
Graph Perturbation as Noise Graph
Addition: A New Perspective for Graph

Anonymization

Vicenç Torra1,2 and Julián Salas3(B)

1 Hamilton Institute, Maynooth University, Maynooth, Ireland
vtorra@ieee.org

2 University of Skövde, Skövde, Sweden
3 CYBERCAT-Center for Cybersecurity Research of Catalonia, Internet

Interdisciplinary Institute (IN3), Universitat Oberta de Catalunya, Barcelona, Spain
jsalaspi@uoc.edu

Abstract. Different types of data privacy techniques have been applied
to graphs and social networks. They have been used under different
assumptions on intruders’ knowledge. i.e., different assumptions on what
can lead to disclosure. The analysis of different methods is also led by
how data protection techniques influence the analysis of the data. i.e.,
information loss or data utility.

One of the techniques proposed for graph is graph perturbation.
Several algorithms have been proposed for this purpose. They pro-
ceed adding or removing edges, although some also consider adding and
removing nodes.

In this paper we propose the study of these graph perturbation tech-
niques from a different perspective. Following the model of standard
database perturbation as noise addition, we propose to study graph per-
turbation as noise graph addition. We think that changing the perspec-
tive of graph sanitization in this direction will permit to study the prop-
erties of perturbed graphs in a more systematic way.

Keywords: Data privacy · Graphs · Social networks · Noise addition ·
Edge removal

1 Introduction

Data privacy has emerged as an important research area in the last years due
to the digitalization of the society. Methods for data protection were initially
developed for data from statistical offices, and methods focused on standard
databases.

Currently, there is an increasing interest to deal with big data. This includes
(see e.g. [10,38,40]) dealing with databases of large volumes, streaming data,
and dynamic data.

c© The Author(s) 2019
C. Pérez-Solà et al. (Eds.): DPM 2019/CBT 2019, LNCS 11737, pp. 121–137, 2019.
https://doi.org/10.1007/978-3-030-31500-9_8

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by MURAL - Maynooth University Research Archive Library

https://core.ac.uk/display/426859887?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31500-9_8&domain=pdf
https://doi.org/10.1007/978-3-030-31500-9_8

122 V. Torra and J. Salas

Data from social networks is a typical example of big data, and we often need
to take into account the three aspects just mentioned. Data from social networks
is usually huge (as the number of users in most important networks are on the
millions), posts can be modeled in terms of streaming, and is dynamic (we can
consider multiple releases of the same data set).

As data from social networks is highly sensitive, a lot of research efforts have
been devoted to develop data privacy mechanisms. Data privacy tools for social
networks include disclosure risk models and measures [2,35], information loss
and data utility measures, and perturbation methods (masking methods) [21].

Tools have been developed for the different existing privacy models. We
review the most relevant ones below.

1. Differential privacy. In this case, given a query, we need to avoid disclosure
from the outcome of the query. Privacy mechanisms are tailored to queries.

2. k-Anonymity. Different competing definitions for k-anonymity for graphs
exist, depending on the type of information available to the intruder. Then,
for each of these definitions, several privacy mechanisms have been developed.
One of the weakest condition is k-degree anonymity. Strongest conditions
include nodes neighborhoods.

3. Reidentification. Methods introduce noise into a graph so that intruders are
not able to find a node given some background information. Again, we can
have different reidentification models according to the type of information
available to the intruders (from the degree of a node to its neighborhood).
Here noise is usually understood as adding and removing edges from a graph.
Nevertheless, adding and removing nodes have also been considered. Methods
for achieving k-anonymity are also available for avoiding reidentification.

Note that while differential privacy and k-anonymity are defined as Boolean
constraints (i.e., a protection level is fixed and then we can check if this level is
achieved or not), this is not the case for reidentification. The risk of reidentifi-
cation is defined in terms of the proportion of records that can be reidentified.

In this work we focus on methods for graphs perturbation. More particularly,
we consider algorithms for graph randomization. In our context, they are the
methods that modify a graph to avoid re-identification (and also to achieve k-
anonymity). The goal is to formalize data perturbation for graphs, as a model
for perturbation of social networks.

Methods for graph randomization usually consist on adding and removing
edges. Performance of these methods is evaluated with respect to how the mod-
ification modifies the graph (the information loss caused to the graph), and the
disclosure risk after perturbation. Often, the execution time is also considered.

The structure of the paper is as follows. In Sect. 2 we review noise addition
and random graphs, as the formalization introduced in this paper is based on
the former and uses the latter. In Sect. 3 we formalize noise addition for graphs.
In Sect. 4, we discuss existing methods for graph randomization from this per-
spective. In Sect. 5, we present some results related to our proposal. The paper
finishes with some conclusions.

Graph Perturbation as Noise Graph Addition 123

2 Preliminaries

In this section we review some concepts and definitions that are needed later on
in this paper. We discuss noise addition for standard numerical databases and
random graphs.

2.1 Noise Addition

Noise addition has been applied for statistical disclosure control (SDC) for a
long time. An overview of different algorithms for noise addition for microdata
can be found in [7]. Simple application of noise addition corresponds to replace
value x for variable V with mean V̄ and variance σ2 by x + ε with ε ∼ N(0, σ2).
Correlated noise has also been considered so that noise do not affect correlations
computed from perturbated data. See [39] (Chapter 6) for details.

Noise addition is known because it can be used to describe other perturba-
tive masking techniques. In particular, rank swapping, post-randomization and
microaggregation are special cases of matrix masking (see [12]). i.e., multiplying
the original microdata set X by a record-transforming mask matrix A and by
an attribute transforming mask matrix B and adding a displacing mask C to
obtain the masked dataset Z = AXB + C.

