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ABSTRACT 

 

Evaluation of Power System Security and  

Development of Transmission Pricing Method. (August 2003) 

Hyungchul Kim, B.S., Korea University; 

M.S., Korea University 

Chair of Advisory Committee: Dr. Chanan Singh 
        
 
 
 

The electric power utility industry is presently undergoing a change towards the 

deregulated environment. This has resulted in unbundling of generation, transmission and 

distribution services. The introduction of competition into unbundled electricity services 

may lead system operation closer to its security boundaries resulting in smaller operating 

safety margins. The competitive environment is expected to lead to lower price rates for 

customers and higher efficiency for power suppliers in the long run. Under this 

deregulated environment, security assessment and pricing of transmission services have 

become important issues in power systems. This dissertation provides new methods for 

power system security assessment and transmission pricing.  

In power system security assessment, the following issues are discussed 1) The 

description of probabilistic methods for power system security assessment 2) The 

computation time of simulation methods 3) on-line security assessment for operation. A 

probabilistic method using Monte-Carlo simulation is proposed for power system security 

assessment. This method takes into account dynamic and static effects corresponding to 

contingencies. Two different Kohonen networks, Self-Organizing Maps and Learning 

Vector Quantization, are employed to speed up the probabilistic method.  The 

combination of Kohonen networks and Monte-Carlo simulation can reduce computation 

time in comparison with straight Monte-Carlo simulation. A technique for security 

assessment employing Bayes classifier is also proposed. This method can be useful for 

system operators to make security decisions during on-line power system operation. 
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This dissertation also suggests an approach for allocating transmission transaction 

costs based on reliability benefits in transmission services. The proposed method shows 

the transmission transaction cost of reliability benefits when transmission line capacities 

are considered. The ratio between allocation by transmission line capacity-use and 

allocation by reliability benefits is computed using the probability of system failure.  
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CHAPTER I 

INTRODUCTION 

 
A. Introduction 

Since its inception, the electric power industry in many countries around the 

world operated in the vertically integrated environment. There was only one company or 

government agency that generated, delivered and distributed electric power.  

In 1978, PURPA (Power Utility Regulatory Policies Act) was enacted that 

requires utilities to purchase power from QFs (Qualifying Facilities), which are basically 

non-utility generators. The United States Congress signed EPAct (Energy Policy Act) in 

1992, which authorized FERC (Federal Energy Regulatory Committee) to order utility 

companies to allow non-utility producers in wholesale markets open access to their 

transmission lines. In 1996, FERC issued Order 888 and Order 889 that mandated 

electric utilities to open up the transmission systems on an equal basis. Order 888 orders 

all utilities to offer nondiscriminatory open access and ancillary services. Order 889 

provides an equal access for all by OASIS (Open Access Same-time Information 

System) and Standard of Conduct.    

With the advent of competition, one of the primary consequences under 

deregulated environment is the effect on power system reliability. Now, many utility 

companies are operating a system with high security margin in power system reliability. 

According to the report [1], deregulation may greatly increase power transfers and 

degrade power system reliability. The impact of deregulation influences reliability 

evaluation for power system planning and operation. 

 

 

 

 

This dissertation follows the style and format of IEEE Transactions on Power Systems. 
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B. Research Objectives and Organization of Dissertation 

This research is focused on security assessment and the development of 

transmission pricing methods in power systems. The research objectives are given 

below. The first three objectives deal with security assessment and the last one relates to 

a transmission pricing method. 

• The first objective is the development of probabilistic security methods involving 

dynamic aspects in power system reliability. Power system security assessment is 

composed of both steady state (static) and dynamic security analysis. Since dynamic 

effects are important in security assessment, these cannot be ignored in the 

development of a probabilistic security method. The evaluation of security breach for 

a certain contingency requires transient stability studies, the satisfaction of load 

without violation of constraints and voltage stability studies. A probabilistic method 

provides useful information about the possibility of system security for operational 

and facility planning. 

• The second objective is to develop techniques for power system security assessment 

by combining Monte-Carlo simulation and Kohonen networks. The objective here is 

to overcome the problem of large amount of computation time required for straight 

Monte-Carlo simulation. This method also takes into account dynamic and steady 

state effects including transient stability and voltage stability. The use of straight 

Monte-Carlo simulation for reliability security analysis has a disadvantage that the 

evaluation of security breach for each sampled status is time consuming. Data 

classification by Kohonen networks can reduce sampling data, which reduces 

computation time for reliability security indices when using classified data. Kohonen 

networks can be classified by learning types: SOM (Self-Organizing Maps) and LVQ 

(Learning Vector Quantization). Two different approaches are implemented in this 

dissertation for power system reliability evaluation: SOM-MCS (The combination of 

Self-Organizing Maps and Monte-Carlo simulation) and LVQ-MCS (The 

combination of Learning Vector Quantization and Monte-Carlo simulation). The 
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efficiency of SOM-MCS and LVQ-MCS approaches will be demonstrated 

respectively.  

• The third objective is to develop a technique using a Bayes classifier for static 

security assessment in power systems. The Bayes classifier provides a method to 

evaluate security breach without a complicated contingency analysis and can reduce 

the computational burden. Security status of a given feature vector is determined by 

maximum value of Bayes decision function. The case study of the WSCC system is 

presented to demonstrate the efficiency of this approach. 

• The fourth objective is to develop a new approach for allocating transmission 

transaction costs based on reliability benefits in transmission services. Transmission 

embedded costs, which allocate transmission transaction costs, should be considered 

not only by allocation based on transmission line capacity-use but also by allocation 

based on reliability benefits. The transmission line capacity in an actual power 

system plays an important role in assuring system reliability.  

 

Chapter II provides the literature review of techniques for power system reliability 

evaluation and transmission pricing methods. In the description of power system security 

studies, deterministic methods and probabilistic methods are described. Embedded cost 

methodologies and incremental cost methodologies are also explained in transmission 

pricing methods. Chapter III deals with the first objective, modeling of probabilistic 

security. It contains transient stability studies, optimal power flow for minimization of 

load shedding, and voltage stability studies. Chapter IV relates to the second objective, 

power system security assessment by combining Monte-Carlo simulation and Kohonen 

networks. Chapter IV develops an algorithm for power system security evaluation using 

Self-Organizing Map (SOM) combined with Monte-Carlo simulation. Also, it introduces 

the algorithm of Learning Vector Quantization (LVQ) combined with Monte-Carlo 

simulation for power system security evaluation. In Chapter V, a method for security 

assessment employing a Bayes classifier is proposed. This method can be useful for 

system operators to make security decisions in on-line power system operation. Chapter 
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VI deals with pricing methods for transmission services. Finally, Chapter VII gives the 

summary of this dissertation and reviews of the significance of this research. It also 

suggests future research topics. 
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CHAPTER II 

REVIEW 

 

A. Power System Reliability 

The primary role of a power system is to provide reliable and continuous electrical 

energy to satisfy system load. Power system reliability, in a broad sense, can be defined 

as the ability of the system to provide an adequate supply of electric power with 

satisfactory quality. Power systems have three main components: generation, 

transmission and distribution systems. The generation systems generate electricity and 

transmission systems deliver the generated electricity to distribution systems for 

supplying load. The generation systems together with transmission systems are usually 

called the composite system or the bulk power system.  

The reliability of a composite power system is comprised of both adequacy and 

security assessments [2-4]. Adequacy assessment relates to the ability of the system to 

supply energy requirements of customers in a satisfactory manner. Since adequacy 

assessment deals with static condition, it does not include the evaluation of the system 

response to transient disturbances. Security assessment deals with the ability of the 

electric systems to survive sudden disturbances such as electric short circuits or 

unanticipated loss of system elements. This includes the response of the system caused 

by the loss of generations and transmission lines.  

The typical indices used in power system reliability evaluation are the following 

• Loss of Load probability (LOLP) is the probability that some portion of load 

demands may not be satisfied by the available generating capacity under the 

specified operating conditions and policies. LOLP is currently the most widely used 

reliability index. Loss of Load Expectation (LOLE) is the expected period of time 

during a given period, in which the daily peak load is expected to exceed the 

available generating capacity. The LOLE in h/y can be obtained by multiplying the 

LOLP by 8760 hours. LOLP and LOLE are often used interchangeably.  
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• Loss of Load Frequency (LOLF) is the expected number of occurrence during a 

given period of time that the system may fail to meet its load demand. 

• Expected Unserved Energy (EUE) is the expected amount of energy during a given 

period of time that the system may be unable to supply to the consumers due to the 

loss of generation or load uncertainty. Typical unit is MWh/year. 

 

B. Power System Security Studies 

In the past, reliability analysis has focused primarily on adequacy assessment. Power 

system security assessment, however, becomes an important issue for planning and 

operating power systems under deregulated environment. In a more competitive 

environment, security assessment should be done in a more realistic manner so that the 

investment of resources can be accomplished in a cost-effective manner. Generally, there 

are two fundamental approaches in a security study. The first is the deterministic 

criterion and the second is the probabilistic criterion.  

 

1.   Deterministic Criterion 

To maintain system reliability, most utilities use deterministic criterion [5, 6] with a 

safety margin to cover all uncertainties such as an overload, voltage collapse and 

transmission line faults. The deterministic criterion indicates whether a system is secure 

during certain outages. The calculation of this criterion is simple and requires little data. 

However, it cannot directly indicate system reliability and does not reflect likelihood of 

component failures.  

The procedure for deterministic criterion is as follows. 

• Select the initial load condition, generation dispatch, and network topology that is a 

base case model of operational planning of the system. 

• Select contingency set. 

- Type of fault 

- Location of fault  

- Faulted element and the switching time 
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• Evaluate system response and identify violation of the performance criteria. 

• Identify the most serious contingency and the limit for each critical parameter. 

 

2.  Probabilistic Criterion 

The electric power utility industry is undergoing a tremendous change in the 

deregulated environment. Since the introduction of competition leads system operation 

closer to its limits, the deterministic criterion may not result in efficient utilization of 

resources. Probabilistic criterion can recognize the probabilistic nature of system 

components. These methods fall into two broad categories: analytical methods and 

Monte-Carlo simulation methods. 

• Analytical methods [3, 4, 7, 8] are based explicitly or implicitly on contingency 

enumeration and compute reliability indices by using mathematical solutions. Once 

the contingencies are selected, the evaluation of security breach under given 

conditions is carried out by using a suitable flow and stability calculation technique 

until all the selected contingencies have been evaluated. The advantage of analytical 

methods is that accurate results can be obtained if all the states in the state space can 

be enumerated and evaluated. The application of probabilistic criterion using the 

analytical methods in security assessment has already received some attention [9 - 

11]. Analytical methods based on conditional probability, however, require intensive 

computation effort when applied to a system with many components. 

