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ABSTRACT 
 

The Impact of Grid Geometry on Displacement Calculations. 

(August 2004) 

Eduardo Antonio Jimenez Arismendi, B.S., Universidad Industrial de Santander, 

Colombia 

Chair of Advisory Committee: Dr. Akhil Datta-Gupta 

 

 

Reservoir simulation models are becoming increasingly sophisticated in tandem 

with the rapid development of geological modeling methods. Widely used commercial 

simulators usually model flow through heavily faulted and structurally complex 

geometries with the flexibility provided by corner-point geometry. However, the 

nonorthogonality component present within these frameworks may compromise the 

solution accuracy of the model and the subsequent operational decisions involved. 

 

We propose a systematic methodology to evaluate the impact of complex gridding 

introducing a new streamline formulation for corner-point geometry. Based on a new 

time-like variable, the new formulation provides a significantly simpler and more robust 

development to handle the complexity in structurally demanding and faulted systems. It 

retains the simplicity and speed of streamline-based flow models and provides an 

efficient way to visualize nonorthogonal effects. 

 

Applied to various geometries showing challenging features of geology and flow, 

the displacement fronts obtained from streamline-derived analytic calculation identified 

the discrepancies characteristic between known solutions and results from two widely 

used commercial simulators. 
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CHAPTER I 
 

INTRODUCTION  

 
 

Streamline-based flow simulation (SL) has received significant attention over the 

past 5 years, and is now accepted as an effective and complementary technology to more 

traditional flow modeling approaches such as finite differences (FD). Streamline-based 

flow simulation is particularly effective in solving large, geologically complex and 

heterogeneous systems, where fluid flow is dictated by well positions and rates, rock 

properties (permeability, porosity, and fault distributions), fluid mobility (phase relative 

permeabilities and viscosities), and gravity. Capillary pressure effects, surface group 

constraints and expansion-dominated systems, on the other hand, are not modeled 

efficiently by streamlines. 

 

Modern SL simulation rests on 6 key principles: (1) tracing three-dimensional 

(3D) streamlines in terms of time-of-flight (TOF); (2) recasting the mass conservation 

equations along streamlines in terms of TOF; (3) periodic updating of streamlines; (4) 

numerical 1D transport solutions along streamlines; (5) accounting for gravity effects 

using operator splitting; and (6) extension to compressible flow. This research will 

address the increasing challenge present in streamline tracing within complex geometries. 

 

The usefulness and uniqueness of SL simulation rests in the context of what are 

generally considered important issues in reservoir simulation: (1) upscaling; (2) 

quantifying displacement efficiency; (3) computational speed; (4) history matching; and 

(5) field optimization. In addition, novel, streamline-specific data is discussed in the 

context of injector/producer efficiencies and as a unique aid in upscaling by allowing 

engineers to go beyond the usual approach of only matching reference solutions. 

 

                                                 
This thesis follows the style of SPE Journal. 
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 The nature of the method permits a semi-analytical compositional one 

dimensional treatment along streamlines and is able to minimize dispersivity effects even 

when using numerically computed saturation profiles. Furthermore, the method’s 

popularity relies in part on the decoupling of the pressure and component mass 

conservation equations, leading to fairly large time stepping in the pressure equation and 

at least an order of magnitude speed up factor. Consequently, streamline simulators can 

routinely run problem of sizes that go from a few thousands blocks for gas injection and 

compositional models up to several millions blocks for simpler flow (e.g immiscible 

displacements). 

 

1.1. Motivation and Literature Review 

 

Today’s streamline simulation was preceded by at least four other methods for 

modeling convection-dominated flow in the reservoir. Line-source/sink methods have 

been widely used by the petroleum industry.1,2 These methods use analytic solutions to 

the pressure and velocity distribution in the reservoir. The primary limitation of these 

methods is the requirement for homogeneous properties and constant reservoir thickness.  

 

Streamtube methods are more general and have been applied successfully for 

field-scale modeling of waterflooding and miscible flooding. 3-5 In these methods, the 

flow domain is divided into a number of streamtubes and fluid-saturation calculations are 

performed along these streamtubes. However, the need to keep track of the streamtube 

geometries can become quite cumbersome in three dimensions. Thus, most applications 

of streamtube methods have been limited to two dimensions or some form of hybrid 

approaches to account for 3D effects.  

 

Particle-tracking methods have been used by the oil industry to model tracer 

transport in hydrocarbon reservoirs and also for groundwater applications.6 These 

methods track the movement of a statistically significant collection of particles along 

appropriate pathlines; while they generally work well near steep fronts, they do not work 
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as well for smooth profiles. Another drawback is the loss of resolution of the front with 

the progression of time and the statistical variance in the concentration response. Finally, 

front-tracking methods introduce fluid fronts as a degree of freedom in computation. 7-9 

The primary limitations of these methods are the computational burden associated with 

complications that arise from the close approach or intersection of frontal contours. 

 

Muskat1 gave an early description to the governing analytical equations that 

define the stream function and potential function in simple two dimensional domains for 

incompressible flow. A notable work with these definitions was by Fay and Pratts10, who 

developed a numerical model to predict tracer and two-phase flow on a two-well 

homogenous 2D system. 

 

 Datta-Gupta & King6 introduced the concept of “time of flight” along a 

streamline. This idea shall be used in this research quite extensively. They also presented 

a streamline model for 2D heterogeneous areal displacements of two well-tracer and 

waterflooding problems. Most of the current streamline based flow simulators use this 

concept of time of flight, because of its ease and its decoupling effect, which splits a 3D 

problem into a 1D problem. This has been the most significant contribution in streamline 

simulation. The present research work also builds on this concept of ‘time of flight’. 

 

 Pollock’s11 proposed a piece-wise linear interpolation of the velocity field within 

a grid block which significantly improved the original Runge-Kutta streamline tracing 

technique used by Shafer12. Pollock tracing was successfully used in a number of 

streamline simulators where appropriate flow modeling along the streamlines allowed for 

simulation of first contact miscible displacements (King et al.13) and evaluation of the 

effects of reservoir heterogeneity. A main limitation of the method was the inherent 

assumption that fluid is linear along the streamline forbidding lateral flow across 

streamlines. Martin et al14. showed streamtube models failed predicting waterflood 

performance for an isolated five-spot pattern under favorable mobility ratio which 
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highlighted the need to update the streamlines to accurately account for non-linear 

viscous effects. 

 

Blunt et al15. extended the streamline method to three dimensional systems, 

accounting for longitudinal and transverse diffusion as well as gravity effects. Batycky16 

introduced an operator splitting technique similar to that of front tracking methods, 

allowing him to account for multiphase gravity effects. 

 

As we already mentioned, tracing of streamlines currently rests on Pollock’s11 

bilinear interpolation, which in turn makes the fundamental assumption that there is a 

single velocity per cell face. Structurally complex reservoirs17, on the other hand, often 

require multiple connections across a single face, as might be the case in the presence of 

faults. This adds a layer of complexity to the tracing algorithm, since cells might now 

have multiple velocities across a single face, theoretically even in opposite directions18. 

The streamline paths in a cell must now be traced through sub-cells (the geometries of 

which are dictated by the velocity vectors on each face) and to which Pollock’s algorithm 

can be applied. 

 

In tandem with the complexity associated with structurally demanding models19-

21, our main motivation is give SL simulation the ability to model flow through heavily 

faulted and structurally complex systems while retaining much of its simplicity and 

speed. This is an important extension to the technology and will likely allow its use for 

systems where traditionally more sophisticated meshing algorithm are used (such as 

finite-element or PEBI-grids). 

