ1,2(τ) = ±0.5
(
arccos(− cos θ cos(βτ)) − βτ − θ

)
is given by (3.17). The skill

or predictability associated with predictable pattern is given by the corresponding

eigenvalue which represents the normalized prediction error growth of the projection

time series onto the filter pattern q1,2,

ε1,2(τ) = 1−
(2 + 2 cos θ cos(2φ2,1 + θ)

sin2 θ
− 1

)
exp(−2ατ) . (3.21)

Clearly, at a given lead time the most predictable pattern corresponds to the smallest

ε while the least predictable pattern corresponds to the largest ε.

To gain understanding of these patterns, it is instructive to consider first the

case of small lead time, i.e. τ → 0. In this case, ϕ1 → 0, ϕ2 → −θ, and ε2 < ε1.

This means that p2 is the most predictable pattern, and p1 is the least predictable

pattern. Therefore, at short lead times the center of action of the most predictable

pattern p2 is further downstream of the leading EOF , and is located in-between the

maximal loading of the first EOF and the minimal noise forcing. A simple explanation

for the structure of this pattern can be put forward as follows: Since the absolute

prediction error is determined by the noise forcing, the large (small) error growth is

expected to occur near the maximal (minimal) forcing region. Furthermore, since

the predictability is measured not simply by the absolute error growth but by the

normalized error, the structure of the most predictable pattern must also depend on

the location of the maximum variance in the system (given by the leading EOF). The
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Fig. 7. Most and least predictable patterns of the simple 1D model. Bigger ellipses

denote most predictable pattern, smaller ellipses the least predictable pattern.

Their downstream shift, compared with the forcing (Fig. 5), are ϕ1 and ϕ2,

respectively. The centers of the least predictable pattern are confined to the

shaded areas, and the centers of the most predictable pattern are in the blank

area. Note both ϕ1 and ϕ2 depend on lead time τ , and ϕ2 − ϕ1 6= π/2.

pattern that maximizes the ratio between the two, therefore, should locate somewhere

in between the regions of the minimal noise forcing and maximal variance.

As lead time τ increases, advective effect comes into play, and the pattern of error

growth is determined by the sum of the noise forcing at each t ∈ (0, τ) transported by

the current U . Each of the transformed noise forcing represents a damped response

shifted downstream by the advective effect during initial time t = 0 to t ∈ (0, τ). The

sum represents an average of the system’s response to noise forcing. It is expected

that the resultant maximal error growth takes place downstream of the location of

maximal noise forcing. Consequently, the most predictable variance also shifts further

downstream relative to its initial location. Fig. 7 depicts the structures of the most

and least predictable pattern at a given lead time. It is worth emphasizing that the

structure of the noise forcing plays an important role in determining the structure of

the predictable variance. If the noise forcing is white in space, then the predictable
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patterns will be determined solely by the variance structure of the system at short

lead times. In this case, the most predictable pattern simply coincides with the

leading EOF at very short lead time, as shown by Chang et al. (2003a). In general,

the predictable patterns differ from the EOFs. The latter is subject to the spatial

orthogonality constraint while the former generally is not.

In the absence of advection, ϕ1 = ϕ2 = 0 and ε1 = ε2 = 1 − exp(−2ατ).

This means that the predictable variance is spatially uniform with normalized error

given by ε = 1 − exp(−2ατ) everywhere. This is because without advection the

maximal forcing and maximal variance co-locate and tend to cancel out each other,

giving no special preference for the predictable variance. The system degenerates to

Hasselmann’s zero-dimensional model.

Special attention should be paid to the interpretation of our results here. Al-

though the predictability of atmosphere-ocean systems with and without advection

are the same, we are not saying that the ocean circulation is trivial in climate model-

ing. As far as prediction error is concerned, excluding advection would deteriorate the

performance of a forecast model. For the idealized stochastic climate system (3.7),

the error of persistence prediction (specifying SST for atmospheric GCM)

εpersist =
Var(Tt0+τ − Tt0)

Var(Tt0)
= 2(1− ρτ ) = 2− 2 exp(−ατ) cos(βτ)

and the error of damped persistence prediction (couple slab ocean to atmosphere)

εdpp =
Var(Tt0+τ − exp(−α1τ)Tt0)

Var(Tt0)
= 1 + exp(−2ατ)[1− 2 cos(βτ)]

are larger than that of optimal prediction—predictability, ε2persist > ε2dpp > ε2.

However, one can argue conversely: since the predictability is determined by

damping and mixing, not the advection, as long as the ocean model contains a realistic

mixing scheme, it will capture most of the climate predictability (at least for seasonal
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prediction). In fact, if the current is weak β ≤ α, damped persistence prediction gives

pretty good forecasting of SST, i.e. εpersist À εdpp ³ ε. Numerical experiments with

slab-ocean mixed layer model confirm this statement (Manabe and Stouffer, 1996).

Of course one exception is the strong current area, such as the western boundary of

Atlantic ocean, where a good prediction model of SST needs to resolve the western

boundary current.

4. An example with realistic parameters

Let us consider a basin-scale noise forcing acting on an ocean with advective

speed of U = 0.05m s−1, basin size of , L = 1 × 107m, local thermal damping of

λ = 1
3
mon−1, and eddy diffusivity of κ = 1× 104m2 s−1. With these parameters, the

one-dimensional system supports a severely damped normal mode with a period of

approximately 6.5 years. The power spectrum and predictability are shown in Figs. 8

and 9.

Compared to the case without advection, there is a small shift of energy towards

the high frequency by the advection, as indicated by the spectral analysis (Fig. 8),

so that the overall spectrum is flatter than the red spectrum (U = 0). Since the

damping effect is much stronger in comparison to the advective effect, no spectral

peak is observed. This corresponds to the slow/shallow regime of Saravanan and

McWilliams (1998).

Although the advection has an impact on the energy spectrum of the system,

the normalized prediction error variance integrated over the domain turns out to be

identical with and without advection, which is depicted by the solid line in Fig. 9.

Using ε = 0.5 as a threshold for predictability limit, the simple model’s forecast skill is

limited to about one month. In the absence of advection, this also presents the model’s

skill at each grid point. Because the skill is the same everywhere in the domain,
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there is no special region where the predictability is enhanced. However, when the

advection effect is included, at a given lead time the prediction error of the system can

be decomposed into two spatial patterns — one (the most predictable pattern) with

the smallest normalized error variance and the other (the least predictable pattern)

with the largest normalized error variance. The error growth along the direction of

the most (least) predictable pattern is shown as dashed (dotted) line in Fig. 9. The

lead time corresponding to ε = 0.5 is 4.5 months along the direction of the most

predictable pattern while it is only 0.5 month along the least predictable pattern.

Therefore the system is expected to have better predictability when initial conditions

bear a close resemblance to the most predictable pattern.

5. A general white noise forcing

When the eigenfunctions of the stochastic forcing have the same patterns as the

normal modes of Eq 3.7, then the forcing can be expressed as a series

F =
∞∑

n=0

fn sin(
2nπx

L
) + gn cos(

2nπx

L
); n = 0, 1, · · · (3.22)

where the time coefficients fn and gn are independent and white. By the superposition

principle, many results will follow directly. For example, the total variance

σ2(T ′) =
L

4

∑ σ2fn + σ2gn
αn

(3.23)

is independent of advection.

The total power spectral density function is

S(ω) =
∑ (σ2fn + σ2gn)L

4

(
1

(ω − βn)2 + α2
n

+
1

(ω + βn)2 + α2
n

)
. (3.24)
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The autocorrelation is

ρ(τ) =

∑ σ2
fn

+σ2
gn

αn
cos(βnτ) exp(−αnτ)
∑ σ2

fn
+σ2

gn

αn

. (3.25)

Finally, the normalized signal variance is

χ2
(τ) =

∑ σ2
fn

+σ2
gn

αn
exp(−2αnτ)

∑ σ2
fn

+σ2
gn

αn

. (3.26)

So even with more general forcing, the independence of total energy and total

normalized error variance with advection still holds.

A special case in this category is the spatial white noise, i.e. σfn = σgn = 1.

Then the total variance is σ2(T ′) = L
4

(
1
λ
+ L

2
√
λκ

coth(L
2

√
λ
κ
)
)
. And its predictability

has an upper bound, χ2
(τ) < e−2λτ . In fact, if only short range prediction is of con-

cern, any coherent stochastic forcing would give more predictability than the spatial

white noise (compare their Taylor expansion around τ = 0). Furthermore, its normal

modes, EOFs, and predictable patterns are the same—a complete set of orthonor-

mal functions {sin 2nπx
L

; cos 2nπx
L
} on interval [0, L]. The variance and predictability

associated with these patterns are 1/(2αn) and exp(−2αn), respectively. This is a

degenerate case because the presence of advection makes no difference in any charac-

teristics. For advection to take effect, some heterogeneity has to be introduced into

the model, either through λ or through F . In this study, the main concern is the

coherent structure of the atmospheric forcing.

Throughout our discussion, the diffusion (second order) is treated as damping

(zeroth order), αn = λ + κn2 (the length scale has been incorporated into κ). One

tends to ask what is the special role of high-order mixing. In addition to mathematical

and numerical considerations, a deep physical implication can be argued as following:

due to diffusion, the energy is nonuniformly distributing along EOFs even though the
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forcing has no preferred spatial scale. The first EOF explains 1/λ, the second explains

1/(λ+ κ), and the third explains1/(λ+ 4κ), etc.. In analogy to Hasselmann’s model

Eq. (3.1), which provides a simple explanation of red spectrum in climate, diffusion

might be one, probably an oversimplified one, of many possible mechanisms generating

spatial redness of climate—large patterns dominate. Just like all stochastic climate

models, the difficulty is to identify the one that operates in the real world, stochastic

theory or deterministic (for example, baroclinic instability) theory.

D. Predictability of North Atlantic SST

The analytical result in the previous section is useful to shed light on the effect of

advection on predictability. In this section, we apply this analysis to a more realistic

model. The model is a two-dimensional mixed layer model for the North Atlantic

with realistic currents, forcing structure and coastal geometry. Before proceeding to

the predictability analysis, we first give a brief outline of the procedure to estimate

the unknown parameters and atmospheric forcing from the observational data sets.

1. Parameter estimation

The parameters to be determined are the damping rate λ, advection velocity

v, eddy diffusivity coefficient κ, and covariance of atmospheric forcing Σ(x1, x2) =

E[F(x1)F(x2)]. Several studies discussed the estimation of these parameters using

various approaches. Herterich and Hasselmann (1987) compared the spectra of mod-

eled SST according to Eq. (3.7) to those of observed SST anomalies and found that

the fit between the computed and observed spectra was successively improved when

the advective term was included. The inclusion of eddy diffusive effect, on the other

hand, did not have a significant impact on the fit. They further showed that the
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inferred parameters from the spectrum fitting are generally in agreement with the

direct measurements. Using an autoregressive (AR) model, Ostrovskii and Piterbarg

(2000) demonstrated that adding entrainment in the estimation further enhanced the

performance of the AR model. However, they cautioned that the model improvement

due to the inclusion of more adjustable parameters could be, to a certain extent, offset

by a decrease of significant level in the estimation. Therefore in this study we use

direct measurements whenever possible. Specifically, the mean current estimation

was taken from the gridded Data Set Atlas for Oceanographic Modeling compiled

by Samuels and Cox (1987), which is based on ship drift observations. Since Hert-

erich and Hasselmann (1987) showed that the response of (3.7) was not particularly

sensitive to the eddy diffusivity parameter, we simply set it to a constant value of

κ = 1× 104m2 s−1, as commonly used in a coarse resolution ocean circulation model.

The two remaining parameters, the damping coefficient and atmospheric forcing, are

estimated via the least squares method.

We first cast (3.7) into a finite difference form which contains the two unknown

parameters. At each geographical location, the governing equation can be written as

Φ = −λT + F ,

where λ is the unknown damping parameter, F is the unknown noise forcing; and Φ

represents the sum of all the terms on the left hand side of (3.7) except the damping

term. Each of the terms in Φ, i.e. the tendency term, the advective term, and

diffusion, can be estimated from observed SST, provided that the velocity v and

eddy diffusivity κ are given. In this study, we used COADS monthly SST from 1945-

1992 for the estimations. If F is white, then T and F are uncorrelated. The least



67

−100 −80 −60 −40 −20 0
10

15

20

25

30

35

40

45

50

55

Longitude

La
tit

ud
e

Damping Coefficients λ (mon−1)

0.2

0.
2

0.
2

0.
2

0.2

0.
3

0.3

0.3

0.
3

0.3 0.3

0.
3

0.
3

0.
3

0.
3

0.3

0.
3

0.4

0.
4

0.
4

0.
40.4

0.4

0.
5

Fig. 10. Estimated damping rate of SST in North Atlantic. The contour interval is

0.05, the unit mon−1. Weak damping regions (λ < 0.3mon−1) are shaded.

squares method gives the estimator of λ in terms of second momentums

λ(x) = −E[Φ(x)T (x)]

E[T (x)T (x)]
.