• Monte-Carlo simulation methods [12] obtain the result by collecting and analyzing 

sample data based on statistical experiments. There are two basic approaches for 

Monte-Carlo simulation, sequential simulation and non-sequential simulation. In 

non-sequential simulation also called random sampling, a system state can be 

determined by random sampling based on the probability distributions of the 

component states regardless of sequences of occurrence. It is difficult to compute the 

index of frequency using this approach. The sequential simulation is based on 

component state duration. It proceeds by generating a sequence of events using 

random numbers and probability distributions of random variables. Further, there are 



 8

two methods in sequential Monte-Carlo simulation, the fixed interval method and the 

next event method. In the fixed interval method, system states are updated with a 

fixed interval. In a next event method, system states are updated at the occurrence of 

an event. Monte-Carlo simulation is suitable for analysis of complicated systems 

such as a power system, but it also requires large amount of computation time to 

achieve satisfactory statistical convergence and the characterization of repeated 

sampling states in security assessment. 

 

C. Transmission Pricing Methods 

In deregulated environment, the introduction of competition is expected to achieve 

lower rates for customers and higher efficiency for power suppliers in the long run. 

Pricing transmission services then plays a crucial role in a competitive market. 

To calculate the actual cost of transmission services is not an easy task. The cost of 

transmission services should be economically equitable to consumers as well as power 

suppliers. Electric utility companies need to know the actual cost in order to decide on 

various types of services correctly. The price in transmission services is determined by 

the sum of the embedded costs and incremental cost. Embedded cost methodologies or 

incremental cost methodologies can compute the cost of transmission line capacity-use 

separately. Some methodologies can also be implemented with embedded cost 

methodology and incremental cost methodology together. Pricing methods are discussed 

as follows. 

 

1.   Embedded Cost Methodologies 

Embedded costs, used by the utility industry, allocate existing transmission 

facilities to the transmission wheeling transaction. The costs occurred by new 

transactions are first summed up and are then allocated. The embedded cost 

methodologies include postage stamp methodology, contract path methodology, distance 

based MW-mile methodology and power flow based MW-mile methodology [13].  
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• A “postage stamp” methodology sets a price on use of the grid that depends only on 

amount of power, the duration of use.  Like mailing a letter, customers pay the same 

amount regardless of distance or location of transmission usage. Simplicity is the 

strong selling point, but it ignores the actual system operation. 

• A “contract path” methodology is based on the cost of a single identified path. In 

spite of many parallel paths, customers pay on the basis of one transmission line. 

This methodology is simple but it can get a system operator into trouble by 

overloading the grid. 

• A “distance based MW-mile” methodology is a wholesale wheeling price 

proportional to both amount and distance. This methodology is simple to apply to a 

real power but it can cause transmission congestion problems. 

• A “power flow based MW-mile” methodology allocates the charges for each 

wheeling participant based on the use of existing transmission facilities. It is simple 

to understand and to apply to real power systems. Capacity-use is determined by the 

amount of power transmitted and transmission line length. 

 

2.   Incremental Cost Methodologies   

Incremental cost methodologies [14-15] require only the new transmission 

transaction costs caused by the new customers. Two major viewpoints related to 

incremental cost methodologies are short run/long run and incremental/marginal costs. 

Incremental cost approach is carried out by comparing the transmission costs with and 

without the transaction while marginal costs approach would multiply the cost for unit of 

additional transaction by the size of that transaction. Therefore, these methodologies 

include short-run incremental costs (SRIC), long-run incremental costs (LRIC), short-

run marginal costs (SRMC) and long-run marginal costs (LRMC).   
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CHAPTER III 

MONTE-CARLO SIMULATON METHOD  

IN PROBABILISTIC SECURITY ANALYSIS  

 

A. Problem Formulation  

The security analysis relates to the ability of the electric power systems to survive 

sudden disturbances such as electric short circuits or unanticipated loss of system 

elements. It consists of both steady state and dynamic security analyses, which are not 

two separate issues but should be considered together. In steady state security analysis 

including voltage security analysis, the analysis checks that the system is operated within 

security limits by OPF (optimal power flow) after the transition to a new operating point. 

Until now, many utilities have difficulty in including dynamic aspects due to 

computational capabilities. On the other hand, dynamic security analysis is needed to 

ensure that the transition may lead to an acceptable operating condition. Transient 

stability, which is the ability of power systems to maintain synchronism when subjected 

to a large disturbance, is a principal component in dynamic security analysis. Usually 

any loss of synchronism may cause additional outages and make the present steady state 

analysis of the post-contingency condition inadequate for unstable cases. This is the 

reason for the need of dynamic studies in power systems. 

Probabilistic criterion can be used to recognize the probabilistic nature of system 

components while considering system security. In this approach, we do not have to 

assign any predetermined margin of safety. A comprehensive conceptual framework for 

probabilistic static and dynamic assessment is presented in this chapter.  The simulation 

results of the Western System Coordinating Council (WSCC) system compare an 

analytical method with Monte-Carlo simulation (MCS). Also, a case study of the 

extended IEEE Reliability Test System (RTS) shows the efficiency of this approach. 
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B. System Model in Power System Security Analysis 

 

1. System Operating State 

The system operating states, which provide a conceptual basis for making security 

decisions in operational and long term planning, can be divided into normal, alert, and 

emergency states for security evaluation of composite systems [16,17] as shown in Fig. 

1.  

 

 

 

 

 

 

 

 

 

Fig. 1. System Operating State 

 

In the normal state, all equipment and operation constraints are within their limits. 

The system can tolerate an assumed contingency without violating limits. As expected, 

the system including generators, transmission lines and loads has no difficulty. The alert 

state is similar to a normal state in that all constraints are satisfied. However, when a 

contingency occurs, sufficient margin is no longer available. In emergency state, the 

system may violate the equipment and operating constraints, and load may be curtailed.  

Compared with loss of load probability (LOLP) in adequacy studies, the probability of 

emergency state includes probabilities of voltage instability and transient instability. 

Operating constraints are within limits both in normal and alert state. The probability of 

emergency state can be expressed as the complement of the sum of these two state 

probabilities. 

Normal 
State

Alert 
State 

Emergency 
State 
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2. Security Constraints and Mathematical Modeling 

Sudden disturbances of a power system may result from weather, environment, 

generation failure or human error. Transmission lines, with greater exposure to the 

changes of weather than generators, are one of the important sources of system 

disturbance. When a sampled contingency is a transmission line fault, transient stability 

analysis is performed first. Sudden loss of a transmission line can generate transient 

instability, transmission overloads and voltage drops.  Therefore, security assessment in 

power systems requires analyzing transient behavior as well as evaluation of post 

contingency steady state. Steady-state constraints require the system to supply load 

without violating operating conditions and load curtailment. On the other hand, transient 

state constraints require the system to remain stable under faults. 

Three elements are considered in this analysis: transient stability, the satisfaction of 

loads without violation of constraints and voltage stability. These elements will be 

discussed in the following sections. 

 
Transient stability analysis  

The first-swing stability model in a power system is a simple and efficient model to 

evaluate transient stability [18 - 20]. The power system is considered stable if a fault is 

cleared before the critical clearing time (CCT). The CCT is defined as the maximum 

value of fault clearing time (CT). Although a three-phase-fault has a lower probability of 

occurrence, it has larger impact on a system. Utility companies prepare themselves for 

the worst case. It is common practice to use three-phase-faults for transient stability 

studies. The procedure of transient stability study using numerical integration can be 

summarized as follow: 

Step 1: Construct input data including generator and exciter data.  

Step 2: Carry out power flow calculations.  

Step 3: Calculate initial conditions for dynamic conditions in the pre-fault state and 

change the admittance matrix including generators. 
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Step 4: Assume a contingency and solve differential equations by a modified Euler’s 

method. 

Step 5: Plot angle curves of generators and decide system stability based on the angle 

differences.  

 

 

Fig. 2. Probability Density Function for Fault Clearing Time 

 

The evaluation of CCT requires elaborate computations, which include time-

consuming solutions of nonlinear system equations. A conventional step-by-step method 

requires a large amount of computation time for calculating CCT. It is carried out by 

evaluation of dynamic responses at each step with the increase of CT from zero. To 

overcome the drawback of a step-by-step method, the bisection method [21, 22] is 

introduced. First, the probability density function of CT is assumed as a normal 

distribution with µc as its mean value as shown in Fig. 2. As shown in Fig. 3, system 

stability with a mean value (µc) of the limits (µc ± 4σc) in fault clearing probability 

density function is decided through steps shown in the procedure of angle stability 

analysis. When a system is stable, the lower value (CT2) is replaced by mean value of 

lower and higher value. Otherwise, the mean value of the lower and the higher value 

replace the higher value (CT1). This procedure is repeated until convergence, which 

means the difference of the lower value and the higher value is less than 0.01. 
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Fig. 3.  A Flowchart of CCT Calculation by Bisection Method 
 

 

We can calculate the probability of successfully clearing a fault (Bts) for the 

contingency k using probability density function of clearing time.  That is, for the 

contingency k, 

 

                          ][)( CCTCTPktsB ≤=     (3.1) 

 

Initialization 

Set CT as µc  

   System Stable? 

            Check convergence 

    System Stable? 

CT2  =  CT CT1 = CT

CT = (CT1 + CT2)/2

CCT = CT2

CT1  =  µc  +  4σc        CT2 = µc CT2  =  µc  -  4σc      CT1 = µc 

yes 

yes 

yes 
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This probability is compared with the minimum acceptable probability of stability 

(Bts
min), which is assumed as 0.6. If Bts is larger than Bts

min, B’ts is equal to one. 

Otherwise, B’ts is equal to zero.  

 

       min

min

0
1

)('




<
≥

=
tsts

tsts
ts BBwhen

BBwhen
kB    (3.2) 

 
 
Steady state analysis (OPF and voltage stability) 

Adequacy studies in power system reliability evaluation relate to load curtailment. 