 

As a whole, the industry is still exploring the most optimal use of this technology 

and how it might be efficiently integrated into the current work flows used by individual 

companies22-25. The next few years will bring a further maturing and extended application 

of the technology. It is not unreasonable to expect that most all companies using 

conventional simulation technology today will in one form or another use SL simulation 

in their work. 
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1.2. Objective of Study 

 

 The main objective of this research is to evaluate grid geometry effects on 

displacements calculations using the streamline approach. Followings are the basic 

objectives: 

 

• Provide a new formulation to trace streamlines in Corner Point Geometry Grids 

and Unstructured Grids. 

• Extend the tracing algorithm to complex geologic features such as faults, onlap 

boundaries and distorted grids. A few examples of such grids are shown in Fig. 

1.1. 

• Provide a basis for time of flight calculations and use it as an independent 

indicator of grid geometry effects on displacements calculations. 

• Implementation of this procedure in a FORTRAN program for tracing streamlines 

in the grid domain and the corresponding time of flight calculation. 

• Compare the results with existing commercial simulators to examine the accuracy 

of all the involved calculations. 

 
PINCH OUT GEOMETRY ONLAP ZONE BOUNDARIESFAULTED GRID GEOMETRY PINCH OUT GEOMETRYPINCH OUT GEOMETRYPINCH OUT GEOMETRY ONLAP ZONE BOUNDARIESONLAP ZONE BOUNDARIESFAULTED GRID GEOMETRYFAULTED GRID GEOMETRY

 

Fig. 1.1 Complex Geologic Features Grid Examples 
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CHAPTER II 
 

STREAMLINE-BASED SIMULATION 
 
 
 Streamline simulators approximate 3D fluid-flow calculations by a sum of 1D 

solutions along streamlines. The choice of streamline directions for the 1D calculations 

makes the approach extremely effective for modeling convection-dominated flows in the 

reservoir. This is typically the case when heterogeneity is the predominant factor 

governing flow behavior. 

 

 A key underlying concept in streamline simulation is the isolation of geologic 

heterogeneity from the physics of flow calculations. Mathematically, this is accomplished 

by use of the streamline time of flight as a coordinate variable. We move to a coordinate 

system where all streamlines are straight lines and distance is replaced by the time of 

flight. The impact of reservoir heterogeneity is embedded in the time of flight and 

trajectory of the streamlines. The physical process calculations are reduced to 1D 

solutions along streamlines. The streamlines generally are distributed in space with 

higher resolution than the underlying spatial grid, thus providing excellent transverse 

resolution. Saturation calculations along streamlines are decoupled from the underlying 

grid and can be carried out with little or no intrinsic timestep limitations. 

 

 Streamline simulation involves the following basic steps: 

 

1. Trace the streamlines on the basis of a velocity field, typically derived 

numerically with finite-difference or finite-element methods. 

 

2. Compute particle travel time or time of flight along the streamlines. The time-of-

flight coordinate provides a quantitative form of flow visualization that can have a variety 

of applications in reservoir characterization/management. 
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3. Solve the transport equations (saturation and concentration) along streamlines. 

The transport calculations are performed in the time-of-flight coordinate, effectively 

decoupling heterogeneity effects and significantly simplifying calculations. 

 

4. Periodically update the streamlines to account for mobility effects or changing 

field conditions. Once the streamlines are regenerated, recomputed the time of flight 

along the new streamlines. Finally, saturation calculations are resumed with the updated 

time of flight. A critical step here is the mapping of information from the old streamlines 

to the new streamlines. This can be a potential source of error during streamline 

simulation. 

 

The computational advantage of the streamline methods can be attributed to four 

principal reasons: (1) streamlines may need to be updated only infrequently; (2) the 

transport equations along streamlines often can be solved analytically; (3) the 1D 

numerical solutions along streamlines are not constrained by the underlying geologic 

grid-stability criterion, thus allowing for larger timesteps; and (4) for displacements 

dominated by heterogeneity, the computation time often scales nearly linearly with the 

number of gridblocks, making it the preferred method for fine-scale geologic simulations.  

 

Furthermore, the self-similarity of the solution along streamlines may allow us to 

compute the solution only once and map it to the time of interest. Other advantages are 

subgrid resolution and reduced numerical artifacts, such as artificial diffusion and grid 

orientation effects, because the streamline grid used to solve the transport equations is 

effectively decoupled from the underlying static grid. 

 

2.1. Governing IMPES Equations 

 

The streamline method is an IMPES method. Ignoring capillary and dispersion 

effects, the governing equation in terms of pressure P for incompressible multiphase flow 

in porous media is given by 
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 ( ) 0=∇+∇⋅⋅∇ DPK gf λλ  (2.1) 

 

Where the total mobility (λf) and the total gravity mobility (λg) are defined as 
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D represents a depth below datum. To determine the flow of the individual phases 

we also require a material balance equation for each phase j 
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The total velocity tur  is derived from the 3D solution to the pressure field and the 

application of Darcy’s Law. The phase fractional flow term is given by 
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And the gravity fractional flow is given by 
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pn
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ρρµ

r
 (2.5) 

 

In a conventional IMPES finite-difference simulator Eq. 2.3 is solved in its full 

three-dimensional form. With the streamline method, we decouple the 3D equation into 

multiple 1D equations that are solved along streamlines. For large problems, solving 

multiple 1D equations is much faster and more accurate than solving the full 3D problem. 
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2.2. Coordinate Transform 

 

 Streamlines are launched from gridblock faces containing injectors. As the 

streamlines are traced from injectors to producers, we determine thr time-of-flight along 

the streamline, which is defined as 

 ( ) ζ
ζ

φτ d
u

s

t
∫=
0

 (2.6) 

 

 This equation gives the time required to reach a point s on the streamline based on 

the total velocity ( )ζtu  along the streamline. For orthogonal geometries it is possible to 

determine the coordinate transform rewriting equation 2.6 as 

 

 
tus

φτ
=

∂
∂  (2.7) 

 

 This can be rewritten as, 

 

 τ
φ

∂
∂

=∇⋅≡
∂
∂

tt u
s

u
 (2.8) 

 

 Substituting equation 2.8 into equation 2.3 gives 

 

 01
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∂

∂
+

∂

∂
j

jj G
f

t
S

φτ
 (2.9) 

 

 This equation is the governing pseudo-1D material balance equation for phase j 

transformed along a streamline coordinate. It is pseudo-1D since the gravity term is 

typically not aligned along the direction of a streamline. 

 

 To solve equation 2.9 we simply split the equation into two parts. First a 

convective step along the streamlines governed by 
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 (2.10) 

 

 This includes boundary conditions at the wells, is taken to construct an 

intermediate saturation distribution c
jS . Then, a gravity step is taken along the gravity 

lines and saturations are moved using 

 

 
0=

∂

∂
+

∂

∂

z
Gg

t
S jj

φ  (2.11) 

 

 For simplicity it is assumed that the gravity lines are aligned in the z coordinate 

direction. Equation 2.10 is solved numerically using single point upstream weighting 

scheme explicit in time. Equation 2.11 is solving using an explicit upstream weighting 

method. An additional advantage of decoupling equation 2.9 in this way is that equation 

2.11 is only solved in flow regions where gravity effects are important. For example, in 

locations where fluids are completely segregated, equation 2.11 will not be solved, since 

0=∂∂ zG  

 

2.3. Time Stepping 

 

 To model field scale displacements our underlying assumption is that the 

streamline paths change with time due to the changing mobility field and/or changing 

boundary conditions. Thus the pressure field is updated periodically in accordance with 

these changes. By using numerical solutions along the recalculated streamline paths the 

method accounts for the non-uniform initial conditions now present along the 

recalculated paths. 