Such operations are well defined for matrices and numbers, here we will define
an equivalent operation for graphs.

2.2 Random Graphs

Probability distributions over graphs are usually referred by random graphs.
There are different models in the literature. We review some of them here.

The Gilbert Model. This model is denoted by G(n, p). There are n nodes and
each edge is chosen with probability p. With mean degree dm = p(n − 1) for a
graph of n nodes, the probability of a node to have degree k is approximated by
dkme−dm/k!. I.e., this probability follows a Poisson distribution.

The Erdös-Rényi Model. This model is denoted by G(n, e), and represents a
uniform probability of all graphs with n nodes and e edges. This model is similar
to the previous one (basically asymptotically equivalent as [1] writes it).

Most usual networks we find in real-life situations (including all kind of social
networks) do not fit well with these two models. For example, it is known that
most networks have degree distributions that follow a power-law. Other proper-
ties usually present in real-life networks is transitivity (also known as clustering)
which means that if nodes v1 and v2 are connected, and nodes v2 and v3 are also
connected, the probability of having v1 and v3 connected is high.

Some models extend the previous ones considering degree sequences that
follow other distributions than the Poisson. One of such models is based on
having a given degree sequence.

Models Based on a Given Degree Sequence. We denote this model by
D(n, dn), where n is the number of nodes and dn is a degree sequence. That is,

124 V. Torra and J. Salas

dn ∈ N
n. D(n, dn) represents a uniform probability of all graphs with n nodes

and degree sequence dn. Not all degree sequences are allowed (e.g., there is no
graph for D(5, d5 = (1, 0, 0, 0, 0))). A graphical degree sequence is one for which
there is at least one graph that satisfies it.

The Havel-Hakimi algorithm [18,19] is an example of algorithm that builds
a graph for a graphical degree sequence. In order to have a graph drawn from a
uniform distribution D(n, dn) we can use [23]. The authors discuss a polynomial
algorithm for generating a graph from a distribution arbitrarily close to a uni-
form distribution, once the degree sequence is known. The algorithm is efficient
(see [22]) for p-stable graphs. This type of approach is known as the Markov
chain approach, as algorithms are based on switching edges according to given
probabilities. See e.g. [26,27].

Another way to draw a graph according to a uniform distribution from the
degree sequence, is to assign to each node in the graph di stubs (i.e., edges still to
be determined or out-going edges not yet assigned to the in-going ones). Then,
choose at random pairs of stubs to settle a proper edge. Nevertheless this does
not always work as we may finish with multiple edges and loops (see e.g. [3]).

The Configuration Model. In this case it is considered that the degree
sequence of a graph follows a given distribution. To build such a graph we can
first randomly choose a graphical degree sequence and then apply the machinery
for building a graph from the degree sequence as explained above.

In this configuration model, the degree sequence adds a constraint to the
possible graphs. All previous models can be combined with the fact that the
degree sequence is given. In fact, other types of constraints can be considered in
a model. For example, temporal and spatial.

For example, Spatial graphs may be generated in which the probability of
having an edge is proportional to the distance between the nodes [39]. Random
dot product graph models, a model proposed by Nickel et al. [29], is another
example. In a random dot product graph, each node has associated a vector in
an R

d space, and then the probability of having an edge between two nodes is
proportional to the random dot product of the vectors associated to the two
nodes.

Given a probability distribution over graphs G we will denote that we draw
a graph G from G using G ∼ G. E.g., G ∼ G(100, 0.2) is a graph G drawn from
a Gilbert model with 100 nodes and probability 0.2 of having an edge between
two nodes.

3 Noise Addition for Graphs

The main contribution of this paper is to formalize graph perturbation in terms
of noise addition. For this, we introduce two different definitions for this type
of perturbation. Both of them are based on selecting a graph according to a
probability distribution over graphs and adding the selected graph to the original
one.

We first define what we mean with graph addition.

Graph Perturbation as Noise Graph Addition 125

In order to add two graphs, we must align the set of nodes in which we are
going to add them. For example if G1 and G2 do not have any node in common,
then the addition G1 ⊕ G2 is equivalent to the disjoint union G1 ∪ G2.

The next simplest case is when one of the graphs is a subset of the other.
Then, the resulting graph will have the largest set of nodes (i.e., the union of
both sets of nodes), and the final set of edges is an exclusive-or of the edges of
both graphs.

Using an exclusive-or we can model both addition and removal of edges.
Whether we remove or add an edge will depend on whether this edge is in only
one graph or in both. Note also that this process is somehow analogous to noise
addition where X ′ = X + ε with ε following a normal distribution. In particular,
adding noise may correspond to increasing or decreasing the values in X. We
formalize below graph addition for subgraphs.

Definition 1. Let G1(V,E1) and G2(V ′, E2) be two graphs with V ⊂ V ′; then,
we define the addition of G1 and G2 as the graph G = (V ′, E) where E is defined

E = {e|e ∈ V ∧ e /∈ V ′} ∪ {e|e /∈ V ∧ e ∈ V ′}

We will denote that G is the addition of G1 and G2 by

G = G1 ⊕ G2.

Note that for any graph G1 and G2, G is a valid graph (i.e., G has no cycles
and no multiedges).

We discuss now the definitions of noise graph addition. As one of the graphs,
say G, is drawn from a distribution of graphs, the set of vertices created in G
are not necessarily connected with the ones in the original graph. Nevertheless,
even in this case, we can align (or, better, we still need to align) the two set of
nodes. The difference between alternative definitions is about how the two sets
of nodes are aligned. So, the general definition will be based on an alignment
between the two set of nodes. This alignment corresponds to a homomorphism
A : V ′ → V ∪ {∅}. Here, ∅ corresponds to a null node, or dummy node. This
notation comes from graph matching terminology (see e.g., [4]).