Once λ is determined, the residual between Φ and λT gives an estimation of the white

noise forcing F at this location. The covariance matrix of the forcing can be obtained

by an ensemble average over the sampling period. An eigen-decomposition of the

forcing covariance gives the leading EOF of the noise forcing which characterizes the

dominant spatial structure.

The estimated damping coefficient and atmospheric forcing structure are pre-

sented in Figs. 10 and 11. Over much of the North Atlantic the damping time scale

is around 3months, which is consistent with previous studies (Herterich and Hassel-

mann, 1987; Marshall et al., 1993; Frankignoul et al., 1998; Ostrovskii and Piterbarg,

2000). Three regions of weak damping (with time scale 4∼5 months) can be identified:

the high latitude Northwestern Atlantic (above 40◦N), the Caribbean sea, and off the
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Fig. 11. First EOF of the estimated atmosphere white noise forcing. The background

is the velocity field from Data Set Atlas for Oceanographic modeling.

coast of west Africa. While the relatively long damping time scale in the high latitude

Northwestern Atlantic region can be attributed to the deeper mixed layer, the weak

atmospheric damping in the air-sea exchange of the subtropics may be responsible

for the long damping time scale in the other two regions.

The first EOF of estimated atmospheric forcing, a triple-pole structure, resembles

the typical pattern associated with the North Atlantic Oscillation (NAO). It explains

16% of the total noise forcing variance. The second EOF (not shown), which accounts

for about 13% of the variance, is a dipole-like structure. This finding is consistent

with previous studies that based on empirically estimated surface heat fluxes (Wallace

et al., 1990; Cayan, 1992), thereby lending support to our statistical estimation.

2. Normal modes and EOFs of SST

Once the parameters of the 2D model are determined, a stability analysis is then

readily applied to identify the dominant normal modes that affect the predictable
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Fig. 12. The normal mode of advective ocean. a) The real part; b) the imaginary part

of the eigenvector of linear operator in Eq. (3.7). They constitute a rotary

amphidromic wave with a period of 6 years.

dynamics of the system. The normal modes of the system are the eigenvectors of

the dynamical operator A, which can be arranged in the descending order of the real

part of the eigenvalues (the damping rate). For the problem at hand, the two least

damped normal modes have comparable damping rates of 0.31mon−1 and 0.33mon−1.

The first one (not shown) is a purely damped mode, while the second one (Fig. 12)

represents a pair of severely damped oscillatory modes, which form a rotary wave.

The period of the propagating mode is determined by the time that it takes to advect

the temperature anomaly around the ocean basin by the subtropical gyre, which is

about 6 years. In the simple 1D case where the spatial structure of the forcing is

assumed to be the same as that of the advective normal mode, we show that the

EOFs of the resonant response have the same spatial structure. This result can not

be easily generalized to the more realistic case where the forcing structure does not

take the structure of a particular normal mode. The response in this case does not
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necessarily resemble any of the individual normal modes even when resonance takes

place, but it can consist of several normal modes on which the forcing projects.

Knowing both deterministic dynamics and external forcing allows us to calculate

the covariance matrix of SST according to the fluctuation-dissipation theorem (2.9),

hence the EOFs of SST. This theorem gives a relationship between the covariance of

SST C, the dynamical operator A, and the forcing covariance Σ. This relationship

hints that the EOFs of the response may be close to the EOFs of the noise forcing for

a certain dynamical operator A. To explore this further, let us first consider the non-

advective case where v = 0, and the system degenerates to the simple Hasselmann

model. The system matrix A in this case reduces to a diagonal matrix with each of its

diagonal elements representing the damping rate at one geographic location. If the

damping rate does not vary considerably from location to location, then it is readily

shown that the EOFs of the SST response will be similar to the EOFs of the forcing.

In the case that advection is present, A is no longer diagonal and the EOFs of the

response in principle could depart from those of the forcing. However, if the advective

effect is sufficiently weak compared to the damping effect, one expects the leading

EOFs of the SST to bear a resemblance to the dominant EOFs of the forcing. Indeed,

for the chosen parameters, we found that the leading EOFs of SST (not shown) and

forcing show similar structure, suggesting that in a realistic setting, the advective

effect is sufficiently weak so that the dominant response is largely determined by the

forcing, as in the simple Hasselmann model.

A further examination of the PC time series indicates a red spectrum with no

significant spectral peaks at non-zero frequency (not shown). Compared to the case of

no advection, there is a shift of energy towards the high frequency by the advection, as

in the 1D case. Such deviation from the AR(1) model (red spectrum) is also a robust

feature in observations and GCM runs (Dommenget and Latif, 2002a). Processes in
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the ocean are responsible for this slower increase of SST variance from interannual to

longer timescales (Fig. 8). In the presence of advection, one way to explain the gentle

slope of the SST spectra is that the system’s response consists of a strong resonant

response at zero frequency corresponding to the leading purely damped normal mode

which gives rise to the red spectrum, plus some weak resonances at higher frequencies

corresponding to the severely damped oscillatory modes, which enhance variability

on shorter timescales. Strong resonance at non-zero frequency (spectral peak) can

occur only when the advective effect is stronger than the damping effect, which does

not seem likely in a the realistic setting.

3. Predictability and predictable component

Fig. 13 compares the domain average normalized-error-variance for the advective

and non-advective models. As can be seen, the error variances for both systems are

nearly identical. Taking ε = 0.5 as a threshold for predictability limit, on average the

SST field in the North Atlantic can be predicted one month ahead. This finding is

consistent with the 1D result (see Fig. 9).

However, the advection, albeit weak, does produce a noticeable impact on the

most predictable pattern. This is clearly illustrated in Fig. 14, which compares the

most predictable pattern of the advective case with that of the non-advective case.

To gain understanding of this result, let us again consider first the non-advective

ocean. In this case, the predictability of the system depends on the local damping

rate at this location. A high predictability corresponds to a weak damping and vice

versa. A comparison between Figs. 10 and 14a shows that the three regions where the

most predictable pattern has large loading correspond to the areas of weak damping.

When advection is present, the most predictable pattern changes significantly

along the strong western boundary current region (Fig. 14b). Large loadings in the
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Fig. 13. Predictability of North Atlnatic Ocean SST. The overlaying solid and dashed

lines denote domain averaged skills for advective ocean and motionless ocean.

The dash-dot line and the dotted line are the skills of the most predictable

patterns with and without advection.

most predictable pattern are now found along the Gulf Stream region and Caribbean

Sea. A closer inspection indicates that the maximal amplitude of the most predictable

pattern in these regions tends to occur in the areas where the dominant forcing

amplitude is nearly zero (see Fig. 11). This structure seems to be consistent with the

mechanism proposed for the 1D case in previous section where it is argued that the

center of the most predictable pattern tends to occur close to the location of minimal

forcing amplitude (Fig. 11 to Fig. 14b as Fig. 5 to Fig. 7). On the other hand, the

pattern in Northwestern Atlantic remains basically unchanged because the circulation

is weak there. Overall, the predictability associated with the most predictable pattern

shows a modest increase from 4 months in the absence of advection to about 5 months

in the presence of advection (Fig. 13). This finding again agrees with the 1D results

(the difference between dashed line and solid line in Fig. 9), although for the North

Atlantic Ocean, the enhancement of predictability due to advection is relatively small.
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Fig. 14. Most Predictable Pattern at 5 month lead time: a) Without advection; b)

with advection. Contour interval is 0.1, and high values denote predictable

regions.

E. Summary

The purpose of this chapter is to study the effect of oceanic advection on the pre-

dictability of the sea surface temperature (SST) in the framework of linear stochastic

climate models. Using an idealized 1D model, we have found that the total variance

and global averaged predictability are determined by local damping and diffusion, in-

dependent of advection. Scott (2003) reached the same conclusion using a similar 1D

model. He further proposed a “stochastic cancellation” mechanism to explain the spa-

tial inhomogeneity of the predictability. His explanation relies on a local predictability

measure. Our approach differs from his in the interpretation of the predictability spa-

tial inhomogeneity. In our approach, we decomposed the total predictive information

of the system into a set of uncorrelated components, called predictable patterns, in

a similar way that the total variance can be decomposed into a set of EOFs. These

predictable patterns give us a global view on how the predictable variance in the
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system is distributed. By comparing the most predictable patterns with and without

the advection, we are able to examine the effect of the oceanic advection on SST

predictability. This analysis not only confirms the theoretical finding of Scott (2003),

but also allows us to examine the effect of oceanic advection on SST predictability

under a more realistic condition.

As a case study, we applied the predictability analysis to North Atlantic SST

with realistic model parameters, such as ocean currents, damping rate, and forcing

patterns. The result suggests that the advective effect in the midlatitude ocean is gen-

erally weak and does not alter the SST response significantly both in terms of spectral

characteristics and spatial structures. The predictability of SST is determined, to a

large extent, by the local processes, e.g. air-sea feedback and oceanic entrainment.

It implies that for most of the North Atlantic Ocean, Hasselmann’s zero-dimensional

model is a good approximation. However, ocean circulation can have a significant im-

pact on the spatial distribution of predictable variance. In particular, strong western

boundary currents can enhance the predictable variance along the western boundary

region where otherwise SST is far less predictable. The enhancement of predictability

along the western boundary seems to follow the argument presented in the 1D case

where it is shown that the enhanced predictable variance tends to occur in the regions

of large SST variance and small noise forcing.

Although the goal of the paper is not to provide an accurate prediction of SST,

we believe that the findings here do have an implication on issues concerning climate

prediction in reality. In particular, the predictable component analysis of the North

Atlantic SST points to the potential important role of the strong western boundary

current system in enhancing SST predictability in the region. Given that the SST

anomaly in this region may have an effect on predicting regional climate, it is necessary

to improve coupled climate models’ simulation of the western boundary current.
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CHAPTER IV

TROPICAL ATLANTIC VARIABILITY AND ITS PREDICTABILITY

A. Introduction

Perhaps because of its relatively small basin size, the tropical Atlantic Ocean is

not dominated by any single mode like the El Niño—Southern Oscillation (ENSO)

in tropical Pacific Ocean. Rather, the climate variability in this region is shaped by

many influences whose mechanisms and origins are subjected to considerable recent

debate. Generally, these influences can be classified into two category: remote forcing

such as ENSO and NAO, and variability due to local processes (see Fig. 15).

ENSO is the strongest climate signal on interannual scales and exerts a global

influence through teleconnection (Diaz et al., 2001; Alexander et al., 2002). It affects

climate in the tropical Atlantic directly by altering the large-scale atmospheric cir-

culation and indirectly through feedback from local SST (Nobre and Shukla, 1996;

Enfield and Mayer, 1997; Saravanan and Chang, 2000; Sutton et al., 2000; Giannini

et al., 2001a,b; Mo and Häkkinen, 2001; Chiang and Sobel, 2002; Czaja et al., 2002).

Only in the latter case, the tropical Atlantic ocean is involved. The main feature of

ENSO response in the tropical Atlantic is the weakening of northeast trade winds

during boreal winter and spring, which induces positive latent heat anomaly and in

turn a warming event in the Atlantic (Enfield and Mayer, 1997; Sutton et al., 2000;

Czaja et al., 2002).

Another remote forcing is the atmospheric internal variability from midlatitude,

mainly the NAO. Studies show that large portions of the North Atlantic SST vari-

ability can be explained as a passive response to this mode (Cayan, 1992; Seager

et al., 2000; Marshall et al., 2001b). Such influence can extend as far south as 10◦N
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Fig. 15. Elements of tropical Atlantic variability: ENSO, NAO, and local feedback.

during winter when the NAO is most pronounced. Although there are some indi-

cations that the NAO is partially driven by SST (Christoph et al., 2000; Hoerling

et al., 2001), analysis reveals that most of its variance can be attributed to nonlinear

instability processes intrinsic to the atmosphere that possess little predictability on

climatic timescales (Greatbatch, 2000; Hurrell et al., 2003).

