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ABSTRACT 
 
 

Near Optimal Design of Fixture Layouts in Multi-station Assembly Processes. 

(August 2004) 

Pansoo Kim, B.S., Pusan National University; 

M.S., Pusan National University 

Chair of Advisory Committee: Dr. Yu Ding 

 

This dissertation presents a methodology for the near optimal design of fixture 

layouts in multi-station assembly processes.  An optimal fixture layout improves the 

robustness of a fixture system, reduces product variability and leads to manufacturing 

cost reduction.  Three key aspects of the multi-station fixture layout design are 

addressed: a multi-station variation propagation model, a quantitative measure of 

fixture design, and an effective and efficient optimization algorithm.  Multi-station 

design may have high dimensions of design space, which can contain a lot of local 

optima.  In this dissertation, I investigated two algorithms for optimal fixture layout 

designs.  The first algorithm is an exchange algorithm, which was originally 

developed in the research of optimal experimental designs.  I revised the exchange 

routine so that it can remarkably reduce the computing time without sacrificing the 

optimal values.  The second algorithm uses data-mining methods such as clustering 

and classification.  It appears that the data-mining method can find valuable design 

selection rules that can in turn help to locate the optimal design efficiently.  Compared 

with other non-linear optimization algorithms such as the simplex search method, 

simulated annealing, genetic algorithm, the data-mining method performs the best and 

the revised exchange algorithm performs comparably to simulated annealing, but 

better than the others.  A four-station assembly process for a sport utility vehicle 

(SUV) side frame is used throughout the dissertation to illustrate the relevant concepts 
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and the resulting methodology. 
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NOMENCLATURE 

 
Pi locating pin i 

NCi NC block i 

Mi key dimensional feature i 

PLPn  total number of fixture locators 

θ location of fixture locators, fixture layout 

θ0 initial or reference fixture layout 

S intuitive sensitivity index 

S(⋅) sensitivity function, upper bound of sensitivity 

G(⋅) geometric constraints 

Xi ,Zi coordinates of locator Pi 

xi,k product dimensional state of part i on station k 

uj,k random deviation of jth fixture pair on station k 

xk state of product on station k 

uk fixture deviation vector on station k 

yk product measurements at station k 

wk un-modeled error or higher order term 

vk observation error 

δ perturbation operator 

α orientation angle 

Ak dynamic matrix, change of fixture layout from station k to station k+1  
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Bk input matrix of station k 

Ck observation matrix of station k 

Φ  state transition matrix, ≡ik ,Φ ikk AAA L21 −− , k > i and  IΦ ≡ii ,

D fixture design information, ][ 22,11, NNNNNN BCBΦCBΦCD L≡  

ŷ  fixture-induced production deviation  

u variation input,  ][ 1
T
N

TT uuu L≡

p
ii 1}{ =λ  eigenvalues of , where p is the column number of D DDT

tr(⋅) trace of a matrix 

det(⋅) determinant of a matrix   

Nc total number of candidate locations 

∆ improvement in the S(θ) 

d0 the radius of each panel 

iΩ  locator pair set for panel i 

F(⋅) feature function 

F vector of its feature functions 

Lm between locator distances for m locator pairs 

Nk the number of elements in cluster k 

C(⋅) cluster which it belongs  

mk cluster center 

||⋅|| vector 2-norm  

K the number of cluster 
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J the number of designs selected from each cluster 

Nf the number of designs in the selected good design set 

T0 overhead time 

Nt total number of function evaluation 

Nr the number of designs in design representatives 

kB cooling ratio, the Boltzmann’s constant 

M population size 

Pc recombination rate 

Pm permutation rate 
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CHAPTER I 
 

INTRODUCTION*

 
 

 
Dimensional quality control is one of the major challenges in discrete-part 

manufacturing.  In the automotive and aviation industries, for instance, dimensional 

problems contribute to about two-thirds of all quality-related problems during a new 

product launch (Shalon, Gossard, Ulrich and Fitzpatrick, 1992; Ceglarek and Shi, 

1995).  Automotive and aircraft assembly processes are typical multi-station panel 

assembly processes in which fixtures are used extensively to provide physical support 

and to coordinate references to parts and subassemblies.  As a result, fixture design 

greatly affects the dimensional accuracy of the final products. 

 Figure 1  illustrates a typical 3-2-1 fixture used in panel assembly processes.  It 

consists of two locating pins, P4way and P2way, and three NC blocks, NC1-3.  The two 

locating pins constrain three degrees of freedom in the X-Z plane, where the 4-way 

pin controls part motion in both X- and Z- directions and the 2-way pin controls part 

motion in the Z-direction.  Three NC blocks constrain the other degrees of freedom of 

the workpiece.  When a workpiece is non-rigid, more than three NC blocks may be 

needed in order to reduce part deformation.  An n-2-1 fixture layout, denoted by 

                                                 
This dissertation follows the style of Technometrics. 
* This dissertation has been published as a journal article. © 2004 IEEE. Reprinted, 
with permission, from Kim, P. and Ding, Y. (2004), “Optimal design of fixture layout 
in multi-station assembly process,” IEEE Transactions on Automation Science and 
Engineering, to appear. 
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{P4way, P2way, NCi, i = 1,2, ... ,n}, is a more generic setting in panel assembly 

processes. 

 

 
NC3 

workpiece 

X

Z

Y

NC1 

P4way 

P2way 

NC2 

 

Figure 1  Illustration of a 3-2-1 fixture 

 

Product dimensional variations resulting from locating pins and NC blocks are 

generally different: variation from locating pins causes a (global) rigid-body motion of 

a workpiece while variation from NC blocks can cause (local) deformations.  In this 

study, we are more interested in the global variation phenomena related to locating 

pins.  Hence, we use {P4way, P2way} as a simplified representation of an n-2-1 fixture 

layout. 

A real panel assembly process always consists of multiple assembly stations.  

For example, an assembly line in an automotive body-shop could involve up to 80 

stations to assemble 150 to 250 sheet-metal parts into the structure of a vehicle.  

Consider the assembly process of the side frame of a sport utility vehicle (SUV) in 

Figure 2.  The final product, the inner-panel-complete, is comprised of four 
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components: A-pillar, B-pillar, rail roof side panel, and rear quarter panel, which are 

assembled on three stations (Stations I, II, III).  The final assembly is then inspected at 

Station IV (M1-M10 marked in Figure 2(d) are key dimensional features). 

 

 

B-Pillar 
P1 

P2 

P3 

P4

A-Pillar 
A-Pillar  

P1

P4B-Pillar 

Rail Roof Side Panel

P6
P5

(a) Station I (b) Station II 

(c) Station III 

A-Pillar  

B-Pillar 

Rail Roof 
Side Panel 

Rear Quarter Panel 

P1

P6

P7 

P8

M3

M1 

M4 

M2 
M6 M7

M8

M5 
M9

M10 

(d) Station IV:  
      key product features 

X 

Z 
Y 

 

Figure 2  Assembly process of a SUV side frame  

 

In such a multi-station process, the aforementioned 3-2-1 fixture is used on 

every station to ensure product dimensional accuracy.  In Figure 2, P1–P8 are the so-

called principal locating points (PLP), which are the pinholes used to position a part 

on an assembly station.  However, the same symbols are also used interchangeably to 

represent locating pins.  Thus, a fixture layout in a multi-station process can be 

represented using these PLPs as follows 
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{{P1, P2}, {P3, P4}}I → {{P1, P4}, {P5, P6}}II → {{P1, P6}, {P7, P8}}III→{{P1, P8}}IV, 

where the assembly process starts from Station I (indicated by the subscript) and the 

arrow represents a transition from one station to the next.  As an example, {{P1, 

P4},{P5, P6}}II means that at Station II the first workpiece, the sub-assembly “A-

pillar+B-pillar,” is located by P1 and P4 and the second workpiece, the rail roof side 

panel, is located by P5 and P6. 

 

I.1 Problem definition 

In a multi-station assembly process, dimensional variations could originate 

from fixture elements on every station, propagate along the production line, and 

accumulate on the final assembly.  The dimensional quality of the final assembly 

depends on: (i) input variation level, and (ii) process sensitivity to variation inputs.  

The former issue is usually addressed by tolerance design.  This dissertation focuses 

on the second issue, i.e. an optimal design of fixture layouts in a multi-station 

assembly process, so that the process is insensitive to variation input. 

Fixture layout design in a multi-station process determines the locations of 

fixtures on every assembly station.  Since the problem is equivalent to the 

determination of PLP locations on an assembly product, three aspects should be 

addressed: (1) a variation propagation model that links fixture variation inputs on 

every station to product dimensional variations; (2) a quantitative design measure that 

benchmarks the sensitivity of different fixture layouts, and (3) optimization algorithms 
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that find the optimal fixture layouts.  

Research efforts have been made for the first aspect of fixture layout design, 

which is to establish a linear variation propagation model that links the product 

dimensional deviation (measured at M1-M10) to fixture locator deviations at P1-P8 on 

three assembly stations (Jin and Shi 1999; Ding, Ceglarek and Shi 2000; Camelio, Hu 

and Ceglarek 2001).  This dissertation focuses on the second and third aspects of 

fixture layout design.  Based on the variation model, a sensitivity index S will be 

developed as a non-linear function of the coordinates of the fixture locators. The 

optimization algorithm will use this sensitivity index for determining a robust fixture 

system in a multi-station panel-assembly process.   

The design parameters are the locations of fixture locators, denoted as θ = 

, where  is the total number of fixture locators, e.g. 

 = 8 for the process in Figure 2 and X

T
nn PLPPLP

ZXZX ][ 11 L PLPn

PLPn i and Zi are the coordinates of locator Pi.  

Using this notation, the optimal fixture layout design problem attempts to find a set of 

 that minimizes sensitivity S while satisfying the geometric constraint G(⋅) : θ

                                              (1) 
.0)(

)(min

≥θ

θ
θ

Gtosubject

S

 

I.2  Prior work on fixture layout design problem 

Earlier research on fixture design employed kinematical and mechanical 

analysis to explore accessibility, detachability, and location uniqueness of a fixture, 

aiming at the automatic generation of fixture layouts (Asada and By, 1985).  Heuristic 
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algorithms were developed for the automatic generation of fixture configurations 

(Chou, Chandru and Barash, 1989; Ferreira, Kochar, Liu and Chandru, 1985).  

Trappery and Liu (1990) summarized the research before 1990 on fixture-design 

automation and a more recent summary can be found in Chapter 1 of  Cai, Hu and 

Yuan’s (1997) work. 

These fixture designs methods are considered deterministic approaches 

because they consider neither random manufacturing errors of fixture elements nor 

workpiece positioning errors induced by fixturing operations.  Since a workpiece or a 

fixture element is unavoidably subject to manufacturing errors, researchers studied the 

problem of robust fixture design in a stochastic environment. 

One branch of robust fixture design aims at finding optimal fixture positions 

that minimize the deflection of a compliant workpiece under a working load.  This 

research usually does not consider the manufacturing errors of fixture elements.   

However, fixture-related local deformation and micro-slippage are considered error 

sources (DeMeter, 1995; Melkote, 1995). 

Another branch of robust fixture design is known as the variational approach 

because it considers fixture error or workpiece surface error and tries to find an 

optimal fixture layout that makes the positioning accuracy of a workpiece insensitive 

to input errors (Cai et al., 1997; Wang, 2000; Wang and Pelinescu, 2001; Soderberg 

and Carlson, 1999).  Variational fixture design often starts with developing a 

sensitivity measure that characterizes the robustness of a fixture system; this 

sensitivity measure is determined by fixture layout and is independent of fixture error 
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input. Essentially, the smaller the sensitivity, the more robust the fixture system is.  

For example, Wang (2000) maximized the determinant of the information matrix (D-

optimality), which is the inverse of the sensitivity matrix, and Cai et al. (1997) 

minimized the Euclidean norm of their sensitivity matrix.  Meanwhile, heuristic or 

rule-based methods have also been developed for designing robust fixture layout 

(Soderberg and Carlson, 1999).  Research work by Rong, Li and Bai (1995), 

Choudhuri and DeMeter (1999), Ding, Ceglarek and Shi (2002a) and Carlson (2001) 

is also relevant in the sense that it provides variation/tolerance analysis of a fixture 

system while the difference is that the issue of fixture synthesis is not addressed. 

Past variational fixture designs were conducted mainly at the single-machine 

level rather than at the multi-station system level with the fixture layout optimization 

being limited to a single workstation.  Based on our description of the 3-2-1 fixture 

used in panel assembly processes, it is apparent that a station-wise optimization of 

fixture layouts is different from a system-wide optimization.  Suppose that one had 

optimized the positions of P1, P2, P3, and P4 on Station I.  (Note that P1 and P4, the 

PLPs on A-pillar and B-pillar, respectively, will be reused on Station II.)  Thus, when 

a station-wise optimization is carried out on Station II, one could choose to optimize 

all fixtures on Station II as if P1 and P4 were not optimized on Station I or he could 

keep the optimized positions of P1 and P4 and only optimize the fixture layout (P5 and 

P6) that supports the newly added part.  Obviously, neither approach will lead to an 

overall optimal fixture-layout in a multi-station process. 

