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Abstract—In this work we study how the outliers can distort
a partitional clustering process. We present a new algorithm to
avoid this distortion. It is based on the minimization of a new
objective functions, which is an extension of the one of the Fuzzy
Clusters Means algorithm. The main novelty is the use of interval
values to calculate the membership degrees of each datum to each
cluster. We show the performance of our proposal over different
datasets and we present its advantages in image segmentation.

Index Terms—clustering, interval membership degree, outliers

[. INTRODUCTION

Clustering is an unsupervised classification problem where
the purpose is to find the natural groups that exist in a dataset.
It is based on the idea that the data belonging to the same
group must have similar characteristics whereas the data that
belong to different groups must be different in the same
characteristics [5].

Clustering methods can be generally divided into two types:
hierarchical methods and partitional ones. Hierarchical meth-
ods construct a tree based on the similarities between data
[6] [12]. On the other side, partitional methods divide the
whole dataset into a fixed number of clusters, each of them
represented by a centroid. The centroid is the point whose sum
of distances to all the data in the cluster is minimum [8] [9]
[10]. In this work we focus on partitional clustering.

K-means [4] [10] is one of the most well known and
used algorithms among the partitional methods. This algorithm
divide all the existing data into c clusters and calculates the
centroid of each cluster. The goal is to minimize the sum of the
distances between every datum and its corresponding centroid.
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where ||z|| 4 = V2t Az is any norm associated with an inner
product.
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One of the main problems of the k-means algorithm, in the
same way as it happens in most partitional algorithms, is that
it is not able to deal with natural groups which are overlapped.
In this situation, the data located in the overlapped area should
belong to all of these clusters, but the characteristics of the
algorithm restrict them to belong only to one of them.

In the literature, this problem is solved using fuzzy set
theory [13]. With this tool, each datum can belong to more
than one cluster, with different membership degrees. The
membership degrees are real values between O and 1. The
Fuzzy Cluster Means (FCM) algorithm [1] extends the idea
of the k-means algorithm using fuzzy set theory.

However, if the data to classify include outliers, the FCM
cannot detect them, so its results are distorted by them.

To solve this new problem, in this work we present a new
clustering algorithm that extends the FCM. It is able to detect
the outliers in the data in order to minimize their influence in
the result.

In the same way as fuzzy sets allow to include new informa-
tion in the clustering process, we use an extension of fuzzy sets
to increase the amount of new information. This extension is
the use of interval-valued fuzzy sets. In this work we use these
sets to quantify the membership degrees. Therefore, every
datum of the dataset belongs to all the existing clusters with
different membership degrees made of intervals in [0,1]. We
use the length of each interval to model the uncertainty we
have that this datum belongs to the clusters we are detecting.
For example, if we are completely sure that one datum belongs
to one or more clusters, then its membership degrees will be
intervals with length 0. On the contrary, if we are completely
sure that one datum does not belong to any of the clusters,
then its membership degrees will be intervals with length 1,
which is the maximum.

The remaining of this work is organized as follows: in
Section II we briefly summarize the Fuzzy Cluster Means al-
gorithm and we show its inaccuracies when there are outliers;
in Section III we show our new proposal and in Sections
IV and V we apply it over several datasets and images to
segment, respectively. Finally, in Section VI we finish with
our conclusions.
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II. Fuzzy C-MEANS

Fuzzy Cluster Means (FCM) [1] is one of the most well
known clustering algorithms. Thanks to the use of fuzzy sets,
it allows each datum to belong to more than one cluster at the
same time. Indeed, it is based on the idea that every datum
has to belong to all the existing clusters with a specific mem-
bership degree. The membership degrees are values between
0 and 1, with the restriction that the sum of all membership
values of each datum must be always 1.

Under this restriction, the goal of the FCM is to minimize
the sum of the weighted sum of distances between every datum
and all the centroids. The weights are proportional to the
membership values.

n C
T = (uin) ™ok — vill3
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where x, is the k-th datum to classify, v; is the centroid of
the cluster i, u;;, is the membership degree of the datum & to
the cluster ¢ and m is a real value greater than 1. Moreover,
three constraints must be fulfilled:

o U;p, >0, k=1l.n,i=1.c
e Yhjuk >0, i=1l.c
. Z;:l Uil = 1, k=1.n

The solution to this problem is an iterative process that
starts with random centroids. Based on them, the algorithm
calculates the membership values of every datum to every

cluster:
c 2/(m—1)
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k = 1l.n, i = l..c. Based on the membership values, the

algorithm updates the centroids:

v, = 2ok (Wik) Tk

()™
i = 1..c. The process finishes when the changes in the values
are small enough.