Definition 2. Let G1(V,E1) and G2(V ′, E2) be two graphs with |V | ≤ |V ′|. An
alignment is a homomorphism A : V ′ → V ∪ {∅}.

A matching algorithm builds such homomorphism for a given pair of graphs.

Definition 3. Let G1(V,E1) and G2(V ′, E2) be two graphs with |V | ≤ |V ′|. A
matching algorithm M is a function that given G1 and G2 returns an alignment.

We denote it by M(G1, G2). Then, given A = M(G1, G2), A(v) for any V ′ is
either a node in V or ∅.

Definition 4. Let G1(V,E1) be a graph, let G be a probability distribution on
graphs, and let M be a matching algorithm; then, noise graph addition for G1

126 V. Torra and J. Salas

following the distribution G and based on M consists of (i) drawing a graph
G2(V ′, E2) from G such that |V | ≤ |V ′| (i.e., G2 ∼ G)), (ii) aligning it with M
obtaining A = M(G1, G2), (iii) defining G′

2 as G2 after renaming the nodes V ′

into V ′′ as follows

V ′′ = V ∪ {v′|v′ ∈ V ′ and A(v′) = ∅}

where BV : V ′ → V ′′ is, as expected, BV (v′) = v′ if A(v′) = ∅ and BV (v′) =
A(v′) otherwise, (iv) defining BE(E2) = {(BV (v1), BV (v2))|(v1, v2) ∈ E2} and
(v) defining the protected graph G′(V ′, E′) as

G′ = G1(V,E1) ⊕ G2(V ′′, BE(E2)).

This definition allows for adding noise graphs that are not necessarily sub-
graphs of each other.

Another equivalent way, is to think of graphs as labeled graphs, that is, a
graph G = (V,E, μ), where μ : V → LV is a function assigning labels to the
vertices of the graph G. For simplicity we will assume that LV is a set of integers.
Then, given two labeled graphs G1 and G2, their edges would be defined by pairs
of integers corresponding to the labels of their corresponding nodes. In such way,
an alignment will be given naturally by the nodes that have the same label in
both graphs.

Otherwise, if the nodes from two graphs G1 and G2 are labeled respectively
as [n1] = 1, . . . , n1 and [n2] = 1, . . . , n2. To define a different alignment, we may
relabel their nodes in the following way.

First, choose two subsets S1 ⊂ [n1] and S2 ⊂ [n2] of the same size, assume
that n1 ≤ n2, define a bijection f : S2 �→ S1, then relabel the nodes in V (G2) as
f(j) if j ∈ S2 and as n1 + 1, . . . , n2 for the remaining nodes, whose new labels
f(j) are not in S2. In this way we obtain an alignment. Now we can identify a
node with its label and then use Definition 1 for graph addition.

3.1 Graph Matching and Edit Distance

On the other side of noise addition, we find the concept record linkage. In the
context of graphs this concept is similar to graph matching. Graph matching is a
key task in several pattern recognition applications [41]. However, it has a high
computational cost. Indeed, finding isomorphic graphs is NP-complete. Thus,
several methods have been devised for efficient approximate graph matching,
some use tree structures and strings such as [28,30,42], other are able to process
very large scale graphs such as [24,37] or [36].

A commonly used distance for graph matching and finding isomorphic sub-
graphs is graph edit distance (GED). It was formalized mathematically in [34].

For defining GED, a set of edit operations is introduced, for example, dele-
tion, insertion and substitution of nodes and edges. Then, the similarity of two
graphs is defined in terms of the shortest or least cost sequence of edit operations
that transforms one graph into the other.

Graph Perturbation as Noise Graph Addition 127

Of course when GED(G1, G2) = 0 this means that such graphs are isomor-
phic. Therefore for computing the similarity (or testing an isomorphism) between
graphs an exhaustive solution is to define all possible labelings (alignments) and
testing for similarity, this is quite inefficient.

However, we may use our definition of addition for defining a distance (that
we call edge distance) between two labeled graphs as:

ed(G1, G2) = |E(G1 ⊕ G2)|
We will prove that ed is a metric in the following theorem.

Theorem 1. Let G be the space of labeled graphs without isolated nodes,
G1, G2 ∈ G. Let ed(G1, G2) = |E(G1 ⊕ G2)|, then the following conditions hold:

1. ed(G1, G2) = 0 ⇔ G1 = G2

2. ed(G1, G2) = ed(G2, G1)
3. ed(G1, G3) ≤ ed(G1, G2) + ed(G2, G3)

Proof. First, ed(G1, G2) = 0 implies that every uv ∈ G1 is also in G2 and the
other way around. Hence E(G1) = E(G2). Since they do not have isolated nodes,
also V (G1) = V (G2) and G1 = G2. Second, ed(G1, G2) = ed(G2, G1) comes from
G1 ⊕ G2 = G2 ⊕ G1.

Third, for the triangle inequality we calculate two cases for an edge uv ∈
E(G1) ⊕ E(G3).

(i) uv ∈ E(G1) and uv ∈ E(G3) In this case, if uv ∈ E(G2) then uv ∈ E(G2 ⊕
G3). If uv ∈ E(G2) then uv ∈ E(G1 ⊕ G2).

(ii) uv ∈ G3 and uv ∈ G1 This case is equivalent to case i) only substituting G1

by G3.

Therefore we conclude that ed is a metric.

In fact, our metric ed(G1, G2) actually counts the number of edges we have
to modify (erase/add) to transform a graph G1 to obtain G2. Moreover, if we
sum G1 ⊕ (G1 ⊕ G2) we obtain G2 and G2 ⊕ (G1 ⊕ G2) = G1.