Research on multi-station fixture optimization is limited because of the 
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inherent difficulty resulting from multi-station variation modeling, development of 

design criteria, as well as the choices of efficient optimization methods.  Recent 

research addresses the issue of multi-station variation modeling using either a station-

indexed state space model (Jin and Shi, 1999; Ding et al., 2000; Camelio et al., 2001; 

Zhou, Huang and Shi, 2003) or a datum-machining surface relationship graph (DMG) 

(Rong and Bai, 1996).  Xiong, Rong, Koganti, Zaluzec and Wang (2002) further 

studied non-linear fixturing models for variation prediction in multi-station aluminum 

welded assemblies.  Based on linear variation models developed for panel assembly 

processes (Jin and Shi, 1999; Ding et al., 2000; Camelio et al., 2001), this dissertation 

will continue the development of design criteria and optimization algorithms for 

multi-station fixture design. 

One more note is on fixture diagnosis (Ceglarek and Shi, 1996; Chang and 

Gossard, 1998; Carlson, Lindkvist and Soderberg, 2000; Ding, Ceglarek and Shi, 

2002b), which is to pinpoint malfunctioning fixtures based on in-line measurements 

from Optical CMMs.  It is apparent that fixture diagnosis is an in-line technique that 

complements the off-line fixture design method.  It is not surprising that both types of 

research share the common theoretical background of variation modeling and analysis.  

Overall, the methodologies reviewed in this chapter are summarized in Table 1. 
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Table 1  Comparison of fixture-design methodologies 

Problem Domain Methodologies 

Deterministic Asada and By (1985), Chou et al. (1989), Ferreira et 
al. (1985), Trappey and Liu (1990) 

Robust Design 
for Minimal 
Deflection  

Menasa and DeVries (1991), Rearick et al. (1993), 
DeMeter (1995), Melkote (1995), Hockenberger and 
DeMeter (1996), Cai and Hu (1996), Huang and 
Hoshi (1999) 

Single 
Station 

Cai et al. (1997), Wang (2000), Wang and Pelinescu 
(2001), Soderberg and Carlson (1999), Rong et al. 
(1995), Choudhuri and DeMeter (1999), Carlson 
(2001) 

Modeling & 
Analysis 

Rong and Bai (1996), Jin and 
Shi (1999), Camelio et al.(2001), 
Ding et al. (2000,2002), Zhou et 
al. (2003), Xiong et al. (2002) 

Fixture 
Design 

Varia- 
tional 
Robust 
Design Multi-

Station 
Fixture 
Optimization To be presented in this research 
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I.3 Outline of the dissertation 

Figure 3 shows an outline of this dissertation.  Following this introduction, 

Chapter II presents the variation propagation model and explains the major variation 

phenomena in a panel assembly process.  Chapter II also presents the selection of 

design measures.  The revised exchange algorithms, illustrated by solving the fixture-

layout in the SUV side-frame assembly process, are presented in Chapter III.  Chapter 

IV presents the data-mining method that can help to find an optimal design with 

higher efficiently.  These two algorithms and a few existing non-linear optimization 

algorithms, such as the genetic algorithm and simulated annealing, are compared in 

Chapter V.  Finally, we conclude this dissertation in Chapter VI. 

 

 

Chapter II. Variation model and 
Design criteria 

Chapter VI. Conclusion 

Chapter V. Comparison with  
Existing Algorithms 

Chapter III. 
Exchange 
 Algorithm 

Chapter I. Introduction 

Model and Criteria 
Development 

Chapter IV. 
Data-mining 

Method 
Optimization Algorithm 

Development 

 

Figure 3  Outline of the dissertation 
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CHAPTER II 
 

VARIATION MODEL AND DESIGN CRITERIA 
 
 

 
Dimensional variation models that link fixture variation to dimensional 

measurements have been developed using standard kinematics analysis (Paul, 1981).  

A few variation propagation models were recently developed for multi-station 

assembly processes using a state-space representation (Jin and Shi, 1999; Ding et al., 

2000; Camelio et al., 2001).  Since this model is an integral part of multi-station 

fixture design, we briefly explain key elements in the modeling procedure and then 

present a general model structure. A 2D assembly process is modeled in this chapter 

and based on the variation model, a sensitivity index S will be developed as a non-

linear function of the coordinates of fixture locators.  Prior to introducing this index, a 

singular property of the suggested model which affects the selection of S is explained; 

the index is then compared with other typically used criteria.  

 

II.1 State space variation model 

There are two major fixture-related variation sources, as illustrated in Figure 4.  

One is the variation contributed by fixture locators on station k (Figure 4(a)) and the 

other is the variation induced when a sub-assembly is transferred to the next station 

where a different fixture layout is used to position the sub-assembly (Figure 4(b)). 

The modeling procedure starts with an individual station k.  Denote the 
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product dimensional state of part i on station k as , which 

are the deviations associated with its three degrees of freedom, where δ is the 

perturbation operator and α is the orientation angle.  Suppose that this part is located 

by the j

T
kikikiki ZX ][

,,,, δαδδ=x

th fixture pair {P1, P2} on station k, whose random deviations are denoted as 

.   Therefore,  can be related to  through a 

linearization, 

=kj ,u TZPZPXP ])()()([ 211 δδδ ki ,x kj ,u

kikjki

XPXPXPXP

,,

1221

,

)()(
1

)()(
10

010
001

wux +⋅

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−

= ,                              (2) 

where P1(X) and P2(X)  are the nominal coordinates of locators P1 and P2 and wi,k 

includes the un-modeled higher order terms. 

 

 

P1 
δP2(Z)

P2 

workpiece 

4-way locator, positioning 
variability in two directions 

2-way locator, positioning 
variability in one direction 

δP1(X) 

δP1(Z) 

δP2(Z) 

X 

Z 
α 

• M2  M1 • 

Mi •  Product feature 

Part 1 Part 2 fixture 
deviation

Station k  

Part 1 Part 2 

Part 3 

Station 
 k+1 

re-orientation 

(a) 

 (b) 

 

Figure 4  Fixture-related variation sources 
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Generally, the state of the product, which comprises np parts, is represented by 

.  If part i has not yet appeared on station k, the corresponding 

x

TT
kn

T
kk p

][ ,,1 xxx L≡

i,k=0.  The fixture deviation vector on station k is , where nTT
kn

T
kk k

][ ,,1 uuu L= k is 

the number of fixture pairs on station k.  Product measurements at station k are 

included in yk.  For the example in Figure 4(a), yk = 

TZXZX ])(M)(M)(M)(M[ 2211 δδδδ , which are the deviations associated with 

product features M1 and M2. 

The basic idea of a state space variation model is to consider a multi-station 

process as a sequential system but replace the time index in a traditional state space 

model with a station index.  For the process in Figure 5, the station-indexed state 

space model can be expressed as 

,and11 kkkkkkkkkk vxCywuBxAx +=++= −−  k ∈{1, 2, …, N},            (3) 

where N is the number of stations and vk represents measurement noises.  In this 

variation model, Bk models the effect of fixture variation (uk) on the product 

dimensional state (xk).  It aggregates transformation matrices, each of which is similar 

to the one in Equation (2), for modeling all nk fixture pairs.  Matrix Ck includes the 

information of key product features (the number and locations of those features on 

station k).  In the process described in Figure 2, C1,2,3=0 and C4≠0 because key 

product features are measured only on Station 4 after assembly operations on Stations 

1, 2, 3.  
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Station 1 Station k-1… Station k … Station N 
x0 x1 xk-2 xk-1 xk xN-1 xN 

u1 w1 uk-1 wk-1 uk wk uN wN 

vk 

yk 

vN 

yN 

  

Figure 5  Diagram of a multi-station manufacturing process 

 

Finally, we summarize the physical interpretation of A, B, and C in Table 2, 

where , k > i and ≡ik ,Φ ikk AAA L21 −− IΦ ≡ii , , and include a few more remarks 

regarding the state space variation model as follows. 

 

Table 2  Interpretation of system matrices 

Symbol Name Relationship Interpretation Assembly 
Task 

A Dynamic 
matrix kk

k xx A⎯⎯→⎯ −
−

1
1  

Changes of fixture 
layout between two 

adjacent stations 

Assembly 
transfer 

Φ  State transition 
matrix ki

ik xx Φ⎯⎯→⎯ ,  
Changes of fixture 

layout across 
multiple stations 

Assembly 
transfer 

B Input matrix kk
k xu B⎯→⎯  Fixture layout at 

station k 
Part 

positioning 

C Observation 
matrix kk

k yx C⎯→⎯  Key product 
features at station k Inspection 

 

 

Remark 2.1.  The state space variation model in this dissertation assumes a linear 

model structure.  We acknowledge that its applications are limited to linear systems 

where the magnitude of fixturing errors is much smaller than the distance between 
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locators and when the process error is not strongly coupled with the fixturing error.   

Non-linearity could result from strong error-coupling and a relatively large fixturing 

error, both of which are cases that have been addressed in recent work (Carlson, 2001; 

Xiong et al., 2002).  

Remark 2.2.  Because we are more interested in the global variation resulting from 

locating pins, we assume that the NC blocks are not the major variation contributors 

and thus modeled only a 2D product.  In situations when the NC blocks indeed 

significantly affect the assembly variation, a 3D locating model is more appropriate.  

State space models with the same structure but different matrix dimensions and 

parameters were used to model complicated 3D processes, e.g., the 3D machining 

model in Zhou et al. (2003).  It should be noted that the subsequent development of 

the fixture design criteria and optimization methods are generally applicable to any 

linear system model instead of depending on particular parameters values or matrix 

dimensions. 

Remark 2.3.  In this study, the variation model for a single station is implemented to 

address the point geometry of the locating contacts for a fixture pair.  However, 

products with complicated surface profiles are located using a greater number of 

fixture elements and product quality may also be affected by local surface properties 

of the locator-workpiece system.  Researchers have recently spent efforts (Wang, 

2000; Wang and Nagarkar, 1999; Wang, Liu and Pelinescu, 2003) to address these 

problems as they may be critical to meet high-precision requirements in fixturing 

small parts with complex geometry.  The resulting models by Wang (2000), Wang and 
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Nagarkar (1999), and Wang et al. (2003) adopt a linear structure, which makes it less 

difficult to incorporate them in the state space model.  For example,  the fixture-

quality relations for a more general product surface, modeled by Equation (8) in Wang 

and Nagarkar (1999) or Equation (5) in Wang (2000), are mathematically equivalent 

to the term  in Equation (3) so that  can be simply replaced by these 

relations.  The local fixture contact properties modeled by Equation (28) in Wang et 

al. (2003) cannot directly replace , though, because they are expressed in velocity 

and not in displacement (or deviation).  In that particular case, either the state vector 

should be augmented to include both velocity and deviation, as it is usually expressed 

in dynamic state space models, or a model for deviation from the integral of Equation 

(28) in Wang et al. (2003) should be used.  

kkuB kkuB

kkuB

 

II.2 Singularity of the model 

One difference between a multi-station variation model and a single-station 

model is the existence of matrix A that links product states (x) across different 

stations.  Matrix A depends on fixture layouts on two adjacent stations.  The 

procedure to determine A is conceptually similar to that of determining B or C, but is 

algebraically complicated (for more details, please refer to Jin and Shi, 1999; Ding et 

al., 2000; or Camelio et al., 2001).  If there is no change in fixture layouts across 

stations, A simply becomes an identity matrix (e.g. the process described by 

Mantripragada and Whitney, 1999), and then the multi-station model in Equation (3) 

becomes a simple summation of multiple single-station models. 
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In the multi-station panel assembly process described in Chapter I, a change in 

fixture layouts occurs when the sub-assembly proceeds to a new station.  Figure 4(b) 

illustrates the effect due to the change in fixture layouts; it results in a re-orientation of 

the sub-assembly.  If there were fixture deviations in previous stations, the 

reorientation-induced error could happen to a part, even if fixtures at the current 

station are free of error (e.g. part 1 in Figure 4(b)). 

This re-orientation is almost unavoidable for a multi-station panel-assembly 

process because a subset of PLPs is necessary to re-position a sub-assembly on a 

downstream station.  Due to this re-orientation effect, A in the multi-station variation 

model takes a structure other than an identity matrix.  More importantly, and maybe 

surprisingly, A is singular throughout the entire process.  This singularity issue was 

identified for a multi-station assembly process in Carlson et al.’s (2000) work . 

We present an intuitive explanation for why A is singular when fixture layouts 

change across stations.  Consider the simple example in Figure 6, where several 

possible fixture errors on an upstream station could have caused the same resulting 

pattern of part deviation.  

When this resulting deviation pattern is observed on Station k+1 (Figure 6(a)), 

the faulty fixture pair on Station k causing the deviation pattern could be either 

fixture-pair one (Figure 6(c)), fixture-pair two (Figure 6(b)), or both fixture pairs 

(Figure 6(d)).  Assembly deviation at one station is related to deviation incurred at the 

previous station through matrix A, i.e., kkk xΑx =+1 , by neglecting other terms.  With 

that in mind, given xk+1, there is no unique solution for xk because of ambiguity and 
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we can conclude that Ak is singular.  The singularity of matrix A is a general problem 

existing in panel assembly processes and will affect our choice of design criterion 

during later development. 