The FCM is not able to deal properly with noisy datasets or
datasets that include outliers. When working with this kind of
datasets, all the data must be assigned to the different clusters,
so the remote data affect the centroids in a wrong way.

In Figure 1 we show a dataset where each datum is
represented by a black star. There are two clear overlapped
clusters and one datum that does not belong to any of the
groups. After applying the FCM for two clusters, we show in
red circles the obtained centroids.

Both clusters are vertically centered at the point 2.5. How-
ever, as the outlier located at (5,20) belongs to both clusters,
the centroids are moved upwards, exactly to the value 2.83.

Moreover, if we analyze the membership values, the datum
located at (5, 2.5) belongs to both clusters with a value 0.5. In
the same way, the datum located at (5, 20) also belongs to both
clusters with a value of 0.5. Therefore, the algorithm considers
both data equally to determine the clusters. But looking at
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Fig. 1. Execution of the FCM over a dataset with one outlier. Original data
in black stars. Final centroids in red circles.

the figure, it is clear that the first datum is located in the
intersection of both clusters whereas the second datum is out
of the clusters.

From this example we can conclude that the Fuzzy Cluster
Means does not lead to an appropriate representation of the
clusters when the dataset to classify includes outliers, i.e. data
that do not belong to any of the existing clusters. We present
an alternative representation that permits us to distinguish
between (5, 20) and (5, 2.5).

III. NEW ALGORITHM FOR INTERVAL CLUSTERING

In this section we present our proposal for clustering.
Its main novelty is the use of interval-valued fuzzy sets to
represent the membership degree of every datum to every
cluster.

We denote by L([0,1]) the set of all closed subintervals in
[0, 1]. That means

L([0,1)) = {x = [z,7]|(z,7) € [0,1]* and z <7}

An interval-valued fuzzy set Z in the universe U # () is a
mapping Z : U — L([0,1]).

Our proposal is based on one of the existing interpretations
of interval-valued fuzzy sets: “The membership degree of an
element to the set corresponds to a value in the considered
membership interval. We cannot say in a precise way what
that value is; therefore, we just provide bounds for it” [2].

Following this idea, we can assume that the length of the
interval represents the uncertainty we have when determining
the membership value of the element to the set.

Applying this interpretation to our problem, when the algo-
rithm is completely sure that one datum belongs to a cluster,
then the length of its membership intervals will be minimum.
It does not matter if the membership value is [1,1] to one
cluster and [0, 0] to the other ones; or if the membership value
is [0.5,0.5] to two clusters. On the contrary, if the algorithm
is not sure whether one datum belongs to any of the natural
clusters in the dataset, then the length of all its membership
intervals will be bigger. In the limit case, one datum can belong
with an interval of [0, 1] to all of the existing clusters.
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If there is no doubt about the membership degrees of one
datum to the clusters, then all its membership lower bounds
will be equal to its membership upper bounds. Following the
constraints of the FCM, the sum of all the lower (or upper)
memberships will be 1, so the total sum of all memberships
must be 2. On the other hand, when the doubt about the
memberships is maximum, the interval membership degrees to
all clusters will be [0, 1], so the total sum of all memberships of
one datum will be equal to the number of clusters. Therefore,
in our proposal the sum of all the bounds (lower and upper)
of the memberships of one datum to all the clusters must be
a value between 2 and ¢, being ¢ the number of clusters.

In this proposal, we want to minimize the weighted sum of
the distances between every datum and every centroid using
the membership values as weights, like in the k-means and
FCM algorithms. However, in this case, the membership values
are intervals. When there is a small doubt, the lower and upper
bounds of each interval are quite similar, and they represent
the value of the weight. On the contrary, when there is a big
doubt whether a datum belongs to a cluster, we do not want
its information to modify the centroid of this cluster. We want
this weight to be small. If the length of this interval is large,
it means that the lower bound is small. Hence, in both cases
we can use the lower bound of the membership interval as the
weight for the weighted sum.

It is also necessary to restrict the sum of the lengths of the
membership intervals. If we do not do this, the system would
always be minimized with interval memberships of [0, 1] for
all data and clusters.