Therefore we may use our definition for graph addition not only for adding
noise, but also for measuring it. This is useful for comparing any published graph
with other graphs published under a different privacy protection algorithm (such
as a k-anonymous graph).

Moreover, we can use the edge distance to find the median graph Gmedian

similar to the median graph obtained in [13] for the graph edit distance.
For a family of graphs F , we define:

Gmedian(F) = arg minG̃

∑

Gi∈F
ed(G̃,Gi)

Note that Gmedian is not necessarily unique for a given family of graphs F , so
Gmedian is also a set of graphs.

In the following result we will show that the original graph G is such that is
at minimum distance from m protected graphs in G ⊕ G if there is not any edge
that belongs to more than m/2 of the graphs in G.

128 V. Torra and J. Salas

Theorem 2. Let F = G⊕G where G = {G′
1, . . . , G

′
m}. If |{G′

i ∈ G : e ∈ G′
i}| ≤

|G|
2 for all e ∈ E(G), then G ∈ Gmedian(F).

Proof. For each G′
i ∈ G denote Gi = G ⊕ G′

i. Let G̃ any graph different from G.
Then, E(G̃ ⊕ G) = A ∪ B, where A denotes the edges in G̃ \ G and B the edges
in G \ G̃. Therefore G̃ ⊕ Gi = G̃ ⊕ G ⊕ G′

i = (A ∪ B) ⊕ G′
i.

For e ∈ A ∪ B, then its either in both E(G ⊕ Gi) and E(G̃ ⊕ Gi) or in none
of both.

For e ∈ A ∪ B and e ∈ E(G′
i) then e ∈ E((A ∪ B) ⊕ G′

i) = E(G̃ ⊕ Gi), in
this case, e ∈ E(G′

i) = E(G ⊕ G ⊕ G′
i) = E(G ⊕ Gi), no matter whether e was

in G or not. So e is not counted in the sum of |E(G ⊕ Gi)| but it is counted in
|E(G̃ ⊕ Gi)|

For e ∈ A ∪ B and e ∈ E(G′
i) then e ∈ E((A ∪ B) ⊕ G′

i). So, e ∈ E(G̃ ⊕ Gi)
but e ∈ E(G′

i) = E(G ⊕ Gi).
We conclude for each edge e ∈ A ∪ B that the cases when e ∈ E(G′

i), the
edge e is counted in ed(G,Gi) but not in ed(G̃,Gi). While, in the cases when
e ∈ E(G′

i), the edge e is not counted in ed(G,Gi) but it is counted in ed(G̃,Gi).
Therefore, since all edges e belong to at most half of the graphs in G, then∑

Gi∈F
ed(G,Gi) ≤

∑

Gi∈F
ed(G̃,Gi), or equivalently, G ∈ Gmedian(F).

This provides us with a similar result as in noise addition for SDC in which
the expected value E(x + ε) = x for ε ∈ N(0, σ2).

4 Edge Noise Addition, Local Randomization and Degree
Preserving Randomization

In this section we explore the relation of graph noise addition with previous
randomization algorithms.

4.1 Edge Noise Addition

The method for graph matching from [28], uses the structure of the neighbors
at increasing distance from each node in the graph to grow a tree that is later
used to codify the entire graph. Such queries are mentioned in [21] and can be
iteratively refined to re-identify nodes in the graph. Hay et al. [20] propose as a
solution a graph generalization algorithm similar to [8] and recently improved in
[31]. To measure privacy, they sample a graph from all the possible graphs that
are consistent with such generalization.

In [20], they have suggested a random perturbation method that consisted on
adding m edges and removing m edges. It was later studied from an information-
theoretic perspective in [6]. They also suggested a random sparsification method.
Other random perturbation methods may be found in [9].

All these perturbation approaches are included in our definition. Observe
that they correspond to constraints on the definition of the set of noise graphs
(G) that we are using.

Graph Perturbation as Noise Graph Addition 129

For example, the obfuscation by random sparsification is defined in [6] as
follows. The data owner selects a probability p ∈ [0, 1] and for each edge e ∈ E(G)
the data owner performs an independent Bernoulli trial, Be ∼ B(1, p). And leaves
the edge in the graph in case of success (i.e., Be = 1) and remove it otherwise
(Be = 0). Letting Ep = {e ∈ E|Be = 1} be the subset of edges that passed
this selection process, the data owner releases the subgraph Gp = (U = V,Ep).
Then, they argue that such graph will offer some level of identity obfuscation
for the individuals in the underlying population, while maintaining sufficient
utility in the sense that many features of the original graph may be inferred
from looking at Gp.

Note that random sparsification is obtained with our method by using G =
G(n; 1 − p) ∩ G, then adding G ⊕ G′ for some G′ ∈ G.

Another relevant example is when we define G = {G′ : |E(G′)| = m}, then
G⊕G′ where G′ ∼ G is equivalent to adding x and deleting m−x edges, in total
changing m edges from the original graph. If we restrict G to be the family of
graphs G′ such that |E(G′)| = 2m and |E(G′) ∩ E(G)| = m, then we are adding
m edges and deleting m other edges, as in [20].

Note that, in this case all the m edges may be incident to the same node or
they may be all independent, however such restrictions could be added with our
method simply by specifying that the graphs G′ in G do not have degree greater
than m − 1, or that their maximum degree is at most 1.

We will show an example of such a local restriction in the following
subsection.