An inter-hemispheric dipole structure usually stands out in the EOF analysis of

tropical Atlantic SSTs, which leads some to believe that it is a coupled mode intrinsic

to the Atlantic atmosphere-ocean system (Servain, 1991; Mehta and Delworth, 1995;

Nobre and Shukla, 1996; Tourre et al., 1999). Various modeling studies provide fur-

ther support for the existence of such a decadal meridional mode (Servain et al., 2000;

Sutton et al., 2000; Chang et al., 2000, 2001). It is often argued that the most relevant

feature of this mode is the SST gradient across equator: it affects the cross-equatorial
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low-level winds, hence the location of ITCZ and associated rainfall (Chang et al.,

2000; Ruiz-Barradas et al., 2000; Chiang et al., 2002; Tanimoto and Xie, 2002). One

of the hypotheses is that the thermodynamical feedback between evaporation heating

and SST generates this meridional mode. If initially the SST anomaly is positive

(negative) in northern (southern) tropical Atlantic, then a negative pressure gradient

is set up, which drives a northward flow across the equator. This secondary Hadley

cell interacts with the primary Hadley cell in a such way that the north (south) trades

weaken (strengthen), which then creates positive (negative) latent heat flux anomaly

in the north (south) and amplifies the initial signal (Carton et al., 1996; Chang et al.,

1997). This positive feedback, often referred to as the wind-evaporation-SST (WES)

mechanism, has been demonstrated within simple coupled climate models (Xie, 1999;

Chang et al., 2001; Kushnir et al., 2002b). However, this hypothesis remains contro-

versial, and some criticisms have been raised because 1) the variability of the north

tropical Atlantic (NTA) and the south tropical Atlantic (STA) are uncorrelated to a

large extent (Mehta, 1998; Enfield et al., 1999; Dommenget and Latif, 2000; Häkkinen

and Mo, 2002), and the meridional mode is argued to be an artifact of EOF analysis

(Dommenget and Latif, 2002b; Baquero-Bernal et al., 2002), 2) some modeling studies

suggest that TAV can be explained as passive oceanic response to atmospheric forcing

(Mehta, 1998; Dommenget and Latif, 2000; Seager et al., 2000, 2001; Häkkinen and

Mo, 2002; Czaja et al., 2002), hence positive air-sea feedback may not be a neces-

sary element in defining the TAV (Frankignoul and Kestenare, 2002). Unsurprisingly,

such ambiguousness is also reflected by its names: inter-hemisphere gradient mode,

meridional mode, thermodynamical mode, and dipole mode.

The other atmosphere-ocean coupled mode within the tropical Atlantic is the

equatorial mode (Zebiak, 1993). This equatorial mode has an interannual timescale

of about 3-4 years and has been shown to be not self-sustained. Although the spatial
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structure and amplitude have notable differences, the basic characteristics of this

oscillation are the same as that of the Pacific ENSO mode. During a warm event, SST

rises in the eastern equatorial basin, accompanied by a relaxation of the trade winds

and a deepening (shoaling) of thermocline in the east (west), which in turn creates a

positive feedback. This is different from the above meridional mode, as upper ocean

dynamics play an active role here (Battisti and Hirst, 1989). This dynamical mode

has maximum amplitude during boreal summer and fall, when ITCZ is furthest away

from the equator(Carton et al., 1996; Chang et al., 2000; Ruiz-Barradas et al., 2000;

Sutton et al., 2000).

Much of the controversy of the TAV centers on the roles of various elements in

defining the climate variability over the tropical Atlantic region. Undoubtedly, to a

certain extent this reflects the complex nature of the TAV—there is just no easy way

to separate the variability due to internal processes from those due to external forcing,

especially for a coupled system. However, some of the confusion may result from: 1)

bad experiment design, for example, forcing an AGCM with prescribed SST or forcing

OGCM with observations will introduce some artificial effects which misrepresent the

coupled feedbacks in the real system (see Seager et al., 1988; Barsugli and Battisti,

1998, for further discussion); 2) misinterpretation of statistical analysis results. From

Chapter II and Chapter III, we know that the response of a stochastically forced

system is determined by system dynamics plus forcing. Therefore, EOF analysis often

does not reveal the modal structure of the dynamical system. In the case of TAV, this

means the simple correlation analysis between NTA and STA can not be used to reject

or confirm the existence of the thermodynamical feedback. It is entirely conceivable

that the NTA is forced by ENSO while STA is forced by midlatitude processes, and

thus the independence of the forcing is transfered into the low correlation between

the inter-hemisphere SST anomalies. This does not mean that the positive feedback
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mechanism is not operating. Another issue is the predictability of TAV, i.e. to what

extent tropical Atlantic SSTs are predictable and what the control factors are. To

date, there has been no systematic analysis on this important question.

In this study, we try to shed some light on the predictable dynamics of tropical

Atlantic SSTs within the framework developed in Chapter II. First, we construct a

linear coupled model of intermediate complexity with stochastic atmospheric forcing.

Then, the dynamics of the TAV are explored by linear stability analysis, and the

predicable components are analyzed. Finally, some conclusions are drawn, and the

findings are highlighted.

B. Model description

The framework developed in Chapter II is only for linear systems. While most

climate modes involve more or less nonlinearity, especially in the thermodynamical

processes, a linearized coupled system can always be derived by assuming certain

steady state and small perturbations. Of course, the question is how good the lin-

earized model is. For example, the irregularity in the well-known Zebiak and Cane

(1987) model is critically depended on the existence of nonlinearity , without which

the simulated ENSO mode behaves as a regular oscillation with pure growth or decay.

As mentioned in Chapter I, another competitive view is that ENSO resides in a linear

stable regime under stochastic forcing (Penland et al., 2000). The linear version of

the Cane-Zebiak model, constructed by either inverse modeling (Xue et al., 1994;

Blumenthal, 1991) or direct linearization (Thompson and Battisti, 2000, 2001), has

shown great success in ENSO prediction and predictability studies. Independently,

Moore and Kleeman (1996, 1999) have linearized a similar intermediate coupled model

of ENSO (Kleeman, 1993) in studying the error growth during the ENSO onset. In
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fact, much of the understanding of ENSO, or climate in general, is achieved through

linear analysis (for example, Jin and Neelin, 1993a,b; Neelin and Jin, 1993; Weng and

Neelin, 1999; Neelin and Weng, 1999), because the full nonlinear system is generally

difficult to handle.

For the tropical Atlantic, most observational and modeling studies point to a

scenario that the TAV consists of damped oscillations forced by ENSO and NAO

(Zebiak, 1993; Chang et al., 2001). Despite its weaker nonlinearity, however, to date

we are not aware of any linear model of TAV that includes both thermodynamical

feedback and the dynamical feedback, as well as realistic stochastic forcing due to

NAO and ENSO. This study will fill this gap by constructing a linearized intermediate

coupled model (ICM) of the tropical Atlantic using a forward approach.

1. Nonlinear intermediate coupled model

The model used here is a modified version of the intermediate coupled model

developed by Chang (1994) and Wang et al. (1995). The oceanic part is an extension

of the conventional 1 1
2
layer (a single moving layer above a motionless abyss) shallow

water reduced gravity model which includes thermodynamics of the upper ocean.

Assuming that the effects of compressibility and salinity are of secondary impor-

tance within the mixed layer, the equation of SST (or first thermodynamic law) takes

the form

∂T

∂t
+ us · ∇T = κ∇2T − λ(T − T̄obs) +

Q

ρ0CpHmix

− 1

Hmix

weH(we)(T − Te) (4.1)

where density ρ0 = 1 × 103 kgm−3; specific heat at constant pressure Cp = 4.2 ×

103 J kg−1 K−1; mean depth of mixed layer Hmix = 50m; and the coefficient of hor-

izontal turbulent heat diffusivity κ = 1 × 104m2 s−1. And the flux correction term

λ = 1
200

day−1 is needed to confine the evolution of SST around the observed mean
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T̄obs.

The forcing from the atmosphere is represented by Q – the sum of all the com-

ponents of surface heat flux; the effect from bottom (fluid below the mixed layer) is

parameterized as entrainment we, which is determined as divergence of surface flow

we = Hmix∇ · us .

The use of Heaviside functionH(·) in Eq. (4.1) is due to the fact that only entrainment

changes T and detrainment just sinks water down to sublayer without modifying the

surface temperature. The temperature of entrained water Te is assumed to take a

linear form

Te = 0.5
(
T + T̄

∣∣
z=50

)
+ 2

∂T̄

∂z

∣∣∣
z=50

h′ ,

where T̄50 is the observed mean temperature; ∂T̄
∂z

∣∣∣
z=50

is the vertical gradient of T̄ at

50m depth; h′ denotes the fluctuation of thermocline, i.e. h′ = h− h̄.

The horizontal velocity in the surface mixed layer us is separated into two compo-

nents: us = u+ue(H−Hmix)/H, where H = 100m is the mean depth of thermocline,

i.e. the spatial average of h̄.

Surface Ekman flow ue = (ue, ve) is determined by balancing the friction, the

Coriolis effect, and wind stress

rsue − fve =
τx

ρ0Hmix

rsve + fue =
τy

ρ0Hmix

(4.2)

where the frictional processes in the Ekman layer are idealized to be linear damping

rs = 1
1.5

day−1; f = β0y is the Coriolis parameter of the equatorial beta-plane ap-

proximation with β0 = 2.29 × 10−11 m−1 s−1; τ = (τx, τy) is the wind stress at sea

surface.
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The geostrophic flow u = (u, v) is governed by linearized shallow-water dynamics

∂u

∂t
− fv = −g′∂h

∂x
+

τx
ρ0H

+ γ∇2u− αu
∂v

∂t
+ fu = −g′∂h

∂y
+

τy
ρ0H

+ γ∇2v − αv
∂h

∂t
+H∇ · u = 0

(4.3)

where g′ = g∆ρ/ρ0 = 4.17 cm s−2 is the reduced gravity, and α = 1
2.5

yr−1 is the

coefficient of linear friction. Note the horizontal eddy viscosity, γ = 2.5× 104m2 s−1,

takes a different value from heat diffusivity κ.

As a common approximation, the atmospheric forcing can be nominally written

as the sum of annual mean (or climatology of monthly mean when seasonal cycle is

involved), coupled feedback, and atmosphere internal variability




τx

τy

Q




=




τ̄x

τ̄y

Q̄




+




Ax(T
′)

Ay(T
′)

B(T ′)




+




ζx

ζy

η




(4.4)

where climatology τ̄ and Q̄ are usually prescribed from observations; A and B rep-

resent coupling between atmosphere and ocean and are nonlocal functions of SST

anomaly. In theory, they can be written as linear integral operator over the entire

domain Ω

A(T ′) = (Ψ, T ′) =

∫∫

Ω

Ψ(x,y;x′,y′)T
′
(x′,y′;t) dx

′ dy′

B(T ′) = (Φ, T ′) =

∫∫

Ω

Φ(x,y;x′,y′)T
′
(x′,y′;t) dx

′ dy′
(4.5)

where Ψ and Φ are either estimated by linear regression over observational data sets

of T ′, τ ′, and Q′, or given by a simple dynamical model of atmosphere.

Together (4.1), (4.3), and (4.4) form a coupled system with nonlinearity only

appearing in the SST equation.
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2. Linear stochastic model of ICM

Before linearizing a nonlinear system, we need to find an appropriate equilibrium

state first. To be consistent in this study, we set the mean state as the steady solution

of the ocean model forced by observed mean winds and heat flux. In other words, turn

off the coupling and weather noise in (4.4), and then let the ICM run freely to achieve

a steady state (ū, w̄e, T̄ ). In this way, the constructed state becomes independent of

the atmosphere model being used.

Now, let T = T̄+T ′, u = ū+u′. By assuming small perturbations and neglecting

the higher order terms, the linearized form of Eqs. (4.1) and (4.3) can be written as

∂T ′

∂t
= L1T ′ − L2 · u′ + L3 h′ +

η

ρ0CpHmix

− Eζ
ρ0H

∂u′

∂t
=

µ

ρ0H
AT ′ +

(
κ∇2 − α− fk×

)
u′ − g′∇h′ + ζ

ρ0H

∂h′

∂t
= −H∇ · u′

(4.6)

where k is the unit vector along the vertical axis. Note the Ekman layer dynam-

ics (4.2) and air-sea feedback (4.4) have been implicitly built into the linear model

(4.6), constituting four dependent variables (T ′, u′, v′, h′) and four equations. All the

operators Li are linear and time-invariant (no seasonal cycle)

L1 = κ∇2 − λ− ūs · ∇ −
0.5

Hmix

w̄eH(w̄e) +
ν

ρ0CpHmix

B − µ

ρ0H
EA

L2 = ∇T̄ + 0.5H(w̄e)(T̄ − T̄50)∇

L3 =
2

Hmix

w̄eH(w̄e)
∂T̄

∂z

∣∣∣
z=50

(4.7)

where operator E is due to Ekman pumping and Ekman drift

E =
H −Hmix

Hmix

1

r2s + f 2

{
∇T̄ · (rs − fk×)+

H(w̄e)

2
(T̄ − T̄50)

[(
rs∇−

2fβ0
r2s + f 2

(rs j− f i)− β0i
)
· −f∇ · k×

]}
.
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Two new nondimensional parameters are introduced: the coupling strength of

the wind stress µ and the coupling strength of the heat flux ν. They are used to

parameterize the sensitivity of coupled system to the air-sea feedback strength. Since

the zonal mode and the meridional mode owe their existence to the air-sea coupling,

small changes in the coupling strength may induce significant modifications of the

behavior of TAV. In fact, studies have shown that boreal spring favors the growth of

the meridional mode while boreal fall favors the zonal mode (Ruiz-Barradas et al.,

2000; Chang et al., 2000; Sutton et al., 2000). One explanation is the mechanism

hypothesized by Zebiak and Cane (1987): the annual cycle causes changes in the

mean fields, which in turn affect the strength of the atmosphere-ocean coupling.