 

 To move the 3D solution forward in time from tn to tn+1=tn+∆tn+1 the following 

algorithm is used: 
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1. At the start of a new time step, tn+1, solve for the pressure field P using equation 

2.1 in the IMPES formulation. This equation may be solved using a standard seven-point 

finite difference scheme, with no-flow boundary conditions over the surface of the 

domain and specified pressure or rate at the wells. 

 

2. Apply Darcy’s law to determine the total velocity at gridblock faces. 

 

3. Trace streamlines from injectors to producers. For each streamline the following 

is performed: (a) While tracing a streamline, the current saturation information from each 

gridblock that the streamline passes through is remembered. In this manner, a profile of 

saturation versus τ is generated for the new streamline; (b) Move the saturations forward 

by ∆tn+1 by solving equation 2.10 numerically in 1D. Map the new saturation profile back 

to the original streamline path. 

 

4. Average all the streamline properties within each gridblock of the 3D domain to 

determine the saturation distribution at tn+1 

 

5. If Gj ≠ 0 include a gravity step that traces gravity lines from the top of the domain 

to the bottom of the domain along g . For each gravity line the following is done (a) 

While tracing a gravity line, the saturation distribution calculated in the convective step 

as a function of z is remembered; (b) The saturations are moved forward by ∆tn+1 using 

equation 2.11. The new saturation profile is mapped back to the original gravity line. 

 

6. If Gj ≠ 0 average all gravity line properties within each gridblock of the 3D 

domain to determine the final saturation distribution at tn+1. 

 

7. Return to step 1. 

 

 A key reason for large speedup factors in the streamline method is the fact that ∆t, 

the time step size for a convective step that includes a pressure solve, can be orders of 

magnitude larger than the time step size in conventional simulators. This is a result of 
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eliminating the global CFL condition by decoupling fluid movement from the underlying 

grid. 

 

 An important consideration in field simulations however, is that the time step size 

in the streamline method can be limited by the need to honor changing well conditions. 

Thus we expect speedup factors to be smaller for simulation that must honor historical 

production information since the pressure field is recomputed every time the well 

conditions change, as opposed to using the method in a forecast mode. 
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CHAPTER III 
 

STREAMLINE TRACING AND TIME OF FLIGHT CALCULATION 
 
 
 The tracing of the streamlines is of major importance since their paths determine 

the total flow pattern and the time of flight along them serves as the primary variable to 

determine the one-dimensional saturation profile. Finally, the flow rate associated with 

every streamline determines the weights for the average block saturation used in the 

pressure equation. 

 

 The pressure field from which the streamlines are traced is assumed to be 

obtained from a control volume discretization of conservation equation, such as the one 

used in finite difference methods. This type of formulation is based on the discretization 

of the total mass conservation in a control volume that surrounds a pressure node (center 

of a finite difference cell). Flux on each control volume face in a cell is approximated by 

a linear combination of the cell pressure nodes. In the case of a Cartesian grid, the control 

volume is a rectangle. For a Corner Point Geometry grid, the control volume is a 

hexahedron. 

 

 Tracing of streamlines currently rests on Pollock’s bilinear interpolation, which in 

turn makes the fundamental assumption that there is a single velocity per cell face. 

However, his formulation works only for Cartesian grids, but very few real reservoirs 

models use this framework anymore. Corner-point geometry gridding is unique and 

allows extremely complex geometries to be constructed to give a faithful representation 

of the reservoir geology, it is especially useful for highly faulted reservoirs, where the 

grid may be distorted areally to fit along fault lines and displaced vertically to model 

complex scissor faults. In other to ease the transition to corner point cells, Pollock’s 

equations can be rewritten in dimensionless terms allowing the streamlines to be traced 

within a unit-transformed space. Mapping the streamlines to real space can be achieved 
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using an isoparametric back-transformation and finally the time of flight calculation can 

be accomplished introducing a time-like variable in the unit space. 

 

3.1. Cartesian Grid Tracing 

 

 The breakthrough work for tracing streamlines efficiently in 3D was that of 

Pollock11 (1988). Pollock’s method is simple, analytical, and is formulated in terms of 

time-of-flight (TOF). To apply Pollock’s method to any cell, the total flux in and out of 

each boundary is calculated using Darcy’s Law. With the flux known, the algorithm 

centers on determining the exit point of a streamline and the time to exit, given any entry 

point assuming a piece-wise linear approximation of the velocity field in each coordinate 

direction. 

 

3.1.1. Pollock’s Interpolation 

 

 The average linear velocity component across each face in a particular cell (Fig. 

3.1) is obtained by dividing the volume flow rate across the face by the cross sectional 

area of the face and the porosity of the material in the cell (Eq. 3.1). 
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Fig. 3.1 Finite Difference Cell Showing xyz Definitions 
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 Where Q is a volume flow rate across a cell face, and ∆x, ∆y, and ∆z are the 

dimensions of the cell in the respective coordinate directions. If flow to internal sources 

or sinks within the cell is specified as Qs, the following mass balance equation can be 

written for the cell, 
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 (3.2) 

 

 The left hand side of this equation represents the net volume rate of outflow per 

unit volume of the cell, and the right hand side represents the net volume rate of 

production per unit volume due to internal sources and sinks. 

 

 In order to compute path lines, it is required to compute values of the principal 

components of the velocity vector at every point in the flow field based on the inter-cell 

flow rates from the finite difference model. Pollock’s method uses a simple linear 

interpolation to compute the principal velocity components at points within a cell, the 

principal velocity components can be expressed in the form, 
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 Where Ax, Ay, and Az are constants that correspond to the components of the 

velocity gradient within the cell and are given by, 
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 Linear interpolation of the six cell face velocity components results in a velocity 

vector field within the cell that automatically satisfies the differential conservation of 

mass equation at every point inside the cell. This is correct only if it is assumed that the 

internal sources or sinks are considered to be uniformly distributed within the cell. 

 

 The fact that the velocity vector field within each cell satisfies the differential 

mass balance equation assures that path lines will distribute liquid throughout the flow 

field in a way that is consistent with the overall movement of liquid in the system as 

indicated by the solution of the finite-difference flow equations. 

 

 In order to find the position of the particle, its movement through a three-

dimensional finite-difference cell must be considered. Let’s start with the rate of change 

in the particle’s x-component of velocity as it moves through the cell, this is given by, 
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 (3.5) 

 

 The subscript, p, is used to indicate that a term is evaluated at the location of the 

particle denoted by the x-y-z coordinates (xp, yp, zp). The term (dx/dt)p is the time rate of 

change of the x-location of the particle. By definition, 
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 Where Vxp is the particle’s x-velocity-component. Differentiating the principal 

velocity components (Eq. 3.3) with respect to x yields the additional relation, 
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 (3.7) 

 

 Substituting equations (3.6) and (3.7) into equation (3.5.) gives, 
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 (3.8) 

 

 This equation can be rearranged to the form, 
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 This equation can be integrated and evaluated for times t1 and t2 leading to, 
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 By taking the exponential of each side of the equation and substituting the 

velocity components in equation (3.3) the x-position of the particle can be evaluated 

using the next expression,  
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 The velocity components of the particle at time t1 are known functions of the 

particle’s coordinates; consequently, the coordinates of the particle at any future time t2 

can be computed directly from equation (3.11). 