 

 

 (a) observed  
      assembly 

 (b) fixture-pair one normal
       fixture-pair two faulty 

1
2

1 12 2 

 (c) fixture-pair one faulty 
       fixture-pair two normal

 (d) fixture-pair one faulty 
       fixture-pair two faulty

part nominal 
position 

part deviated 
position 

 

Figure 6  Singularity of A due to re-orientation 

 

Following the modeling procedure in Jin and Shi (1999) and Ding et al. 

(2000), a state-space variation model was developed for the four-station assembly 

process of the SUV side frame in Figure 2.  In this model, the fixture used on Station 

IV is considered well maintained and calibrated with much higher repeatability than 

those on a regular assembly station.  Thus, fixture locators on the measurement station 

are assumed free of error, i.e. u4=0, while deviation inputs from fixtures on three 

assembly stations, u1, u2, and u3, are included.   Thus, the state space model is 

⎩
⎨
⎧

+=
+==++= −−

,
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4444
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vxCy
wxAxwuBxAx kkkkkkk                     (4) 
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where x0 represents product error resulting from the part-fabrication process (which is 

a stamping process for panel assembly) prior to assembly.  Numerical expressions of 

A's, B's, and C’s are included in the Appendix.  It is easy to verify that A1, A2, and A3 

are all singular. 

 
 
II.3 Design criteria 

We first reformulate the state space model in Equation (3) into an input-output 

linear model by eliminating all intermediate state variables xk.  We have 

NkkNN
N
kNNkkkNN

N
kN vwΦCxΦCuBΦCy +Σ+⋅+Σ= == ,100,,1  .                      (5) 

In this fixture design problem, our focus is on the first term in the above equation, 

, because it represents fixture error inputs from all N stations.   

Therefore, we simplify Equation (5) as 

kkkNN
N
k uBΦC ,1=Σ

kkkNN
N
k uBΦCDuy ,1ˆ =Σ=≡ ,                                                                        (6) 

where , , and  is the 

fixture-induced product variation.  Subscript N is dropped from y  hereafter without 

causing ambiguity.  For the model in Equation (4), because u

][ 22,11, NNNNNN BCBΦCBΦCD L≡ ][ 1
T
N

TT uuu L≡ ŷ

ˆ

4 is assumed zero, 

.  ][ 33,4422,4411,44 BΦCBΦCBΦCD =

The term , the sum of squares of product deviations, was used to 

benchmark the overall level of product-dimensional nonconformity; thus, product 

yy ˆˆ T
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quality is optimized if  is minimized.  Given , the problem is 

equivalent to minimizing .  However,  is an input-dependent 

quantity and since our goal is to find a fixture layout in which product quality is 

insensitive to fixture variation input, we need a design criterion or a sensitivity index 

that is determined only by fixture design information (modeled by D) and is 

independent of variation input (represented by u). 

yy ˆˆ T DuDuyy TTT =ˆˆ

DuDu TT DuDu TT

For a single input-output pair, the sensitivity can be defined as , 

where y

jiji uyS /, =

i is the ith product feature and uj is the jth fixture error input.  For the entire 

assembly system with multiple inputs and multiple features, an intuitive way to define 

the sensitivity index is as  

uu
DuDu

uu
yy

T

TT

T

T

S =≡
ˆˆ

.                                                                          (7) 

The difficulty associated with this definition is that S is still input-dependent.   

It is felt that  plays a determining role in the above definition, which has 

motivated researchers to define the sensitivity index using a measure of .   

Research conducted in experimental design has studied a similar problem and 

proposed several optimality criteria (Fedorov, 1972; Atkinson and Donev, 1992; 

Pukelsheim, 1993).   The often used criteria include D-optimality (min det( )), A-

optimality (min tr( )), and E-optimality (minimize the extreme eigenvalue of 

), where tr(⋅) and det(⋅) are the trace and the determinant of a matrix, 

respectively.  These three measures are related to each other through the eigenvalues 

DDT

DDT

DDT

DDT

DDT
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of , , where p is the column number of D.  They can be expressed as DDT p
ii 1}{ =λ

i
p
i

T
optD λΠ= =1)det(: DD ; ; and .    (8) i

p
i

T
optA λΣ= =1)(tr: DD maxmin: λλ orEopt

The D-optimality criterion is the most widely used in experimental designs for 

following two reasons (Atkinson and Donev, 1992; Pukelsheim, 1993). (1) For 

experimental designs, this criterion has a clear interpretation.  D-optimality is 

equivalent to minimizing the prediction variance from an estimated model or the 

variances of least-squares estimates of unknown parameters.  (2) It possesses an 

invariant property under scaling, i.e. experiments can be designed using a group of 

standardized dimensionless variables (say, all variables are in [-1,1]) instead of the 

original physical variables.  In fact, this D-optimality criterion was also used in 

solving problems of fixture design and sensor placement by Wang and his colleagues 

(Wang, 2000; Wang and Pelinescu, 2001; Wang and Nagarkar, 1999).  

However, the singularity of matrix A in our variation propagation model 

(Equation 3) requires us to reconsider the design criterion.  Because A is singular, the 

state transition matrix  is also singular.  It suggests that each term  in D 

is less than full rank even if C and B matrices are of full rank.  As a result, matrix D is 

less than full rank so that  is singular.   

ik ,Φ iiNN BΦC ,

DDT

When  is singular, at least one of its eigenvalues is zero, i.e. det( ) = 

0.  Recalling the reason why A is singular (explained in Chapter II.2), we know that 

this singularity issue cannot be resolved by simply changing the positions of fixture 

locators on a station.  It is an inherent problem caused by the fixturing mechanism in a 

DDT DDT
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multi-station panel assembly process.  This fact implies that even if we choose new 

positions for fixture locators, det( ) is always zero, therefore it is fair to conclude 

that det( ) is non-informative in this multi-station fixture design. 

DDT

DDT

Given the singularity problem of design matrix D, we consider that either A-

optimality or E-optimality is an informative criterion for multi-station fixture design.   

We recommend the use of E-optimality because it has a clearer physical interpretation.   

It is known (Schott, 1997) that 

)(max DD
uu
DuDu T

T

TT

S λ≤≡  for any u≠0.                                              (9) 

That is, E-optimality, which minimizes , is equivalent to 

minimizing the upper sensitivity bound of the fixture system.  This criterion can also 

be derived using the concept of matrix 2-norm.  Defining the upper bound of 

sensitivity as S(θ), it follows the definition of matrix 2-norm (Schott, 1997) that 

)(max DDTλ

S(θ) )(sup max
2

2
DDD
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≠

.                                            (10) 

In other words, E-optimal is the square of the 2-norm of the design matrix D. 

We cannot rule out the possible use of A-optimality in this multi-station fixture 

design problem.  Since an eigenvalue of  represents the sensitivity level related 

to one particular input-output pair for a canonical variation model, tr( ) is the 

summation of sensitivities related to all input-output pairs, representing the overall 

sensitivity level of the fixture system.  Using A-optimality can be considered for 

minimizing the summation of sensitivities.  

DDT

DDT
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Compared with A-optimality, E-optimality is conservative because it attempts 

to reduce the maximum sensitivity index.  This conservativeness actually makes E-

optimality more easily accepted by practitioners because the minimization of the 

maximum sensitivity is consistent with the Pareto Principle in quality engineering.  

Our experience with the automotive industry indicates the same tendency. 

 

II.4 Discussion and summary 

Based on our experience with this multi-station fixture design, we caution the 

use of D-optimality in general engineering system designs.  Engineering system 

designs are different from experimental designs in many aspects.  The differences 

could cause the advantages of using D-optimality in an experimental design to be 

inapplicable to an engineering design problem.  The major differences include: (i) 

Engineering design problems are often accompanied by complex constraints, for 

example, the geometric constraints imposed by the shape of a part in the SUV side-

frame assembly process.  This type of complexity makes it almost impossible to 

design an engineering system based on a group of dimensionless standardized 

variables.  In this regard, the invariant property of D-optimality becomes much less 

attractive to general engineering designs.  (ii) The complexity of engineering systems 

often results in ill-conditioned systems with some eigenvalue of  close to zero or 

even singular systems (such as our multi-station fixture system).  Since the purpose of 

D-optimality is to minimize the product of all eigenvalues, it is possible in the 

DDT
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presence of ill-conditioned systems that the near-zero eigenvalue is forced to become 

zero while leaving other eigenvalues uncontrolled as if a perfect D-optimal condition 

was achieved.  Obviously, this is actually an undesirable result.  This problem is less 

likely to occur, though, in an experimental design or to a well-posed system; see 

Wang and Nagarkar (1999) for a more detailed discussion.  (iii) The physical 

interpretation of D-optimality in engineering system designs may not be as clear as in 

experimental designs.  For instance, what det( ) represents in this fixture design 

problem is not obvious. 

DDT

In the rest of this dissertation, we will use E-optimality criterion for 

determining a robust fixture system in a multi-station panel assembly process. Using 

the E-optimality, the optimization scheme in Equation 1 can then be expressed as 

.0)(

)()(min max

≥

≡

θ

DDθ

Gtosubject

S Tλ
θ                                                                              (11) 

The initial or reference fixture layout as shown in Figure 2 is denoted as θ0. It is 

straightforward to calculate S(θ0) = 5.397. 
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CHAPTER III 
 

INVESTIGATION OF EXCHANGE ALGORITHM 
 
 

 
 This chapter traces the development of the revised exchange algorithm.  The 

basic exchange algorithm was developed to optimize the experimental design.  First, 

the basic exchange algorithm and its limitations are briefly described.  Then the three 

steps which relieve the complexity of the problem are introduced.  Finally, the 

computational results from the basic exchange algorithm, the modified Fedrov 

algorithm and the revised-exchange algorithm are compared and resulting fixture 

layouts and properties are discussed. 

 

III.1 Overview of exchange algorithm 

The objective function  is a non-linear function of design 

parameter θ, and Equation (11) thus states a constrained non-linear optimization 

problem.  The performance of an optimization algorithm is often benchmarked by: 1) 

its effectiveness, measured by the closeness of its solution to the global optimum; and, 

2) its efficiency, usually measured by the time it takes to find the optimal value.  

Unless the objective function is of a simple form such as a quadratic function (and our 

objective function is apparently not), the difficulty with non-linear optimization is that 

the global optimum is not guaranteed for almost all available algorithms without an 

exhaustive search. 

)(max DDTλ
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A multi-station fixture design problem, when expressed in the format of 

Equation (11), might appear to be no different from a single-station fixture design.   

However, the challenge that a multi-station fixture design raises is that a much higher 

dimension design space will have to be explored.  For example, even in the 2D four-

panel SUV assembly process, we need to determine the positions of eight PLPs, which 

constitutes a sixteen-dimension design space.  Consequently, this high dimension 

design space, embedding a lot of local optimums, makes a global optimality much 

more difficult and requires prohibitive computer time if an exhaustive search is used.  

Therefore, we soften our goal a bit in this dissertation.  Instead of looking for the 

global optimum, we try to find an algorithm that yields a substantial improvement in 

our design criterion with a reasonable cost of computer-time.  

In the research of optimal experimental design, exchange algorithms were 

developed to solve combinatorial optimizations based on various design criteria 

mentioned earlier, such as D-, E-, and A-optimality (Fedorov, 1972; Atkinson and 

Donev, 1992; Cook and Nachtsheim, 1980).  Most of these algorithms are variants on 

the basic idea of an exchange, explained as follows.  First, discretize the continuous 

design space to yield Nc candidate fixture-locator positions.  Then, randomly select nd 

locations from Nc candidate positions as an initial design and calculate S(θ) (in our 

problem, we actually already have an initial design, θ0).  In each exchange, do the 

following: 

(EA1) for each one of the Nc candidate locations, calculate S(θ) as if the ith location in 
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the current design was exchanged with the candidate location.  Record the 

smallest Si(θ) and the corresponding candidate location;  

(EA2) repeat (EA1) for i=1, … ,nd locations in the current design space ;  

(EA3) find  the smallest value among  and exchange the corresponding 

location in the design space and its according candidate location;  

dn
iiS 1)}({ =θ

(EA4) iterate until S(θ) cannot be improved further.   

The above procedure is known as the “basic exchange algorithm” (Cook and 

Nachtsheim, 1980).  Wang and his colleagues have applied this idea in solving a 

single-station fixture-design problem based on the D-optimality criterion (Wang, 

2000; Wang and Pelinescu, 2001).   

Indeed, this basic exchange algorithm can yield a remarkably smaller value of 

S(θ) when it is applied to the SUV assembly process.  However, the basic exchange 

algorithm was initially designed to determine efficient experiments for fitting simple 

regression models rather than for optimization problems with a high design space.  It 

would run too slowly given a large Nc, i.e. a large number of the candidate locations.   

In this study, we discretized the continuous design space on each panel with candidate 

points 10 millimeters apart.  Ten-millimeters is roughly the size of a locator’s 

diameter.   We feel that this resolution of discretization is sufficient to generate a fine 

enough grid on a panel.  Given that the panels in the SUV assembly process have a 

size of several hundred millimeters, this discretizing resolution results in a total of Nc 

= 7,813 candidate positions on four panels.  Applying the basic exchange algorithm, 
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we reduce S(θ) down from reference fixture layout θ0 with S(θ0) = 5.397 to 3.922 at 

the computing cost of 1,955.9 seconds. 