Therefore, the mean circulation in one season may provide favorable conditions for

the development of one type mode but less favorable conditions for the other mode.

Without explicitly taking seasonal cycle in consideration, we attempt to study the

sensitivity of the coupled system by adjusting coupling strength µ and ν directly

without changing the circulation pattern. For the sake of convenience, we normalize

the coupling parameters µ and ν, such that µ = ν = 1 corresponds to the best fit to

the observational estimate of air-sea feedback strength for TAV. Naturally, setting µ

to zero means no coupling in wind stress, and setting ν to zero means no coupling

in heat flux. In this study, we refer to µ as the dynamical coupling parameter and ν

as the thermodynamical coupling parameter. Furthermore, we assume no dynamical

coupling between meridional winds and SST because of its small impact in equatorial

region.

a. Statistical atmosphere

A(T ′) and B(T ′) in (4.4) represent the steady tropical atmosphere response to

SST anomalies. ENSO studies (Neelin et al., 1998) show that simple atmospheric dy-
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namical models can give an adequate representation of the surface wind field, i.e. the

wind stress feedback A. On the other hand, there also exist simple thermodynamical

models of heat flux feedback B (Seager et al., 1988, 1995). However, simple models

for the tropical Pacific may not gain the same success in the tropical Atlantic, and

empirical models usually achieve a better performance (Chung et al., 2002).

Following the approach of Chang et al. (1997, 2001), here we construct a statis-

tical atmosphere based on the singular value decomposition (SVD) analysis of SST,

wind stress, and heat flux. The basic idea is to identify the coupled mode through

analyzing the cross-covariance matrix (see Bretherton et al., 1992; Syu and Neelin,

1995, for details). In the following, we only give a brief description of this technique

for discrete data sets.

Let n × m matrices T, Θx, Θy, and Q denote SST, wind stress, and heat flux

anomaly, respectively. If n is the spatial dimension and m is the temporal dimension,

then the cross-covariance matrix is computed as

C3n×n =




Θx

Θy

Q



TT . (4.8)

The SVD of C gives pairs of coupled mode (uj,vj) and their relative strength sj

C = [u1, · · · , un, 0][diag(s1, · · · , sn), 0]T [v1, · · · , vn]T . (4.9)

Projecting the state vectors Thetax, Θy, Q, and T onto their corresponding vectors

results in two sets of time series

xj = TTvj and yj =




Θx

Θy

Q




T

uj .
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Because SVD maximizes the covariance between xj and yj, we may write yj in terms

of xj as a linear model by least-squares regression

yj = ajxj + ε where aj =
yT
j xj

xTj xj
=

sj
xTj xj

.

Transferring back to physical space gives us the linear relationship of atmosphere-

ocean coupling




Ax

Ay

B




= [u1, · · · , uk]diag(a1, · · · , ak)[v1, · · · , vk]T (4.10)

where the first k modes are retained. Generally speaking, it is a multivariate linear

regression in space spanned by the singular vectors.

There are two problems associated with the SVD method. One is determining the

truncation order k, which is usually quite arbitrary and guided by physical intuition.

In principle, only the first few singular vectors contain useful information since the

higher modes are strongly contaminated by noise. In practice, mode number k is

chosen empirically, and then its robustness is tested by studying the sensitivity of the

results to k. The other problem is more severe—there is a loophole in the theoretical

formulation. As pointed out by Frankignoul (1999), the above SVD procedure will

identify a positive feedback even for a purely atmosphere-force-ocean system. One

should be cautious about unstable modes if a statistical atmospheric model is used.

One remedy is applying SVD to lag-covariance, which has been tried by Solomon

et al. (2003) without much success. On the other hand, if we know there is a positive

feedback in the system, SVD analysis will identify it correctly, which is the case in

the tropical Atlantic (Chang et al., 2001)

Finally, the atmospheric internal variability needs to be specified. According to
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(4.4), if we know the total field, the climatology, and the linear response to local SST,

the residual could be regarded as the external forcing




ζx

ζy

η




=




Θx

Θy

Q



−




Ax

Ay

B



T , (4.11)

where the linear feedbacks are given by (4.10). EOF decomposition is applied to

determine the spatial and temporal characteristics of the forcing




η

ζx

ζy




= F3n×lWl×m (4.12)

where the first l EOFs are used. The EOFs have been weighed by their variance, i.e.

FTF = diag[σ21, · · · , σ2l ], and WWT = Il×l .

The characteristics of the PC time series are crucial in defining the evolution of

the linear dynamical system (4.6): if W is precisely known, then future states of (4.6)

can be predicted without any error. The worst scenario, in a prediction sense, is that

we know nothing about W except its variance (zero mean by default). In that case,

we are unable to infer the future state of forcing based on its present and past states.

In statistical language, this means the process W is totally unpredictable. Such a

stochastic process is usually categorized as white noise with Gaussian distribution

N (0, 1). To test whether W is indeed a white noise process, we apply the procedure

outlined in Chapter II. Fig. 16 shows the results for the first 200 PC time series along

with 99% confidentce interval. Most of the sampled autocorrelations are not signifi-

cantly different from zero, which means the white-noise hypothesis is an acceptable

assumption overall. However, we also note a few PC time series, not necessarily the

dominant ones, have non-zero lag-correlations (with 99% confidence). We speculate
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Fig. 16. Whiteness test of stochastic forcing in tropical Atlantic. The null hypothesis

is that time series is white noise, i.e. its autocorrelation should be zero at any

lag. If the sampled correlation lies outside the confidence interval, the null

hypothesis is rejected, and the stochastic process is not white.

that these modes represent the influence from ENSO which has a longer persistence.

Assuming ENSO forcing, contains a red spectrum with a broad interannual peak,

white will certainly underestimate the predictability of TAV.

In summary, we have derived a linear stochastic model for TAV

dx

dt
= Ax+ Fξ (4.13)

where the linear operator A denotes the deterministic dynamics of (4.6),

state variable x =




T ′

u′

v′

h′




, forcing pattern F =
1

ρH




H
CpHmix

−Ex −Ey
0 I 0

0 0 I

0 0 0




F ,
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and the white noise 〈ξ(t)ξT (τ+t)〉 = δ(τ)I. (4.13) falls into the framework of stochas-

tic climate model, thus the analysis is straightforward. The following discussion will

mainly focus on the physical implication, and interested readers are referred back to

Chapter II for technical details.

b. Numerics

The differential operator A and F are casted into a matrix form by finite-

differencing on a staggered C-grid with a resolution of ∆x = 2◦, ∆y = 1◦ within the

tropical Atlantic basin from 20◦S to 20◦N, which gives a dimension of 3462 × 3462.

The boundary conditions are no-flux for SST and h, no-normal flow and free-slip for

current. 1◦ sponge layers are added along the southern and northern boundaries into

thermodynamical equation, while for dynamical equations it is 10◦. The observations

are taken from the monthly COADS data set (da Silva et al., 1994) for 1950-1990

with 2◦ × 2◦ resolution and projected onto the model grid by simple meridional in-

terpolation.

In our statistical atmosphere, the SST-forced component is composed of the first

three singular vectors, which explain 27% of the squared variance in SVD space. The

remaining variance is due to atmospheric internal variability, which is modeled by

200 EOFs. This in general agrees well with the estimate of Sutton et al. (2000) in the

tropical Atlantic: atmospheric internal variability dominates the fluctuations of the

wind stress and heat flux while SST-forced variance is low ( 30%). Since SST is the

oceanic variable of interest to climate, in this study we define its skill as the measure

of the predictability of TAV. Finally, all the computations are made possible by two

free Fortran libraries, LAPACK (Anderson et al., 2000) and SLICOT (Benner et al.,
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1999), and most figures are drawn in MATLAB r©.1

C. Physical modes in the tropical Atlantic atmosphere-ocean system

For the linear system (4.13), eigenmodes of operator A, in which the bound-

ary condition is embedded, represent the true (in ICM sense) physical modes of the

tropical Atlantic atmosphere-ocean system.

1. Free modes

Without coupling, the shallow-water equations in (4.6) separate from the SST

equation, while each contains its own set of eigen-modes.

The SST modes are the eigenfunctions of operator L1 defined in (4.7), which

are determined by the advection and dissipation processes. The modes, as shown in

Chapter III, typically contain a set of purely damped modes and a set of propagating

modes with phase speed U and period T = L
nU

, where U and L are characteristic

length and time scales of the circulation. The equatorial (surface) current system

of the Atlantic Ocean includes mainly three zonal features: Equatorial Countercur-

rent, North Equatorial Current, and South Equatorial Current, plus one northward

western boundary current, namely North Brazil Current → Guyanan Current →

Caribbean Current. Due to truncated north and south boundaries, however, the

ocean circulation within the model domain does not form a closed loop. Therefore,

the eigen-spectrum of these SST modes is a continuum rather than a discrete set as

in Chapter III.

For an unlimited basin, the free modes of shallow-water equations are the equa-

torial Kelvin, Rossby, and inertia-gravity waves (see Philander, 1990). While short

1MATLAB r© is a registered trademark of The MathWorks, Inc.
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high-frequency waves dissipate very quickly in the ocean once generated, the gravest

baroclinic waves can survive a long time to exert pivotal influence on interannual

variability like ENSO. In our ICM, the phase speed of the first Kelvin wave is

c =
√
g′H = 2m/s eastward, which gives a cross-basin travel time of about 1 month

for equatorial Atlantic (L = 6000 km). The first Rossby wave travels westward with

c
3
, hence a 3-month cross-basin time. Once they reach the boundaries, reflections take

place. At the eastern boundary, incident Kelvin waves reflect into a pair of coastal

Kelvin waves and a set of long Rossby waves with less energy (due to poleward leak);

at the western boundary, Rossby waves reflect as equatorial Kelvin waves plus a set of

short Rossby waves (Philander, 1990). Therefore, the free Kelvin and Rossby waves

for an unbounded ocean are no longer eigensolutions for a zonally bounded basin.

Taken the lateral boundary into consideration, a new set of eigenmodes, known as

the basin modes, can be found (Cane and Moore, 1981; Neelin and Jin, 1993; Jin,

2001). These modes are composed of Kelvin and long Rossby waves with periods

determined by the sum of their crossing time. For the least damped basin mode,

theory predicts a period L
c
+ 3L

c
(Cane and Moore, 1981).

Using realistic coastline, we identify the basin mode of the tropical Atlantic ocean

by solving the linear shallow-water model within the equatorial band 10◦N ∼ 10◦ S.

To prevent the boundary-trapped Kelvin waves from crossing the basin along the

southern and northern boundaries, 2◦-wide sponge layers are added to the model.

Fig. 17 shows the least damped basin mode along with the SST component. As the

theory predicts, the basin mode propagates westward with a period about 4 months. It

is best described as the sum of equatorial Kelvin and long Rossby waves. Variations in

SST are a passive response to basin mode (u′, h′): anticyclone→convergence→downwelling→warm

anomaly, vice visa, cyclone→divergence→upwelling→cold anomaly. Note the argu-

ment is based on the first equation of (4.6) with L1 = 0.



92

−40 −20 0
−10

−5

0

5

10
La

titu
de

a)

Basin Mode (t=0)

C
W

W

−40 −20 0
−10

−5

0

5

10

La
titu

de

b)

Basin Mode (t=T/8)

C
W

W

−40 −20 0
−10

−5

0

5

10

Longitude

La
titu

de

c)

Basin Mode (t=T/4)

C W

W

C

−40 −20 0
−10

−5

0

5

10

Longitude

La
titu

de

d)

Basin Mode (t=3T/8)

W

W C

C

Fig. 17. Basin mode of equatorial Atlantic Ocean at different phases: a) 0; b) π
4
; c)

π
2
; d)3π

4
. Solid (dashed) line denotes positive (negative) thermocline anomaly,

while W (C) denotes warm (cold) anomaly. Arrows are ocean currents.