 

 For steady-state flow, the direct integration method described above can be 

imbedded in a simple algorithm that allows a particle’s exit point from a cell to be 

determined directly given any known starting location within the cell. To illustrate the 

method, consider the two-dimensional example shown in Fig. 3.2 cell (i,j) is in the x-y 

plane and contains a particle, p, located at (xp,yp) at time tp. 
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Fig. 3.2 Schematic Showing the Computation of Exit Point and Travel Time in 2D 

 

 The first step is to determine the face across which the particle leaves cell (i,j). 

For the present example, this is accomplished by noting that the velocity components at 

the four faces require that the particle leave the cell through either the north or the east 

face. Consider the x-direction first. From equation (3.3) Vxp can be calculated at the point 

(xp,yp), since we also know Vx equals VE at the east face, equation (3.10) can be used to 

determine the time that would be required for the particle to reach the east face. An 

analogous calculation can be made to determine the time required for the particle to reach 

the north face. If ∆tx is less than ∆ty, the particle will leave the cell across the east face 

and enter cell (i+1,j). Conversely, if ∆ty is less than ∆tx, the particle will leave the cell 

across the north face and enter cell (i,j-1). 
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 The length of time required for the particle to travel from point (xp,yp) to a 

boundary face of cell (i,j) is taken to be the smaller of ∆tx and ∆ty, and is denoted as ∆te. 

The value ∆te is then used in equation (3.11) to determine the exit coordinates (xe,ye) for 

the particle as it leaves cell (i,j), 
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 The time at which the particle leaves the cell is given by: te = tp + ∆te. This 

sequence of calculations is repeated, cell by cell, until the particle reaches a discharge 

point. The approach can be generalized to three dimensions in a straight forward way by 

performing all of the calculations for the z-direction in addition to the x- and y-directions. 

 

3.2. Corner Point Geometry Grid Tracing 

 

 Pollock’s equations are derived assuming orthogonal grid blocks, but very few 

real reservoirs models use such a strict Cartesian framework anymore. Using an 

isoparametric transformation, it is possible to transform Corner Point Geometry grids 

(CPG) into unit cubes, apply Pollock’s method, and then transform the exit coordinate 

back to physical space. The solution we describe follows the development of Cordes and 

Kinzelbach22 (CK), which is the most commonly used extension to Pollock’s algorithm 

for rectangular cells. 

 

 Pollock’s algorithm can be rephrased in a way to ease the transition from 

Cartesian grids to CPG grids. The first step is to re-write Pollock’s equation in 

dimensionless variables using the fractional distances through all three coordinate 

directions. 
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 It is also necessary to convert the directional interstitial velocities into volumetric 

fluxes. These fluxes each vary linearly across the cell such that a simple linear 

interpolation can be applied to compute the principal velocity components at points 

within a cell. 
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 These set of equations can be re-written using the rate of change in the particle’s 

velocity components as it moves through the cell, 
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 Combining these equations the following relationships are obtained 

 

 ( ) ( ) ( )γ
γ

β
β

α
α

φ
τ

zyx Q
d

Q
d

Q
d

DZDYDX
d

===
⋅⋅⋅  (3.16) 

 

 At this stage no new results have been provided, Pollock’s model has been 

rescaled in terms of dimensionless distances and volumetric fluxes. Using tri-linear 

interpolants in the form ( )γβα ,,x , ( )γβα ,,y , ( )γβα ,,z  Pollock’s algorithm can be 

extended to deal with the streamline tracing in CPG grids. The only difference will be 
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using flux instead of velocity as a coordinate parameter. We can integrate the last of these 

equations to determine the trajectories traced out by the streamlines in three dimensions. 

 

 Now let’s describe the corner point cell geometry, Figure 3.3. The cell is defined 

as a tri-linear mapping from the unit cube into physical space. Each point in initial 

physical space (right) is considered as the back-transform of a point in unit space by 

conserving its barycentric coordinates. 

 

 
Fig. 3.3 Isoparametric Transformation 

 

 The Jacobian may be used to determine the cell volume, since it is the ratio of 

physical volume to unit volume. 
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 In three dimensions the Jacobian is less than quadratic in αβγ . In two dimensions 

it is less than linear in αβ . For a rectangular cell, the Jacobian is simply the cell volume.  
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 To determine the time of flight a velocity model is required within the cell. For a 

corner point cell in three dimensions, the following velocity model is imposed. 
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 (3.19) 

 

 In these set of equations each volumetric flux is linearly interpolated in the 

appropriate direction, similar to Pollock’s velocity interpolation 

 

 ( ) 3,2,1, =⋅+= jCAQ jjjjj αα  (3.20) 

 

 The Jacobian is essentially a cross-sectional area times a physical distance, and so 

the right hand side in each equation is effectively a Darcy velocity in one direction, 

scaled by the cell length in that direction. The physical velocity is obtained from these 

dimensionless velocities by application of the chain rule. In component form: 
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 In the form of Equation (3.19), the ( )γβα ,,  trajectories are much more difficult 

to integrate than for rectangular cells, as all three parameters are coupled through the 

Jacobian. The CK solution to Equation (3.19) selects one of the three integrals and then 

substitutes for ( )αβ  and ( )αγ . 

 

 However, a significantly simpler development is possible with the introduction of 

a parameter T  that increases along a trajectory, and which acts as a time-like variable, 
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 For constant scaling factors, these equations for ( )Tα , ( )Tβ , ( )Tγ  are identical 

to the Pollock equations in a three dimensional rectangular cell. After obtaining their 

solution, we can determine τ  from the remaining equation: 

 

 ( ) ( ) ( )( )dTTTTJ
T

∫=
0

,, γβαφτ  (3.23) 

 In this equation α , β , and γ  are all known functions of T . Each parameter will 

depend upon T  through constructions of the form ( )( )cecT 1− , and the Jacobian is a 

polynomial in α , β , and γ . The resulting integrand is a sum of exponentials and 

constants, which can be integrated numerically using a quadrature approach. 

 

The following sections will address how the mathematical formulation was 

implemented in a FORTRAN code and the overall procedure will be discussed in detail. 

The isoparametric transformation will be presented for streamline tracing purposes as 

well as the Jacobian of the dimensionless transformed coordinates for time of flight 

calculation. 

 

3.2.1. Unit Space 

 

3.2.1.1. Pseudo-Time of Flight 

 

Consider the unit cube shown in Fig. 3.4, this particular example will be used to 

explain the tracing methodology. The first step is to determine the face across which the 

particle leaves cell (i,j,k). For the present example, this is accomplished by noting that the 

flux components at the six faces require that the particle leave the cell through any face 

but the west one. 
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Fig. 3.4 Schematic Showing the Pseudo-Time of Flight in a Unit Cube 

 

To find the face where the particle is leaving the cube, equation (3.22) can be 

used to determine the time that the particle would require to reach each face. Consider the 

x-direction, 
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The volumetric flux can be replaced by its linear interpolate in the x-direction 

using equation (3.20). The time to reach the east face will be, 
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 Now, since the particle might leave the cell through the east face, its α coordinate 

is already known, reducing the expression to, 
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 An analogous integration can lead to the time for the particle to reach al the other 

faces, 
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 (3.27) 

 

 Therefore the length of time required for the particle to go from any given entry 

point to a boundary face will be the minimum non-negative pseudo-time of flight denoted 

by T. For this example let’s assume that the particle is leaving the top face, the next step 

will be to find the exit coordinate of the particle. 