The value of S(θ) from the basic exchange algorithm renders a 27.3 % 

reduction of the maximal sensitivity level of the fixture system from the initial or 

reference fixture layout, θ0.  Our empirical experience indicates that this S(θ) value, 

even if it may not be the smallest sensitivity, should be close to the global optimum.  

However, the basic exchange algorithm takes too much computing time for the three-

station process in Figure 2, which is a simplified version of a real manufacturing 

process.  This computation inefficiency limits its applicability in a larger scale fixture 

design problem.  A general car body assembly that is made of over 100 panels will 

then correspond to a design space of hundreds of dimensions.  Thus, our goal is to 

make the exchange algorithm faster without sacrificing too much of its effectiveness 

in reducing the sensitivity level of a fixture system. 

 

III.2 Revised exchange algorithm 

The fact that only one fixture location in the initial design is replaced in each 

iteration makes the basic exchange algorithm expensive to use.  Within each iteration, 

the algorithm loops through all candidate sets nd times, which makes the total 

computation of sensitivity function at the order of cd Nn ⋅  per iteration.  Meanwhile, 

all the PLPs in the initial design are likely to be replaced eventually.  Thus, the overall 

computation complexity is at the order of .  It is clear that we should reduce cd Nn ⋅2)(
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Nc and the number of iterations to make the exchange algorithm faster.  Toward this 

goal, we implemented the following three improvements. 

III.2.1 Increase the number of exchanges per iteration 

In order to increase the number of exchanges, after Step (EA1) in the basic 

exchange algorithm, we can carry out the exchange that minimizes Si(θ).  Then, the 

number of exchanges is nd for each iteration.  This method is known as “modified 

Fedorov exchange” and was first suggested by Cook and Nachtsheim (1980).  

Another way of increasing the exchange number is to perform the exchange 

whenever there is an improvement in the objective function.  In this way, the 

exchange is performed much more frequently.  However, it is easier for this algorithm 

to become entrapped in a local optimum since it is rushed for an exchange.  This 

method is seldom recommended in the literature. 

Alternatively, we can combine the above modifications to a basic exchange 

algorithm.  The purpose of a combined modification is to exchange the candidate 

locations in the upper tail of the distribution of improvements in design criterion 

among all the candidate locations.  A similar procedure is suggested by Lam, Welch 

and Young (2002) for a uniform coverage design in molecule selection. 

In doing so, we should record the improvement in design criterion that a 

candidate location can make if the corresponding exchange is indeed carried out.  The 

distribution of the improvement can be approximated by the recorded values.  Denote 

the ∆ as the improvement in the S(θ) criterion, i.e. ≡∆  S(θ)old- S(θ)new.  Record all 
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∆j’s (j=1, …, Nc) when we loop through the Nc candidate locations.  Sort the value of 

∆j’s in a descending order as ∆(1) ≥ ∆(2) ≥ … and so on.  Select an integer number q, set 

∆(q) as the threshold.  If there is an improvement greater than ∆(q), then carry out the 

exchange. 

It is apparent that the above combined modification is similar to the modified 

Fedrovo exchange algorithm if q = 1; and, if q is the value corresponding to ∆(q) = 0, it 

is the same as the one that performs an exchange whenever there is an improvement.  

This combined exchange algorithm is more versatile for broader applications. 

In implementing this algorithm, we need to determine the value of q.  Since we 

will likely replace all the initial design points in the final design, we decide to select q 

= nd so that we can replace nd points in each iteration.  However, in our fixture design, 

panels have a natural boundary and therefore an exchange between a design point and 

a candidate point can only be performed for those locations on the same panel.  For 

this reason, we should implement the above algorithm for individual panels.  Given 

that nd = 2 for a panel (i.e. two locators per panel), we set q = 2.   Moreover, the initial 

distribution of ∆ is determined in the same way as in Lam et al. (2002), because it is 

approximated by the ∆-values of 100 randomly selected locations in the candidate set. 

    

III.2.2 Reduce the number of locations in the candidate set 

It is obvious to us that the large value of Nc is one of the key reasons that the 

basic exchange algorithm is computationally expensive.  The Nc can be reduced if we 
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use a coarse grid on each panel when we discretize the continuous design space, 

though this could miss those low-sensitivity PLP locations and thus sacrifice the 

algorithm’s effectiveness.  

If we could rule out some areas that are unlikely to yield a “good” location, we 

can then discard the candidate locations in those areas entirely and thus reduce Nc.  A 

part positioning deviation is more sensitive to locating deviations when both locators 

are close to each other than when they are distantly apart.  This simple rule suggests 

that the final position of a locator is unlikely to fall into the geometrical central area 

on a panel.  The geometrical center of a panel, which coincides with its gravity center 

when the panel has a homogenous density, is defined as  

i

iPanel
i A

XdXdZ
X

∫∫
=          and               

i

iPanel
i A

ZdXdZ
Z

∫∫
=                                  (12) 

where Ai is the area of panel i.          

The geometrical central area on a panel is considered to be in the 

neighborhood of a panel’s gravity center.  The determination of this neighborhood is 

illustrated in Figure 7(a).  The distance between the gravity center and a vertex on the 

polygonal panel is calculated.  Then, the median of these distances is chosen to 

represent the size of the panel, denoted as d0.  A hypothetical circle is drawn on the 

panel with the gravity as its center and d0/2 as its radius.  The area inside this 

hypothetical circle is considered to be the neighborhood of the gravity center.  Only 

candidate locations outside the neighborhood will be used for exchanges with a design 
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point.  The use of the median of all gravity-to-vertex distances in determining d0, 

rather than their mean value, makes the resulting d0 less sensitive to a very large or a 

very small gravity-to-vertex distance on panels with an irregular shape (recall that the 

median is a more robust statistic than the mean (Montgomery and Runger, 1999)).   

We apply this rule to four SUV side frames.  The resulting candidate areas are 

shown as the dark areas in Figure 7(b).  One may also notice that there is a gap (35 

mm) between the candidate areas and the edge of a part.  This 35-mm-gap is 

determined by engineering safety requirement because a locating hole that is too close 

to the edge may not be able to endure the load exerted during fixturing.  The resulting 

candidate area contains a total of Nc= 4,642 candidate locations, which is 59.4 % of 

the original Nc.  The density of candidate locations is kept the same. 
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(a)                                                                 (b) 

Figure 7  Neighborhood of a gravity center (a) and candidate areas on SUV side 
frames (b) 
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III.2.3 Reduce the number of candidate locations after each iteration 

After each iteration, the improvement in design criterion ∆j is recorded for all 

candidate locations and sorted in a descending order.  Those candidate locations with 

a low ∆ value are less likely to be picked up by the exchange algorithm in the next 

iteration.  Therefore, we propose removing half of the candidate locations whose ∆ 

value is among [ , ] after each iteration so that N)12/( +∆
cN )( cN∆ c becomes Nc/2 after each 

iteration.  Our implementation of this action shows that it not only reduces the number 

of candidate locations but also makes convergence faster, meaning that the program 

will stop after fewer iterations. 

By incorporating III.2.1-III.2.3, our revised exchange algorithm is summarized 

as follows and a flow chart is shown in Figure 8 to illustrate the algorithm. 

Step 1. Generate the candidate locations in the candidate areas as shown in Figure 

7(b).  The resolution for discretization is 10 mm between two adjacent candidate 

locations. 

Step 2. Initialize the ∆ distribution.  Randomly select 100 candidate locations on 

each panel.  Calculate their ∆ values and sort them in a descending order.  Set ∆* = 

∆(q), where q = 2. 

Step 3.  For i = 1 to nd (loop for each one of the current design points) 

For  j = 1 to Ni (loop through the candidate locations; Ni is the 

number of candidate locations on the panel that contain design 
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point i) 

• Calculate and record ∆i,j; 

• If ∆i,j>∆*, then exchange design point i with candidate 

location j. 

End of the j-indexed loop 

If there is no exchange during the last j-indexed loop, then exchange 

design point i with the candidate point that maximizes ∆i,j (for j=1 … 

Ni). 

End of the i-indexed loop 

Step 4. If there is no improvement in the S(θ) criterion during last loop (we check 

if old

jiji

S max

,,

)(

max

θ

∆
< 0.1%), then stop. Otherwise, sort ∆i,j; set ∆*=∆(q); remove half the 

candidate locations on each panel whose ∆ value is less than )12/( +∆
iN ; set Ni=Ni/2; 

go to Step 3 until the stopping criterion is met. 
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Generate the candidate locations 

Initialize the ∆ distribution. Set ∆* = ∆(2) 

Loop i =1 to nd, i++ 

Loop j =1 to Ni, j++ 

Calculate and record ∆i,j; and if 
∆i,j>∆*, then exchange design point i 
with candidate location j 

Loop end N 

Y 

Any improve-
ment in S(θ) 

Sort ∆i,j and set ∆* = ∆(2). Remove half of 
the candidate locations on each panel whose 
∆ value is less than ∆(Ni/2+1) and set Ni=Ni/2. 

N Stop 

Y 

 

Figure 8  Flow chart of the revised exchange algorithm 

 

III.3 Comparison and discussion 

We implemented the above optimization algorithms in solving the multi-

station fixture-layout design problem in the SUV assembly process.  The results from 

the basic exchange algorithm, the modified Fedrov algorithm, and our revised 

exchange algorithm are respectively summarized in Table 3.  Please note that our 

coding of exchange algorithms is implemented in MATLAB.  The actual computation 

time of exchange algorithms should be able to be further reduced if using C or 

FORTUNE compiled codes. 
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Optimization methods are compared based on two kinds of initial designs. The 

first is the design currently used in industry (the θ0 in Figure 2) and the other uses 

randomly generated initial designs; the performance data is the average of 10 trials.  

The reason to include the random initial design is to avoid any serious bias resulting 

from a comparison using a fixed initial design.  

The results show that the revised exchange algorithm significantly reduces 

computing time.  When we use PLP design θ0, the computing time of the revised 

exchange algorithm on a computer with a 2.20GHz P4 processor is less than one-

fourth (22.6%) of that needed for the basic exchange algorithm, and is 56.8% of that 

needed for the modified Fedorov algorithm.  Surprisingly, the S(θ) value from the 

revised exchange algorithm is even smaller than that from the basic exchange 

algorithm.  This indicates that more exchanges per iteration may help an algorithm 

escape from a local optimum and thus can improve the algorithm’s effectiveness.  

When we use θ0, the modified Fedorov exchange demonstrates a 60% shorter run-time 

than the basic exchange algorithm, yet yields a slightly larger S(θ).  When we use 

random initial designs, the revised exchange algorithm runs about 5 times faster on 

average than the basic exchange algorithm, or 4 times faster than the modified 

Fedorov algorithm.  The S(θ) it finds is slightly (1.2%) larger than the one found by 

the modified Fedorov, but smaller than that of the basic exchange algorithm.  The 

number of iterations in the random initial design is roughly consistent with our 

previous analysis.  The basic exchange algorithm used 5.1 iterations to replace all 

eight initial locators.  The modified Fedorov exchange algorithm used less iterations 
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since more than one locator is replaced with a good candidate per iteration.  The 

revised exchange algorithm further reduces the iteration to three times, about half of 

what the basic exchange algorithm used.  Due to the nature of the stopping rule for 

exchange algorithms (comparing two subsequent S(θ)’s), the minimum number of 

iterations is two.  We feel that the potential for reducing the iteration number is being 

pushed to its limit by the revised exchange algorithm. 

Using random initial designs, the modified Fedorov exchange yields a lower 

S(θ) value on average.  The lowest value of S(θ)=3.82 during those trials is also found 

by the modified Fedorov exchange.  Since this value is only 2% lower than 3.922, it 

does not invalidate our prior conjecture that S(θ)=3.922 should be close to the global 

optimum. 

 

Table 3  Comparison of exchange algorithms 

Initial PLP design  Random initial designs 
 

S(θ) Time 
(sec.) 

# of 
iterations S(θ) Time 

(sec.) 
# of 

iterations 
Basic 

Exchange 3.922 1955.9 5 4.022 1868.9 5.1 

Modified 
Fedorov 3.952 780.312 2 3.894 1614.4 4.4 

Revised 
Exchange 
(B.1-B.3) 

3.903 443.528 4 3.940 373.1 3 
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The coordinates of the fixture layout with the lowest S(θ) value during our 

trials and the one determined by our revised exchange algorithm are listed in Table 4 

as well as shown in Figure 9, where ‘+’ represents a  and “.” represents a .  wayP4 wayP2

One interesting phenomenon that one may observe from Figure 9 is that the 

resulting fixture layout on the rear quarter panel apparently does not have the largest 

possible distance between the pair of locators.  We performed fixture optimization for 

this panel alone and display the resulting positions, indicated by a “*” for and an 

“o” for  in Figure 9(b).  The pair of locators from the single-panel optimization 

has a much greater distance between them and is consistent with our intuition about a 

robust fixture layout.  If we substitute this pair of PLP locations from the single-panel 

optimization into the multi-station assembly, we have the overall system-level 

S(θ)=3.958, which is in fact larger than the best S(θ).  This phenomenon implies that 

our intuitive largest-distance rule is not necessarily always right in a multi-station 

fixture design due to the fact that fixture locators are reused on different stations and 

their interaction complicates the sensitivity analysis.  Thus, we should rely on an 

integrated variation propagation model and an effective optimization method, as 

developed in this dissertation. 

wayP4

wayP2

The fact that both PLPs on the rear quarter panel in this obtained improved 

fixture layout are on the same side of the panel’s gravity center does not cause a 

problem here because, in our application, the panels are positioned on a horizontal 

platform (refer to Figure 1).  If the panels are vertically positioned, a force closure 
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constraint in addition to the geometrical constraint G(⋅) should be included in the 

optimization scheme (Equation 11) to ensure the resultant force and moment is zero.  