4.2 Local Randomization

In [43] a comparison between edge randomization and k-anonymity is carried
out, considering that the adversary knowledge is the degree of the nodes in the
original graph. There, they calculate the prior and posterior risk measures of
the existence of a link between node i and j (after adding k and removing k
edges) as:

P (aij = 1) =
m

N

P (aij = 1|ãij = 1) =
m − k

m

P (aij = 1|ãij = 0) =
k

N − m

(1)

We define G ⊕ Gt
u to be the local t-randomization which adds the graph Gt

u

with vertex set V (Gt
u) = u, u1, . . . , ut and edge set E(Gt

u) = uu1, . . . , uut in
which u is a fixed vertex from G and u1, . . . , ut ⊂ V (G \ u).

Then G ⊕ Gt
u changes t random edges incident to u in G. So we can apply

local t-randomization for all u in V (G) to obtain the graph

Gt = G
⊕

u∈V (G)

Gt
u

130 V. Torra and J. Salas

Following the notation from [43], we compare the privacy guarantees of local
t-randomization to the equivalent that would be k = tn/2 in their case. This
value comes from the fact that each node has t randomized edges and therefore
are counted twice.

We consider an adversary that knows about a given node and its degree.
Then tries to infer if the adjacent edges in the published graph come from the
original.

For a given node i we denote its degree as di and as di the value n−1−di, in
general for any value t, we denote as t the value n−1− t, this is the complement
of the degree di and the complement of the edges in E(Gt

u) respectively.

Theorem 3. The adversary’s prior and posterior probabilities to predict
whether there is a sensitive link between two target individuals i, j ∈ V (G)
by exploiting the degree di and accessing to the randomized graph Gt are the
following:

(i) the probability P (aij = 1) =
di

n − 1
(ii) the probability P (aij = 1|at

ij = 1) is equal to:

di(t
2 + t2)

di(t
2 + t2) + 2ditt

(iii) the probability P (aij = 1|at
ij = 0) is equal to:

2ditt

2ditt + di(t
2 + t2)

Proof. (i) First of all, P (aij = 1) =
di

n − 1
because the adversary knows di and

there are only n − 1 possible neighbors for i
(ii) Now we calculate P (aij = 1|at

ij = 1) in our graph Gt.
There are only two possibilities for an edge to belong to E(Gt) (i.e., at

ij = 1)
and to G (i.e., aij = 1). The edge was already in E(G) and it does not belong to
E(Gt

i) neither to E(Gt
j) or it is in E(G) and at the same time belongs to both

E(Gt
i) and E(Gt

j).
For an edge to belong to E(Gt) and not to G (i.e., aij = 0). There are also

two cases, aij = 0 and the edge belongs to exactly one of E(Gt
i) or E(Gt

j).
Considering that the probability that ij ∈ E(Gt) = t

n−1 , the probability

that ij ∈ E(Gt) = t
n−1 , P (aij = 1) = di

n−1 and P (aij = 0) = di

n−1 we obtain the
following:

dit
2 + dit

2

dit
2 + dit2 + ditt + ditt

which yields (ii).

Graph Perturbation as Noise Graph Addition 131

For (iii) we follow a similar argument as in (ii). For P (aij = 1|at
ij = 0) there

are also two possibilities for an edge that was in E(G) to be removed from E(Gt).
The edge ij is in E(G) and either ij ∈ E(Gt

i) \ E(Gt
j) or ij ∈ E(Gt

j) \ E(Gt
i).

For an edge to belong to G and not to E(Gt). There are also two more cases,
aij = 1 and the edge belongs to both E(Gt

i) and E(Gt
j), or to none of them.

This implies that:

P (aij = 1|at
ij = 0) =

ditt + ditt

ditt + ditt + dit
2 + dit2

Which simplifies to (iii) and finishes the proof.

4.3 Degree Preserving Randomization

As we have discussed in the introduction, graphs with a given degree sequence
can be uniformly generated by starting from a graph G ∈ D(n, dn) and swapping
some of its edges. The method of swap randomization is also used for generating
matrices with given margins for representing tables and assessing data mining
results in [14].

Recall that a swap in a graph consists of choosing two edges u1u2, u3u4 ∈
E(G), such that u2u3, u4u1 ∈ E(G) to obtain the graph G̃ such that V (G̃) =
V (G) and E(G̃) = E(G)\{u1u2, u3u4}∪{u2u3, u4u1}. It is also called alternating
circuit in [39] were it is used for proving that all multigraphs may be transformed
into graphs via alternating circuits, and used for generating synthetic spatial
graphs.

In [32] and [33] this is used to prove that scale-free sequences with parameter
γ > 2 are P-stable and graphic. Note that the P-stability property guarantees
that a graph with a given degree sequence may be uniformly generated by choos-
ing a graph G ∈ D(n, dn) by applying sufficient random swaps.

Then for a given graph G with n nodes labeled as [n] = 1, . . . , n We define
the family SG = G′ such that G′ = {i, j, k, l} ⊂ [n], where ij, kl ∈ E(G) and
jk, li ∈ E(G). In other words SG is the set of alternating 4-circuits of G.

We may choose an arbitrary number m of such noise graphs G′
1, . . . , G

′
m and

add them to G, that is G = G ⊕ G′
1 ⊕ . . . ⊕ G′

m.
Following this procedure for m large enough is equivalent to randomizing G

to obtain all the graphs D(n, dn). Actually, for any two graphs with the same
degree sequence G1, G2 ∈ D(n, dn), G′ = G1 ⊕ G2 must have at each node i the
same number of edges ij that belong to E(G) as the edges il that do not belong
to E(G), since the node i has the same degree in G1 and in G2. Thus, any graph
in D(n, dn) may be generated by starting at some graph G and adding G′ from
the set G of all the graphs that are a union of alternating circuits of G.

132 V. Torra and J. Salas

5 The Most General Approach for Noise Addition
for Graphs

In all the previous sections we were restrictive with respect to the noise graphs
that we were adding, in this last section we apply the Gilbert model which was
discussed in Sect. 2.2, without any restriction.