One fundamental implication of this uncoupled case is that within the tropical

Atlantic basin, there is no ocean mode at interannual and decadal timescale (except

for the mean current). One must look elsewhere for an explanation of the meridional

and the equatorial mode.

2. Coupled modes

When atmosphere and ocean are coupled together through energy and momen-

tum transfer, some new modes emerge from the large-scale air-sea interaction. To

facilitate this discussion, we adopt the common usage here: all modes are sorted in

ascending order in terms of the damping rate, i.e. the first mode is the least damped

(most unstable) mode. Complex conjugate pairs of eigenvectors, which form oscil-

latory modes, are regarded as possessing two degrees-of-freedom. Real eigenvectors
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are referred to as stationary modes which may grow or decay exponentially. Within

parameter space, the merging of two eigenvalues is an indication of 2-degeneracy, by

which an oscillatory mode may split up into two distinct stationary modes.

a. Pure thermodynamical coupled mode

Without wind stress feedback, the leading modes in our model are pure SST

modes, in the sense that there is no corresponding signal in the dynamical compo-

nents, u, v, and h. For a realistic thermodynamical coupling strength ν = 1, the first

mode is an oscillatory mode with a period of 25 years, an e-folding time of 10 months,

and antisymmetric centers of action at 15◦S and 15◦N (Fig. 18). The main feature of

this decadal oscillation resembles the meridional mode described in other literature

(Carton et al., 1996; Nobre and Shukla, 1996; Chang et al., 1997, 2000, 2001; Sutton

et al., 2000; Ruiz-Barradas et al., 2000), although the cause of the slow southward

propagation shown in Fig. 18 is not quite clear at this moment (but see Section D).

In order to reveal its relation to the free SST modes described in Section C.1, we

have tested the sensitivity of this meridional mode by varying the thermodynamical

coupling strength. Fig. 19 shows the damping rate and frequency of the first three

modes as a function of ν for µ = 0. The most notable feature is the linear increase in

frequency and decrease in damping rate of the meridional mode with an increasing

ν and the seemingly zero-effect of coupling on the background free mode. When

the coupling is sufficiently strong, ν > 1.6, the system becomes unstable although

the spatial pattern of the meridional mode remains unchanged. When the coupling

strength is reduced, the meridional mode goes through a series of bifurcations. First,

2-degeneracy occurs at ν = 0.76 where the oscillatory meridional mode changes into

two stationary modes with similar spatial structure. However, if the thermodynamical

feedback is further weakened to the point that the first three modes have similar
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Fig. 18. Meridional mode for µ = 0, ν = 1. (a), (b), (c), and (d) depict half period of

the oscillation. Unit of SST, ◦C; period, 25 years; e-folding time, 10 months.

damping rate, mutual-interference begins, and the meridional mode loses its dipole

character. Through 2-degeneracy at ν = 0.32, a new oscillatory mode emerges with a

century-long period. Fig. 20 shows the half-period evolution of this mode: it behaves

like a standing oscillation with only a monopole feature in the northern tropical

Atlantic. When ν → 0, the leading modes are essentially the stationary modes in

the zero-coupling case. It is convenient to think that the role of thermodynamical

coupling in this parameter regime (ν < 0.13) is to give strength to the free mode with a

north-south dipole structure. Therefore, depending on the coupling strength, the SST

may exhibit an oscillating meridional mode, two stationary modes, or an oscillating

monopole features, which makes the TAV a much harder problem to study.

In Fig. 19, most if not all background free modes are not affected by thermody-

namical feedback, which leaves us wonder whether the meridional mode is really a

purely coupled phenomenon. By stripping down the ICM (4.6), i.e. eliminating the
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Fig. 19. Eigenvalue of the meridional mode for µ = 0: growth rate, Re(σ); frequency,

Im(σ). The meridional mode is marked by open circles; free mode is solid

dots.
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Fig. 20. A weak coupled SST mode for µ = 0, ν = 0.3. Oscillating period, 150 years;

and damping time scale, 4.5 months.
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dynamic terms one by one, we conclude that the meridional mode truly originates

from thermodynamic air-sea interaction, and without B in L1, no oscillation can be

found as leading mode. Fig. 21 depicts the eigenmode of B with standard coupling

µ = 1 and diffusion. The signature of the southward-propagating meridional mode is

eminent, even though the oscillating period, 11 years, is shorter than that of the mode

with ocean advection. Some variability also appears along the equator at transient

states. Based on the fact that the coupled model is a meridional feature and the mean

meridional ocean transport is northward, a one-dimensional picture can be drawn to

explain why the mean advection seems to slow down TAV and how the 2-degeneracy

happens. The thermodynamical coupling gives rise to an southward propagating sig-

nal, while the mean advection creates northward movement. In the strong coupling

case, the former dominates which results in a slower (longer period) oscillation. As the

strength of coupling decreases, the northward and southward propagation tendencies

are canceling each other out and achieving a balance where the mode becomes sta-

tionary. This corresponds to the bifurcation point at ν = 0.76 in Fig. 19. The crucial

role of the mean meridional transport was first invoked in explaining the meridional

mode by Chang et al. (1997, 2001). Passing this point, we might still loosely think the

leading modes are dipole but without decadal oscillation. However, for weak coupling

(ν < 0.32), the mean basic states and finite-basin effects play a much more decisive

role. The structures of leading modes are mainly inherited from the SST modes in

the ocean without air-sea coupling (ν = 0). Since the realistic parameter regime of

TAV lies around ν = 1, the decadal meridional oscillation is likely to be a robust

feature in the tropical Atlantic sector.
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Fig. 21. Thermodynamical mode given by SVD analysis of COADS data. First three

singular vectors are used, and oscillating period is 10 years for ν = 1.

b. Pure dynamical coupled mode

Without thermodynamical feedback, (4.6) in principle are similar to the govern-

ing equations of ENSO dynamics (Cane and Zebiak, 1985; Zebiak and Cane, 1987).

For a realistic coupling parameter of tropical Atlantic, it does produce an equatorial

mode: the east equatorial region experiences anomalous warm and cold events iter-

atively within a 3 year period. Fig. 22 shows the half-period evolution of SST and

thermocline anomalies associated with this mode. Phase 0 represent the structure of

a mature cold episode. The cold SST anomaly extends to 30◦W with a maximum

being locate near the eastern boundary. We also see the slight eastward migration

of positive anomalies from the western region during retreat of the cold event and

rapid westward migration from eastern region during growth of the warm event. On

the other hand, the maximum thermocline variability (about 8 m) occurs along the

western boundary, while the eastern tropical Atlantic experiences a weak thermo-

cline perturbation (less than 4 m). However, because of the shallow location of mean
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thermocline over the eastern equatorial Atlantic, a small perturbation in thermocline

induces a significant change in SST via modulation of subsurface upwelling. In addi-

tion, Fig. 22 shows a dynamically significant feature: the thermocline anomaly leads

the SST anomaly. Although the phase difference is small, it characterizes the oceanic

memory and produces the interannual oscillation.

The essential elements of this equatorial mode are usually summarized as the

Bjerknes (1969) hypothesis: SST anomalies cause trade winds to strengthen or weaken

which in turn drive the ocean circulation to enhance the initial SST changes. This

provides a positive dynamical feedback in which SST affects the atmosphere through

diabatic heating. Suarez and Schopf (1988) and Battisti (1988) further advanced our

understanding by proposing the prototype of simple model—the delayed oscillator—

for ENSO

dT (t)

dt
= T (t)− αT (t− δT )− T 3(t) . (4.14)

This paradigm of ENSO physics incorporates the propagation and reflection of the

first baroclinic Kelvin wave and Rossby waves into a conceptual simple dynamic

framework. Crucial factors in this model include the time delay δT , which is about 6

months for the tropical Pacific and 4 months for the tropical Atlantic, and the relative

strength of the positive air-sea feedback to thermal damping α. When the air-sea

feedback and oceanic adjustment reach a proper balance, a 3∼4–year oscillation arises.

Subsequently, model (4.14) has been modified to include more dynamical details (see

Jin, 1997a,b; Galanti and Tziperman, 2000). Even though some issues have been

raised to question the relevance of the delayed oscillator to ENSO, this simple model

remains to be a useful concept in our understanding of ENSO dynamics. We will

not elaborate on this theoretical aspect further and instead refer interested readers

to relevant literature on this subject.
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Fig. 23. Eigenvalue of the equatorial mode for ν = 0. Equatorial mode is marked by

open circles; background mode is marked by solid dots. Note the 2π factor

has been absorbed into Im(σ).

We will now focus on the discussion of how the coupling strength affects the

period, structure, and stability of this dynamical mode in the tropical Atlantic Ocean.

Fig. 23 shows the real and imaginary parts of first three eigenvalues as a function

of the dynamical coupling strength µ. The stationary background mode, which is

independent of coupling, remains the same as the thermodynamical coupling case,

except now it has a pattern similar to the mature phase of the equatorial mode. For

a moderate coupling, the Atlantic equatorial mode becomes the most dominant mode

with its growth rate increasing linearly with coupling strength. The characteristic

spatial structure of this oscillating mode is determined by the mean SST, ocean

current field, and coupling pattern (not strength). Unlike the meridional mode, the

period of equatorial mode has a parabolic relation with coupling strength µ. Too

weak or too strong coupling always results in a longer timescale variability. Even
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though the Atlantic basin has small geometry, no less than a 3 year oscillation can be

found, which is consistent with the finding of Zebiak (1993). He demonstrated that

the differences in mean currents and ocean stratification of the Pacific and Atlantic

offset the differences in basin size, allowing similar oscillation periods. Overall, this

equatorial coupled mode is another robust feature of tropical Atlantic, and it appears

once the dynamical feedback, no matter how weak, is introduced.

3. Mixed modes

Following the last two sections, one natural question is what happens when both

the meridional mode and the equatorial mode coexist. This is not just a theoretical

issue, it has important practical value because observation and modeling evidence

(Carton et al., 1996; Chang et al., 2000; Dommenget and Latif, 2000; Sutton et al.,

2000; Ruiz-Barradas et al., 2000) points to the fact that TAV has two preferred

timescales: interannual (equatorial mode) and decadal (meridional mode). In order

to better understand the predictability of TAV, the ICM should capture both modes

and the interaction between them.

For realistic thermodynamical and dynamical coupling strength, Figs. 24 and 25

show the structure of the first two leading modes. The least damped one has a decadal

period of 24.6 years with a dipole pattern (Fig. 24 ); the second least-damped mode

is an interannual oscillation of 3.4 years with an ENSO-like appearance (Fig. 25). By

comparing with the pure thermodynamical coupled mode (Fig. 18) and the dynamical

coupled mode (Fig. 22), one notices some new features. the meridional mode is

now more confined against the western boundary, while some variability appears in

east equatorial Atlantic— a trace of the equatorial mode. On the other hand, the

equatorial mode spreads more meridionally such that its influence reaches beyond

10◦N and 10◦S. The e-folding timescale of the meridional mode is 10 months, which
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Fig. 24. Mixed meridional mode for µ = 1, ν = 1. Compare with Fig. 18.
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is essentially unchanged from the pure thermodynamical-coupling case; whereas the

damping timescale is 4 months for the Atlantic equatorial mode, which has been

shortened in comparison to the case of pure dynamical-coupling.

To further illustrate the interaction between these two coupled modes, we test

their sensitivity to changes in coupling parameters µ and ν. Figs. 26 and 27 show the

first four eigenvalues as a function of the strength of thermodynamical feedback ν and

dynamical feedback µ, respectively. The two feedbacks compete with each other in an

exclusive way: when one dominates, the effect of other is suppressed. For example,

increasing the strength of thermodynamical feedback while keeping the dynamical

feedback constant will make the meridional mode less stable and equatorial mode

more stable (Fig. 26), and vice versa (Fig. 27). This competing effect between the

two modes has an impact on the predictability of TAV, as will be seen in Section F.