Under that circumstance, the resulting optimal fixture layout could be different.  For 

robust fixture design considering force closure, please refer to Wang (2000). 

 

Table 4  The fixture layout (θ) from exchange algorithms (Units: mm) 

Fixture layout with the smallest S(θ) From the revised exchange algorithm 
Part 

# 4-way PLP  
(X, Z) 

2-way PLP  
(X, Z) 

4-way PLP  
(X, Z) 

2-way PLP  
(X, Z) 

1 (523.8, 1091.1) (1033.8, 1490) (337.9, 871.9) (1027.9, 1490) 
2 (1434.5, 1418.8) (1274.5, 248.7) (1264.5, 1378.6) (1424.5, 318.8) 
3 (1720.9, 1460) (1940.9, 1480) (1620.9, 1420) (1940.9, 1460) 
4 (2973.5, 450.1) (2923.5, 1150.1) (2033.5, 286.6) (2163.5, 1160.1) 
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                                  (a)                                                                 (b) 

Figure 9  Fixture layouts; (a) fixture layout with the lowest S(θ) value  (b) from 
revised exchange algorithm 
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III.4 Conclusion 

For the fixture system used in a four-station SUV side-frame assembly 

process, the revised exchange algorithm yields the optimal fixture design whose 

maximal sensitivity level is only 72.3% of the currently used fixture layout design.  

The resulting optimal fixture layout is more robust to environmental noise – the 

reduction of 27.7% in sensitivity implies the same amount of reduction in product 

variation levels under the same variation inputs, according to the definition of 

sensitivity in Equation (7).  The improvement in product quality will lead to a 

remarkable cost reduction in manufacturing systems. 

For a non-linear optimization problem such as this multi-station fixture-layout 

design, it may be too costly, sometimes even impossible, to find the global optimum.   

The revised exchange algorithm is a good trade-off between optimality and algorithm 

efficiency.  This revised exchange algorithm takes less than one-fourth of the 

computing time of the basic exchange algorithm and yields a fixture layout whose 

S(θ) is only 2.1% larger than that of the best fixture layout we obtained during all the 

trials.   
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CHAPTER IV 
 

DATA-MINING METHOD 
 
 

 
 This chapter presents the data-mining aided optimal design method and 

explains how it is applied to facilitate the optimal fixture layout design in a four-

station SUV side panel assembly process.  Four components of the data-mining 

method are adopted; uniform coverage selection and carefully chosen parameters are 

used to make data-mining more efficient and effective. 

 
 
IV.1 Overview of data-mining method 

Data-mining is a discovery of unsuspected but valuable information from a 

large dataset (Hand, 1999).  Recently, noteworthy efforts have been made in 

employing data-mining methods to aid the process of an optimal engineering design 

(Schwabacher, Ellman and Hirsh, 2001; Igusa, Liu, Schafer and Naiman, 2003).  The 

basic idea is to use a data-mining method -- various classification methods are the 

major ones employed in such applications -- to extract “good” initial designs from a 

large volume of design candidates (design alternatives).  In other words, if the design 

alternatives are treated as a dataset, a data-mining method may be able to discover 

valuable structures within the dataset and generalize design selection rules leading us 

to a much smaller “good” design set, which is more likely to yield a better design 

solution even if a local optimization method is applied.  
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The idea is illustrated in Figure 10.  A data-mining method generalizes the 

design selection rules based on the training data in a design library, which is in turn 

created either from a collection of historical design results or from random sampling 

among design alternatives.  The resulting selection rules are often expressed as a 

classification tree, or equivalently, a set of “if-then” rules.  The large number of design 

alternatives pass through the selection rules and certain local optimization methods are 

applied to the selected “good” designs in order to find the final optimal design.  

Schwabacher et al. (2001), for instance, applied this idea in the prototype selection of 

structures of a racing yacht and a supersonic aircraft, respectively, where their design 

library is created from historical designs and classification method C4.5 (Quinlan, 

1993) is used to generate the design selection rules. 

 

 Design alternatives 

Design library 

Historical designs 

random sampling 

Data-mining methods design selection rules 

Selected “good” designs 

Near optimal design 

Local optimization methods 

 

Figure 10  Design optimization utilizing data-mining methods 
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Although the general idea as described in Figure 10 could help in discovering 

valuable design selection guidelines, there is a major obstacle to applying this idea to 

engineering design problems, especially those with a computationally expensive 

objective function.  The obstacle is that for a new design without enough historical 

data, generation of design selection rules needs to evaluate the objective functions of 

all designs in a design library.  In order for the design library to be representative of a 

large volume of design alternatives, one will have to include a large enough number of 

designs in the library – potentially too many to be computationally affordable for 

generating the selection rules.  

 

IV.2 Data-mining method for engineering design problem 

In the design of a civil structure, Igusa et al. (2003) proposed a more 

sophisticated idea, which circumvents frequent evaluation of an expensive objective 

function.  They employed a much simpler feature function together with a clustering 

method to reduce the number of designs whose objective function needs to be 

evaluated for the generation of a classification tree. 

Following the general idea proposed by Igusa et al. (2003), we developed in 

this dissertation a data-mining aided design optimization method for the 

aforementioned multi-station fixture layout design.  The method includes the 

following components: (1) a uniform-coverage selection method, which chooses 

design representatives from among a large amount of original design alternatives for a 

non-rectangular design space; (2) feature functions of which evaluation is 
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computationally economical as the surrogate of the design objective function; (3) a 

clustering method, which generates a design library based on the evaluation of feature 

functions instead of an objective function; (4) a classification method to create the 

design selection rules, eventually leading us to a competitive design.   

There are eight fixture locators (P1-P8) in this multi-station panel assembly 

problem.  Each part or sub-assembly is positioned by a pair of locators.  We generate 

design alternatives by discretization using the resolution of 10 millimeters (the size of 

a locator’s diameter) on each panel.  We also rule out the central locations of the panel 

in order to reduce the number of design alternatives by the method introduced in 

Chapter III.2.2.  This results in the number of candidate locations on each panel being 

239, 707, 200, and 3496 respectively.  The total number of design alternatives is 

therefore C2
239× C2

707× C2
200× C2

3496 ≈ 8.6×1020, where Ca
b is a combinational 

operator.   

There is virtually no efficient method which allows us to directly optimize 

over the huge volume of original design alternatives, such as the possible 

combinations of locators, as many as 8.6×1020, in the multi-station fixture layout 

design.  The proposed method will start with extracting design representatives from 

original design alternatives.  However, it is often the case that the design 

representatives, although remarkably fewer than the original design alternatives, are 

still too many to be used as the design library.   

In this dissertation, we use a clustering method with a set of computationally 

simple feature functions to facilitate the creation of a design library.  This procedure 
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allows us to eventually have an affordable number of designs as a training dataset in a 

design library.  The overall framework is illustrated in Figure 11, as a modification to 

Figure 10.  We will present in the following subsections the considerations and 

procedures for realizing each component of the data-mining aided optimal design. 

 

 

Design library Classification design selection rules 

Selected “good” design 

Near optimal design 

Local optimization  

Clustering method and 
feature evaluation 

Design alternatives 

Design representatives 

uniform-converge 
selection 

Different from 
Figure 10 

 

Figure 11  Modified data-mining aided design optimization procedure 

 

IV.3 Uniform coverage selection of design representatives 

The first component in the proposed optimal method is to select design 

representatives from original design alternatives.  Unless one has profound knowledge 

of which part in the candidate design space (after the method in Chapter II.2.2 has 

been applied) is preferred in such a selection, a safer way of selecting good 
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representatives of the original design set is to select them from a design space as 

evenly as possible. Igusa et al. (2003) suggested randomly selecting design 

representatives, based on a uniform distribution, from the set of design alternatives.  

The problem of random selection is that probabilistic uniformity does not guarantee an 

evenly geometric converge in a design space.  When the design space is of a high 

dimension and the sample size is relatively small (e.g. 2,000 chosen from 8.5×108 

alternatives in Igusa’s case), the selected sample will typically cluster in a small area 

and fail to cover large portions of the design space (Fang and Wang, 1994).  

A space-filling design, widely used in computer experiments (Santner, 

Williams, and Notz, 2003), aims to spread design points evenly throughout a design 

region and appears to fit well into our purpose of design representative selection.  A 

space-filling design is usually devised using Latin Hypercube Sampling (LHS) 

(McKay, Bechman, and Conover, 1979), a stratified sampling method, or using a 

uniformity criterion from the Number-Theoretic Method (NTM) (Fang, Lin, Winkle, 

and Zhang, 2000).  

These methods can be easily implemented over a hyper-rectangular design 

space in experimental designs.  In engineering system designs, accompanied by 

complicated geometric and physical constraints, the design space is often non-

rectangular or even highly irregular, such as the candidate design space shown in 

Figure 7(b).  Another constraint also comes into play in this fixture layout design, i.e. 

once a locator’s position is chosen on a panel, the second locator on the same panel 

should not be located near the first one, following the same physical intuition related 
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to positioning variability explained in Chapter III.2.2.  This is different from the factor 

level selection in experimental designs, where there is usually no clear prior 

knowledge to indicate the dependency among factors.  

Given the complexity in design constraints, we have not seen a generic method 

to translate an LHS- or NTM-based space-filling design to an engineering system 

design problem.  Instead, we here devised a heuristic procedure for the fixture layout 

design, attempting to provide a uniform-coverage selection of design representatives 

from original designs.  

This procedure considers both physical constraints and uniformity.  

Considering uniformity alone, we will select the location of locators from a uniform 

grid generated over each panel. Considering the physical constraints alone, we will 

filter out all locator pairs on the same panel, whose distance is less than a minimum 

criterion.  Thus, we select one locator from the uniform grid of candidate points and 

select another locator randomly from a candidate pool created by enforcing the 

minimum distance rule.  The detailed steps are shown as follows. 

Step 1. Uniformly discretize the candidate design space on each plane using the same 

resolution (in our implementation, the resolution is 10-mm between two 

adjacent locators).  

Step 2. On each panel, the first locator is chosen sequentially to be at those locations 

from the discretization process.  Once the first locator is selected, the second 

locator is randomly selected on the same panel from among the locations 

whose distance from the first locator is greater than half of the panel size 
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(d0/2).  Denote by  the resulting candidate locator set for panel j and by n)0(
jΩ j 

the number of locator pairs included in . )0(
jΩ

Step 3. For i=1 … max(nj),  

randomly select one locator pair from each of  for j=1,2,3,4 without 

replacement and combine these four locator pairs as one design representative 

for the multi-station assembly.  Whenever a  becomes empty, simply 

reset .  

)1( −Ω i
j

)1( −Ω i
j

)0()1(
j

i
j Ω=Ω −

In Step 2, the uniformity of the first locator on each panel is a result of the 

uniform discretization.  However, the uniformity of the second locator is not directly 

controlled since it is from simple random sampling.  The second locator is chosen to 

be at least d0/2 away from the first locator because of the aforementioned between-

locator distance constraint.  The threshold of d0/2 is again chosen empirically, 

following the same spirit as in Chapter III.2.2. 

After Step 2, the set  has the largest number of locator pairs, n)0(
4Ω 4=3496.  

Step 3 actually performs stratified sampling to generate locator combinations.  The 

stratified sampling will go over  once but will have to go over  for panel 

j=1,2,3 multiple times.  That is the reason behind the reset of a  when it is empty.  

Eventually, a total of n

)0(
4Ω )0(

jΩ

)1( −Ω i
j

4=3,496 combinations of locators is generated as design 

representatives. 
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IV.4 Feature definition and feature function selection 

In order to avoid direct and frequent evaluations of objective function S(⋅), we 

use a set of feature functions to characterize the system performance.  A feature 

function maps an engineering system to a feature, which is tied to the design 

objective.  For example, the distance between two locators in the fixture design can be 

considered a feature.  Generally, any physical quantity that is potentially tied to the 

design objective can be used as a feature.  The set of feature functions is actually a 

surrogate of the design objective function. 

Features are often selected based on prior experience, rough engineering 

knowledge, or physical intuitions.  The advantage of such a feature 

definition/selection is that vague experiences, knowledge, or understandings of a 

complicated engineering system can be more systemically integrated into the optimal 

design process.  Although the selection of a feature in the proposed method is rather 

flexible, we do have certain generic considerations for an effective selection of 

features and feature functions.  First, since features are used to replace the direct 

evaluation of an objective function, a feature function should be computationally 

simple, otherwise it will not serve our purpose.  Second, because a feature is usually 

not connected to the design objective with mathematical explicitness, too few feature 

functions may generate a serious bias in the latter selection of design representatives.  

On the other hand, too many feature functions will increase the computation burden.  

A tradeoff will depend on specific applications, where five to fifteen feature functions 

may be selected.  Finally, it is desirable to select scalable features, i.e. a feature 
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definition will remain the same when the system scale has increased.  For the example 

of the multi-station fixture design, a scalable feature means that it can be used to 

characterize the system performance whether the multi-station system has three 

stations or ten stations. 