Therefore, the objective function we want to minimize in
our proposal is the following:

1 n c n c
J== Uik m Tp — v 2+ Wik — Uik m
“kzﬂ;(i) I 1 ;;( Uik)
where xj, is the k-th datum to classify, v; is the centroid of
the cluster @, [w;x, U;x] is the interval membership of datum &
to the cluster 7 and m is a real value greater than 1.

The parameter /o allows to adjust the relative importance
of both terms of the equation. It is necessary to remark that
both terms do not need to be in the same scale: the first term
depends on the distances between data whereas the second
term is always managing values between 0 and 1. By tuning
this parameter, we can obtain a similar solution to the FCM if
the importance of the second term is bigger, or we can obtain
a solution with much more doubt on it, if the first term is more
important.

This function must fulfil the following constraints:

k=1.n,

o There should be proper intervals. U > g,
i1 =1..c

o All the clusters must have at least one datum with lower
membership bound greater than 0. >, _; u, > 0,
l..c

o The sum of all the bounds of the memberships of one
datum to all clusters must be between 2 and c. 2 <
i (uik + k) <e, k=1l

i =

When there are two clusters in the dataset, this function can
be minimized by using Lagrangian multipliers. In this way, we
get an iterative algorithm similar to the FCM. From a random
initialization, we update the interval memberships based on
the data from the centroids.

2(2a)"/m*
Uik = B 1
e = il = e 2(20) V1 55y o |
2 [k — vl + (2a) /]
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for £ = 1..n, i« = 1..c. From these interval memberships,
we update the centroids.

v — ZZ#(Uik)mxk
D e (win)™
for i = 1..c. The process finishes when the changes in the
values are small enough.

IV. NUMERICAL EXAMPLES

In this section we show the performance of our proposal
over some illustrative examples. To visualize the results in an
easy way, all of them are 2-dimensional examples.

20 *

18

16

14

12

10

8

6

4 * ¥ ¥ ¥ * ¥ ¥ ¥

of * X 2% F ¢ % IS %+
* *k * * * ¥k ¥k ¥

00 2 4 6 8 10

Fig. 2. Execution of our proposal and FCM over a dataset with one outlier.
Dataset shown in black stars. Obtained centroids by our proposal in blue
triangles. Obtained centroids by FCM in red circles.

This first example is the same dataset as the one in Figure 1.
As we mentioned before, the FCM obtains distorted centroids
because of the influence of the outlier. On the contrary, our
proposal is able to avoid the bad influence and, therefore, to
calculate the real centers of the clusters. In Figure 2 the final
centroids of our proposal are in blue triangles and the ones
obtained by the FCM are in red circles.

If we analyze the interval membership values, the datum
located in the overlapped area (5, 2.5) has a membership value
of [0.3488, 0.6512] to both clusters. Le., the length is 0.3024.
The outlier (5, 20) has a membership value of [0.0004, 0.9996]
to both clusters and, thus, the length is 0.9991. We clearly
observe that the algorithm is able to determine that these two
data are different for the classification process. The influence
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of the outlier in the centroids is very small, due to the big
length of the intervals. This is why the centroids are located
in the real geometric centers of the clusters.
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Fig. 3. Execution of the proposed algorithm and FCM over a dataset without
any outlier. Original dataset in black stars. Centroids obtained by our proposal
in blue triangles. Centroids obtained by FCM in red circles.

In the second example we start with a dataset made of
two clusters without outliers (Figure 3). We observe that the
centroids found by our algorithm (blue triangles) are very
similar to the centroids found by the FCM (red circles).

If we add to the dataset three new data which are outliers,
then the results of both algorithms are different (see Figure 4).
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Fig. 4. Dataset made of three outliers and the original dataset from Figure 3.
The three outliers are in positions (0,20), (1,18) and (0,10). Execution of the
proposal and the FCM. Dataset to classify in black stars. Centroids obtained
by our proposal in blue triangles. Centroids obtained by FCM in red circles.

We can visually check that the addition of three outliers has
just slightly modified the centroids obtained by our algorithm.
Numerically, the original centroids were

o Cluster 1— (1.2107, 0.8496)

o Cluster 2— (9.4268, 9.8496)
and now they are

o Cluster 1— (1.2223, 0.8670)

o Cluster 2— (9.4149, 9.7710)

However, in the new execution of the FCM the centroids are
clearly influenced by the outliers. The centroid of the cluster
1 is moved upwards whereas the centroid of the cluster 2 is
moved to the left. Numerically, the original centroids were

o Cluster 1— (1.2531, 0.8985)
o Cluster 2— (9.2796, 9.4647)

and now they are

o Cluster 1— (1.2181, 1.5217)
o Cluster 2— (8.7661, 9.9312)

One of the important aspects to bear in mind when applying
our clustering proposal is the adjustment of the parameter
1/a. This parameter is related to the length of the obtained
membership intervals. If 1/a represents big values, then the
length of the intervals obtained by the algorithm is also big.
On the contrary, if the parameter !/a represents small values,
then the length of the obtained intervals are also small. It is
needed to select a suitable value for every dataset.