Corrective actions in security evaluation are similar to that of adequacy studies. When 

the generation at some buses cannot be maintained in post contingency, the generation 

should be rescheduled to avoid the violation of constraints such as the limit of power 

flows and power generations. To maintain generation-load balance, load shedding may 

be unavoidable. The optimal power flow (OPF) program is implemented to determine if 

a system for certain contingency results in the loss of load. The problem is defined as the 

minimization of active load curtailment in system buses [23]. The quantity of load 

curtailment (f) is an objective function. When the objective function is not zero, the 

sampled state may result in the loss of load. For all buses from i=1 to n, 

 

  Objective function :                     min
1
∑
=

=
n

i
iXf     (3-3) 

 
Subject to:  

lilireqi PPX −=    

∑
=

δ+δ=−
n

j
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1

 

∑
=

δ−δ=−
n

j
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1
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max,gigimin,gi QQQ ≤≤   

222
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lireqlilireqli Q/QP/P =  

lireqli PP ≤≤0   

lireqli QQ ≤≤0    
 

where  

Xi   : load curtailment at bus i 

Plireq, Qlireq   : real and reactive load demands at bus i 

Pli , Qli    : real and reactive power after rescheduling of generation at bus i 

Pgi, Qgi   : real and reactive power generation at bus i 

Vi ,Vj    : voltage magnitude at bus i and j, respectively  

Gij + jBij = Yij    :  the ijth element in the Y matrix of the power system 

δij      : angle difference between the voltage at bus i 

Vi,min, Vi,max       : minimum and maximum voltage magnitude at bus i, respectively 

Pgi,min, Pgi,max   : minimum and maximum real power generation at generator bus i 

Qgi,min, Qgi,max    : minimum and maximum reactive power generation at generator bus i 

PTij, QTij   : real and reactive power flow between bus i and j 

Sij                 : maximum apparent power flow between bus i and j 

 
In the above formulation, the dependent variables are the real and reactive power 

of a slack bus, reactive power and voltage angle of each PV bus, and voltage magnitude 

and angle of each PQ bus. The control variables are load shedding at each load bus, real 

and reactive power of generator buses, and generator voltage setting. The constraints are 

briefly described as follows: 

• The second and third are real and reactive power balance equations at each system 

bus. 

• The fourth assumes that when the real power of each bus is curtailed, the 

corresponding reactive power may also be shed to maintain the load power factor 

constant. 
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• The rest are inequality constraints, which represent real and reactive power 

generation limits, thermal-operating limits of transmission lines, the limits of load 

curtailed at each load bus, and bus voltage limits. 

 

Now, we can express Blc to indicate whether or not load shedding exists for the 

contingency k. When there is no load shedding for the contingency k, Blc is equal to one. 

Otherwise, Blc is equal to zero.       

              
00
01

)(




>
=

=
fwhen
fwhen

kBlc
    (3-4)

     

System instability may also be encountered without loss of synchronism. A system 

can also become unstable because of voltage collapse caused by a contingency. Voltage 

stability is considered as a local phenomenon.  When a transmission system is 

represented by a hybrid form as in the equation (3-5), a voltage indicator ( Li ) is used in 

the equation (3-6) to assess the voltage stability of load bus i [11]. 
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
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L

V
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I
V

 ][      (3-5) 

where 

 VL , VG : voltage at load or generator bus respectively 

 IL ,  IG :  current at load or generator bus respectively  

                   H : hybrid matrix 

 

The voltage stability indicator [24 -25] shows the portion of the system that is 

directly affected by a contingency. It varies between zero and one at each load bus. The 

indicator is zero when there is no load in the system, while it is one at the collapse point. 

The voltage indicator ( Li ) can be expressed in the following equation to assess the 

voltage stability of load bus i. 
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                   2
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  1)( −
+ = iiii ZY      

  Si+ 
* : the conjugate of Si+ 

  Si      : the complex power of bus i  

  Zij   : the ijth element in the Z matrix of the power system 

  Zij
*  : the conjugate of Zij   

  Vi    : voltage at bus i  

 

The second term of the complex power (Si+) is expressed as contributions of the 

other loads to the index at bus i. The voltage stability indicator of the overall system is 

the maximum value ( Lk ) among voltage stability indicators of the load buses.  

 )max( ik LL =       (3-7) 

 

Bvs indicates whether voltage at load buses is abnormal or not for the contingency 

k. This value is compared with the threshold value, which is set as 0.3 for any 

transmission line fault. When it is less than the threshold value (Lth) for the contingency 

k, Bvs is equal to one. Otherwise, Bvs is equal to zero. 

     
0
1

)(




>
<

=
thk

thk
vs LLwhen

LLwhen
kB          (3-8) 

 

Integration of Security-constraints 

Transient state and steady state constraints through transient stability, load 

curtailment, and voltage stability analysis are defined by binary value, zero and one. If a 
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system violates any of the above conditions for the contingency k, the system is in an 

emergency state. If the system satisfies all of the above conditions for the contingency k, 

the system may be in a normal state or alert state. That is,  

 

   
0

1
)(



=
=

emergency
alertornormal

kB ss        (3-9)

  
where    )()()(')( kBkBkBkB vslctsss ⋅⋅=   

 

Determination of the indices of normal and alert states based on the system 

operating state is explained in the next section. 

 

3. Consideration of Additional Contingency 

When neither a system problem nor voltage stability problem exists in spite of 

contingencies, additional contingencies should be considered in order to distinguish the 

normal state and alert state. The normal state should have a sufficient margin to 

withstand assumed extra line outages. Additional contingencies, however, should be 

defined on the basis of probability of system state caused by the absence of the 

component.  Generally, when the probability of line availability for a particular 

transmission line is one, we do not consider extra line outages for the particular line 

because it may never fail. Similarly, if the probability of line availability is close to one 

such as 0.999, assumed extra line outages of that line create some problems. The 

probabilistic approach can deal with this situation in a better manner. 

Under these conditions, additional contingencies should also be considered in order 

to distinguish between the normal state and alert state. For the contingency k, the 

additional contingency probability in alert state (Pr) is expressed by the equation (3-10).  

 

   }])|(1{)|([
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∑
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−⋅≅
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where  

Pl ( i | k )    : Probability of system state for additional contingency i given by the  

contingency k.  

Bss( i | k )   :    Bss for additional contingency i given  the contingency k. 

 N               :    The total number of component 

 

Bss(i|k) is zero if a system for additional contingency i given by the contingency k 

is in an emergency state, which means that a system for  the contingency k is in an alert 

state. The equation (3-10) basically sums the probability of states where an additional 

contingency results in emergency states. The additional contingency probability in 

normal state can be expressed as the complement of the additional contingency 

probability in alert state. With an N-component system and N’ component contingency, 

(N-N’) calculations are required for state characterization of additional contingencies. 

For example, (N-2) calculations are carried out for double contingencies. 

 

C. Probabilistic Security Evaluation by Monte-Carlo Simulation  

In complicated systems like power systems, Monte-Carlo simulation is able to 

model the process with reasonable accuracy. The next event method in sequential 

Monte-Carlo simulation is used here. The steps for straight Monte-Carlo Simulation 

including state characterization are as follow: 

Step 1: Generate a random number for each component such as a transmission line or a 

generator and generate its history. The state of the system at any time is defined 

by the state of its component. This status of states can be represented as a base 

case, a contingency, double contingencies and so on. The evaluation of double 

and more contingencies should be handled in security analysis. For example, 

double contingencies are the overlaps of two outages. They often can make a 

system insecure, even though a system satisfies operating conditions when 

either happened separately.   
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Step 2 : Perform state characterization for each sampled state. When there is a system 

problem or local problem, which means Bss from the equation (3-8) is zero, 

update the duration and occurrence number of the emergency state. The index of 

emergency state is similar to a conventional LOLP (loss of load probability).  

Step 3 : Consider additional contingencies when there is neither a system problem nor 

voltage stability problem to determine whether this is the normal or alert state. 

Calculation of Pr is described in the previous section. The duration of 

contingency k, ds is apportioned into its duration of the alert state as ds·Pr and its 

duration of the normal state as ds · (1-Pr). This information is used in 

determining i
nD and i

aD  in equations (3-13) and (3-14). The frequency of 

contingency k,  fs is apportioned into its frequency of the alert state as fs · Pr and 

its frequency of the normal state as fs·(1-Pr). This information is also used in 

determining i
nn and i

an  in equations (3-13) and (3-14). The expected duration 

time and the number of occurrences in the normal and alert state per occurrence 

can be computed as follow: 

  )1(              ,)1(    fPndP srnsrnd ⋅−=⋅−=    (3-11) 

                    ,     fPndP srasrad ⋅=⋅=           (3-12) 

where  

sd        :   Duration without a system failure per occurance. 

sf        :   Occurance without a system failure. Here, 
sf  is always one. 

nn nd ,  :   Duration and number of occurances in normal state  

aa nd ,  :   Duration and number of occurances in alert state 

Step 4 : Calculate security indices. The normal, alert and emergency state indices are 

calculated using equations (3-13), (3-14) and (3-15) respectively. The 

probability (Pn) and frequency (Fn) of a normal state are  
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 where  
  ∑= n

i
n dD  : Duration in normal state for ith year  

  ∑= n
i
n nn   : Occurence number in normal state for ith year 

   N      : Total number of simulation years 

 
The probability (Pa) and frequency (Fa)  of an alert state are 
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where  

∑= a
i
a dD  : Duration in alert state for ith year 

  ∑= a
i
a nn    : Occurence number in alert state for ith year 

 
The probability and frequency of an emergency state are 
 

     
)(

            1 1

'

N

n
FPPP

N

i
e

eane

∑
==−−=       (3-15) 

where  
i
en  : Occurence number in emergency state for ith year 

Step 5 : Check the coefficient of variation and a maximum iteration number. Repeat 

above steps until a coefficient of variation is less than a specified threshold or 

maximum iteration is arrived. 
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D. Case Studies 

 
1. Application to the WSCC System 

One line diagram of the Western System Coordinating Council (WSCC) 3-machine 

and 9-bus system is shown in Fig. 4. The base MVA is 100 and system frequency is 60 

Hz. Detailed data of transmission lines and generators are shown in Table I-(a) and I-(b). 

Generators and exciters data used in this simulation are given in Table I-(c) and I-(d). 

The parameters used in tables are described in [26]. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. One Line Diagram of WSCC 9-Bus System 

 

  

2 

4 

5 6

7 8 9 3 

1

G1

G2 G3

T1

T2 T8 T9 T3 

T7

T5

T6 

T4 



 

  

24

 

TABLE I. The Data for WSCC System 

(a) Branch Data including Fault Clearing Time Probability Distribution Data 

Line 

From To 

R 

(p.u.) 

X 

(p.u.) 

B/2 

(p.u.) 

Limit 

(MVA) 

Dist.  