This has as a consequence that we may not be able to obtain strong conclu-
sions on the structure of the graphs obtained after noise addition, in contrast
to the results in previous sections. However, by reducing the restrictions, we are
increasing the possible noise graphs that we add, hence we increase uncertainty
and therefore protection. In Table 1 we present the noise addition methods dis-
cussed in this paper, together with some of their properties and requirements.

Table 1. Graph perturbation methods in terms of graph noise addition.

Noise addition
method

Definition of G Additional
requirements for
G′ ∈ G

Properties of G ⊕ G

Random
perturbation [20]

|E(G′)| = 2m |E(G′) ∩ E(G)| =
m
|E(G′) ∩ E(G)| =
m

G′ adds m edges and
removes m edges

Random
sparsification [6]

G′ ∈ G(n; 1 − p) ∩ G None The edges of G remain
with probability p, no
added edges

Local
t-randomization

G′ = Gt
u Applied to every

node in G
Every node has t
modified incident edges

Degree preserving
randomization [5]

G′ ∈ SG SG is the set of
swaps of G

G,G ⊕ G′ ∈ D(n, dn)

Gilbert model G′ ∈ G(n; 1 − p) None Every edge is added or
removed with
probability p

Proposition 1. Let G1(V,E1) be an arbitrary undirected graph, and let
G2(V,E2) be an undirected graph generated from a Gilbert model G(|V |, p). Then,
the expected number of edges of G2 is p · |V | · (|V | − 1)/2.

Proposition 2. Let G1(V,E1) be an arbitrary undirected graph with n1 = |E1|
edges, and let G2(V,E2) be an undirected graph generated from a Gilbert model
with n2 edges. Then, the noise graph addition of G1 and G2

G′ = G1(V,E1) ⊕ G2(V,E2)

will have on average |E|′ = n2 · (t − n1)/t + (t − n2) · n1/t edges, where t =
|V | ∗ (|V | − 1)/2.

Graph Perturbation as Noise Graph Addition 133

Proof. Let the graph G1 have n1 = |E1| edges, and let the graph G2 have n2

edges. Being the graph undirected, the number of edges for a complete graph is
t = v ∗ (v − 1)/2 where v = |V | is the number of nodes. Then, we will have on
average that

– n2 · n1/t edges of G2 link two nodes also linked by G1,
– n2 · (t − n1)/t edges of G2 link two nodes not linked by G1,
– (t − n2) · n1/t edges of G1 link two nodes not linked by G2, and
– (t−n2)(t−n1)/t corresponds to pairs of nodes neither linked in G1 nor in G2.

So, addition of graphs G1 and G2 result into a graph with n2 · (t − n1)/t +
(t − n2) · n1/t edges on average.

From this, it follows that only when n2 = 0, the number of edges of G′ is the
same as the ones in G1; or when n1 = t/2. This is expresses as a lemma below.

Lemma 1. Let G1(V,E1) and G2(V,E2) be as above with n1 and n2 the cor-
responding number of edges. Then, the noise graph addition of G1 and G2,
G′ = G1(V,E1) ⊕ G2(V,E2) has n1 nodes when n2 = 0 or when n1 = t/2.

Proof. The solutions of n1 = n2 · (t − n1)/t + (t − n2) · n1/t are such that
tn1 = n2t−n2n1 + tn1 −n2n1 or, equivalently, 0 = n2t−n2n1 +−n2n1. So, one
solution is that n2 = 0, and if this is not the case, n1 = t/2.

Fig. 1. Average number of edges in G′ when the graph G1 has 100 nodes and, thus,
t = 4950, and n1 is in the range [0,4950]. G2 generated using the Gilbert model G(|V |, p)
with p as in the graph G(V,E1) (i.e., the expected number of edges satisfying |E2| =
|E1|).

Let us consider the case that we use our original graph to build a Gilbert
model G(|V |, p) from the graph G1(V,E1). That is, we generate a graph with

134 V. Torra and J. Salas

Table 2. Number of nodes and edges in some of small graphs in the literature using
the Gilbert model G(|V |, p) with p as in the graph G(V,E1) (i.e., the expected number
of edges satisfying |E2| = |E1|).

Name Reference Nodes Edges Edges added % of edges added

Jazz [16] 198 5484 2400 43.7

Karate [44] 34 156 69 44.3

Football [15] 115 1226 767 62.5

Erdos971 [45] 472 2628 2503 95.2

Urvemail [17] 1133 10902 10531 96.5

CElegans [11] 453 4050 3729 92.0

Caida [25] 26475 106762 106697 99.9

p = |E1|/(|V | ∗ (|V | − 1)/2). Then, the expected value for n2 is n2 = n1 = |E1|.
Therefore, noise graph addition of G1 and G2 will have n1 · (t−n1)/t+(t−n1) ·
n1/t = (2n1t − 2n1n1)/t edges.

Figure 1 illustrates this case for the case of 100 nodes and edges between 0
and 4950 (i.e., the case of a complete graph). As proven in the lemma, only when
n1 = 0 or when n1 = t/2 we have that the number of edges in the resulting graph
is exactly the same as in the original graph (i.e., n2 is 0 or t/2, respectively).
We can also see that while n1 ≤ 4950/2, the number of edges in the resulting
graph is not so different to the ones on the original graph (maximum difference
is at n1 = t/4 with a difference of t/8 edges), but when n1 > 4950/2 the
difference starts to diverge. Maximum difference is when the graph is complete
that addition will result into the graph with no edges.