The common variable which controls both thermodynamical feedback and dy-

namical feedback is the wind that is tightly coupled to SST in the deep tropics. This

leads us to a simple explanation for the competing effect of feedback. The inter-

hemisphere SST gradient associated with the meridional mode drives cross-equator

winds, which due to the Coriolis effect have zonal components near the equator. The

zonal winds, which are essential to ENSO-like dynamics, link the meridional mode to

the equatorial mode. However, the phase and period of the meridional mode is totally

distinct from the equatorial zonal-mode. Therefore, the slacken or strength of trade

winds in the western and central equatorial Atlantic correlates little with the SST

over the eastern equatorial Atlantic, which means the positive feedback loop of ENSO

is broken-down or suppressed. The above scenario is the case when thermodynamical

coupling is dominant. When equatorial dynamics prevail, the same argument can be

applied: strong zonal winds associated with the equatorial mode prevent the inter-

hemisphere transport through the atmosphere, hence the meridional mode will be
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Fig. 25. Mixed equatorial mode for µ = 1, ν = 1. Compare with Fig. 22.



105

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−0.3

−0.2

−0.1

0

ν

Re
(σ)

  in
 m

on
−1

a)

ENSO & Dipole (µ=1)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−0.4

−0.3

−0.2

−0.1

0

ν

Im
(σ)

  in
 yr

−1

b)

Fig. 26. Eigenvalue of mixed mode for µ = 1. Equatorial mode is marked by open

circle, meridional mode by up-triangle. A 2π factor has been included in

Im(σ).

suppressed. Furthermore, the southward propagation of the meridional mode is also

broken by this barrier of equatorial mode, hence the two stationary modes degener-

ated from dipole oscillation are farther separated in comparison to the no dynamical

coupling case.

In conclusion, the tropical Atlantic contains two sets of coupled modes: the

meridional mode and the equatorial mode. The former is caused by thermodynamical

feedback, while the latter is due to the positive feedback between winds, SST, and

subsurface ocean dynamics. These two types of modes play a dominant role in the

coupled system by affecting its evolution and predictability. In the following section,

we are going to investigate how the stochastic forcing excites these physical modes.
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Fig. 27. Eigenvalue of mixed mode for ν = 1. Equatorial mode is marked by open

circle, meridional mode by up-triangle. A 2π factor has been included in

Im(σ).

D. Comments on the debate of Atlantic dipole mode

As mentioned earlier, there has been controversy about the existence of the

Atlantic dipole mode in the literature. Our comment on this controversial issue is

based on the stochastic climate model of TAV (4.6). Fig. 28 shows the EOFs and the

correlation of tropical Atlantic SST anomaly simulated by the ICM under realistic

stochastic forcing. The first EOF exhibits a dipole-like pattern with stronger center of

action in the south, which explains about 29% of the total variance. The second EOF

(21%) has a strong action in the east equatorial ocean which resembles the equatorial

mode. The de-correlation time of north tropical Atlantic (NTA) and south tropical

Atlantic (STA) are about the same, 6 months. Cross-correlation shows that variability

in NTA leads that of STA, which is consistent with the southward propagation of the

meridional mode in our ICM. We also note that the overall correlation between NTA
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Fig. 28. EOFs and correlation of simulated tropical Atlantic variability (µ = 1, ν = 1).

(a) First EOF; (b) second EOF of SST anomalies in ◦C. Contour interval is

0.1; negative contours are dashed. (c) Spatial-averaged auto-correlation in

north tropical Atlantic (NTA, 5◦N− 20◦N), solid line; south tropical Atlantic

(STA, 5◦S− 20◦S), dashed line; and cross-correlation function between them,

dot-dashed line. Positive lag indicates NTA leads STA.
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Fig. 29. Thermodynamical coupled mode in CCM3 run with slab ocean.

and STA is very low (< 0.07), which is statistically insignificant in light of the local

persistence and consistent with the observational analysis. Overall, the ICM does

reproduce the key features of TAV found by other researchers (Carton et al., 1996;

Nobre and Shukla, 1996; Enfield and Mayer, 1997; Ruiz-Barradas et al., 2000; Sutton

et al., 2000). From the stability analysis, however, we know that there exist a dipole-

like meridional mode and an ENSO-like equatorial mode in the system. The EOFs

of TAV shown in Fig. 28 capture some characteristics of the true coupled modes.

Therefore, the absence of a clear dipole pattern and of a significant correlation between

NTA and STA do not prove that a dipole-like coupled mode does not exist. More

importantly, these statistical analyses do not shed light on the physical processes of

air-sea feedback in the tropical Atlantic.

The second comment we would like to make concerns the issue of whether the

dipole-like mode is generated by pure thermodynamical feedback. The meridional
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mode in our ICM (4.6) is a direct result of the positive thermodynamical feedback

identified by the SVD analysis of COADS observations. One potential problem is that

the existence of this coupled mode can be due to the artifact of statistics. To address

this issue, we turn to an AGCM experiment, in which the NCAR Community Climate

Model version 3 (CCM3; Kiehl et al., 1998) is coupled to a slab ocean model, hereafter

CCM3-MXL. The ocean mixed layer temperature T anomaly is simply calculated via

the equation

ρoCoho
dT

dt
= Q

where ρo is the density of ocean water, Co is its heat capacity, ho is the annual

mean mixed layer depth derived from Levitus (1982), and Q is the net anomalous

atmosphere to ocean heat flux. Obviously, the only possible feedback in such a coupled

model is through local thermodynamical processes: atmosphere drives ocean via Q

and causes SST changes, which in turn affects atmosphere circulation above, and

hence the heat flux down to the ocean.

To test this idea, we applied the same SVD analysis (Section B.1.a) to a 100-

year T42 CCM3-MXL run. Fig. 29 shows the dominant coupled mode constructed

by using the first 10 singular vectors. It depicts a 4-year south-westward propagating

oscillation with large loading in the northern Hemisphere. Such movement has also

been noticed by Mehta (1998) and Chang et al. (2001). Comparing it with the SVD

mode from observations (Fig. 21), we find the mode from CCM-MXL has a much

shorter period, which may reflect the difference of ocean dynamics in the two data

sets. However, the main point here is that pure thermodynamical feedback itself

can sustain a low-frequency oscillation, which can not be explained by the simple

stochastic climate model (Hasselmann, 1976).

In principle, the wind-evaporation-SST (WES) feedback is responsible for the
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Fig. 30. Cartoon of thermodynamical feedback in tropics. Trade winds (bigger ar-

row) blow from east to west, while anomalous winds (smaller arrows) cause

warming and cooling on the west and east side of SST patch.

growth of the above unstable mode (Chang et al., 1997; Xie, 1999). To stabilize

the oscillation, both authors argued ocean dynamics, like the mean current, provide

the necessary negative feedback. Thus, traditional WES hypothesis does not explain

the westward propagation seen in Fig. 29. However, Zhou and Carton (1998) found

WES process alone can produce such a propagating SST mode, at least in their

simple and intermediate model. The basic idea is captured in Fig. 30. A patch

of warmer SST in the tropical ocean, via pressure gradient, causes an anomalous

westerly to the west and an anomalous easterly to the east. Taking mean trade winds

into consideration, the west side of the SST patch experiences weaker winds and less

evaporation, and the east side has stronger winds and more evaporation. Therefore,

the SST is bounded to the west by anomalous warming and to the east by anomalous

cooling. Such configuration acts to move the original SST anomaly westward, which

seems responsible for the propagation in Fig. 29. Due to the large thermal inertia of

an oceanic mixed layer, this thermodynamic process takes a longer time (years) to

adjust in contrast to equatorial wave dynamics.
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Fig. 31. Eigenvalue of first normal mode as a function of coupling strength: (a) Real

part is the damping rate; (b) imaginary part is the frequency. Shading

area in (a) delimits the unstable regime and in (b) depicts the no oscillation

(zero-frequency) regime.

E. An exploration of coupling parameter space

It becomes clear from the analysis in Section C that the behavior of the cou-

pled modes depends heavily on the coupling strength, which itself varies with the

mean states (Zebiak and Cane, 1987; Zebiak, 1993; Chang et al., 1997; Fedorov and

Philander, 2001). An exploration of coupling parameter space can tell us how the

tropical Atlantic atmosphere-ocean coupled mode responds to changes in the strength

of dynamical feedback and thermodynamical feedback.

Fig. 31 shows the frequencies and damping rates of the leading coupled modes

as a function of coupling strength µ and ν while the other parameters are kept con-

stant. As expected, strong coupling usually leads to weak damping and eventually

the system becomes unstable (shading area in Fig. 31a). However, such transition

is not of special interest here because the TAV is regarded as stable. More useful

information can be extracted by dividing the parameter space into three regimes ac-
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cording the oscillating period of the leading mode (Fig. 31b): 1) the thermodynamic

regime regime where leading mode is decadal oscillation, 2) the dynamic regime where

leading mode is interannual oscillation, and 3) the overlay regime where leading mode

is non-oscillating. In the thermodynamic regime, both the period and damping rate

of leading mode are primarily determined by strength of heat flux coupling, while

the effect of dynamical feedback is of secondary importance. In the dynamic regime,

although the damping rate is largely defined by winds stress coupling, the destructive

effect of heat flux coupling is not negligible (see also Fig. 26). Furthermore, the oscil-

lating period of the equatorial mode remains to be around 3 years with little changes.

This reflects a long-known fact: the period of equatorial mode is not determined by

any single factor, but it is a result of balancing various processes, such as thermocline

depth, mean currents, SST, and winds (Cane and Zebiak, 1985; Zebiak and Cane,

1987; Neelin et al., 1998).

When neither feedback dominates, from Figs. 26 and 27 we know 2-degeneracy

usually happens to the meridional mode, which results in two nonoscillatory modes.

Perhaps the most interesting regime is where thermodynamical feedback and dynam-

ical feedback have equal strength. What happens in this regime, we think, is that

the equatorial mode induces a negative heat flux feedback near the equator, thus

it weakens the positive thermodynamical feedback associated with the meridional

mode. As a result, the equatorial mode loses its oscillatory characteristics and be-

comes a stationary mode. Further investigation is needed to find the mechanism for

this interaction.
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Fig. 32. Predictability of tropical Atlantic SST as a function of µ and ν: (a) Do-

main-averaged measure; (b) pseudo-predictability based on the damping rates

of first four normal modes. Shading area delimits the unstable regime. Pre-

dictability is measured by the time τm when ε(τm) = 0.5, i.e. error and signal

have equal variance.

F. Predictability

Finally, we investigate the predictability of TAV within the framework of the

ICM. Using normalized error variance as the predictability measure, we take a sys-

tematic view of the predictable dynamics of tropical Atlantic SST. Following the

previous discussion, we should take ε ≤ 0.5 as useful forecast skill. The leading time

τm of ε(τm) = 0.5 will be the limit of predictability.

1. Global measure

Fig. 32a shows the predictability of the tropical Atlantic SST as a function of

coupling strength µ and ν. In comparison with Fig. 31, one immediately recognizes the

striking similarity between the patterns of damping rate and predictability. However,

only for sufficiently strong coupling, can the predictability of tropical Atlantic be
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accurately inferred from the damping rate of the first normal mode, τm = − ln 2
2Re(σ)

.

This is because in the strong coupled regime, the first normal mode is so much

dominant that itself determines the time evolution of the coupled system. In the

weak couped regime (low-left corner in Fig. 31a), the decay rate is mainly determined

by the damping term in Eq (4.1); and the predictability is primarily defined by the

special setting of stochastic forcing. If the random forcing were spatially uncorrelated,

then the useful prediction skill would be very short. Between the two extremes lies

the area where both deterministic dynamics and stochastic forcing are important in

shaping the predictability.

A general finding from Fig. 32a is that strong coupling makes TAV more pre-

dictable. There are also some additional interesting features. In the thermodynamic

regime, the predictability is determined by heat flux–SST coupling with little influ-

ence from wind stress feedback. In the dynamic regime, the predictability is primar-

ily defined by feedback between wind stress and SST, although some contribution

from heat flux feedback is also visible. In the regime where both thermodynami-

cal/dynamical feedback are strong, we see the mutual-cancellation of wind stress and

heat flux feedback in terms of predictability. For a realistic coupling strength, the

TAV is predictable for up to 2 months. The sharp contrast between the predictability

(Fig. 32a) and the period (Fig. 31b), both in terms of times scale and space pattern,

echos one of the main points from Chapter II and Chapter III, i.e. the period of

oscillation has little to do with the predictability. In fact, the existence of oscillation

may have no effect at all on the domain-averaged forecast skill (see Chapter III).

For the tropical Atlantic, one imperative question is whether we can get rea-

sonable estimates of the predictability given the information of only leading normal

modes. For normal system and unitary forcing, we have a definitive answer which is

given by Eq. (2.32). In analogy, we may define the pseudo-predictability measure of
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TAV based only on the damping rates of its first four normal modes. Fig. 32b depicts

such a measure as a function of coupling strength. Note for most of the parameter

space, the first four normal modes (oscillation counts two) represent the meridional

mode and the equatorial mode. Not surprisingly, the measure from leading normal

modes usually overestimates the predictability of TAV. Given the fact that TAV is

nonnormal and the stochastic forcing is spatially coherent, the surprising result is

the overall consistency between Fig. 31a and b. This means much of the predictable

dynamics of tropical Atlantic is well captured by the meridional mode and the equa-

torial mode. What matters is not the oscillations themselves but their stability, which

is controlled by positive air-sea feedback among other processes.