 

3.2.1.2. Unit Cube Streamline Tracing 

 

 Following the previous example (Fig. 3.5), once the pseudo-time of flight T is 

known, the exit coordinate of the particle is easily calculated using the general solution of 

equation (3.22) in all three directions and solving for each unit coordinate. The set of 

equations to use are given as, 

 

 

( )

( )

( ) 






 −
++=








 −
++=








 −
++=

3
3030

2
2020

1
1010

1

1

1

3

2

1

c
eca

c
eca

c
eca

Tc

e

Tc

e

Tc

e

γγγ

βββ

ααα

 (3.28) 

 



 

 

26

 
Fig. 3.5 Schematic Showing the Exit Coordinates Computation in a Unit Cube 

 

 So far Pollock’s technique has been extended to sketch the streamlines in the unit 

cube using linear flux interpolants instead of velocity. The pseudo-time of flight T, has 

been introduced as a time-act variable and it is also used as a unit-cube coordinate tracer. 

However, half the problem remains to be solved: How the streamlines can be mapped 

back to the real space? How this pseudo-time of flight is transformed to the real space? 

Both questions will be addressed in the next section. 

 

3.2.2. Real Space 

 

3.2.2.1. Isoparametric Transform 

 

 When using CPG grids, each gridblock is a solid defined by the location of its 

eight corners (Fig. 3.6). Each grid cell can be mapped to a unit cube by an isoparametric 

set of equations as follows, 
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 This works similarly for yy pp ,8,1 ,K  in terms of the sy' , and zz pp ,8,1 ,K  in terms 

of the sz' . It can be seen that α=0 corresponds to face 1-4-8-5, α=1 to face 2-3-7-6, β=0  

to face 1-2-6-5, β=1 to face 4-3-7-8, etc. 
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Fig. 3.6 The Eight Corners of a Corner Point Cell 

 

 These sets of equations (3.29 and 3.30) are used to map the unit cube to real 

space. However, when going from real to unit space, a non-linear system must be solved 

using any iterative procedure such as Newton’s method. Fig 3.7 shows the example from 

the previous sections and illustrates the concept of isoparametric transformation. 
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Fig. 3.7 Isoparametric Transformation Unit to Real Space 

 

3.2.2.2. Time of Flight Calculation 

 

 It has already been mentioned how the time of flight in real space can be obtained 

introducing the pseudo-time of flight in the velocity model. To carry out this integral the 

Jacobian must be expressed in terms of the pseudo-time of Flight. Going back to equation 

(3.23) the Jacobian of the real coordinates is defined as, 
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 The partial derivatives are obtained differentiating equations (3.29). For the x-

coordinate the derivatives are given by, 
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 In line with the previous definition ( ) ( ) ( )( )dTTTTJ
T

∫=
0

,, γβαφτ , the Jacobian 

must be expressed in terms of the pseudo-time of flight T. Replacing equations (3.28)  
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 Similarly for γβα ∂∂∂∂∂∂ yyy ,, , and so forth. The Jacobian will now be 

defined as, 
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 As mentioned before, in the final equationα , β , and γ  are all known functions 

of T . Each parameter depends upon T  through constructions of the form ( )( )cecT 1− , 

and the Jacobian is a polynomial in α , β , and γ . The resulting integrand is a sum of 

exponentials and constants. This integral may be evaluated quite accurately by the N-

point summation in the form of: 
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 The wk are weights and the xk are Gauss points, or quadrature points, at which the 

function f(x) is evaluated. For N=1, 2 or 3, the weights and Gauss points are given by: 
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 If f(x) is a polynomial of degree d, then Gaussian quadrature is exact if d ≤ 2N-1. 

Thus 2-point quadrature is exact for a cubic, and 3-point quadrature is exact for a fifth-

degree polynomial. To define the number of points, let’s check the triple integral to find 

the volume of the cell, this integral may be approximated by triple summations, 
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 Where Ni, Nj, and Nk are, respectively, the number of quadrature points in the x, y 

and z directions. It turns out that the integrands within all the triple integrals for 

volumetric calculations are composite polynomials of low enough degree providing the 

exact integration. This is true no matter how arbitrarily the corner points are located. 
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CHAPTER IV 
 

RESULTS AND APPLICATIONS 

 
 
 The overall procedure of the proposed methodology is summarized in Fig. 4.1. 

 

 

 
 

Fig. 4.1 Streamline Methodology for CPG Grids 

 

 

 For each timestep any finite difference tool can be used to solve for pressure and 

find the fluxes within each gridblock. Streamlines are traced from an arbitrary number of 

injection blocks to production blocks using the equations defined in Section 3.2. The 

streamline paths do not start at the center of an injection or production block since the 

velocity field cannot be approximated as piecewise linear within a gridblock containing a 
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point source. Rather, streamlines are launched from each gridblock face containing an 

injector or producer. 

 

 Streamlines are launched in proportion to the flux out of a face, such that more 

streamlines are launched from high flow rate injectors/producers, while fewer streamlines 

are launched from low flow rate injectors/producers. Thus more streamlines are traced 

through high flow velocity regions and fewer streamlines are traced through low flow 

velocity regions. 

 

 The flux across each injection block face is uniform, consistent with the 

underlying velocity field. Since the flux is uniform, streamlines are distributed on each 

face in a uniform manner. Not every gridblock in the domain will contain a streamline for 

a fixed total number of streamlines launched. A missed gridblock is assigned a streamline 

which is then traced backwards in the velocity field towards an injector and then the time 

of flight can be calculated and mapped to the gridblock. 

 

 In order to evaluate the tracing algorithm and TOF calculation, a FORTRAN code 

following the flowchart in Fig. 4.1 was developed to handle CPG grids. The forward tool 

used to solve for pressure and find the fluxes is the commercial simulator ECLIPSE. For 

each timestep a report is obtained with the gridblock fluxes, the streamlines are traced 

and the time of flight is calculated. 

 

 The following sections will discuss the results obtained and how the grid 

geometry affects the displacement calculation obtained with numerical simulation. First, 

we’ll discuss how the formulation was validated, followed by several cases showing 

subsequent geologic complexities. For each case the following items are presented: 

 

 Reservoir grid. 

 Numerical/Analytical fluxes along flow directions. 

 Numerical/Analytical streamlines paths. 

 Numerical/Analytical time of flight. 
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4.1. Orthogonal Grids 

 

 The procedure validation was addressed using known solutions to a homogeneous 

quarter of a five spot and a homogeneous X-Z cross-section using Cartesian grids. Both 

models were constructed following Corner Point Geometry conventions. In turn to get the 

best approximation using numerical simulation, the simplicity of the models was fulfilled 

following the next assumptions: 

 

 Incompressible Fluid. 

 Homogeneous petro-physical properties (porosity, permeability, net to gross, 

water saturation). 

 Producer constrained by pressure, injector constrained by rate. 

 Same initial pressure for all gridblocks 

 Zero vertical transmissibility among injector and producer cells to avoid cross-

flow. 

 High horizontal transmissibility among injector and producer cells to make sure 

the fluid is uniformly distributed towards the flow direction. 

 

4.1.1. Homogeneous Quarter of a Five Spot 

 

 A 21x21x1 Cartesian grid was built defining the eight corners of each gridblock. 

Fig 4.2 shows the orthogonal grid, the streamline paths using the proposed CPG tracing 

method and the numerical X and Y flow for each cell. Fig 4.3 shows the time of flight. 
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Fig. 4.2 Quarter of a Five-Spot Orthogonal Grid 

 

 The streamline paths are in good agreement with the known solutions using 

Pollock’s tracing algorithm, so is the time of flight, it shows the expected symmetry and 

is congruent with the anticipated front position obtained with any forward modeling tool. 

 

 
Fig. 4.3 Time of Flight - Quarter of a Five-Spot Orthogonal Grid 
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4.1.2. Homogeneous X-Z Cross-Section 

 

 The second model used to validate the methodology is a 21x1x21 X-Z cross-

section. Fluid is injected from right to left. Similar to the quarter of a five spot, Fig 4.4 

shows the grid, the streamlines paths and the numerical fluxes. 