Based on several examples, a proper value is when a takes
the value of the percentile 10 or 15 of the distances of all the
data.

V. EXAMPLES ON IMAGE SEGMENTATION

In this section we apply our algorithm for the segmentation
of images. The goal of image segmentation is to divide all the
pixels in an image into several regions, each one representing
one object in the image. In particular, it has to assign a
label to every pixel in such a way that pixels with common
characteristics share the same label.

The simplest method to segment an image is thresholding,
which consists in selecting a value in such a way that all
pixels whose intensity is greater than this value are labelled
as object and all pixels whose intensity is lower than this
value are labelled as background, or vice versa [7]. However,
when we work with colour images or we consider more
characteristics of a pixel than its intensity, we cannot simply
apply thresholding. In these cases, one of the most used
techniques to segment an image is clustering [5] [11].

When segmenting an image with the FCM, it is com-
monly accepted that each pixel should belong to the re-
gion with the biggest membership value. Following this
convention, in Figure 5 we show an image from the
Berkeley dataset (https://www2.eecs.berkeley.edu/Research/
Projects/CS/vision/bsds/) and in Figure 6 its segmentation
using the FCM. We have used the average colour of each
region for each cluster.

Fig. 5. Original image 42049 from Berkeley dataset.
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Fig. 6. Image 42049 segmented using FCM. Each clusters is coloured with
the average colour of its pixels.

It is easily observable that the segmentation is not perfect.
There are some pixels inside the bird and the branches which
are assigned to the background. Moreover, the pixels in the
four squares should belong to the background instead of to
the object.

We have explained that one of the advantages of our
proposed algorithm is that the clusters are not influenced by
the outliers. But in this application we focus on the other
advantage of our proposal: it is able to identify the doubt in
the assignment of each datum. In our example, it is able to
identify the doubt when assigning each pixel to a region of the
image. Based on this, we can distinguish between the pixels
that we are sure the region they belong to and the pixels that
are hardly identifiable.

The pixels that the algorithm is not sure enough to classify
can suffer an extra post process, taking into account also the
information of their surrounding pixels, in order to get more
compact regions.

Depending on the purpose of the segmentation, we can fix
the threshold to classify one pixel as correctly segmented or as
a doubtful one. This threshold is always based on the length
of the membership intervals. For example, in Figure 7 we see
several segmentations with several thresholds in the length of
the intervals to be considered doubtful pixels.

The last one is very similar to the segmentation from
the FCM. However, in the previous ones we see that our
algorithm is able to identify as doubtful pixels the ones that
will be wrongly classified if we do not consider the doubt.
We think that this result adds a really useful information to
the segmentation process.

We finally show another example that displays similar
results. In Figure 8 we see another image from the same
dataset and its segmentation using the FCM. In Figure 9 we
show several segmentations using our algorithm and different
levels of doubt. It is clear that most of the considered doubtful
pixels are the ones that can be classified in a wrong way, i.e.,
the ones in the clouds and the ones in the left-down corner.
Therefore, we can infer that it is important to take into account
the extra information that our algorithm is able to provide,
when segmenting images.

Fig. 7. Image 42049 segmented using our algorithm with different levels of
doubt. Each clusters is coloured with the average colour of its pixels. The
doubtful pixels are coloured in white.

VI. CONCLUSIONS

In this work we have presented a new clustering algorithm
based on the Fuzzy Cluster Means. In our proposal we use
an extension of fuzzy sets, the interval-valued fuzzy sets, in
order to avoid the influence of the detected outliers. Moreover,
we also provide a level of doubt in the assignment of every
datum based on the length of the membership degrees. We
have shown the correct performance of the algorithm over
different datasets, with and without outliers. Finally, we have
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Fig. 8. Image 260058 and its segmentation with the FCM. Each clusters is
coloured with the average colour of its pixels.

seen the application of the new algorithm to segment images.
In this case, our algorithm is able to find similar solutions to
the ones of the FCM, but it also gives extra information that
is very relevant to improve the quality of the solutions.
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