Type  

M.C.T.* 

(sec) 

S. D.** 

(sec) 

1 4 .0000 .0576 .0000 300 Normal 0.20 0.02 

2 7 .0000 .0625 .0000 300 Normal 0.20 0.02 

3 9 .0000 .0586 .0000 300 Normal 0.20 0.02 

4 5 .0100 .0850 .0880 300 Normal 0.20 0.02 

4 6 .0170 .0920 .0790 300 Normal 0.20 0.02 

5 7 .0320 .1610 .1530 300 Normal 0.05 0.02 

6 9 .0390 .1700 .1790 300 Normal 0.10 0.02 

7 8 .0085 .0720 .0745 300 Normal 0.10 0.02 

8 9 .0119 .1008 .1045 300 Normal 0.15 0.02 

* Mean clearing time 

         ** Standard Deviation 

 

(b) Bus Data 

Bus No. Pg (MW) Qg (MVAR) Pd (MW) Qd (MVAR) |V| Angle 

1 71.6 27 0.0 0.0 1.040 0 

2 163.0 6.7 0.0 0.0 1.025 9.3 

3 85.0 -10.9 0.0 0.0 1.025 4.7 

4 0.0 0.0 0.0 0.0 1.026 -2.2 

5 0.0 0.0 125.0 50.0 0.996 -4.0 

6 0.0 0.0 90.0 30.0 1.013 -3.7 

7 0.0 0.0 0.0 0.0 1.026 3.7 

8 0.0 0.0 100.0 35.0 1.016 0.7 

9 0.0 0.0 0.0 0.0 1.032 2.0 
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TABLE I. (continued) 

(c) Generator Data 

Generator No. H(s)          Xd         Xd’       Xq          Xq’      Td0’       Tq0’ 

1 

2 

3 

23.6400    0.1460   0.0608   0.0969   0.0969   8.9600   0.3100 

6.4000     0.8958   0.1198   0.8645   0.1969   6.0000   0.5350 

3.0100     1.3125   0.1813   1.2578   0.2500   5.8900   0.6000 

 

(d) Exciter Data 

Generator No. KA       KE       KF       TA       TE       TF       KSe      Tse 

1 

2 

3 

20.0   1.000   0.063   0.200   0.314   0.350   0.0039   1.555 

20.0   1.000   0.063   0.200   0.314   0.350   0.0039   1.555 

20.0   1.000   0.063   0.200   0.314   0.350   0.0039   1.555 

 

State Characterization 

For simplification, failure rates and repair rates of all generators are assumed as λG 

= 1.5e-3 [1/hours] and µG = 0.1 [1/hours] respectively. Failure rates and repair rates of 

all transmission lines are also assumed as λT = 1.5e-5 [1/hours] and µT = 0.1 [1/hours] 

respectively. All possible contingency cases are considered, which includes independent 

overlapping contingencies.  

To determine transient stability, the angle difference of generators is investigated. 

An example of angle curves, when clearing time is 0.83 with a fault on line 5-7, is 

shown in Fig. 5. The angle curve of all generators is similar, and the system is stable. 

The determination of critical clearing time is performed by the bisection method as 

explained the previous section. The result of critical clearing time by the bisection 

method and the probability of successfully clearing fault (Bts) for each line contingency 

is shown in Table II-(a). 

Table II-(b) shows the voltage stability indicator of the overall system and different 

load buses for a contingency of each line. In case of the contingency in line 8-9, voltage 

stability indicator of load bus 8 has the largest value. 
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Fig. 5. The Angle Curves of Each Generator   
(when clearing time is 0.83 and fault is Line 5-7 in WSCC System) 

 

Table II. An Example of State Characterization 

(a) The Result of Critical Clearing Time and the Probability of Transient Stability 

Line 

From To 

Critical clearing time 

(sec) 
Probability of transient stability  

1 

2 

3 

4 

4 

5 

6 

7 

8 

4 

7 

9 

5 

6 

7 

9 

8 

9 

0.12 

0.12 

0.12 

0.23 

0.24 

0.08 

0.13 

0.165 

0.185 

0.0000 

0.0000 

0.0000 

0.9332 

0.9772 

0.9332 

0.9332 

0.9994 

0.9599 
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Table II (continued) 

(b) The Voltage Stability Indicator of the Overall System and Different Load Buses 

by the Location of Contingency 

Line Voltage stability indicator 

Bus            No. 
From To 

4            5             6             7             8            9 

Overall 

system 

1 

2 

3 

4 

4 

5 

6 

7 

8 

4 

7 

9 

5 

6 

7 

9 

8 

9 

0.4079    0.4311    0.3835    0.1306    0.1744    0.1118 

0.1134    0.2433    0.1709    0.2310    0.2253    0.0950 

0.1075    0.1911    0.2027    0.1039    0.1918    0.1958 

0.0398    0.5023    0.1068    0.1284    0.1501    0.0623 

0.0551    0.1418    0.2972    0.0706    0.1243    0.0849 

0.1124    0.2563    0.1596    0.0433    0.0954    0.0549 

0.1053    0.1819    0.2092    0.0680    0.1017    0.0364 

0.0828    0.1564    0.1474    0.0410    0.2108    0.0861 

0.0818    0.1716    0.1253    0.0971    0.1840    0.0307 

0.4311 

0.2433 

0.2027 

0.5023 

0.2972 

0.2563 

0.2092 

0.2108 

0.1840 

 

(c) The Result of Transient State (Bts), Load Curtailment (Blc), 

and Voltage Stability (Bvs), and Combined Result Bss for Each Line Outage 

Line Outage 

No. From To 
Bts Blc Bvs Bss 

T1 

T2 

T3 

T4 

T5 

T6 

T7 

T8 

T9 

1 

2 

3 

4 

4 

5 

6 

7 

8 

4 

7 

9 

5 

6 

7 

9 

8 

9 

0 

0 

0 

1 

1 

1 

1 

1 

1 

0 

0 

0 

1 

1 

1 

1 

1 

1 

0 

1 

1 

0 

1 

1 

1 

1 

1 

0 

0 

0 

0 

1 

1 

1 

1 

1 
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The voltage stability index of the overall system is the largest (0.1840) among 

voltage stability indicators for each bus. This value is compared with a threshold value. 

When it is larger than the threshold value, the system is near to a collapse point. Here, 

the threshold point is set as 0.3. Because voltage stability indicators of the line 1-4 and 

line 4-5 are larger than the threshold point, the overall system is regarded as unstable in 

the contingency of the line 1-4 and 4-5.  

Together with OPF and voltage stability analysis in steady state, the integrated 

security for each line contingency is shown in Table II-(c). Transmission line 

contingencies 1-4, 2-7, 3-9, and 4-5 relate to the emergency state. 

 

Analytical Method 

Analytical methods can obtain accurate results if all the states in the state spaces 

can be enumerated. For an N component system with k-order contingency, the number of 

simulations is NCk. When considering a system with 1000 components, this would be 

499,500 for double contingencies and 166,167,000 for triple contingencies and so on. 

Table III lists the results of transient stability, load curtailment and voltage stability 

for various contingencies. There are twelve system elements with three generators and 

nine transmission lines. The total number of contingencies including the base case is 

12C1+ 12C2+ -------- + 12C11+ 12C12. With contingencies higher than single order, the 

system appears always insecure in this case.  

The probability for an emergency state can be easily obtained by the enumeration 

approach. The probability for a normal and an alert state can be obtained after computing 

the additional contingency probability in alert state. The frequency of each state can be 

obtained by equivalent transition rate [3]. The probability and frequency for each state 

using analytical methods is shown in Table IV. 
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Table III. The Combined Result Bss for Each Contingency Case 

 
No Contingency Bss No Contingency Bss No Contingency Bss 

1 No outage 1 28 G2,T6 0 55 T2,6 0 

2 G1 0 29 G2,T7 0 56 T2,7 0 

3 G2 0 30 G2,T8 0 57 T2,8 0 

4 G3 0 31 G2,T9 0 58 T2,9 0 

5 T1 0 32 G3,T1 0 59 T3,4 0 

6 T2 0 33 G3,T2 0 60 T3,5 0 

7 T3 0 34 G3,T3 0 61 T3,6 0 

8 T4 0 35 G3,T4 0 62 T3,7 0 

9 T5 1 36 G3,T5 0 63 T3,8 0 

10 T6 1 37 G3,T6 0 64 T3,9 0 

11 T7 1 38 G3,T7 0 65 T4,5 0 

12 T8 1 39 G3,T8 0 66 T4,6 0 

13 T9 1 40 G3,T9 0 67 T4,7 0 

14 G1,T1 0 41 G1,2 0 68 T4,8 0 

15 G1,T2 0 42 G1,3 0 69 T4,9 0 

16 G1,T3 0 43 G2,3 0 70 T5,6 0 

17 G1,T4 0 44 T1,2 0 71 T5,7 0 

18 G1,T5 0 45 T1,3 0 72 T5,8 0 

19 G1,T6 0 46 T1,4 0 73 T5,9 0 

20 G1,T7 0 47 T1,5 0 74 T6,7 0 

21 G1,T8 0 48 T1,6 0 75 T6,8 0 

22 G1,T9 0 49 T1,7 0 76 T6,9 0 

23 G2,T1 0 50 T1,8 0 77 T7,8 0 

24 G2,T2 0 51 T1,9 0 78 T7,9 0 

25 G2,T3 0 52 T2,3 0 79 T8,9 0 

26 G2,T4 0 53 T2,4 0 80 G1,2,3 0 

27 G2,T5 0 54 T2,5 0 81 More than 3rd 0 
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Table IV. Probabilities and Frequencies by Analytical Method for WSCC System 

Analytical method  

Probability (%) Frequency (occ./year) 

Emergency State 0.0443 38.178 

Alert State 0.0416 1.6616 

Normal State 0.9141 36.493 

 

Monte-Carlo Simulation  

The simulation is repeated until it reaches a specified number of years or 

convergence is less than a specified convergence criterion. In this simulation, the 

maximum number of simulation years is set as 300 and the coefficient of variation is set 

as 0.5 for convergence criterion. The probability and frequency for each state using 

Monte-Carlo Simulation is shown in Table V. When comparing with analytical methods, 

the probability and frequency for each state are almost the same.  

 

Table V. Probabilities and Frequencies by MCS for WSCC System 

Monte-Carlo Simulation  

Probability (%)  Frequency (occ./year) 

Emergency State 0.0431 39.8800 
Alert State 0.0417 1.7201 

Normal State 0.9152 37.7699 
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2. Application to the IEEE RTS 

The IEEE Reliability Test System (RTS) is a 24-bus system with 38 transmission 

lines. The annual system peak load is 2850 [MW]. The total installed generating capacity 

is 3405 [MW]. The one line diagram of the system is shown in Fig. 6. IEEE RTS is 

described in detail in [27]. The exciter is assumed to be identical for all machines and is 

of the IEEE Type I. The machine is represented by a two-axis model. Probability 

distribution data of fault clearing time, generator and exciters data are shown in Table 

VI. 