 

 
 

Fig. 4.4 Orthogonal X-Z Cross-Section Grid 

 

 Once more the outputs are in good concurrence with the known solutions. The 

streamlines are totally horizontal regardless of the vertical flux obtained. This vertical 

flux is very low and is negligible; its occurrence is probably due to round off errors in the 

numerical solution. 

 

 In the TOF picture the front propagation lacks of any distortion and is totally 

uniform; the time required to a particle to reach the producer is unvarying regardless of 

its starting position. 
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Fig. 4.5 Time of Flight - Orthogonal X-Z Cross-Section Grid 

 

 Up to this point it has been proved that the formulation is in conformity with 

simple-known orthogonal cases. However, what happen when the overall geometry is 

distorted? , how are the streamlines and TOF affected by these distortions? In the next 

section the same models will be presented adding non-orthogonal components to the grid. 

 

 

4.2. Non-Orthogonal Grids 

 

 In the past, most reservoir simulation models were defined using rectangular 

Cartesian coordinate systems. Non-rectangular grid systems were introduced to reduce 

spatial truncation error, using orthogonal or near-orthogonal curvilinear coordinate 

systems. However, it is almost impossible to use orthogonal systems to model 

complicated flow boundaries frameworks caused by faults, irregular reservoir boundaries 

or channels. CPG grids were then introduced to provide more flexibility in grid-cell 

sizing and modeling of flow boundaries. 

 

 In CPG, the individual gridblocks may have different shapes and the direction of 

any coordinate axis may vary over the reservoir. Because of this freedom, ridiculous 

shapes and extreme non-orthogonality might be present; it is obvious that CPG should be 

used with extreme care. 

 

 The default grid discretization in ECLIPSE employs a five-point discretization in 

two dimensions or a seven point discretization in three dimensions. However when the 
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grid is non-orthogonal, or the flow is not aligned with the principal directions of the grid, 

then the solution accuracy may be compromised by this discretization. ECLIPSE uses a 

nine-point scheme to address this (the discretization stencil uses 9 cells in a 3*3 patch in 

two dimensions, or 27 cells in a 3*3*3 patch in three dimensions). This nine-point 

scheme was used for both the quarter of a five spot and the x-z cross-section, to account 

for non-orthogonality and will be presented in the two following sections. 

 

4.2.1. Homogeneous Quarter of a Five Spot 

 

 Fig 4.6 shows the 21x21x1 near-orthogonal grid used to model the quarter of a 

five spot system. A slightly non-orthogonal component was added to the outer 

gridblocks, but the inner ones were kept orthogonal to each other. The streamlines are 

quite similar to the rectangular case, but there’s a faintly asymmetry within the outer 

streamlines. This is mainly related to the difference through all the outer-cell fluxes. 

 

 
Fig. 4.6 Non-Orthogonal Quarter of a Five-Spot Grid 
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 The TOF for this case is presented in Fig. 4.7, the results obtained are reliable 

enough compared to the known solution. However a contour map shows a discrepancy all 

along the outer non-orthogonal cells. 

 

 
Fig. 4.7 Time of Flight - Quarter of a Five-Spot Non-Orthogonal Grid 

 

4.2.2. Homogeneous X-Z Cross-Section 

 

 Fig 4.8 shows the numerical solution for the non-orthogonal 21x1x21 grid used to 

model the homogeneous X-Z cross-section. Similar to the orthogonal case there’s a round 

off error in the x-direction flow along the k face. This flux component is adding a slightly 

vertical distortion in the streamlines paths. 
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Fig. 4.8 Numerical Solutions - Non-Orthogonal X-Z Cross-Section Grid 

 

 It is important to mention that in order to reduce numerical non-orthogonal errors, 

the transmissibility between gridblocks is defined using nine-point schemes. However, 

the streamline non-horizontality is still present even using this expanded discretization 

stencil. 

 

The front distortion due to the grid non-orthogonality can be appreciated both in 

the TOF field and contour map. The distortion severity is obviously related to the slanting 

degree of the coordinate lines between the injector and the producer. For the simple cases 

presented the numerical solution is fair enough, but dealing with complicated geologic 

geometries might result in unreal displacements and eventually misleading operational 

decisions. 
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Fig. 4.9 Numerical Time of Flight - Non-Orthogonal X-Z Cross-Section Grid 

 

4.3. Gridding Effects 

 

 So far, our new formulation has been applied to two well-known cases for 

orthogonal and non-orthogonal geometries. For the orthogonal cases we found both 

streamline paths and time of flight to be in excellent agreement with the known solutions. 

However for the non-orthogonal cases we found some non-symmetry and distortion 

effects on the solutions. Now that we have the ability to handle flexible grids and trace 

streamlines, we’ll step into more complicated models showing common geologic features 

present in reservoir modeling. 

 

 In order to evaluate how accurate is the numerical solution, we used the potential 

and stream functions in all presented geometries to get the real solution. When the 

potential function is differentiated with respect to the flowing directions, the analytical 

form of all velocity components is obtained. Knowing the velocity components it is 

possible to find the total velocity and eventually the fluxes. 

 

 The first case used to compare the numerical and the stream-function derived 

solution is the non-orthogonal X-Z cross-section. Fig. 4.10 shows the results, as expected 

the streamlines are totally horizontal, even with the flux through the k face, which 

actually represents the x-direction flow. 
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Fig. 4.10 Analytical Solutions - Non-Orthogonal X-Z Cross-Section Grid 

 

 The analytical time of flight is presented in Fig. 4.11; the front propagation is 

totally vertical, similar to the orthogonal case. 

 

 
Fig. 4.11 Analytical Time of Flight - Non-Orthogonal X-Z Cross-Section Grid 

 

 After testing the stream-function over the cross-section, several cases were 

selected to compare the numerical approach to the analytical solution. The cross-section 

was selected as the base case and successive geological complexities were added to the 

grid. 

 

GRID STREAMLINES 

X DIRECTION FLOW 
 k FACE  

X DIRECTION FLOW 
i FACE  

High 

Low 

High 

Low 

High 



 

 

43

4.3.1. Pinch-Outs 

 

A pinch-out is a type of stratigraphic trap that occurs when a bed thins 

progressively in one direction. The overall framework may create a favorable geometry 

to trap hydrocarbons, particularly if the adjacent sealing rock is a source rock such as a 

shale. This type of model is of great interest in reservoir modeling due to its frequent 

appearance. We’ll review two common pinch-outs models; the first one shows both an 

increase and decrease along the layer thickness and the second one shows missing layers 

related to erosive and diagenetic non-conformities. 

 

4.3.1.1. Gradual Pinching 

 

A pinch-out may or may not be accompanied by the increase or decrease in 

thickness of an adjacent unit. In some cases, the entire sedimentary section thins in a 

certain direction. This type of pinching-out was modeled using the grid in Fig. 4.12. The 

top and bottom units have a constant thickness acting as sealing members. These units are 

modeled as non-active cells in the numerical model following the close-boundary 

condition imposed by the pinch-out. The entire sedimentary section has two pinching-out 

directions, one is toward the upper-left sector and the other to the bottom-right. 

 

The numerical solution shows a higher flux along the pinch-out compared to the 

non-deformed layer between both pinch-outs. This squeezing effect can be observed in 

the streamline paths. They’re essentially horizontal but there’s a small distortion aligned 

with the pinch-out direction. 
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Fig. 4.12 Numerical Solution - Gradual Pinch-out Grid 

 

 The time-of-flight obtained with the numerical fluxes is presented in Fig. 4.13. 