Observe that difference between the edges in the added graph and the original
one will be (2n1t−2n1n1)/t−n and that the maximum difference is at n1 = t/4.
For n1 = t/4 the difference (2n1t − 2n1n1)/t − n = t/8. For n1 = t/4 this means
a maximum of 50% increase in the number of edges.

Nevertheless, if we consider the proportion of edges added with respect to the
total number of edges, this is 1 − 2 ∗ n1/t, which implies that the proportion is
decreasing with maximum equal to 100% when n1 = 1. Naturally, when n1 ≥ t/2
we start to have deletions instead of additions and with n1 = t we have a
maximum number of deletions (i.e., 100% because all edges are deleted).

Let us consider a few examples of graphs used in the literature. For each
graph, Table 2 shows for a few examples of graphs, the number of nodes and
edges, the expected number of edges added using a Gilbert model, and the
expected increase in the number of edges. It can be seen that for large number
of nodes, as the actual number of edges is rather low with respect to the ones in
a complete graph, the % of increment of edges is around 100%.

Graph Perturbation as Noise Graph Addition 135

6 Conclusions

In this paper we have introduced a formalization for graph perturbation based
on noise addition. We have shown that some of the existing approaches for
graph randomization can be understood from this perspective. We have also
proven some properties for this approach, noted that it encompasses many of
the previous randomization approaches while also defining a metric for graph
modification. Additionally, we defined the local t-randomization approach which
guarantees that every node has t-neighboring edges modified. It remains as future
work to study new families of noise graphs and test their privacy and utility
guarantees.

Acknowledgments. This work was partially supported by the Swedish Research
Council (Vetenskapsr̊adet) project DRIAT (VR 2016-03346), the Spanish Govern-
ment under grants RTI2018-095094-B-C22 “CONSENT” and TIN2014-57364-C2-2-R
“SMARTGLACIS”, and the UOC postdoctoral fellowship program.

References

1. Aiello, W., Chung, F., Lu, L.: A random graph model for power law graphs. J.
Exp. Math. 10, 53–66 (2001)

2. Balsa, E., Troncoso, C., Dı́az, C.: A metric to evaluate interaction obfuscation in
online social networks. Int. J. Unc. Fuzz. Knowl.-Based Syst. 20, 877–892 (2012)

3. Bannink, T., van der Hofstad, R., Stegehuis, C.: Switch chain mixing times through
triangle counts. arXiv:1711.06137 (2017)

4. Bengoetxea, E.: Inexact graph matching using estimation of distribution algo-
rithms, PhD Dissertation, Ecole Nationale Supérieure des Télécommunications,
Paris (2002)

5. Berge, C.: Graphs and Hypergraphs. North-Holland, Netherlands (1973)
6. Bonchi, F., Gionis, A., Tassa, T.: Identity obfuscation in graphs through the infor-

mation theoretic lens. Inf. Sci. 275, 232–256 (2014)
7. Brand, R.: Microdata protection through noise addition. In: Domingo-Ferrer, J.

(ed.) Inference Control in Statistical Databases. LNCS, vol. 2316, pp. 97–116.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-47804-3 8

8. Campan, A., Truta, T.M.: Privacy, security, and trust in KDD, pp. 33–54 (2009)
9. Casas-Roma, J., Herrera-Joancomart́ı, J., Torra, V.: A survey of graph-

modification techniques for privacy-preserving on networks. Artif. Intell. Rev.
47(3), 341–366 (2017)

10. D’Acquisto, G., Domingo-Ferrer, J., Kikiras, P., Torra, V., de Montjoye, Y.-A.,
Bourka, A.: Privacy by design in big data: an overview of privacy enhancing tech-
nologies in the era of big data analytics, ENISA Report (2015)

11. Duch, J., Arenas, A.: Community identification using extremal optimization. Phys.
Rev. E 72, 027–104 (2005)

12. Duncan, G.T., Pearson, R.W.: Enhancing access to microdata while protecting
confidentiality: prospects for the future. Statist. Sci. 6(3), 219–232 (1991)

13. Ferrer, M., Valveny, E., Serratosa, F.: Median graph: a new exact algorithm using
a distance based on the maximum common subgraph. Pattern Recogn. Lett. 30(5),
579–588 (2009)

http://arxiv.org/abs/1711.06137
https://doi.org/10.1007/3-540-47804-3_8

136 V. Torra and J. Salas

14. Gionis, A., Mannila, H., Mielikäinen, T., Tsaparas, P.: Assessing data mining
results via swap randomization. ACM Trans. Knowl. Discov. Data 1(3), 14 (2007)

15. Girvan, M., Newman, M.E.J.: Community structure in social and biological net-
works. Proc. Nat. Acad. Sci. US Am. 99(12), 7821–7826 (2002)

16. Gleiser, P., Danon, L.: Community structure in jazz. Adv. Complex Syst. 6, 565
(2003)

17. Guimera, R., Danon, L., Diaz-Guilera, A., Giralt, F., Arenas, A.: Self-similar com-
munity structure in a network of human interaction. Phys. Rev. E 68, 065103(R)
(2003)

18. Hakimi, S.L.: On realizability of a set of integers as degrees of the vertices of a
linear graph I. J. Soc. Ind. Appl. Math. 10, 496–506 (1962)

19. Havel, V.: A remark on the existence of finite graphs. Časopis Pro Pěstováńı
Matematiky (in Czech) 80, 477–480 (1955)

20. Hay, M., Miklau, G., Jensen, D., Weis, P., Srivastava, S.: Anonymizing social net-
works, Technical report No. 07-19, Computer Science Department, University of
Massachusetts Amherst, UMass Amherst (2007)

21. Hay, M., Miklau, G., Jensen, D., Towsley, D., Weis, P.: Resisting structural rei-
dentification in anonymized social networks. Proc. VLDB Endow. 1(1), 102–114
(2008)