 

 
Fig. 6.  One Line Diagram of IEEE Reliability Test System 
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TABLE VI. The Data for IEEE RTS 
(a) Fault Clearing Time Probability Distribution Data 

 
Line 

From To 
Type of 

Distribution 

Mean 
clearing time  

(sec) 

Standard 
Deviation 

(sec) 
1 
1 
1 
2 
2 
3 
3 
4 
5 
6 
7 
8 
8 
9 
9 
10 
10 
11 
11 
12 
12 
13 
14 
15 
15 
15 
15 
16 
16 
17 
17 
18 
18 
19 
19 
20 
20 
21 

2 
3 
5 
4 
6 
9 
24 
9 
10 
10 
8 
9 
10 
11 
12 
11 
12 
13 
14 
13 
23 
23 
16 
16 
21 
21 
24 
17 
19 
18 
22 
21 
21 
20 
20 
23 
23 
22 

Normal 
Normal 
Normal 
Normal 
Normal 
Normal 
Normal 
Normal 
Normal 
Normal 
Normal 
Normal 
Normal 
Normal 
Normal 
Normal 
Normal 
Normal 
Normal 
Normal 
Normal 
Normal 
Normal 
Normal 
Normal 
Normal 
Normal 
Normal 
Normal 
Normal 
Normal 
Normal 
Normal 
Normal 
Normal 
Normal 
Normal 
Normal 

0.15 
0.05 
0.20 
0.20 
0.20 
0.08 
0.08 
0.20 
0.20 
0.15 
0.15 
0.20 
0.20 
0.15 
0.15 
0.15 
0.15 
0.15 
0.15 
0.20 
0.20 
0.20 
0.15 
0.15 
0.15 
0.15 
0.15 
0.15 
0.15 
0.15 
0.20 
0.15 
0.15 
0.15 
0.15 
0.15 
0.15 
0.20 

0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
0.02 
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TABLE VI. (continued) 

(b)  Generator Data 

Gen. No. H(s)          Xd         Xd’       Xq          Xq’      Td0’       Tq0’ 

1 

2 

7 

13 

14 

15 

16 

18 

21 

22 

23 

23.6400    0.1460   0.0608   0.0969   0.0969   8.9600   0.3100 

6.4000     0.8958   0.1198   0.8645   0.1969   6.0000   0.5350 

3.0100     1.3125   0.1813   1.2578   0.2500   5.8900   0.6000 

23.6400    0.1460   0.0608   0.0969   0.0969   8.9600   0.3100 

6.4000     0.8958   0.1198   0.8645   0.1969   6.0000   0.5350 

3.0100     1.3125   0.1813   1.2578   0.2500   5.8900   0.6000 

23.6400    0.1460   0.0608   0.0969   0.0969   8.9600   0.3100 

6.4000     0.8958   0.1198   0.8645   0.1969   6.0000   0.5350 

3.0100     1.3125   0.1813   1.2578   0.2500   5.8900   0.6000 

6.4000     0.8958   0.1198   0.8645   0.1969   6.0000   0.5350 

23.6400    0.1460   0.0608   0.0969   0.0969   8.9600   0.3100 

 

(c) Exciter Data 

Gen. No. KA       KE       KF       TA       TE       TF       KSe      Tse 

1 

2 

7 

13 

14 

15 

16 

18 

21 

22 

23 

20.0   1.000   0.063   0.200   0.314   0.350   0.0039   1.555 

20.0   1.000   0.063   0.200   0.314   0.350   0.0039   1.555 

20.0   1.000   0.063   0.200   0.314   0.350   0.0039   1.555 

20.0   1.000   0.063   0.200   0.314   0.350   0.0039   1.555 

20.0   1.000   0.063   0.200   0.314   0.350   0.0039   1.555 

20.0   1.000   0.063   0.200   0.314   0.350   0.0039   1.555 

20.0   1.000   0.063   0.200   0.314   0.350   0.0039   1.555 

20.0   1.000   0.063   0.200   0.314   0.350   0.0039   1.555 

20.0   1.000   0.063   0.200   0.314   0.350   0.0039   1.555 

20.0   1.000   0.063   0.200   0.314   0.350   0.0039   1.555 

20.0   1.000   0.063   0.200   0.314   0.350   0.0039   1.555 
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Fig. 7. The Plot of Probabilities and Frequencies for Each State with 95% Load  

 

One example of Monte-Carlo simulation is shown in Fig. 7. The plot of 

probabilities and frequencies is converging with repeated simulations. The simulation 

can be continued until a specified maximum year. The percentage of the load means the 

percentage of each maximum load for each load bus. The 100 % load is the annual 

system peak load, which is the sum of maximum loads of each bus. The simulation 

results with 100%, 95%, 90%, and 75% load are shown in Table VII. As system load is 

decreased, the system becomes more secure. The probability for the normal state is 

slightly increased as a load level percentage decreases.  
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TABLE VII. Probabilities and Frequencies of MCS for IEEE RTS 

Probability (%) Frequency (occ./year) 
Load 

Normal Alert Emergency Normal Alert Emergency 

100% 0.6921 0.2053 0.1026 309.61 109.09 72.04 

95% 0.8442 0.1107 0.0450 389.12 68.80 32.83 

90% 0.9174 0.0619 0.0208 428.92 45.69 23.46 

75% 0.9712 0.0255 0.0033 463.86 23.46 3.48 

 

 

E. Summary 

A probabilistic method for security assessment is proposed in this Chapter. State 

characterization is carried out by transient stability analysis for dynamic effects and by 

voltage stability analysis and OPF for static effects. The application to the WSCC 

system shows the accuracy of Monte-Carlo simulation compared with the analytical 

method for security assessment. The analytical method, when evaluating the frequency 

and duration indices, is relatively complex and the actual system needs to be simplified 

for mathematical modeling. Due to these disadvantages of the analytical method, Monte-

Carlo simulation is one of the most widely used in power system reliability evaluations. 

The application to IEEE RTS indicates that Monte-Carlo simulation for security 

assessment can be extended to the analysis of more complicated systems.  



 36

CHAPTER IV 

PROBABILISTIC SECURITY ANALYSYS USING  

KOHONEN NETWORKS AND MONTE-CARLO SIMULATION 
 
A. Problem Formulation 

Artificial neural network is one of the emerging and exciting developments in 

solving engineering problems such as computer vision, control and speech recognition. 

They mimic the human biological neural nets, which can learn how to recognize and 

classify pattern in an autonomous manner. In power systems, artificial neural networks 

have also been used in many areas, e.g. load forecasting, security assessment, fault 

diagnosis, system identification, and voltage control [28 - 34]. 

The cerebral cortex in human physiology is the center for diverse activities such as 

thinking, speech, vision and hearing. The specific regions of the cortex have their own 

role and are located consistently relative to one another. These regions can be referred to 

as ordered feature maps. For example, there exists the tonotopic map of auditory regions 

where neighboring neurons respond to similar sounds. This clustering mechanism of 

human brain led researchers to the concept of Kohonen Networks. Kohonen networks, 

which were developed by Teuvo Kohonen during the early 1980s, can be used in 

classification problems [35 - 36]. Kohonen networks are divided into two main 

subgroups based on the learning philosophy: supervised and unsupervised learning.  

Supervised learning needs the correct desired output for a controlled adaptation to 

minimize the error between the neural output and the desired output. Learning Vector 

Quantization (LVQ) is a pattern classification method in the supervised learning class. 

The combination of Learning Vector Quantization and Monte-Carlo simulation is called 

the LVQ-MCS in this Chapter. In unsupervised learning, the learning process classifies 

similar data into clusters using similarity indices. Self-organizing maps (SOM) learn to 

recognize groups of similar input vectors in such a manner that neurons physically near 

each other in the neuron layer respond to similar input vectors. The combination of Self-

organizing maps and Monte-Carlo simulation is called the SOM-MCS in this 
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dissertation. The main purpose of LVQ-MCS is to avoid time-consuming 

characterization of sampled state in Monte-Carlo simulation. SOM-MCS overcomes the 

computation burden caused by repeated characterization of similar states. Therefore, the 

comparison of two different approaches would provide useful information in the power 

system reliability evaluation.  

 For many applications, the Kohonen networks can perform more accurate 

classification than Backpropagation networks. The approaches using Backpropagation 

networks may be extremely time-consuming and need a huge amount of learning data 

[30]. This is why Kohonen networks are proposed in combination with Monte-Carlo 

simulation for security assessment in power systems. 

This Chapter proposes a new probabilistic method involving transient stability and 

voltage stability for power system security assessment by combining Monte-Carlo 

simulation and Kohonen Networks. The main disadvantage of the use of straight Monte-

Carlo simulation for reliability and security analysis is the time required for the 

characterization of sampled states. The proposed approach overcomes the problem of a 

large amount of computation time required of straight Monte-Carlo simulation. Data 

classification by Kohonen networks can reduce sampling data. This reduces computation 

time for reliability security indices when using classified data. The case study of IEEE 

RTS is presented to demonstrate the efficiency of both SOM-MCS and LVQ-MCS 

approaches.  

The framework would be useful for operational and long term planning. In 

operational planning, an indication of the degree of security breach provides important 

information to operators. For example, if the probability of alert or emergency state is 

too high, the generation may not cover the system load in near future. To avoid load 

shedding, system operators may decide additional generating units to be started. In long-

term planning, the degree of security breach gives information to system planners for 

generation or transmission expansion schemes.  
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B. Self-Organizing Map (SOM) 
 

1. Structure of Self-Organizing Map 

The structure of SOM is shown in Fig. 8. SOM consists of a standard input layer 

and a Kohonen layer. Each input neuron is connected to every neuron in the Kohonen 

layer. This Kohonen layer learns to categorize its input vectors. After computing the 

distance between input vectors and weight vectors, Kohonen layer identifies a winner 

neuron through competitive transfer functions. All neurons that lie within a 

neighborhood surrounding the winning neuron are allowed to adjust their weights. 

Neurons that are outside the neighborhood do not adjust their weights. All neurons 

within a certain neighborhood of the winning neuron are updated using the Kohonen-

rule. Kohonen-rule is explained in the algorithm in the next section.  

  

 

 

 

 

 

 

 

  

Fig. 8. Structure of Self-Organizing Maps 

 
2. Algorithm of Self-Organizing Map  

Each neuron j in the Kohonen layer is represented by an (n+m) dimensional weight 

vector wj = [ wj1 wj2 ---wj(n+m) ].  The input vectors to the SOM are represented by X = [ 

X1 X2 --- Xi --- Xo ] where o is the number of the input vectors. The dimension of each 

input vector is the same as that of the weight vector. The input vector in our studies is 

the selected contingencies described in the next section. The dimension of weight vector 

is the same as the sum of the number of transmission lines (n) and the number of 

Kohonen layer 
(Competitive layer) 
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Input layer 

Competitive transfer function 
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generation buses (m). The algorithm to map the system states into the neuron is 

described below.  