The output is a fair enough representation of the straight evolving front from right to left. 

 

 
 

Fig. 4.13 Numerical Time of Flight - Gradual Pinch-out Grid 

 

 Regardless of the good numerical approximation the analytical solution is still 

presented. Once again the streamlines are perfectly horizontal, the numerical x-direction 

flow through the i-face is highly similar to the analytical one and there’s a notable 

difference in the x-direction flow through the k-face. 
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Fig. 4.14 Analytical Solution - Gradual Pinch-out Grid 

 

 There’s little to say about the time of flight (Fig. 4.15) other than the straight and 

uniform evolution of the displacement front. 

 

 
 

Fig. 4.15 Analytical Time of Flight - Gradual Pinch-out Grid 

 

 The difference between the numerical and the analytical solution is presented in 

Fig. 4.16, the difference is higher closer to the producer well and it decreases towards the 

injector. There’s also an offset in the front displacement differences, at the same x-

location the difference is higher at the bottom. 
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Fig. 4.16 Difference between Numerical and Analytical TOF - Pinch-out Grid 

 

4.3.1.2. Layer Discontinuity 

 

 The second pinch-out is a little bit more complicated, the top and bottom layers 

are still acting as sealing units. Instead of having a gradual thinning of the sedimentary 

body, several layers are missed pinching-out near the sealing units. This geologic feature 

adds an extra complexity component since now we’re dealing with triangular cells. 

 

 
Fig. 4.17 Numerical Solution - Pinch-out Grid 
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 Fig. 4.17 shows the numerical solutions to the pinch-out. It can be seen from the 

streamline paths that the code and therefore the formulation is doing a suitable job 

through triangular cells. The streamlines are nearly-horizontal, especially at the bottom 

where no vertical flux is present. 

 

 The highest rates trough the k-face are occurring within the cells along the pinch-

out direction, having the highest ones at the triangular cells. A major discrepancy is that 

the streamlines are not aligned with the direction of flow; they’re aligned with the 

layering direction. According to this result the nine-point scheme proposed by ECLIPSE 

is not totally removing the non-orthogonal effects of the grid. 

 

 
Fig. 4.18 Numerical Time of Flight - Pinch-out Grid 

 

 The time of flight is close to a straight evolving front from left to right, however 

this case shows a greater front distortion compared to all the previous ones; remember 

that in this case we’re not only dealing with the pinch-out itself, we’re also working with 

triangular cells and a higher non-orthogonality. 

 

 Fig. 4.19 shows the analytical solution for this type of pinch-out. The stream-

function derived flux is just the difference between each cell corner depth multiplied by 

the injection rate per length. The numerical solution preserves the main flow pattern of 

the x-direction flow through i-face. On the other hand the flow through k-face has a 

severe difference, especially through the intermediate layers. 
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Fig. 4.19 Analytical Solution - -Pinch-out Grid 

 

The exact solution of the displacement front is a straight line evolving from left to 

right (Fig. 4.20). While the simulation with a nine-point scheme results in a distorted 

front in the presence of non-orthogonal grid lines (Fig. 4.18). The difference between the 

solutions is higher towards the pinch-outs at the bottom and near to the producer. 

 

 
Fig. 4.20 Analytical Time of Flight - Pinch-out Grid 
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Fig. 4.21 Difference between Numerical and Analytical TOF -Pinch-out Grid 

 

 

4.3.2. On-lap and Zone Boundaries 

 

Another frequent and more challenging geologic feature involved in reservoir 

modeling, occurs when the reduction in the bed thickness result in on-lapping 

stratigraphic sequences. The size and shape of beds reflects the depositional process and 

environment. A common example occurs when a period of deposition dominated by 

some transport mechanism ceases and is followed by a different one. The infilling by the 

latter usually produces an on-lapping sequence featuring several sequence boundaries. 

 

The simplest on-lap geometry is when an initially sub-horizontal stratum laps out 

against an initially inclined surface. Both on-laps and zone boundaries are indicators of 

non-depositional breaks (hiatuses). Usually the on-lap is accompanied by layer truncation 

which is the lateral termination of a stratum by erosion, and occurs at the upper boundary 

of a depositional sequence. 

 

To model the on-lapping sequence, a grid showing several stratigraphic 

unconformities was built (Fig. 4.22). The grid shows two main sedimentary bodies with 

parallel strata separated by an angular unconformity where tilting and erosion of strata 

were followed by deposition. Fluid will be flowing from left to right and two boundary 

conditions will be modeled. 
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4.3.2.1. Closed Bottom Boundary 

 

 To model the boundary conditions an extra layer was added to the bottom of the 

grid, it will act as an open or closed boundary. The numerical solution for the bottom 

close boundary is presented in Fig. 4.22. In this case the streamlines paths follow a 

fanning shape. Both fluxes in i and k faces trend to squeeze near the right end of the on-

lapping sequence. To model the flow through the on-lapping zone ECLIPSE 

automatically generates x-direction horizontal non-neighbor connections between the 

active cells on either side of the pinched-out columns, allowing fluid to flow through it in 

the x-direction. 

 

 
Fig. 4.22 Numerical Solution - Onlap Boundary Grid – Closed Bottom 

  

 Reviewing the numerical TOF on Fig. 4.23 several things can be appreciated. 

Both sedimentary bodies are having a considerable front distortion as the geometry is 

pinching-out. The distortion in the upper body is not as severe as the bottom one, 
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however there’s a remarkable difference between the times required to reach the same x-

location. The bottom body shows an uniform front in the first half of the pinch-out, but 

the second half is characterized for the sudden severe increase on the time of flight.  

 

 
Fig. 4.23 Numerical Time of Flight - Onlap Boundary Grid – Closed Bottom 

 

 It has already been mentioned, how the analytical solution is found differentiating 

the stream-function and multiplying it by the injection rate per unit length. For the on-

lapping sequences a diagram showing the overall concept is presented in Fig. 4.24. 

Instead of finding the difference between the node depths of each cell, each cell corner is 

mapped to the unit-transformed space. To perform this mapping, it is necessary to solve 

the non-linear system of equation arising when using the equations in section 3.2.2. The 

algorithm used is described by Powell27 and is implemented by Press26. 

 

 
Fig. 4.24 Stream-Function Concept for On-lap Sequence. 
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Once the transformed coordinates are found, the real flux will be the difference 

between the transformed depths multiplied by the injection rate. The real solution can be 

appreciated as fluxes iso-lines going from 0 to 1 and directly proportional to the injection 

rate. 

 

 
Fig. 4.25 Analytical Solution - Onlap Boundary Grid – Closed Bottom 

 

 The corresponding analytical solutions are presented in Fig 4.25 and 4.26. Just 

like the numerical solution, the streamline paths show a fanning trend uniformly 

distributed. The x-direction flow shows an uniform increasing velocity front, in contrast 

with the severely distorted numerical one. Curiously, the simulator is doing a better job 

approximating the z-direction flow compared to the previous pinch-out cases. The overall 

pattern in this direction is preserved and even some rate allocation details are conserved. 
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Fig. 4.26 Analytical Time of Flight - Onlap Boundary Grid – Closed Bottom 

 

The time of flight is a straight-line front which is developing from left to right 

(Fig 4.26). This result is not surprising since the x-direction flow is a uniform evolving 

front too, and the vertical flux component is compensated with the streamline fan-shape 

nature. 

 

Fig. 4.27 shows the difference between both numerical and analytical TOF. Both 

upper and bottom sedimentary bodies have the highest differences growing towards de 

truncation zone where the upper strata are terminated. 