Keeping in mind the above guidelines, we choose a set of feature functions for 

the fixture layout design as follows.  We know that the distance between locators is an 

important factor related to the variation sensitivity of a fixture layout.  We select the 

between-locator distance on a panel as one feature relevant to our design objective.  

We select the following five functions to characterize the feature of between-locator 

distance -- the five feature functions actually approximate the distribution of the set of 

the between-locator distances -- 

 F1(θ) = The largest value of the same-panel between-locator distances;  

F2(θ) = The second largest value of the same-panel between-locator distances; 

F3(θ) = The mean of the same-panel between-locator distances; 

F4(θ) = The second smallest value of the same-panel between-locator distances; 

F5(θ) = The smallest value of the same-panel between-locator distances. 

For a larger scale assembly system with more parts and stations, the above 

feature functions can still be used; namely, they are scalable.  The approximation of 

distribution could be improved by augmenting the number of feature functions so that 

they will give more refined percentile values of the set of between-locator distances.  

 If we are concerned only with a single part that is positioned by a pair of 

locators at a single station, the between-locator distance could be the only factor that 
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matters.  However, complexity results from the fact that locating holes on a panel are 

re-used but usually in a different layout.  For the multi-station assembly process in 

Figure 2, A-pillar and B-pillar are positioned on Station I by {P1, P2} and {P3, P4}, 

respectively.  After the assembly operation is finished, the sub-assembly becomes one 

piece, and it is transferred to Station II and positioned by {P1, P4}.  This assembly 

transition across stations and the reuse of fixture locating holes complicates the 

sensitivity analysis for a multi-station system.  It was shown in Chapter III.3 that a 

larger between-locator distance on one station may not necessarily produce a lower 

sensitivity for the whole process.  In order to capture the across-station transition 

effect, we select a second feature, which is the ratio of between-locator distances on 

two adjacent stations.  Denote by L1, L2, … , Lm the between-locator distance for m 

locator pairs on station k.  After those parts are assembled, they are transferred to the 

next station and positioned by a locator pair with a between-locator distance L(m).  The 

ratio of distance change r is then defined for this transition as 

mL
Lr

i
m
i

m

/)( 1

)(

=Σ
≡ .                                                                                        (13) 

Here we include three more feature functions related to the feature of distance change 

ratio as:  

F6(θ) = The largest value of distance change ratios; 

F7(θ) = The mean value of distance change ratios;  

F8(θ) = The smallest value of distance change ratios. 
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Similarly, the three feature functions approximate the distribution of the set of 

r.  We do not include five functions as we did for the between-locator distances 

because the four stations in this example produce only three distance change ratios.  

We have defined eight scalable feature functions for two physically intuitive 

features relevant to the variation sensitivity of a multi-station assembly process.  

Please note that the calculation of the above feature functions is very economical even 

for a large-scale system.   

 

IV.5 Clustering method 

Clustering is done to segment a heterogeneous population into a number of 

more homogeneous subgroups (Hastie, Tibshirani and Friedman, 2001).  When using 

feature functions as the surrogate of a design objective to benchmark the dissimilarity 

criterion in a clustering procedure, design representatives in a resulting cluster will 

have a more similar distribution profile for the two selected features.  Empirical 

evidence (Igusa et al., 2003) shows that resulting clusters are associated with a local 

response surface and its center will likely be around a local optimum.  For this reason, 

a design library for classification can then be created by selecting a few designs from 

each cluster around the cluster center, which results in fewer designs.  The generation 

of a design library is illustrated in Figure 12. 
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Figure 12 Generation of a design library 

 

For the ith fixture layout represented by θi, Fi≡[F1(θi) … F8(θi)]T is the vector 

of its feature functions and C(i) denotes the cluster to which it belongs.  In our 

solution procedure we employ a standard K-means clustering method (Hastie et al., 

2001).  Namely, for K clusters, we will find the vector mean values of cluster k, mk, as 

the cluster center, and the association of a fixture layout to cluster k (represented by 

C(i)=k) so that 

∑ ∑
= =

−
K

k kiC
kikC

NMin
K

k 1 )(

2

}{, 1

mF
m

,                                                                     (14) 

where Nk is the number of elements in cluster k and ||⋅|| is a vector 2-norm.  The K-

means method minimizes the dissimilarity measure, defined as the Euclidean distances 

of the elements within the same cluster.  With different values of K, the minimization 

in Equation (14) will yield different clustering results, i.e. different cluster centers and 

cluster associations.  We delay the discussion of how to choose K to Chapter IV.7.    

Once the design representatives are clustered, i.e. each fixture layout is labeled 

with a cluster identification, we will choose a few designs around the cluster center to 

form a design library, as illustrated in Figure 12.  We call the selected designs from 
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each cluster center seed designs and denote by Jk the number of seed designs chosen 

from cluster k.  For the sake of simplicity, we use the same seed number for all 

clusters, i.e. Jk=J for all k’s.  Then, the design library contains KJ data pairs {Fi, Si} 

for i=1, 2, …, KJ, where Si is the sensitivity value of the ith fixture layout.  

 

IV.6 Classification method 

We perform classification on the dataset {Fi, Si} in the design library to 

generate the design selection rules – this step is similar to what has been implemented 

before (Schwabacher et al., 2001, also refer to Figure 10).  Local optimization 

methods can be used to evaluate a few designs chosen by the selection rules and yield 

the final optimal design.  Many times, as we will see in Chapter V, a local 

optimization method may not be necessary, as a direct comparison among all the 

selected designs could have given us a satisfactory result. 

A Classification and Regression Tree (CART) method is employed for 

constructing the classification tree in our problem.  The one-standard-error rule 

(Hastie et al., 2001 pp. 57) based on a ten-fold cross-validation is used to select the 

final tree structure.  The paths in a classification tree can be expressed as a set of “if-

then” rules in terms of the feature functions.  One resulting classification tree is shown 

in Figure 13.  A decision condition such as F6 < 1.15 is indicated at each node.  One 

takes the left hand path if the answer to this condition is “yes” or the right hand path if 

“no.”  
An end node in the tree represents a set of designs associated with a narrow 

range of sensitivity values – the value indicated in Figure 13 beside an end node is the 
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average sensitivity value of the corresponding design set.  If a certain combination of 

feature function values leads us to a set of designs whose expected sensitivity value is 

the lowest among all end nodes, then the corresponding path (one such path is 

highlighted in Figure 13) constitutes a design selection rule that we are looking for.  

The resulting selection rule is applied to the whole set of 3,496 design representatives 

from the uniform-coverage selection and the designs that are finally selected are 

considered “good” designs.  Please note that because the random selection of the 

second locator on a panel, the resulting tree is not exactly the same each time we start 

the design process over.  But our results show that this difference does not cause much 

difference in the final optimal design. 
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Figure 13  Part of the classification tree for the fixture layout design 
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IV.7 Selection of K and J 

One issue we left out in IV.5 is how to select K (cluster number) and J (seed 

design number).  The importance of these two values, K and J, is obvious since they 

determine the number of designs in the resulting design library.  These two factors are 

related to both the optimal sensitivity value a design can achieve and the computation 

time it consumes.   

Unfortunately, a theoretical tie between the clustering result and the behavior 

of a response surface has not yet been established.  Using the multi-station fixture 

design at hand, we will further investigate this issue by employing an experimental 

design approach.  For a given combination of K and J, two response variables are 

chosen.  These are the smallest sensitivity value (before a local optimization method is 

applied) and the computation time.  For this data-mining aided optimal design, the 

overall computation time can be calculated by T0+KJ⋅T+Nf ⋅T, where T0 is the time 

component in addition to that for evaluating the objective function and Nf is the 

number of designs in the selected “good” design set when the whole set of design 

representatives passes through the design selection rule.  Component T0 is also known 

as the overhead time due to uniform-coverage selection and clustering/classification 

processes.  The second and third components are directly related to the times that the 

objective function is evaluated.  For a given engineering design problem and a given 

choice of K and J, the first and second time components will be largely fixed and T is 

also a constant.  Hence, we use Nf as the second response variable.   
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We conduct a 32 factorial experiment, with three levels of K and J chosen at 3, 

6, 9 and 5, 10, 15, respectively.  We limit ourselves to the cases with K<9 since a large 

K will easily result in a large KJ, a situation less likely to be computationally 

advantageous.  Because of the previously mentioned random selection of the second 

locator on a panel, for a given combination of K and J, the sensitivity and Nf are in fact 

random variables.  Then three replications are performed at each combined level of K 

and J.  A total of 27 computer experiments are conducted, each of which goes through 

the procedure as outlined in Figure 11 (before applying the local optimization).  The 

lowest sensitivity value and the value of Nf are recorded in Table 5. 

From Table 5, we find that the sensitivity value S is not significantly affected 

by the choice of K and J.  On the other hand, the value of Nf is significantly affected, 

ranging from over one thousand to 52, depending on the choice of K and J.  An 

ANOVA of S and Nf data verifies our finding and indicates that K, J, and their 

interaction are significant in the case of Nf data with a p-value less than 0.01 (the 

ANOVA tables are omitted because their significance is obvious). 

 

Table 5  Results for different design conditions 

Sensitivity Value (S(θ)) 
The number of designs in 
the final “good” design 

set (Nf) 
J J 

 
 

5 10 15 5 10 15 
3.9746 3.9177 3.9051 1763 187 246 K 3 
3.8720 3.9450 3.9618 1536 333 116 
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3.8879 3.9113 3.8722 1685 901 631 
3.9122 3.9023 3.9100 1261 300 274 
3.9034 3.917 3.9173 666 393 310 6 
3.8994 3.8722 3.9038 623 391 127 
3.8709 3.8989 3.9192 435 229 93 
3.8858 3.9144 3.9014 338 209 188 9 
3.9057 3.9268 3.9183 736 121 52 

 

 

The reason that a choice of K and J will not have much effect on the sensitivity 

value is related to the fact that Nf changes accordingly for different K and J.  When K 

and J are small and the designs in the library are fewer, the partition of design sets 

corresponding to different levels of sensitivity is rough, and thus, the resulting 

selection rule generated by the design library is not very discriminating.  As a result, 

when the rule is applied to the entire set of design representatives, there will be a large 

number of designs that will satisfy it (e.g. the average of Nf is 1661 for K=3, J=5).  

Evaluation of the large number of the selected designs, however, will circumvent the 

limitation brought up by the non-discriminating selection rule, and the whole design 

process is still able to yield a low sensitivity value eventually.  In the opposite case, 

when a relatively large number of designs is chosen to constitute the design library, 

the resulting selection rule will be discriminating and is able to select a small number 

of good designs, evaluation of which will give us a comparably low sensitivity value.  

The adaptive nature of Nf makes the eventual sensitivity value insensitive to the initial 

choice of K and J.  
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The choice of K and J will mainly affect the algorithm efficiency benchmarked 

by how many times the objective function is evaluated.  The case with both small K 

and J is not an efficient choice because of a large Nf.  However, a large K and J will 

not be a good choice, either, since KJ will be large even though Nf will decrease.  

Define the total number of function evaluations as Nt ≡KJ+ Nf.  Utilizing the data in 

Table 5, we can fit a second order polynomial, expressing Nt in terms of K and J as 

  .             (15) 22 0.118.66.168.3911.3313.3918ˆ JKKJJKNt ⋅+⋅+⋅+⋅−⋅−=

Based on the above expression, it is not difficult to find that the combination 

of K=9 and J=12 will give the lowest value of Nt.  This combination of K and J is only 

optimal within the experimental range.  Since K=9 is actually on the boundary, it 

seems to be the tendency that when KJ increases, Nf decreases.  But the benefit of a 

decreasing Nf does not appear to be much beyond the point of K=9 and J=15, where 

KJ=135 is already more than the average value of Nf (which is 111).  Further increases 

in KJ are likely to outnumber the decreases in Nf.    

Using the following approximation, we provide a guideline for choosing K and 

J, which is independent of the specific relation in Equation (15).  Recall that the 

selected “good” design set is generated by passing all design representatives through 

the design selection rule.  In order to have a meaningful design selection rule, the 

corresponding end node in the classification tree must have at least one design point.  

Suppose that there is only one design in the end node, then the percentage of “good” 

designs selected from KJ designs in the library is 1/KJ.  If the same percentage applies 
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to all the design representatives, then Nf=Nr/KJ, where Nr is the number of design 

representatives.  The total number of function evaluations can be approximated as    

KJ
NKJN r

t +≈  .        (16) 

The above equation suggests that Nt is minimized when rNKJ = .  In our problem, 

given Nr=3,496, KJ is roughly 60.  A reasonable choice of K and J would be K=6 and 

J=10. 

In actual cases, a classification tree pruned based on cross-validation usually 

keeps more than one element in its end nodes.  We also observe that the percentage of 

“good” designs selected from the design representatives is higher than that from the 

design library.  These factors make the actual value of KJ minimizing Nt larger than 

what is estimated from Equation (16).  We could treat rNKJ =  as the lower bound 

for choosing K and J. As a rule of thumb, we recommend choosing a cluster number K 

from 6 to 9 and the number of seed designs J per cluster from 10 to 15. 

Decision regarding cluster number is a major research topic in statistics.  