Step 1 : Initialize weight vectors and decide the parameters of SOM such as topology, 

distance function and learning rate. 

Step 2 : Start learning while a stopping condition is satisfied (Repeat step 3-10). Here, a 

stopping condition is indicated by wj(t+1)≈ wj(t). 

Step 3 : For each input vector Xi, repeat steps 4-6. 

Step 4 : Compute Euclidean distances between neurons and a input vector Xi. 

     ))((
2

1
∑
=

−=
n

i
jij twXd      (4-1) 

  where 

   Xi       : the i th input vector. 

    wj(t) : the j th weight vector at time t. 

Step 5 : Find a winner neuron j with the minimum distance. 

   minarg jdc =       (4-2) 

Step 6 : Update weight vectors (wj(t)) within a specified neighborhood for a winner 

neuron using Kohonen -rule. 

  ))()(()()()()1( i twtXthtatwtw jcjjj −⋅⋅+=+ for   )(thj cj∈   (4-3) 

 )()1( twtw jj =+           for   )(thj cj∉   (4-4) 

             where 

         a(t) : learning rate  

            hcj(t) : topological neighborhood  

Step 7 : Update learning rate ( a(t)), which is a monotonically decreasing function.  

Step 8 : Reduce the radius of topological neighborhood (hcj(t)). 

Step 9 : Increase the iteration number t = t+1. 

Step 10 : Check stopping condition. 
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The basic idea of SOM is the vicinity concept based on the distance between 

neurons and each input vector, which means input data near a neuron may match this 

neuron. Only a neuron with a minimum distance between input vectors and a weight 

vector is updated in the equation (4-3) or (4-4) until the current weight vector is the same 

as the previous.  The state of neuron called by weight vectors changes its value during 

learning.  The final weight vectors, called the state of neurons, are only taken as input 

data for the state characterization.  

The selection of topology including the number of map units (the number of 

neurons), the lattice type and the map dimension is one of the most important factors to 

obtain satisfactory results. The number of map units and map dimension may increase as 

the number of input vectors increases. There are three different topologies for the 

original neuron locations such as grid, hexagonal, rectangular, and random topology. 

The learning structure has important parameters such as the map initialization, the 

neighborhood function and the learning rate function. There are three kinds of map 

initialization; random, linear or hexagonal. If random initialization is chosen, a different 

result may be obtained. The neighborhood function has several possible choices such as 

bubble, Gaussian, cut Gaussian, and Ep function. The learning rate starts at the ordering-

phase (Rough-tuning) and decreases until it reaches the tuning-phase (Fine-tuning). The 

learning rate continues to decrease very slowly during the tuning-phase. The 

neighborhood size shrinks and learning rate value within the neighborhood also 

decreases towards zero. Both the shrinkage of neighborhood and the decrease in the 

learning rate change slowly. 

The optimal selection of topology and learning structure is based on the 

quantization error. The quantization error is defined as the mean of || x - wc || over all 

learning states where x is the input learning vector and wc is the nearest weight vector to 

x.  
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C. Learning Vector Quantization (LVQ) 

 
1. Structure of Learning Vector Quantization 

While SOM categorizes similar input vectors without the use of learning data to 

specify a typical member of each group, learning in LVQ is accomplished by presenting 

a sequence of patterns with an associated target output vector.  

LVQ classifies input data into groups that it determines. The network can be 

trained to classify inputs while preserving the inherent topology of the learning set, i.e., 

nearest neighbor relationships in the learning set are preserved while input patterns that 

have not been previously learned are categorized into their nearest neighbors. The 

structure of LVQ is essentially the same as SOM without a second linear layer for target 

class as shown in Fig. 9. The linear layer transforms the competitive layer’s classes into 

target classifications defined by users. 

 
 

  

 

 

 

 

 

 

 

 

 

Fig. 9. Structure of Learning Vector Quantization. 
 

The features of LVQ are as follows: 1) LVQ is a supervised learning neural 

network, which has teacher’s signal as a target class. 2) While weight vector in SOM is 

updated within a specified neighborhood, only the weight vector which is closest to 
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input vectors is updated in LVQ. 3) No neighborhood around a winner is defined during 

learning in LVQ. 

 

2. Algorithm of Learning Vector Quantization 

 

Each neuron j of the Kohonen layer in LVQ is represented by an (n+m+1) 

dimensional weight vector wj = [ wj1 wj2 ---wj(n+m) oj ] including the output oj.  The input 

vector to the SOM is represented by X = [ X1 X2 --- Xi --- Xp ] where p is the number of 

the input vectors. The dimension of each input vector is the same as that of the weight 

vector. The basic steps of the algorithm are listed as follows: 

Step 1 : Initialize weight vectors and decide the parameter of LVQ such as topology, 

distance function and learning rate. 

Step 2 : Start learning while a stopping condition is satisfied (Repeat step 3-9). Here, a 

stopping condition is indicated by wj(t+1)≈ wj(t). 

Step 3 : For each input vector Xi, repeat steps 4-6. 

Step 4 : Compute Euclidean distances between neurons and input vector Xi as shown in 

the equation (4-1). 

Step 5 : Find a winner neuron j with minimum distance as shown in the equation (4-2). 

Step 6 : Update weight vector (wj(t))  as follows: 

When T = Cj 

 ))()((*)()()1( twtxtatwtw jijj −+=+      (4-5) 

When  T ≠ Cj 

 ))()((*)()()1( twtxtatwtw jijj −−=+      (4-6) 

        where   T :  A target class for learning vector  

          Cj : class represented by j th output unit  

Step 7 : Update a learning rate ( a(t)), which is monotonically a decreasing function. 

Step 8 : Increase the iteration number t = t+1. 

Step 9 : Check a stopping condition. 
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D. Kohonen Networks Application for Security Analysis  
 

1. Implementation of Kohonen Networks 

 
The dimension and elements of input vector  

A power system state consists of the status of transmission lines and generators. 

The input vector corresponding to a system state can be represented as: 

 
SOM : Xi = [ T1 T2 ----- Tl -----Tn G1 G2 ----- Gk ----- Gm ] 

LVQ : Xi = [ T1 T2 ----- Tl -----Tn G1 G2 ----- Gk ----- Gm   Ci  ] 

where  

Tl :   The status of transmission line l.  

(Tl =1 : k th transmission line is up state, 

   Tl =0 : k th transmission line is down state) 

Gk :  Normalized available real power generation of bus k. 

( When several units are connected at one bus, Gk is the sum of all the 

available real power of each unit) 

Ci :  Target class for i th input data.  

n  :  The total number of transmission lines. 

   m  : The total number of generation buses. 
 

The dimension of an input vector is an important factor for learning the SOM or 

LVQ. As the dimension of input vectors increases, more learning time is needed because 

the structure becomes more complicated. For example, if the status of each generator 

unit occupies an element of the input vector and several units are connected at one bus, 

the dimension of input vector may be increased and corresponding input format may 

cause difficulty of learning.  

There are two kinds of input elements for SOM: the status of transmission lines 

and magnitude of available generations. While the former is only represented as zero 

(down state) and one (up state), the latter is a normalized value between zero and one 

(maximum real power generation) because several units are connected at one bus. 
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Normalization of input vector elements is important so that none of them have a 

disproportionate influence on learning. The transformation for normalization ensures 

that input vector elements from zero to very large numbers are within the range from 

zero to one: x’= (available real power generation) / (maximum capacity).  

The dimension and input vector elements of LVQ are the same as those of SOM 

except a target class (Ci), which results from the state characterization by OPF and 

stability calculations.  If a system satisfies operating conditions after the state 

characterization, a target class is represented as “one”. 

 

State characterization 

As discussed in the Chapter III, three elements for state characterization are 

considered in these analyses: transient stability, satisfaction of load without violation of 

constraints and voltage stability.  

 

The selection of learning sets 

The selection of learning sets for both SOM and LVQ is also an important factor 

for getting desirable results. Learning sets of SOM can be easily obtained by the random 

sampling as those of Monte-Carlo simulation. The reason is that these learning sets do 

not all need to use OPF and stability analysis. For optimal learning, it is desirable to 

include all types of contingency data in learning sets. In order to reflect all kinds of 

contingencies, the contingency type with low occurrence probability should be 

emphasized for learning set of SOM. Otherwise, the contingency type with high 

occurrence probability has an overwhelming influence on learning. The suitable 

combination of two contingency types plays a key role for getting desirable results.  

On the other hand, all learning sets of LVQ cannot be obtained by the random 

sampling like those of SOM. If all learning sets of LVQ are obtained by the random 

sampling, each sample from random sampling needs the state characterization to get a 

target class. This means that we can’t reduce computation time because of a large 

number of state characterizations. LVQ learning sets also consist of two kinds: the 
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contingency types with high occurrence probabilities and the contingency type with low 

occurrence probabilities. Some contingency types (e.g. one generating unit contingency) 

occur frequently. These types in LVQ should be selected not by random sampling but by 

all possible contingency situations. Since the others seldom occur, it’s more convenient 

to select these by random sampling than considering all situations. The selection of all 

possible situations in the contingency types with high occurrence probabilities avoids 

repeated sample data. The selection by random sampling in the contingency types with 

low occurrence probabilities reflects all kinds of contingency types for desirable 

learning. Both learning sets contribute to the reduction of input data.  

 

Flowchart of Kohonen networks  

Flowcharts for Kohonen network implementation in power system security 

analysis are shown in Fig. 10. In case of SOM, input vectors of component states match 

the weighting vectors of neurons after the learning process. The state corresponding to 

weighting vectors of neurons only is taken as component states for the OPF and stability 

calculations. These calculations are made on the states of mapped neurons. The mapped 

neuron is labeled as secure or insecure after OPF and stability calculations. These 

calculations are made on the states of mapped neurons. The mapped neuron is labeled as 

“one” or “zero” after state characterization.  

For LVQ, the state characterization for each contingency decides the class (target 

vector) before the learning process. The class of output vectors is divided into two 

classes, “one” and “zero”. Note that we don’t need to do OPF and stability analysis 

repeatedly for each contingency. After making input vector and target vector, we need to 

create LVQ. We can train LVQ to perform a particular function by adjusting the values 

of the connections between elements. In general, neural networks are trained so that a 

particular input leads to a specific target output. The neural network is adjusted, based 

on a comparison of the output and the target, until the network output matches the target. 
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a) SOM       b) LVQ  

Fig. 10. Flowcharts of Kohonen Networks Application for Security Assessment 
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2. Security Assessment Using SOM-MCS and LVQ-MCS 

A flowchart of SOM-MCS or LVQ-MCS for security assessment is shown in Fig. 