 

 
Fig. 4.27 Difference between Numerical and Analytical TOF - Onlap Boundary Grid – 

Closed Bottom 
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4.3.2.2. Open Bottom Boundary 

 

 Fig. 4.28 shows the numerical solution for the open bottom boundary case. To 

model the open boundary, producing wells were added to the bottom layer and were 

constrained by rate. This can be appreciated in the z-direction flow where the last layer 

shows a constant flow rate.  

 

 
Fig. 4.28 Numerical Solution - Onlap Boundary Grid – Open Bottom 

 

The streamline paths across the upper sedimentary body are nearly horizontal, but 

they have a wicked twist when they cross the on-lapping sequence. This effect is greater 

as the upper strata are terminated and is mainly related to the velocity fronts obtained at 

the bottom sedimentary body. This similar situation occurred in the closed-bottom 

boundary case, where the first half had a uniform front and the second one a sudden and 

abrupt distortion on it. 
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 The time of flight (Fig. 4.29) is again a faithful reproduction of what is going on 

with the fluxes. The upper layers of the structure show a very uniform displacement front 

just like the x-direction flow and the horizontal streamline paths. The bottom layers 

follow the same trend just in the first half of the sequence; the second half is 

characterized by the abrupt distortion towards the termination of the upper layers and the 

time of flight increase. 

 

 
Fig. 4.29 Numerical Time of Flight - Onlap Boundary Grid – Open Bottom 
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Fig. 4.30 Analytical Solution - Onlap Boundary Grid – Open Bottom 

 

The analytical solution is presented in Fig. 4.30 and Fig. 4.31. The streamline 

horizontality is product of the upper strata zero vertical flux and the uniform horizontal 

flux distribution over the bottom one. The time of flight is again distinguished by its 

linear evolving front. 
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Fig. 4.31 Analytical Time of Flight - Onlap Boundary Grid – Open Bottom 

 

Finally, Fig. 4.32 presents the differences between both numerical and analytical 

time of flight. As mentioned before, the upper section is well approximated by the 

numerical solution, while the bottom one has an unexpected growing non-accuracy 

headed for the end of the on-lapping sequence. 

 

 
 

Fig. 4.32 Difference between Numerical and Analytical TOF - Onlap Boundary Grid – 
Closed Bottom 

 
4.4. Grid Refinement Effects 

  

 In any type of computer simulation work, there might be accuracy problems 

associated with the cell size and eventually the number of cells used. The Buckley-

Leverett model used for immiscible displacement calculations, such as the one used in 
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streamline simulation, assumes an incompressible system and ignores capillary pressure. 

A characteristic of these systems is the “shock” or clearly defined saturation front.  

 

When using finite differences, the equations solved are parabolic, implying a 

smooth function with no discontinuities. Therefore, simulation does not give a clear front 

like Buckley-Leverett predicts. For large gridblocks the saturation definition is lost and 

numerical dispersion appears on the solutions. To remove and minimize this effect, 

smaller (or more) gridblocks are added to the model. 

 

 Within all previously presented cases, the pinch-out grid with missing layers was 

refined in both x and z direction to evaluate the numerical solution accuracy and reduce 

dispersion effects. In addition to the refinement, the grid non-orthogonality was increased 

using slanted coordinate lines instead of vertical lines. For all refined grids both 

numerical and analytical solutions are presented. 

 

4.4.1. Vertical Coordinate Lines 

 

 Figs. 4.33 through 4.36 show both the numerical and analytical solution for the 

refined grids. In all three models, the upper right and bottom left gridblocks of the 

numerical x-direction flow through i-face (Fig.4.33) lose the main flow pattern observed 

in the analytical solution. On the other hand, the x-direction flow through k-face (Fig. 

4.34) is far from being a good representation of the real solution, there’s a severe 

dissimilarity present within all gridblocks. Finally, the time of flight and the streamline 

paths (Figs. 4.35 and 4.36) are clearly showing that the grid non-orthogonality is causing 

the displacement front to be aligned with the principal directions of the grid, when it 

should be a straight line evolving front. 
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Fig. 4.33 Refined X-Direction Flow i-Face - Vertical Coordinate Lines 

 

 
 

Fig. 4.34 Refined X-Direction Flow k-Face - Vertical Coordinate Lines 
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Fig. 4.35 Refined Time of Flight - Vertical Coordinate Lines 

 

 
 

Fig. 4.36 Refined Streamline Paths - Vertical Coordinate Lines 
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4.4.2. Slanted Coordinate Lines 

  

Within all presented cases, it has been shown how the grid geometry can seriously 

compromise the accuracy and reliability of the numerical solution. The last cases to be 

presented will not only have the non-orthogonality associated with the layering geometry; 

they will also have a non-orthogonal component in the coordinate lines used to build the 

CPG grid. 

 

The numerical and analytical solutions are presented in Figs. 4.37 through 4.40. 

Again, the numerical solutions show the same non-accuracies in both x-direction flow 

through i and k faces. The displacement fronts are severely distorted along the upper 

gridblocks of the pinch-out, where the highest non-orthogonality is present. The 

distortion is also appreciated in the streamline trajectories. 

 

 
Fig. 4.37 Refined X-Direction Flow in i-Face - Slanted Coordinate Lines 
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Fig. 4.38 Refined X-Direction Flow in k-Face - Slanted Coordinate Lines 

 

 
 

Fig. 4.39 Refined Time of Flight - Slanted Coordinate Lines 
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Fig. 4.40 Refined Streamline Paths - Slanted Coordinate Lines 
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CHAPTER V 
 

CONCLUDING REMARKS AND RECOMMENDATIONS 

 

 

5.1. Conclusions 

 

 A new streamline method to handle fluid displacements within complex reservoir 

geometries has been developed. We managed to take full advantage of the 

uniqueness and usefulness of streamline simulation to approach the difficulties 

found in modeling structurally demanding geometries. 

 

 We have developed and implemented the proposed procedure in a FORTRAN 

program for tracing streamlines in the grid domain and the corresponding time of 

flight calculation. 

 

 The Corner point geometry freedom can lead to extreme nonorthogonality, 

exerting a significant impact on the flow performance and subsequent operational 

decisions involved in reservoir management. The grid non-orthogonality may 

cause the displacement front to be aligned with the principal directions of the grid 

instead of the flow direction. 

 

 The pseudo-time-of-flight introduction provides a significantly simpler and more 

robust development to handle the complexity in structurally demanding and 

faulted systems. We have provided a new basis for time of flight calculations and 

we have used it as an independent indicator of grid geometry effects on 

displacements calculations. 
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 The extension to the tracing algorithm retains the simplicity and speed featured in 

streamline-based flow. The extension is able to handle complex geologic features 

such as faults, onlap boundaries and distorted grids. 

 

 We have compared the results with existing commercial simulators, comparing 

the accuracy of all the involved calculations with streamline-derived analytic 

solutions. Several discrepancies were found related to grid orientation and non-

orthogonality components. 

 

5.2. Recommendations 

 

 We used the commercial simulator ECLIPSE as the forward tool to obtain the 

fluxes required to trace the streamlines in all presented geometries. Another widely used 

simulator is VIP, we recommend to perform the same numerical exercises using VIP and 

compare the results between both simulators. 

 

 The program has no been tested using real data, it’s highly recommended to run 

some field cases in order to have an operational and confident tool. The main goal will be 

to couple the code with any finite difference software and perform the streamline 

procedure. 

 

 Dealing with non-neighbor connections is a required geologic feature present in 

almost every reservoir model. It is imperative to extend the ability of the code to handle 

heavily faulted systems. To accomplish this, it might be necessary to re-design the 

FORTRAN code into an object oriented structure such as the one used in C++. 
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