Tibshirani, Walther and Hastie (2001) proposed gap statistics for determining cluster 

number and also provided a comparison of several available statistical rules, including 

Milligan’s method, Krzanowski’s method, Hartigan’s method, Kaufman’s silhouette 

statistics, and their own gap statistics method.  For the details of these criteria and 

computational procedures, please refer to Tibshirani et al. (2001).  Using these criteria 

for our fixture design problem, the cluster number selected ranges from 2 to 5, as 

shown in Table 6.  According to our previous discussion, these resulting cluster 
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numbers appears to be too small and will likely cause a large Nf.  Since those criteria 

are originally devised for a different purpose, it is not really surprising that directly 

applying them here may not serve our optimal design well enough.  

 

Table 6  The number of clusters suggested by the other methods 

 Milligan’s 
method 

Krzanowski’s 
method 

Hartigan’s 
method 

Kaufman’s 
silhouette 
statistics 

Tibshirani’s 
gap 

statistics 
K 5 5 2 3 3 

 

 

IV.8 Implementation and discussion 

Our design algorithm is implemented with the choice of K=9 and J=12, the 

optimal combination found in Chapter IV.7.  Two versions of the data-mining aided 

optimal design are realized, one is with the uniform-coverage selection of design 

representatives as outlined in Chapter IV.3 and another is by using simple random 

sampling for design representatives.  Additionally, we include an alternative solution.  

An alternative solution for this fixture-design problem is to directly evaluate all 3,496 

design representatives and select the best design among them, which provides a simple 

way for optimization.  The direct comparison method based on a uniform selection is 

usually robust, as its performance is less sensitive to the properties of response 

functions, the properties of constraints, or the choice of initial conditions.  The same 

philosophy of optimization was advocated by Fang and Wang (1994) using their 

NTM-based uniform number generation. 
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The performance indices for comparison include the lowest sensitivity value 

an algorithm can find and the time it consumes.  The objective function for the 

assembly process in Figure 2 is not really an expensive one due to various 

simplifications we made in variation modeling (e.g. a 2-D assembly, rigid part 

assumption, only four stations).  The T is only 0.018 seconds on a computer with a 

2.20GHz P4 processor.  In this study, we purposely use this objective function so that 

we can afford to perform the exploration in Chapter IV.2.  When a computationally 

inexpensive function is used, the overhead computing cost T0 kicks in, which may 

blind us to the benefit of the proposed method for a complicated system with a more 

expensive objective function.  In order to show the potential benefit for expensive 

objective functions, we also include for comparison the number of times the objective 

function is evaluated -- when T is large, the time of function evaluation essentially 

dominates the entire computation cost.  

We implemented the above-mentioned optimization algorithms to solve the 

multi-station fixture-layout design in the MATLAB environment; for example, 

MATLAB function “kmeans” is used for the K-means clustering method, “treefit” and 

“treeprune” for the CART.  All implementations are executed on the same computer 

and the average performance data of 10 trials are included in Table 7.  Based on the 

Table 7, we observe the following: 

 

Table 7  Comparison of optimization methods 
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Optimization Methods S(θ) Time 
(sec.) 

The time for 
evaluating  

the objective 
function 

Direct evaluation of design 
representatives 3.891 79.3 3,496 T 

Data-mining aided  
(simple random selection) 4.060 51.9 276 T 

Data-mining aided  
(uniform converge selection) 3.894 54.3 283 T 

 

 

(1) If we consider both the value of S(θ) and the total computation time, the best 

design was found by the data-mining method with uniform coverage selection. 

Comparison between the data-mining aided designs with a uniform selection and a 

random selection shows an improvement of 5% in the sensitivity value by using 

the uniform design. 

(2) We also find that the direct evaluation method is indeed quite competitive.  In the 

above example, for instance, this direct evaluation method finds the best design 

among the chosen optimization methods.  The limitation of this solution is that it 

may need to evaluate a rather large number of design representatives and thus 

becomes computationally unaffordable when the objective function is expensive 

(3,496T versus 283T in the case of fixture layout design).  How to reduce the 

number of function evaluations is exactly where the data-mining method can help. 

Regarding the design selection rule found by the CART in Figure 13, we find 

that for the feature of between-locator distance, only the extreme values (the largest 
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one, F1, the smallest one, F5, and the second smallest one, F4) matter.  In fact, the 

restriction on F1 is F1 > 177.28 mm, which will be satisfied in most designs.  Hence, 

more insights come from the rules associated with F4 and F5, which provide non-

trivial conditions, leading us to a design with low sensitivity values.  For the feature of 

distance change ratio, all three related feature functions play a role, F6 > 1.15, F7 > 

1.85, and F8 < 2.43.  Basically, this set of rules suggests that a good design will 

probably have a distance change ratio between 1.15 and 2.43.  But the average ratio 

should be more than 1.85.  The set of design selection rules makes our original 

intuitions on the across-station transition effect more quantitatively understood.  This 

understanding can be extended to facilitate the design of a larger system with many 

more stations. 

The best fixture layout found by our data-mining aided method is shown in 

Figure 14, where a fixture location is denoted by a “+” for P1 and “.” for P2.  The 

optimal fixture layout founded by the data-mining method is quite consistent with that 

of the revised exchange algorithm in Figure 9.  For example, the distance between the 

pair of locators on each panel is large, but the distance between the pair of locators on 

the rear quarter panel does not have the largest possible one.  This is also the case on 

Figure 9.  Both PLPs on the rear quarter panel are on the same side of the panel’s 

gravity center because the panels are positioned on a horizontal platform in our 

application. 
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Figure 14  Fixture layouts with the lowest S(θ) value from data-mining method 
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CHAPTER V 
 

COMPARISON WITH EXISTING ALGORITHMS 
 
 

  
The non-linear optimization method and random search based heuristic 

methods such as simulated annealing algorithm (SA) and a genetic algorithm (GA) are 

applied to our example.  The results are compared with the results from the revised 

exchange algorithm and data-mining aided method.  The advantages of the data-

mining method and results are discussed.  

 

V.1 Non-linear programming method 

 A non-linear programming method such as the simplex search method (Nelder 

and Mead, 1965) is available in MATLAB as “fminsearch”.  It is a direct search 

method that does not require gradients or other derivative information.  It stops at a 

local optimum and does not take a long time to compute.  Our calculation reveals that 

S(θ)= 4.420 and it takes 85.6 seconds to converge in the MATLAB environment on 

the machine, 2.20GHz P4 processor (other algorithms below are also executed under 

the same software and hardware computing conditions).  The simplex search 

procedure operates on a continuous design space. 
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V.2 Simulated annealing method (SA) 

 Simulated annealing is used for finding near globally optimization procedures 

for solving combinatorial optimization problems based on stochastic computational 

techniques though it also considers many aspects related to iterative improvement 

algorithms.  The application of iterative improvement algorithms supposes a specific 

definition of the problem; this includes the definition of configurations, neighborhood, 

cost of the configuration, and an initial configuration.  The generation mechanism 

defines a neighborhood for each configuration, consisting of all configurations that 

can be reached with one transition. 

 Kirkpatrick, Gelatt and Vecchi (1983) introduced the first annealing technique 

that corresponds to an increase in the cost function in a limited way.  It is generally 

known as simulated annealing due to the analogy with the simulation of the annealing 

of solids it is based upon.  It is also known as Monte-Carlo annealing, statistical 

cooling, probabilistic hill climbing, or the probabilistic exchange algorithm.  Solutions 

obtained by simulated annealing do not depend on the initial configuration and have a 

solution near global optimum.  Further, it is possible to give a polynomial upper 

bound for the computation time for some implementations of the algorithm. 

 The generic parameters to be determined before experiments are: initial 

temperature (T), cooling ratio (kB), known as the Boltzmann’s constant, and the 

stopping criterion.  An initial configuration is also needed, and is generally selected at 

random from all design configuration alternatives.  The specific procedure is 

controlled as a function based on initial temperature and Boltzmann’s constant.  ∆ is 
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defined as the difference in cost between the current solution and the neighboring 

solution; if the difference means reduction in an objective function, then the process is 

continued with the new solution.  If the difference means an increase in the objective 

function, the new solution is accepted according to the specific probability, which is 

expressed as  where T is the control parameter.  A random number r is 

selected from the interval [0,1].  If r <  then the step is accepted or otherwise 

denied.  This probability depends highly on the Boltamann’s constant k

)/( TkBe ∆−

)/( TkBe ∆−

B, and this 

condition means that the simulated annealing algorithm can violate local optimality in 

its quest for a global optimum. 

The stopping criterion which will determine whether the system is cool enough 

affects the efficiency of the solution as it depends on the number of iterations per each 

temperature, the total number of temperature changes, and the configuration changes 

at each temperature stage.  The algorithm proceeds until the temperature reaches the 

final temperature, which corresponds in the analogy to the frozen or solid temperature.  

To find a good solution quality within a comparably short period of time using this 

simulated annealing algorithm, the parameters must be chosen carefully. 

 The simulated annealing algorithm is implemented in solving our multi-station 

fixture layout design problem in the SUV assembly process.  The number of 

configuration changes to be attempted at each temperature and the number of 

iterations are set proportional to the number of fixtures, e.g. n=8 for the process in 

Figure 2, at (10n) and (100n), respectively.  The total number of temperature steps, 

which affects the run time of the procedure, is set at 100 iterations.  Generally, the 
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most important parameters in using simulated annealing is the initial temperature T 

and Boltamann’s constant kB. 

 The initial temperature is determined by identifying the lowest value at which 

at least 80 percent of a certain number of random configuration changes are accepted.  

Extremely high initial temperatures without relatively long iteration times can not 

guarantee favorable solutions since they provide too many chances to accept an 

inferior objective function value and hence the procedure could stop before it reaches 

a solid state that is the best solution.  Alternatively, assigning too small of a value for 

initial temperatures will make the simulated annealing algorithm behave as a steepest 

descent algorithm, which does not allow uphill moves, and it may easily become 

trapped in a local optimum.  For our problem, T is tested from 10 to 20.  There was no 

appreciable difference in the objective function value and T = 12.5 was selected as a 

best initial temperature. 

 The Boltamann’s constant kB is determined by the experiments. A general 

guideline given by Viswanadham, Sharma and Taneja (1996) is to choose kB between 

0.85 and 0.95.  Table 8 shows the results when the Boltamann’s constant kB is 

changed from 0.85 to 0.99 with initial temperature T = 12.5.  It is seen that S(θ) value 

is decreased with lower Boltamann’s constant.  The value of S(θ) is similar but the 

running time is decreased when the value of kB is increased from 0.85 to 0.9. When the 

value of kB is increased from 0.90 to 0.95, the value of S(θ) is increased but the 

running time is decreased too.  The value of S(θ) is quite large when kB = 0.99.  Thus, 
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if we consider the efficiency, as well as optimality, we find that kB = 0.90 or 0.95 is a 

good trade off. 

 

Table 8  Result comparison from different Boltamann’s constant (kB) 

  kB = 0.85 kB = 0.90 kB = 0.95 kB = 0.99 

 initial 
S(θ) S(θ) Time 

(sec.) S(θ) Time 
(sec.) S(θ) Time 

(sec.) S(θ) Time 
(sec.) 

1 43.892 3.864 1051.3 3.885 640.09 3.960 309.2 7.150 206.9 
2 16.812 3.883 1080.2 3.818 722.02 3.957 313.8 9.376 213.3 
3 27.443 3.820 1092.1 3.821 655.77 3.909 310.1 4.402 213.2 

 

 

V.3 Genetic algorithm (GA) 

 Genetic algorithm is an evolutionary algorithm which employs stochastic 

optimization techniques that simulate the natural evolution process for solving 

complicated real-world problems (Gen and Cheng, 2000).  The genetic algorithm 

methodology finds solution by mimicking processes of evolution, such as selection, 

recombination, and mutation.  Selection determines which individuals are chosen for 

mating in recombination and which offspring are selected for the next generation.  

Recombination produces new individuals by combining the information contained in 

parents.  After recombination, every offspring undergoes mutation.  In the mutation 

process, offspring variables are mutated by small perturbations with low probability. 

 Several parameters should be carefully selected for the efficiency and the 

effectiveness of the algorithms.  Recombination rate (Pc) is the ratio of the number of 
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offspring produced for each generation relative to the population size.  Permutation 

rate (Pm) is the percentage of the total number of genes in the population.  Population 

size (M) is the size of population that evolves.  Each parameter affects the 

computation time, CPU memory and optimality.  For example, if we increase the 

value of M, then the likelihood of reaching a global optimum also increases, with a 

corresponding increase in the total computation time and memory usage. Large values 

for recombination rate (Pc) and permutation rate (Pm) help to make the solution space 

broader, but reduce the probability to obtain the best solution. 

 In our example, the acceptable parameter was selected based on multiple 

experimental trials.  Table 9 shows the results comparison from different parameters 

of the GA.  The acceptable solution was found when Pc = 0.2, Pm = 0.01 and M = 10.  