22. Jerrum, M., McKay, B.D., Sinclair, A.: When is a graphical sequence stable?
In: Frieze, A., Luczak, T. (eds.) Random Graphs, vol. 2, pp. 101–115. Wiley-
Interscience, Hoboken (1992)

23. Jerrum, M., Sinclair, A.: Fast uniform generation of regular graphs. Theoret. Com-
put. Sci. 73, 91–100 (1990)

24. Koutra, D., Shah, N., Vogelstein, J.T., Gallagher, B., Faloutsos, C.: Deltacon:
principled massive-graph similarity function with attribution. ACM Trans. Knowl.
Discov. Data 10(3), 28:1–28:43 (2016)

25. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: densification and
shrinking diameters. ACM Trans. Knowl. Discov. Data 1(1), 1–40 (2007)

26. Miklós, I., Erdös, P.L., Soukup, L.: Towards random uniform sampling of bipartite
graphs with given degree sequence. Electr. J. Comb. 20(1), 16 (2013)

27. Milo, R., Kashtan, N., Itzkovitz, S., Newman, M.E.J., Alon, U.: On the
uniform generation of random graphs with prescribed degree sequences.
arXiv:cond-mat/0312028v2 (2004)

28. Nettleton, D.F., Salas, J.: Approximate matching of neighborhood subgraphs - an
ordered string graph levenshtein method. Int. J. Unc. Fuzz. Knowl.-Based Syst.
24(03), 411–431 (2016)

29. Nickel, C.L.M.: Random dot product graphs: a model for social networks, PhD.
dissertation, Maryland (2006)

30. Robles-Kelly, A., Hancock, E.R.: String edit distance, random walks and graph
matching. Int. J. Pattern Recogn. Artif. Intell. 18(03), 315–327 (2004)

31. Ros-Mart́ın, M., Salas, J., Casas-Roma, J.: Scalable non-deterministic clustering-
based k-anonymization for rich networks. Int. J. Inf. Secur. 18(2), 219–238 (2019)

32. Salas, J., Torra, V.: Graphic sequences, distances and k-degree anonymity. Discrete
Appl. Math. 188, 25–31 (2015)

33. Salas, J., Torra, V.: Improving the characterization of p-stability for applications
in network privacy. Discrete Appl. Math. 206, 109–114 (2016)

34. Sanfeliu, A., Fu, K.: A distance measure between attributed relational graphs for
pattern recognition. IEEE Trans. Syst. Man Cybern. SMC–13(3), 353–362 (1983)

35. Stokes, K., Torra, V.: Reidentification and k-anonymity: a model for disclosure risk
in graphs. Soft Comput. 16(10), 1657–1670 (2012)

http://arxiv.org/abs/cond-mat/0312028v2

Graph Perturbation as Noise Graph Addition 137

36. Sun, Z., Wang, H., Wang, H., Shao, B., Li, J.: Efficient subgraph matching on
billion node graphs. Proc. VLDB Endow. 5(9), 788–799 (2012)

37. Tian, Y., Patel, J.M.: Tale: a tool for approximate large graph matching. In:
2008 IEEE 24th International Conference on Data Engineering, pp. 963–972, April
(2008)

38. Torra, V.: Data Privacy: Foundations, New Developments and the Big Data Chal-
lenge. SBD, vol. 28. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
57358-8

39. Torra, V., Jonsson, A., Navarro-Arribas, G., Salas, J.: Synthetic generation of
spatial graphs. Int. J. Intell. Syst. 33(12), 2364–2378 (2018)

40. Torra, V., Navarro-Arribas, G.: Big data privacy and anonymization. In: Lehmann,
A., Whitehouse, D., Fischer-Hübner, S., Fritsch, L., Raab, C. (eds.) Privacy and
Identity 2016. IAICT, vol. 498, pp. 15–26. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-55783-0 2

41. Vento, M.: A long trip in the charming world of graphs for pattern recognition.
Pattern Recogn. 48(2), 291–301 (2015)

42. Yan, X., Han, J.: gspan: graph-based substructure pattern mining. In: 2002
IEEE International Conference on Data Mining, 2002. Proceedings., pp. 721–724,
December (2002)

43. Ying, X., Pan, K., Wu, X., Guo, L.: Comparisons of randomization and k-degree
anonymization schemes for privacy preserving social network publishing. In: Pro-
ceedings of the 3rd Workshop on Social Network Mining and Analysis, ser. SNA-
KDD 2009, pp. 10:1–10:10. New York, NY, USA, ACM (2009)

44. Zachary, W.W.: An information flow model for conflict and fission in small groups.
J. Anthropol. Res. 33, 452–473 (1977)

45. http://vlado.fmf.uni-lj.si/pub/networks/pajek/data/gphs.htm

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-319-57358-8
https://doi.org/10.1007/978-3-319-57358-8
https://doi.org/10.1007/978-3-319-55783-0_2
https://doi.org/10.1007/978-3-319-55783-0_2
http://vlado.fmf.uni-lj.si/pub/networks/pajek/data/gphs.htm
http://creativecommons.org/licenses/by/4.0/

	Graph Perturbation as Noise Graph Addition: A New Perspective for Graph Anonymization
	1 Introduction
	2 Preliminaries
	2.1 Noise Addition
	2.2 Random Graphs

	3 Noise Addition for Graphs
	3.1 Graph Matching and Edit Distance

	4 Edge Noise Addition, Local Randomization and Degree Preserving Randomization
	4.1 Edge Noise Addition
	4.2 Local Randomization
	4.3 Degree Preserving Randomization

	5 The Most General Approach for Noise Addition for Graphs
	6 Conclusions
	References