2. Local measure

Although the domain-averaged error variance measure gives a rather dismal result

about the predictability of tropical Atlantic SST, some patterns may exist that are

more predictable in certain regions. In other words, the high predictability could

be localized to only a few special regions in the tropical Atlantic. To identify these

special patterns, we apply the predictable component analysis developed in Chapter

II to the ICM (4.6) for different coupling strength. Fig. 33 shows the leading time

at which the most predictable pattern has a normalized error variance of ε = 0.5.

In comparison with the global measure, there is a substantial increase in the skill.

For the example of µ = 1 and ν = 1, the predictability limit of the most predictable

pattern is 8 months, while it is 2 months for the global SST. Even in the absence

of coupling, the TAV has a component that possesses 5∼6 months predictability.

These findings prove to be very useful in defining the objective of climate forecast:

the basin-average SST does not have much predictability skill beyond 2 months, but

some specific SST features can be predicted for almost 1 year in advance.
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Fig. 33. Skill of most predictable pattern as function of coupling strength. The lead

time is given by ε(τm) = 0.5

Fig. 34 and Fig. 35 show the most predictable patterns for realistic coupling

(µ = 1, ν = 1) and strong dynamical coupling (µ = 2, ν = 0.4), respectively. These

two cases have similar predictability and are chosen to represent the meridional-mode

dominate versus equatorial-mode dominate regimes. For very short lead times, the

predictable variance is confined to the eastern equatorial Atlantic with a maximum

along south Africa coast. This initial similarity is not a surprising result because the

stochastic forcing remains the same in both cases, and the predictable component

at short lead times is closely related to the forcing pattern. This can be rigorously
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demonstrated by the following mathematical argument. Assuming τ small, we have

Cτ = eAτCeAT τ

= (I+ Aτ + · · · )C(I+ Aτ + · · · )T

≈ C+ (AC+ CAT )τ

= C− Στ

(4.15)

where Lyapunov equation (2.9) is used, and the covariance of signal Cτ is defined

in (2.24). Using definition (2.36), the predictable component is found through an

equivalent eigenvalue problem

Σu = γCu .

If the coupling, hence nonnormality, is small, then the predictable component will

be largely determined by the forcing pattern. We suspect this forcing at the equator

comes from the Pacific as suggested by others (Zebiak, 1993; Ruiz-Barradas et al.,

2000). For longer lead times, the most predictable pattern resembles the first normal

mode. In the thermodynamic regime, this would be a dipole-like pattern. In the

dynamic regime, this is similar to the ENSO-like equatorial mode. Between these

two lead-time limits, the most predictable pattern exhibits a mixed character. For

example, in the dynamic regime, a signal begins to develop along the coast of south

Africa, and a large structure of signal off the north Brazil coast extrudes eastward

along the equator. At the same time, there is a wide center-of-action at 10◦S, which

gradually diminishes away as lead time increases. Comparing Fig. 35 with Fig. 25,

we see a similar behavior of the growth, maturity, and decay of equatorial signal with

comparable timescale. On the contrary, due to its decadal nature, the meridional

mode (Fig. 24) exhibits less dramatic change within the period of our interest (∼1

year). Thus, in the thermodynamic regime the predictable component behaves more
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like a standing pattern.

With above results, we conclude that the most predictable pattern in the tropical

Atlantic generally can be thought of as a superposition of the equatorial mode and

the meridional mode with different phases.

G. Summary

Tropical Atlantic variability is studied using a linear stochastic climate model.

The deterministic components, obtained by linearizing an intermediate coupled model

(ICM), include dynamics of thermocline governed by the linear shallow water equa-

tion, thermodynamics and Ekman dynamics of the mixed layer, plus the positive

feedbacks of wind stress–SST and heat flux–SST. The random component is intro-

duced through the atmospheric stochastic forcing with fixed spatial pattern estimated

from observations. In this model, the atmosphere is statistically represented by two

parts: one that is tightly related to local SST and represents air-sea coupling, one

that is independent of tropical Atlantic SST and denotes as stochastic forcing. Within

such framework, the influence of remote forcing like ENSO on TAV can be modeled

either through affecting coupling strength and structure or by directly changing the

atmosphere internal variability.

For realistic coupling strength, the linear ICM contains two leading coupled

modes: one is decadal oscillation with meridional structure in the southern and north-

ern tropical Atlantic, and the other is interannual oscillation with zonal structure

along the equator. The thermodynamical feedbacks between cross-equatorial winds,

heat flux, and SST are responsible for the meridional mode, while the dynamical feed-

back between SST, zonal winds, thermocline depth, and upwelling are essential to the

equatorial mode. Consistent with other studies of TAV, we identify the former as the



119

−20

−10

0

10

20

−0.1

−0.1

0

0

τ=0 month

(a)

−20

−10

0

10

20

−0.1

0

0.1

0.1

τ=2 month

−20

−10

0

10

20

−0.10
0

0.1
τ=3 month

−20

−10

0

10

20

−0.1 −0
.1

0

0

0.1

τ=5 month

−20

−10

0

10

20

−0.1

−0
.1

0

0
0.1

τ=8 month

−20

−10

0

10

20

−0.1 −0.10

0

0.
1

τ=11 month

−40 −20 0
−20

−10

0

10

20

−0.1 −0.10 0

0.1
0.1τ=15 month

−40 −20 0
−20

−10

0

10

20

−0.1
−0.1

0

0
0.1

0.1
τ=19 month

0 5 10 15 20 25
0

0.5

1

Leading time in month

E
rr

or

(b)

µ=1, ν=1

Fig. 34. Most predictable pattern for standard coupling (µ = 1, ν = 1). a) The

evolution; b) the skill (dashed line) along with domain-averaged predictability

(solid line).



120

−20

−10

0

10

20

−0.1

0
0

τ=0 month

(a)

−20

−10

0

10

20

−0.1
0

0.1

τ=2 month

−20

−10

0

10

20

−0
.1

0

0.1

τ=3 month

−20

−10

0

10

20

−0.1
−0.1

0

0 0

0.1

τ=5 month

−20

−10

0

10

20

−0.1

−0
.1

−0.1
0

0

0

0.1

0.1τ=8 month

−20

−10

0

10

20

−0.1

0

0

0

0.1

0.1

0.1

τ=11 month

−40 −20 0
−20

−10

0

10

20

−0.1
0

0.1

0.1

τ=15 month

−40 −20 0
−20

−10

0

10

20

−0.1

0

0

0.1

τ=19 month

0 5 10 15 20 25
0

0.5

1

Leading time in month

E
rr

or

(b)

µ=2, ν=0.4

Fig. 35. Most predictable pattern for strong wind stress coupling (µ = 2, ν = 0.4).

a) The evolution; b) the skill (dashed line) along with domain-averaged pre-

dictability (solid line).



121

meridional mode and the latter as the Atlantic equatorial mode. The sensitivity of

the meridional mode to coupling strength in our study sheds light on the debate on

the Atlantic Dipole: it is close to a bifurcation point. If for some reason the ther-

modynamical coupling is weakened or the dynamical coupling is strengthened, the

meridional mode goes through the 2-degeneracy process, in which it first loses its

oscillatory nature and then its dipole character. When both coupling strengths are

close to zero, neither meridional nor equatorial mode exists. In this regime, the ocean

is dominated by free SST modes and basin modes, and the TAV is largely a passive

response to atmospheric forcing, local and remote.

With coupling and stochastic forcing derived from observations, our model re-

produces the TAV fairly well. The first two EOFs explain 50% of the total variance

with Dipole and equatorial feature embodied. Therefore, it is possible in this case

to reconstruct the physical modes of tropical Atlantic climate system based on the

information of leading EOFs. Conventional correlation analysis is also carried out to

illustrate the connection between the northern and southern tropical Atlantic. De-

spite the distinct dipole feature in physical and EOF modes, we found NTA and STA

are not significantly correlated (cross-correlation 0.07). In our model, this is caused

by the independence of forcing in NTA and STA. In reality, identifying the sources

of forcing for the tropical Atlantic is a challenge.

With the tools developed in Chapter II, we further analyzed the predictable

dynamics in the tropical Atlantic sector. In general, the tropical Atlantic SST only has

2 month predictability, which is considerably shorter than that of the tropical Pacific.

This difference in predictability reflects the difference in dynamics. The tropical

Pacific is dominated by ENSO which lies near the unstable regime. Hence, it behaves

more like a self-sustained oscillation with less energy input from stochastic forcing.

In contrast, the leading normal modes in the tropical Atlantic are highly damped,
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and a large portion of the variability is associated with the midlatitude atmospheric

internal variability that is essentially unpredictable. Because of the active role of the

ocean in our model, however, there are certain SST features which can be predicted

up to 8 months in advance. Once again, these features resemble the leading normal

modes, i.e. the meridional anomaly at 10◦N and 10◦S and the zonal anomaly in

east equatorial region. In fact, the predictability information of TAV can be roughly

estimated just based on the damping rate of the meridional and equatorial mode.

In conclusion, we demonstrated that much of variability and predictability of

tropical Atlantic are captured by two modes: meridional and equatorial. Of course,

this does not say that atmospheric forcing from ENSO and NAO are negligible. On

the contrary, it is this forcing that excites the first two leading normal modes of

the tropical Atlantic and make them visible in TAV. In other words, the stochas-

tic resonance discussed in Chapter III is the driving mechanism for what we saw

about tropical Atlantic variability. Once again, how this occurs is pending on further

investigation.
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CHAPTER V

CONCLUSION AND FUTURE PROJECTS

A. What’s been done

In Chapter II, we constructed a framework to systematically analyze the vari-

ability and predictability of a linear, time-invariant, stochastic model. We found that

the traditional EOF analysis can only be used under specific circumstances to reveal

the underlying physical modes of the system. Usually, the final response is shaped

by both deterministic dynamics and the structure of stochastic forcing, which is ex-

pressed as a fluctuation-dissipation relation. As to the predictability study, the use

of singular vector and stochastic optimal analyses have similar problems. So, the

concept of predictable pattern and a new set of optimal forcing are introduced to

reconcile this. We have also shown that, as far as prediction and predictability are

concerned, modal reduction performs poorly in reproducing the characteristics of the

original full-order system. While the balanced truncation is the best choice of model

reduction method, EOF reduction is a competitive one because of its easy use in prac-

tice. In many cases, the reduced-order model will overestimate the predictability of

a system, which may contribute to an optimistic view of climate prediction. Finally,

the various upper and lower bounds given in Chapter II illustrate the complicated

role of nonnormality, which can either greatly enhance or reduce predictability in

comparison to its normal counterpart.

In Chapter III, we considered the effect of mean ocean currents on the pre-

dictability of SST anomaly by using a stochastic advective ocean mixed-layer model.

By solving the 1D model analytically, we found that advection does not change the

predictability of SST when averaged over the ocean basin. In fact, the damping
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rate, due to atmospheric heat flux and subsurface entrainment, is the controlling

factor. Through predictable component analysis, we discovered that the mean advec-

tion transfers predictable variance downstream and causes certain areas to be more

predictable than others. Using realistic parameters, the SST of the North Atlantic

Ocean was modeled in similar way. We found that the overall predictability of SST

anomalies is limited to 1–2 months, while the predictability over the western bound-

ary region is about 5 months due to the strong influence of the ocean currents. Based

on the magnitudes of the estimated damping rate and observed currents, we conclude

that midlatitude climate variability essentially follows Hasselmann’s (1976) model

even with the effect of ocean advection taken into account.

In Chapter IV, we addressed the issues central to tropical Atlantic variability

with a linear intermediate coupled model. The ocean-atmosphere interactions in the

Tropics give rise mainly to two types of modes: a decadal meridional dipole-SST

mode due to WES feedback and an interannual equatorial mode in which SST-drive

wind anomalies cause vertical displacements of the thermocline which in turn feed

back to initial SST anomaly. When driven by observed stochastic weather forcing,

variability of the North and South tropical Atlantic are not significantly correlated

despite the existence of the physical dipole-mode. And the first two leading EOFs

capture the main features of the two coupled modes. Another striking finding is

that depending on the coupling strength, the meridional SST-mode can be a decadal

oscillation with a dipole, two damped modes with asymmetric off-equator structures,

and a century-long monopole oscillation. For realistic coupling strength, the tropical

Atlantic variability on average has a 2 month predictability skill, whereas an 8 month

skill is achievable if only the most predictable pattern is of interest. The most serious

limitation of our linear intermediate model is the purely statistical nature of the

atmosphere feedback, which does not allow a thorough understanding of processes
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generating the dipole-mode. An intermediate dynamical atmosphere model may be

used to solve this problem.