11. The procedure is the same as straight Monte-Carlo Simulation except the state 

characterization, the evaluation of security breach for sampled states. While straight 

Monte-Carlo Simulation requires the procedure of state characterization during 

simulation, SOM-MCS and LVQ-MCS can obtain the result of state characterization by 

on-line use. 

Like Monte-Carlo simulation, SOM-MCS or LVQ-MCS can use random sampling 

for contingencies. Input learning patterns are generated from the history of the system 

generated by using random numbers and failure rate and repair rate of components. The 

target class of a sampled state, even if not used in learning data, can be checked through 

the on-line use of trained SOM or LVQ. The target class of states in expected additional 

contingencies is also carried out not by OPF and stability analysis but by on-line use of 

SOM or LVQ.  

When there is neither a system problem nor voltage stability problem, additional 

contingencies determine whether this is normal or alert state. After computing additional 

contingency probability, the duration of contingency k is apportioned into its duration of 

alert state and its duration of normal state. The frequency of contingency k is also 

apportioned into its frequency of alert state and its frequency of normal state. The 

security index, the probability and frequency of normal, alert, and emergency, is 

calculated as the same way in Chapter III. 
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Fig. 11.  A Flowchart of SOM-MCS or LVQ-MCS 

Generate Random number and calculate time to change   

of state for each component 

Any problem? 

Update duration/frequency 

in normal state and in alert state 

Update duration/frequency 

in emergency state 

Time>= max. year or satisfy convergence

Update time change and determine component status 

Reliability index calculation for each state 

Calculate the additional contingency probability (Pr ) 

Increase year 

Calculate duration and occurrence number  

in normal and alert state  

Check class for the contingency from learned SOM or LVQ  

Check class for extra outages from learned SOM or LVQ 

No 

No 



 49

3. Computation Time Efficiency 

The objective of the proposed method is to reduce the large amount of computation 

time required by the straight Monte-Carlo simulation. In General, the computation time 

of Monte-Carlo simulation depends on the number of OPF and stability calculation. 

Total simulation time(Tm) is  

Tm ≅  Jm  · T1 + α1     (4-7) 

where  

T1  :  The average state characterization time per event. 

α1  :  The other Monte-Carlo simulation time 

Jm ≅ ( events / per year ) · ( h years ) · ( 1 + p · N) 

Jm   : The number of OPF and stability calculation in Monte-Carlo simulation 

N  : The average of the number of additional outage, which depend on the 

number of  transmission lines and generator  units 

p    :  The probability of normal and alert state 

h    :  Simulation years 

 

On the other hand, the number of state characterization in SOM-MCS is the 

number of mapped weight vectors (Js), which depends on the number of SOM input 

vectors. The number of mapped weight vectors is less than the number of weight 

vectors. Total simulation time (Tsm) can be expressed as 

 

Tsm ≅ Js · T1 + Ts + α2     (4-8) 

where    

   Ts   :  Learning time for SOM.         

   α2  :  The processing time for SOM-MCS in Fig. 11. 

 

The time of Ts is very small when compared with Js*T1. The processing time α is 

the same as that of Monte-Carlo simulation. Since the number of the state 
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characterizations in straight Monte-Carlo simulation is much more than the number of 

mapped weight vectors, the burden of computation is reduced. 

Suppose that the number of the state characterizations for LVQ-MCS is JL. While 

the simulation time of SOM-MCS depends on the number of mapped weight vectors, 

LVQ-MCS depends directly on the number of input vectors. The smaller the number of 

input vectors is, the more the computation time may be reduced. Total simulation time 

(TLM) is 

 

       TLM ≅ JL · T1 + TL + α3       (4-9) 

where  

TL :  Learning time for LVQ.   

     α3 :  The processing time for LVQ-MCS in Fig. 11. 

 

Similar to SOM-MCS, TL is also very small when compared with JL*T1. In 

general, learning time of LVQ is longer than that of SOM. Only characterization of input 

vectors may make the computation simpler compared with straight Monte-Carlo 

simulation. Meanwhile, LVQ-MCS simulation time is more than SOM-MCS simulation 

time. The reason is that only the mapped neurons need to use state characterization in 

SOM-MCS.  

It’s difficult to exactly guess the simulation time of large or real systems due to the 

complexity of systems, the transition rates, simulation years and the selection of optimal 

neural network. Compared with the straight Monte-Carlo simulation, the computation 

times of SOM-MCS and LVQ-MCS, however, increase to a lesser degree. The use of 

SOM-MCS and LVQ-MCS is suitable for analysis of a complicated system. 
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E. Case Studies : IEEE Reliability Test System 

The IEEE RTS, a 24-bus system with 38 transmission lines, is described in Chapter 

III. We used SOM_PAK program for simulation, which is demonstrated in SOM 

Toolbox 2.0 [35]. 

 

1. Case I : When Considering Only Transmission Line Faults 

Tables VIII shows the characteristics of the SOM and LVQ with only transmission 

line contingencies. The dimension of input data in both SOM and LVQ is thirty-eight 

because IEEE RTS has thirty-eight transmission lines. To obtain optimal SOM, all of 

parameters such as lattice type, initialization, neighborhood and learning rate function 

are tested based on quantization error. Here, the minimum of quantization error in SOM 

is 0.009 when SOM includes rectangular for the lattice type, linear function for map 

initialization, Ep function for the neighborhood type.  

 

TABLE VIII. The SOM and LVQ Characteristics for Case I 

(a) Self-Organizing Maps 

Dimension 38 
Input data 

The number of learning patterns 1038 

The number of map units 154 
Topology 

Lattice type Rectangular 

Map initialization Linear 

Neighborhood type Ep 

Learning rate function Linear 

Ordering-phase initial learning rate 0.5 

 

Learning 

structure 

Tuning-phase initial learning rate 0.05 
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TABLE VIII. (continued) 

(b) Learning Vector Quantization  

Dimension 38 Input  

layer The number of Learning patterns 634 

The number of map units 156 
Topology 

Lattice type Rectangular 

Map initialization Linear Learning 

structure Learning rate 0.05 

 

Since the structure of LVQ is almost the same as that of SOM, the parameters of 

LVQ are selected based on SOM. Due to computation burden, SOM is carried out with 

fixed learning rates, e.g. 0.5 for ordering-phase initial learning rate and 0.05 for tuning-

phase initial learning rate respectively. The change of learning rate may cause better 

SOM for classification. The number of neurons in a competitive layer is decided as 154 

for SOM and 156 for LVQ respectively. In general, the number of map units depends on 

the number of learning sets. 

The probability and frequency for each state by SOM-MCS and LVQ-MCS with 

only transmission line contingencies is shown in Table IX. Five simulations at each load 

level are also shown. Maximum simulation year is set as 100 but with different seeds. 

The percentage of load represents total system load level. For example, 100% load is the 

sum of maximum loads of each bus and 90% load means the sum of 90% of maximum 

loads of each bus. With smaller load, the probability and frequency of normal state 

increase smoothly and the system can be operated more safely.  
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TABLE IX. Probabilities and Frequencies for Case I 

(a)  SOM-MCS by Load Change 

Probability (%) Frequency (occ./year) 
Load 

Normal Alert Emer. Normal Alert Emer. 

Case1 .9862 .0070 .0068 22.89273 0.162279 5.414994 

Case2 .9856 .0070 .0073 22.76461 0.162279 5.543109 

Case3 .9858 .0070 .0072 22.23792 0.159432 6.075498 

Case4 .9857 .0070 .0072 22.53685 0.159432 5.773716 

100 

% 

Case5 .9860 .0070 .0070 22.62796 0.162279 5.679765 

Case1 .9912 .0046 .0043 25.02513 0.116727 3.33099 

Case2 .9915 .0046 .0039 25.04221 0.116727 3.311061 

Case3 .9902 .0046 .0052 24.55253 0.11388 3.803592 

Case4 .9905 .0046 .0049 24.78598 0.11388 3.570138 

95 

% 

Case5 .9909 .0046 .0045 25.07353 0.116727 3.279744 

Case1 .9928 .0036 .0036 25.79667 0.093951 2.582229 

Case2 .9945 .0036 .0039 25.79382 0.093951 2.585076 

Case3 .9928 .0036 .0036 25.9561 0.093951 2.41995 

Case4 .9936 .0036 .0029 25.85076 0.093951 2.525289 

90 

% 

Case5 .9925 .0036 .0039 25.96749 0.093951 2.408562 

Case1 .9947 .0027 .0026 26.70771 0.074022 1.688271 

Case2 .9946 .0027 .0027 26.61091 0.074022 1.785069 

Case3 .9942 .0027 .0031 26.59952 0.074022 1.796457 

Case4 .9943 .0027 .0029 26.51696 0.074022 1.87902 

75 

% 

Case5 .9949 .0027 .0023 26.77604 0.074022 1.619943 
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TABLE IX. (continued) 

(b)  LVQ-MCS by Load Change 

Probability (%) Frequency (occ./year) 
Load 

Normal Alert Emer. Normal Alert Emer. 

Case1 .9824 .0088 .0088 22.73614 0.202137 5.531721 

Case2 .9840  .0088 .0072 22.48561 0.19929 5.785104 

Case3 .9833 .0088 .0079 22.60233 0.202137 5.668377 

Case4 .9820 .0088 .0092 22.26069 0.19929 6.012864 

100 

% 

Case5 .9832 .0088 .0081 22.50269 0.19929 5.765175 

Case1 .9886 .0063 .0051 24.93403 0.159432 3.376542 

Case2 .9878 .0063 .0059 24.79737 0.159432 3.516045 

Case3 .9898 .0063 .0039 24.96534 0.159432 3.345225 

Case4 .9877 .0063 .0060 24.79168 0.159432 3.521739 

95 

% 

Case5 .9892 .0063 .0045 25.03937 0.159432 3.271203 

Case1 .9902 .0053 .0045 25.71695 0.139503 2.613546 

Case2 .9895 .0053 .0052 25.75396 0.139503 2.576535 

Case3 .9917 .0053 .0030 25.77959 0.139503 2.550912 

Case4 .9911 .0053 .0036 25.91909 0.139503 2.414256 

90 

% 

Case5 .9892 .0053 .0054 25.74542 0.139503 2.587923 

Case1 .9951 .0027 .0022 26.75041 0.074022 1.645566 

Case2 .9947 .0027 .0026 26.71055 0.074022 1.685424 

Case3 .9946 .0027 .0027 26.74187 0.074022 1.654107 

Case4 .9942 .0027 .0030 26.58529 0.074022 1.810692 

75 

% 

Case5 .9943 .0027 .0029 26.53119 0.074022 1.864785 

 

Table X shows the difference of probability and frequency of SOM-MCS and 

LVQ-MCS compared with that of straight Monte-Carlo simulation respectively. The 

probability and frequency of SOM-MCS and LVQ-MCS can be obtained by the average 
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values among five cases.  We can see that SOM-MCS and LVQ-MCS can classify the 

contingencies with reasonable accuracy.  