From this result, we know that the GA also finds a reasonable solution (S(θ) = 4.1958) 

with the above parameters.  The experiment results show the various outcomes when 

the value of the parameters are changed.  When the recombination rate (Pc) and 

permutation rate (Pm) becomes larger, the value of the objective function and the 

running time also become larger.  In addition, having a large population size (M) 

increased the total computation time and decreased the chance of obtaining a good 

solution.   
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Table 9  Result comparison from different parameters of GA 

Pc     0.2       
Pm 0.005 0.01 0.015 

M   S(θ) Time(sec.) S(θ) Time(sec.) S(θ) Time(sec.)
10   4.7197 720.16 4.1958 672.03 5.0784 758.31 
20   5.0565 1188 4.5896 1297.2 4.7397 1151.5 

Pc     0.4       
Pm 0.005 0.01 0.015 

M   S(θ) Time(sec.) S(θ) Time(sec.) S(θ) Time(sec.)
10   4.6556 1137.6 4.7488 1147.9 4.2726 1094.4 
20   4.6199 1984.2 4.1892 1969.1 4.6183 2101.3 

Pc   0.6     
Pm 0.005 0.01 0.015 

M   S(θ) Time(sec.) S(θ) Time(sec.) S(θ) Time(sec.)
10   4.3161 1432.7 4.7496 1446.7 4.7468 1444.5 
20   4.3941 2844.1 4.2786 2509.1 4.6884 2614.5 

 

 

V.4 Comparison 

Table 10 summarizes all the results of the methods which were applied in this 

dissertation.  The non-linear programming method finds results quickly but at the 

local solution level.  SA and GA find acceptable solutions, but the limitation of these 

algorithms is the large number of evaluations of the objective function involved.  For 

example, in simulated annealing there were 28,503 number of objective function 

evaluations for kB = 0.9, and 13,606 evaluations for kB = 0.95.  For the genetic 

algorithm, there were 18,094 number of objective function evaluations on the best 

solution.  In this fixture layout example, the evaluation time for objective functions is 



 73

not really expensive, so simulated annealing could obtain the solution in a reasonable 

amount of time.  If our assembly system contains more stations so that objective 

function evaluations become more expensive, the total computing time of these 

methods becomes more expensive as well.  

The basic exchange algorithm, modified Fedorov exchange algorithm, and 

revised exchange algorithm also find good solutions.  The revised exchange algorithm 

is superior among them for finding an acceptable solution in a reasonable time-frame, 

but it also involves a large number of objective function evaluations, and might be 

inefficient when evaluation time is very expensive. 

The data-mining method shows the best results on both objective function 

value criteria and total running time.  If we consider the amount of evaluation time for 

the objective function, data-mining attains the result in a very small number of 

evaluations.  Based on the comparison, we have a few remarks and elaboration. 
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Table 10  Comparison of result from all methods 

Optimization methods S(θ) Time 
(sec.) 

The time for 
evaluating  

the objective 
function 

Simplex search 6.825 73.8 3,200 T 
Genetic Algorithm 4.196 672.1 18,094 T 

Simulated Annealing (kB =0.9) 3.831 542.8 28,503 T 
Simulated Annealing (kB =0.95) 3.979 259.5 13,606 T 

Basic Exchange 4.022 1868.9 124,954 T 
Modified Fedorov 3.894 1614.4 62,472 T 
Revised Exchange 3.940 373.1 17,579 T 

Direct evaluation of design 
representatives 3.891 79.3 3,496 T 

Data-mining aided  
(simple random selection) 4.060 51.9 276 T 

Data-mining aided  
(uniform converge selection) 3.894 54.3 283 T 

  

 

(1) The best design is found by the simulated annealing with kB = 0.9 at the cost of 

542.8 seconds of computation time or over 28,000 times of function evaluation.   

The detailed description of simulated annealing is in Chapter V.2.  By comparison, 

the data-mining aided design reaches a very close sensitivity value (only 1.6% 

higher than what the SA found) but used one-tenth of the computation time.  We 

also notice that the data-mining aided design evaluates the objection function only 

one-hundredth of the number of times that SA did.  The SA with a larger kB is not 

advantageous – the computing time is still long (five times the data-mining aided 

method for kB = 0.95) but the resulting sensitivity value increases considerably.  
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(2) Because of our current choice of objective function, the time that a data-mining 

method takes is dominated by its overhead time, roughly 45 seconds for a simple 

random selection or 50 seconds for a uniform-coverage selection.  Since we used 

scalable feature functions, these overhead time components will not change much 

even for a system with an expensive objective function.  The computation for 

other algorithms, however, is mainly the result of evaluating the objective 

function.  Therefore, the benefit of our data-mining aided design method will be 

more obvious -- 28,503T for SA versus 283T for our design -- for a larger, more 

complicated system where the evaluation of the objective function will dominate 

the overall computation cost. 

(3) The time for evaluating the objective function is significantly decreased when we 

use a revised exchange algorithm than basic exchange algorithm (124,954T as 

apposed to 17,579T).  The S(θ) value from the revised exchange algorithm is also 

lower than that from the basic exchange algorithm. From this result, we can 

conclude that the three improvements addressed in Chapter III.2 helped to reduce 

the evaluation time of the objective function and that they eventually reduced the 

total computation time without sacrificing the objective function value. 

 

V.5 Summary and conclusion 

In summary, the advantage of the data-mining aided design is noteworthy.  For 

the multi-station fixture layout design, it yields a solution with a sensitivity value as 

low as a random search method while taking a shorter amount of time than a local 
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optimization method (the simplex search takes 73.8 seconds).  Local optimization can 

be applied to the best design found by the data-mining method and it will reduce the 

sensitivity value to 3.864, an improvement which is not significant.  It is our 

observation that the data-mining aided design can oftentimes produce a satisfactory 

design result without the need of applying a local optimization method. 

The reason that data-mining methods can facilitate optimal engineering design 

lies in its capability in knowledge discovery, knowledge transferring, and knowledge 

encapsulation.  The clustering method actually connects, without performing direct 

evaluation of an objective function, vague human knowledge about an engineering 

system to design parameters and objectives that are mathematically defined.  The 

reduction in evaluating an objective function eventually generates a remarkable 

benefit in terms of algorithm efficiency.  Meanwhile, the knowledge about the 

performance of an engineering system will become more explicit and numerical once 

the set of design selection rules is formed from a classification method.  The 

accumulated knowledge, expressed in design rules and the better design conditions, 

can be translated into the optimization of a similar yet larger system.  

A final note is on the use of feature function, which transfers engineering 

knowledge for statistical treatments.  Such an integration of engineering knowledge 

and statistical methods is considered an important way of improving the performance 

of statistical solutions for solving messy engineering problems.  Traditional ways of 

transferring engineering knowledge include expert systems (Jackson, 1999) or 

physical modeling.  The former is usually too qualitative and the latter is highly 
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quantitative but less flexible – in many sophisticated physical systems, an accurate 

physical modeling of the system is almost impossible.  We feel that the inclusion of 

feature function strikes a balance of being more quantitative, as well as being flexible 

enough, in incorporating engineering knowledge and understanding into the process of 

design optimization. 
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CHAPTER VI 
 

CONCLUSION AND FUTURE WORK 
 
 
 

The conclusions of this dissertation are summarized, and the overall findings 

derived from the research are clarified in this chapter.  Furthermore, possibilities for 

future research are discussed. 

  
VI.1 Conclusion 
 

This dissertation investigates various aspects of near optimal fixture layout 

design in a multi-station panel assembly processes: variation modeling, design criteria, 

and optimization methods.  Due to the singularity of the design matrix of a multi-

station fixture system, the widely used D-optimal criterion is not an appropriate 

measure.  Instead, the E-optimality criterion is recommended, which minimizes the 

maximum sensitivity level of a fixture system to the input variation.  Different 

optimization methods are explored and compared.  The revised exchange algorithm 

and data-mining aided method are developed to solve a high-dimension optimization 

for the multi-station fixture layout designs. 

The revised exchange algorithm incorporates three improvements to make it 

more efficient.  These are 1) increase the number of exchanges per iteration, 2) reduce 

the number of locations in the candidate sets, and 3) reduce the number of candidate 

locations after each iteration.  The revised exchange algorithm then generates fairly 

applicable solutions to engineering system designs.  
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Data-mining aided methods have been further enhanced to be more effective and 

reliable in design.  Four steps included in the refinement are 1) a uniform coverage 

method, 2) feature and feature function, 3) clustering method, and 4) classification 

method.  These components lead us to find an near optimal design and compared with 

other available optimization methods, this method demonstrates clear advantages in 

terms of both the sensitivity value it can find (only 1.6% higher than what SA found) 

and the computation time it consumes (shorter than a simplex search and one-tenth of 

what  SA takes). 

 

VI.2 Suggestions for future work 

This study developed a general framework to optimize the fixture layout 

design in the multi-station panel assembly process.  However, much more research 

needs to be done in order to expand the applicability and increase the generality of the 

resulting methodology.  Some issues for future study include the following:  

• Since the state space model is a linear model structure, its applications are 

limited to the situation where the magnitude of fixturing error is smaller than 

the locaters distance.  For more general variation modeling, non-linear effects 

should be addressed and eventually, a non-linear model should be applied. 

• Because our interest is more focused on the global variation resulting from 

locating pins, a 2D model is used and the result is for the location design of 

locating pins.  Efforts need to be spent to gradually relax the 2D assumption to 
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accommodate more complex factors such as NC blocks, 3D fabrication, and 

part compliance.   

• It is worthwhile to study some theoretical aspects of the developed algorithms.  

For example, in the data-mining method the value of K and J highly affect the 

optimality and total computation time.  Since the mathematical relationship 

between K and J value and the optimality or total computation time is difficult 

to define, this dissertation selects both values through the experimental design.  

A theoretic study revealing the relationship between K and J and algorithm 

efficiency can help use the algorithm wisely. 

• It is worthwhile to explore how to apply the developed methods to new 

applications. Although the algorithms are discussed in the specific context of 

fixture layout design, we feel that the variation propagation model, the 

selection of design criterion, and the resulting algorithms such as the revised 

exchange algorithm and data-mining method are fairly general and should be 

applicable to other engineering system designs. For example, when a sensor 

system is designed for a discrete parts manufacturing process, the methods 

used in this dissertation may be employed to maximize the detection 

sensitivity.  
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APPENDIX 

SYSTEM MATRICES A, B, C FOR THE INITIAL DESIGN 

 
 A0 is an identity matrix with 

appropriate dimensions. 
 
 
 
 
 
 

1212
6666

66

1

7145.00009.00004.000009.00004.0
1800.2581430.03492.001430.03492.0

3621.1053497.01425.103497.01425.1
2855.00009.00004.00000.10009.00004.0
000000
000000

×
××

×

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−
−−−

−−
−−−

=

I0

0A

 
 
 
 
 
 

 

1212
33333333

3333

3333

3333

2

2056.10007.00003.0
9287.3100364.04677.0 
4780.1123749.08308.0 

00007.00003.0
00364.04677.0
03749.08308.0

2056.00007.00003.0
9280.1856198.02797.0
8764.752529.01141.0

00007.00003.0
03802.02797.0
02529.08859.0

2056.00007.00003.0
000
000

1 0007.0  0.0003
000
000

×
××××

××

××

××

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−

−
−

−−
−
−

−−

−
−−
−−

−−

=

I000

00

0I

00

A

 
 
 
 
  

 
 
 

1212

63

66

63

3

0014.00000.00000.0
0133.10003.00003.0
2049.00003.00009.0

00000.00000.0
00003.00003.0
00003.00009.0

0004.00000.00000.0
6015.00008.00002.0
2176.00003.00001.0

0004.00000.00000.0
3597.00005.00001.0
1468.00002.00000.0

00000.00000.0
00002.00002.0
00003.00009.0
00000.00000.0
00005.00001.0
00002.00010.0

0004.00000.00000.0
000
000

10000.0    0000.0
000
000

×

×

×

×

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−

−
−

−−
−
−

−−
−
−

−−

−
−−
−−

−
−−
−−

−−

=

0

I

0

A

 



 90

812
86

43

43

1

00014.000014.0
0010
0001

0012.00016.00012.00016.0
0010
0001

×
×

×

×

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−−
=

0

0

0

B

812

43

49

3

0013.00002.00013.00002.0
0010
0001

0007.00003.00007.00003.0
0364.14677.00364.04677.0
3749.01692.03749.08308.0

0007.00003.00007.00003.0
6198.02797.03802.02797.0
2529.01141.02529.08859.0

0007.00003.00007.00003.0
0010
0001

×

×

×

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−−
−−

−
−−
−

−
−−

=

0

0

B

812

46

46

2

0000
0000
0000
0033.00000.00033.00000.0
0010
0001

0009.00004.00009.00004.0
8570.03492.01430.03492.0
3497.01425.03497.01425.1

0009.00004.00009.00004.0
0010
0001

×

×

×

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−

−−
−

−−
−−

=

0

0

B

1220

383838

323232

363636

343434

4

83010
7101

1.87710
122101

7.10810
9.111501

3010
11401

9.14910
8201

5.2710
107401

5.3410
5.64101

310
2501

2.4310
9.6201
8.8910

4601

×

×××

×××

×××

×××

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

−

−
−
−

−

−

−
−

=

000

000

000

000

C



 91

VITA 

  

Name: Pansoo Kim 

Permanent Address: Hwamok Apt #101-406, Anrak 1 Dong, Dongrae-Gu 

                                 Pusan, Republic of Korea, 607-770 

Educational Background: B.S. 1991. Department of Industrial Engineering 

Pusan National University 

                                          M.S. 1994. Department of Industrial Engineering 

                                          Pusan National University 

 