B. What’s ahead

1. Most climate phenomena are seasonal-dependent. For example, El Niño events

tend to mature toward the end of the year, NAO is stronger during winter

season, ITCZ locates in summer-hemisphere, etc. Therefore, as a logical next

step the linear stochastic framework needs to be extended to a system with

periodic dynamics

dx

dt
= A(t)x+ F(t)ξ (5.1)

where A(t+T ) = A(t) and F(t+T ) = F(t) are periodic functions in time, x and

ξ are respectively the state variable and the white noise forcing. According to

Floquet’s theorem, the stability of a periodic system (5.1) is determined by the

fundamental matrix

Φ = exp
(∫ T

0

A(t)dt
)
.

If all the eigenvalues of Φ are within modulus less than one, then (5.1) is asymp-

totically stable. In other words, let Ā be the annual mean of the climatology

A(t)

Ā =
1

T

∫ T

0

A(t)dt ,

then the stability of Ā determines the stability of (5.1). This implies that

the results from this dissertation basically hold even if the seasonal cycle were

considered. Including seasonality, however, does introduce some new properties.

For instance, the system can be stable (unstable) while A(t) is unstable (stable)

at any moment. Physically, the system may have an unstable mode every month

and still produce a stationary response.
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Farrell and Ioannou (1996b) have already discussed the generalized stability

theory of a nonautonomous system, and Blumenthal (1991) and Thompson and

Battisti (2000, 2001) have applied the Floquet analysis on ENSO. However, a

framework like the one in Chapter II is yet to be established generally.

2. In midlatitude, the role of the ocean is more than just the influence of its

mean circulation, and air-sea interactions may not be just negative local feed-

back either. This leads to a number of hypotheses on the mechanisms of mid-

latitude decadal variability, in addition to the advective resonance theory by

Saravanan and McWilliams (1998). For example, using a simple midlatitude

ocean-atmosphere model, Weng and Neelin (1999) and Neelin and Weng (1999)

demonstrated that positive coupling can create an oscillatory interdecadal mode

that involves westward Rossby wave propagation in the ocean and eastward at-

mospheric feedback in response to SST anomalies. Such a mode would be

unstable for large coupling strength. Similarly, Goodman and Marshall (1999)

formulated another analytical model of the middle-latitude atmosphere and

ocean, and found decadal coupled modes that could be unstable for barotropic

atmospheric feedback. By analyzing observations and output from GCM, Latif

and Barnett (1994, 1996) identified active ocean-atmosphere interactions over

the North Pacific and concluded that year-long climate forecasting is possible.

In the future, the question I would like to address is how these various mecha-

nisms affect the predictability of SST for a realistic parameter range. Through-

out this dissertation it has been demonstrated that existence of a decadal mode

has little effect on predictability. As far as climate prediction is concerned, the

lesson is that we should look for processes contributing to the persistence of

SST instead of potential decadal modes.
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3. In Chapter IV, we assume the primary influence from ENSO to be white noise,

which is not true even in a moderate sense. If we separate the atmospheric

forcing of tropical Atlantic into two parts, ENSO and NAO, then the governing

equation can be written as

dx1
dt

= A1x1 + f + ζ1 (5.2)

where x1 represents TAV, f denotes impacts from ENSO, ζ1 is the atmospheric

internal variability from NAO, and operator A1 includes local air-sea feedback

and ocean dynamics. Let x2 be the ENSO variability of tropical Pacific, then

f = Bx2 via atmosphere bridge B from Pacific to Atlantic. Similarly, ENSO

dynamics is described by

dx2
dt

= A2x2 + g + ζ2 (5.3)

where g represents the influence from other oceans, which is set to zero in

traditional ENSO theory. For the sake of completeness, let g = Lx1 be the

Atlantic-to-Pacific bridge, then we have a coupled model of two tropical oceans

and one atmosphere

dx

dt
= Ax+ ζ (5.4)

where

x =



x1

x2


 , A =



A1 B

L A2


 , and ζ =



ζ1

ζ2


 (5.5)

Despite its linear nature, we believe the global coupled model (5.5) is able to

capture the essential physics of tropical climate. Once the model is formulated,

many interesting questions can be answered. What are the influences of other

oceans on the ENSO cycle, negligible or substantial? If the dipole mode of TAV

is triggered by ENSO, then can we view both as two components of one global
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coupled mode? How about the Indian Ocean dipole mode? In terms of pre-

dictability and variability, what are the roles of atmospheric internal variability

at a global level, and regional level? And many more.
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APPENDIX A

STOCHASTIC FORCING IS RED NOISE

Consider a 1-D red noise forced process

dx

dt
= ax+ η , (A.1)

where x is a scalar-valued function (for example salinity at a fixed point) and

E[η(t)] = 0 and E[η(t)η(s)] =
σ2

2α
e−α(t−s) . (A.2)

With little modification, the linear stochastic framework in Chapter 2 can be applied

to this case too:1

The solution of Eq. (A.1) under initial condition xt0 is

x(t+t0) = x(t0)e
a(t−t0) +

∫ t

t0

ea(t−s)η(s) ds . (A.3)

Assuming system stable (a < 0), x describe a real stationary process with mean

E[x] = 0 and correlation

c(τ) = E[x(t)x(t+τ)]

= E
[ ∫ t

−∞
ea(t−s1)η(s1) ds1

∫ t+τ

−∞
ea(t+τ−s2)η(s2) ds2

]

= ea(2t+τ)

∫ t

−∞

∫ t+τ

−∞
e−a(s1+s2)E[η(s1)η(s2)] ds1 ds2

using (A.2) =
σ2

2α
ea(2t+τ)

∫ t

−∞

∫ t+τ

−∞
e−a(s1+s2)e−α|s1−s2| ds1 ds2

=
σ2

2(a+ α)(a− α)

(
e−ατ

α
+
eaτ

a

)
> 0 .

(A.4)

1This is a question asked by Dr. Panetta during the preliminary examination.
Listed is my answer.
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Some interesting limits

E[x(t)x(t+τ)] =





σ2

−2aα2 e
aτ αÀ −a

σ2

4α2 e
−ατ (τ + 1

α
) α = −a

σ2

2αa2 e
−ατ α¿ −a

, (A.5)

where α À −a is a slow system perturbed by fast forcing — white noise limit;

α ¿ −a is the case that system instantaneously responds to a slow-forcing; α = −a
is the intermediate case.

If the same prediction scheme were used

x̂(t+t0) = x(t0)e
a(t−t0) , (A.6)

from Eq. (A.3) we know the prediction error would be

ε2(t,t0) = ε2(τ)

= E

[∫ t

t0

ea(t−s1)η(s1) ds1

∫ t

t0

ea(t−s2)η(s2) ds2

]

=
σ2

2α
e2at

∫ t

t0

∫ t

t0

e−a(s1+s2)e−α|s1−s2| ds1 ds2

=
σ2

2(a+ α)(a− α)

[
1− e2aτ

a
+

1− 2e(a−α)τ + e2aτ

α

]
> 0 ,

(A.7)

where τ = t− t0 is the leading time. When normalized by the variance, it measures

the skill of such prediction x̂(τ)

ρ(τ) =
ε2τ
c0

= 1−
e2aτ

a
+ 2e(a−α)τ−e2aτ

α
1
a
+ 1

α

.

(A.8)
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Again, three limits exist

ρ(τ) =





(1− eaτ )2 α¿ −a

1− (1− 2aτ)e2aτ α = −a

1− e2aτ αÀ −a

. (A.9)

However, prediction given by (A.6) is not optimal in the sense that a better

prediction skill may be achievable. The problem or the advantage is the red noised

forcing assumption. Therefore, the Markov property does not apply here,

E[x(τ+t0)|xt0 , xt1 , xt2 , . . . , xtn ] 6= E[x(τ+t0)|xt0 ] 6= x̂(t0+τ) (A.10)

where t0 > t1 > t2 > · · · > tn and τ > 0. In fact, from left to right, the prediction is

getting worse. The reason is that forcing is correlated, so the information from the

past can be used to improve the prediction of the future. Of course, in order to utilize

such resource, we need more than just the first two moments of η.

Although mathematically problematic, in practice it is reasonable to assume the

red noise (A.2) is generated by white noise, s.t.

dη

dt
= −αη + ξ (A.11)

where E[ξ(t)] = 0 and E[ξ(t)ξ(s)] = σ2δ(t − s). Then, (A.1) and (A.11) form a

two-dimensional model just as in my proposal

dθ

dt
= Aθ + ζ (A.12)

where

θ =



x

η


 ; A =



a 1

0 −α


 ; ζ =



0

ξ


 .

The optimal prediction of (A.12) is

θ̂ = eAτθ0 =



eaτx0 +

eaτ−e−ατ

a+α
η0

e−ατη0


 . (A.13)
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The covariance

C0 = E[θt0θ
T
t0
]

=
σ2

2α




1
a(a−α)

1
α−a

1
α−a

1


 .

(A.14)

And the lagged covariance matrix

Cτ = E[θ(t0)θ
T
(t0+τ)]

= eAτC0e
AT τ

=
σ2

2α




aα(eaτ−e−ατ )2−(ae−ατ+αeaτ )2

a(α−a)(a+α)2
(a−α)e−2ατ+2αe(a−α)τ

(α+a)(α−a)

(a−α)e−2ατ+2αe(a−α)τ

(α+a)(α−a)
e−2ατ


 .

(A.15)

As usual, the predictability of η is

γη =
Cτ (2, 2)

C0(2, 2)
= e−2ατ . (A.16)

And the predictability of x can be defined as following

γx =
Cτ (1, 1)

C0(1, 1)

=
(ae−ατ + αeaτ )2 − aα(eaτ − e−ατ )2

(a+ α)2
.

(A.17)

Comparison between (A.8) and (A.17) shows that

ρ(τ) > 1− γx(τ) .

This means the prediction error of (A.13) is smaller than that of (A.6). Actually,

prediction (A.13) is the best, and that is why we define its skill as predictability.
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Fig. 36. Normalized error variance of different prediction schemes (a = −0.3): Green

line, “red prediction” 1 − γτ ; blue line, “white prediction” ρτ . Dashed line,

b = 10; solid line, b = 0.31; dash-dotted line, b = 0.01

Once again, three limits exist for γx:

γx =





e−2ατ α¿ −a

(1− 2aτ + a2τ 2)e2aτ α = −a

e2aτ αÀ −a

. (A.18)

The biggest difference occurs at α ¿ −a case. This tells us that if forcing were red

in comparison with the response time scale of system, then a model based on white

noise assumption will lose most of its predictability. Fig. 36 shows the performance

of various predictions defined above.

Finally, a mean measure of the prediction of x and η may be defined in term of

the variance

γ(τ) =
tr{Cτ}
tr{C} , (A.19)

which is exactly what has been used in this thesis. However, it is not of great interest

here.
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APPENDIX B

ABBREVIATIONS USED IN THIS DISSERTATION

1D one-dimensional NEV normalized error variance

2D two-dimensional NSV normalized signal variance

AGCM atmosphere GCM NTA north tropical Atlantic

AO Arctic Oscillation OGCM ocean GCM

AR autoregressive PC principal component

BT balanced truncation PDO Pacific decadal oscillation

CCM3 Community Climate PIP principal interaction pattern
Model version 3

CGCM coupled GCM PNA Pacific North American

COADS Comprehensive Ocean- POP principal oscillation pattern
Atmosphere Data Set

ENSO El Niño–Southern Oscillation PP predictive power

EOF empirical orthogonal function PPL predictive power loss

FOM full order model PrCA predictable component analysis

GB gigabyte RHS right hand side

GCM general circulation model ROM reduced order model

G.M. geometric mean SNR signal-to-noise ratio

H.M. harmonic mean SO stochastic optimal

ICM intermediate coupled model SSP stability+SO+PrC

ITCZ intertropical convergence zone SST sea surface temperature

LIM linear inverse modeling STA south tropical Atlantic

LTI linear time-invariant SV singular vector

MPP most predictable pattern SVD singular value decomposition

MXL mixed layer TAV tropical Atlantic variability

NAO North Atlantic Oscillation WES wind-evaporation-SST

NCAR National Center for w.r.t. with respect to
Atmospheric Research
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