 

TABLE X. The Accuracy of Proposed Methods for Case I 

(a) The Difference between SOM-MCS and Straight Monte-Carlo simulation 

Probability Difference Frequency Difference 
Load 

Normal Alert Emer. Normal Alert Emer. 

100% 0.0023 0.0018 0.0005 0.273312 0.039858 0.233454 

95% 0.0026 0.0017 0.0012 0.461214 0.042705 0.424203 

90% 0.0029 0.0017 0.0009 0.375804 0.042705 0.333099 

75% 0.0003 0.0000 0.0003 0.293241 0 0.293241 

 

(b) The Difference between LVQ–MCS and Straight Monte-Carlo simulation 

Probability Difference Frequency Difference 
Load 

Normal Alert Emer. Normal Alert Emer. 

100% 0.0005 0.0000 0.0005 0.179361 0 0.179361 

95% 0.0007 0.0000 0.0007 0.472602 0.002847 0.478296 

90% 0.0002 0.0000 0.0003 0.287547 0.002847 0.290394 

75% 0.0004 0.0000 0.0003 0.310323 0 0.318864 

 

(c) The Probabilities and Frequencies of Straight Monte-Carlo simulation  

Probability (%) Frequency (occ./year) 
Load 

Normal Alert Emer. Normal Alert Emer. 

100% 0.9835 0.0088 0.0077 22.33756 0.19929 5.933148 

95% 0.9879 0.0063 0.0058 24.43295 0.156585 3.883308 

90% 0.9901 0.0053 0.0046 25.49489 0.136656 2.838459 

75% 0.9942 0.0027 0.0030 26.34899 0.074022 2.04984 
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Table XI compares the computation time for the various approaches. It can be seen 

that SOM–MCS and LVQ-MCS have much less computation time than conventional 

MCS due to reduced time for OPF and Stability calculations. Since only mapped 

neurons in SOM-MCS require state characterization, SOM-MCS has less computation 

burden than LVQ-MCS. Here, the maximum year of Monte-Carlo simulation is 100 

years. The classification accuracy is 99.81 % for SOM–MCS and 99.94% for LVQ-

MCS. 

TABLE XI.  The Comparison of Computation Time for Case I 

 SOM-MCS LVQ-MCS Straight MCS 

Computation time (sec) 5124.6 8321.5 913,432.0 

 

2. Case II : When Considering Transmission Line and Generating Unit Faults 

Table XII shows the characteristics of the SOM and LVQ with transmission line, 

generating unit, and both of elements contingencies. The dimension of input data for 

both SOM and LVQ is forty-eight because IEEE RTS has thirty-eight transmission lines 

and ten generator buses.  

 

TABLE XII. The SOM and LVQ Characteristics for Case II  

(a) Self-Organizing Maps 

Dimension 48 
Input data 

The number of learning patterns 2394 

The number of map units 238 
Topology 

Lattice type Rectangular 

Map initialization Linear 

Neighborhood type Ep 

Learning rate function Linear 

Ordering-phase initial learning rate. 0.5 

 

Learning 

structure 

Tuning-phase initial learning rate. 0.05 
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TABLE XII. (continued) 

(b) Learning Vector Quantization with 100% Load 

Dimension 48 
Input 

layer 
The number of 

Learning patterns 
3964 

The number of map units 238 
Topology 

Lattice type Rectangular 

Map initialization Linear Learning 

structure Learning rate 0.05 

 

(c) Learning Vector Quantization with 95% Load 

Dimension 48 
Input 

layer 
The number of 

Learning patterns 
2701 

The number of map units 238 
Topology 

Lattice type Rectangular 

Map initialization Linear Learning 

structure Learning rate 0.05 

 

(d) Learning Vector Quantization with 90% Load 

Dimension 48 
Input 

Layer 
The number of 

Learning patterns 
2279 

The number of map units 234 
Topology 

Lattice type Rectangular 

Map initialization Linear Learning 

structure Learning rate 0.05 
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TABLE XII. (continued) 

(e) Learning Vector Quantization with 75% Load 

Dimension 48 
Input 

layer 
The number of 

Learning patterns 
1472 

The number of map units 234 
Topology 

Lattice type Rectangular 

Map initialization Linear Learning 

structure Learning rate 0.05 

 

As shown in Table XII, the parameters of SOM are always constant in spite of load 

change if optimal SOM is selected. The reason is that state characterization of mapped 

neurons is required after recognizing groups of similar input vectors. Since there is an 

output for each input vector, LVQ needs new parameters in order to get optimal results 

when different loads are applied.  

When discussing the number of learning patterns, the classification of 

contingencies provides useful information for choosing learning sets as shown in Table 

XIII. For optimal learning, it is desirable to include all types of data in learning sets and 

to select as few input vectors as possible. The learning pattern in SOM consists of 

random sampling for one year for all contingencies and for 30 years for selected 

contingencies (type 1, 3,4,7,8,9,10 and 11), which results in the quantity of learning 

patterns. Unfortunately, there is no rule how many years of data should contribute to 

optimal learning. In case of IEEE RTS, based on experience, 30 years may be 

recommended for desirable results. The learning patterns in LVQ may be different as 

load changes. For example, with 95% load, it consists of all possible data of type 0, 2 

and 5 and selected data with “class zero” target from random sampling for 50 years  

(type 1, 3,4, 6, 7, 8, 9, 10 and 11).  
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TABLE XIII. The Contingency Type for Case II 

Type Description Probability (%)

0 Base case 12.05 

1 one transmission line contingency 1.01 

2 one generating unit contingency 29.03 

3 One transmission line + one generating unit contingency 1.94 

4 Two transmission lines contingency 0.02 

5 two generating units contingency 28.42 

6 Three  generating units contingency 16.16 

7 four generating units contingency 2.33 

8 One transmission line  + two  generating units contingency 1.57 

9 
One transmission lines + one or more generating units 

contingency 
1.12 

10 
two transmission lines + one or more generating units 

contingency 
0.08 

11 The others 6.28 

 

The probability and frequency of SOM-MCS and LVQ-MCS for each state for 

different load level is shown in Table XIV. Each simulation is carried out for 300 years 

or until convergence is satisfied. This result can be a little different when using different 

seeds. As system load is decreased, a system becomes more secure. The probability of 

normal state increases a little as percentage load level decreases. 

Table XV shows the difference of probabilities and frequencies comparing 

proposed methods and straight Monte-Carlo simulation. The probabilities and 

frequencies of only MCS are shown in Chapter III. SOM-MCS or LVQ-MCS can 

approximately classify the power system states for security assessment in the power 

system.  Classification accuracy of SOM-MCS is similar to that of LVQ-MCS. 
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TABLE XIV. Probabilities and Frequencies for Case II  

(a) SOM- MCS 

Probability (%) Frequency (occ./year) 
Load 

Normal Alert Emer. Normal Alert Emer. 

100% .7051 .1794 .1155 318.74 95.16 76.85 

95% .8060 .1211 .0730 377.29 65.12 48.34 

90% .9207 .0504 .0289 444.08 27.48 19.19 

75% .9947 .0028 .0025 486.97 1.37 2.40 

 

(b) LVQ-MCS 

Probability (%) Frequency (occ./year) 
Load 

Normal Alert Emer. Normal Alert Emer. 

100% .7353 .1722 .0924 327.18 100.99 62.57 

95% .8476 .1017 .0508 398.05 57.57 35.19 

90% .9325 .0445 .0230 445.45 27.29 18.01 

75% .9898 .0067 .0035 483.73 3.83 3.19 

 

 

TABLE XV. The Accuracy of Proposed Methods for Case II 

(a) The Difference between SOM-MCS and Straight Monte-Carlo Simulation 

Probability Difference Frequency Difference 
Load 

Normal Alert Emer. Normal Alert Emer. 

100% .0130 .0253 .0129 9.128 13.937 4.809 

95% .0382 .0104 .0280 11.827 3.681 15.508 

90% .0033 .0115 .0081 15.164 18.207 4.270 

75% .0235 .0227 .0008 23.409 22.084 1.080 
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TABLE XV. (continued) 

(b) The Difference between LVQ-MCS and Straight Monte-Carlo Simulation 

Probability Difference Frequency Difference 
Load 

Normal Alert Emer. Normal Alert Emer. 

100% .0432 .0331 .0102 17.569 8.097 9.472 

95% .0034 .0090 .0058 8.932 11.238 2.356 

90% .0151 .0174 .0022 16.538 18.403 5.447 

75% .0186 .0188 .0002 19.875 19.630 0.294 

 

From the Table XVI, it can be seen that SOM-MCS and LVQ-MCS have much 

less computation time than straight Monte-Carlo simulation due to the reduced time for 

state characterization. Since only mapped neurons in SOM-MCS require state 

characterization, SOM-MCS has less computation burden than LVQ-MCS. In straight 

Monte-Carlo simulation, the repeated state characterization of base case is excluded in 

order to reduce computation burden.  

 

TABLE XVI. The Comparison of Computation Time for Case II 

 SOM-MCS LVQ-MCS straight  MCS 

Computation time (min) 1142.56 3821.38 113,245.12 
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F. Summary 

This Chapter has proposed a probabilistic method for security assessment 

employing SOM-MCS or LVQ-MCS. An example considered in the study (IEEE RTS) 

shows that the Kohonen networks can not only approximately classify power system 

states, but also contributes to reduction in total computation time due to decreased 

number of states to be characterized. In security analysis, state characterization including 

transient stability, voltage stability and load curtailment for each sampling state is a 

difficult and time-consuming work. This effort is reduced by the employment of SOM-

MCS or LVQ-MCS. Even though SOM-MCS has less computation time than LVQ-

MCS, the accuracy of classification of stochastic samples by LVQ is similar to that of 

SOM. The construction of LVQ-MCS including the selection of learning vector is more 

difficult than that of SOM-MCS and it needs a different structure according to the 

change of loads. 

It should be remarked that although the neural network based methods do have a 

small probability of misclassification, this is not as critical for the purpose of 

computation of probabilistic indices as for some other applications. The computation of 

indices requires an accumulation of results of classification of many cases. The 

misclassification of a very small percentage of contingencies may cause some 

approximation in the index but this is not much different than many other sources of 

approximation in computing probabilistic indices. 

It is also encouraging to see that neural networks for security assessment purposes 

are being attempted to real power systems. Reference [37] shows a 783-bus system in 

actual use at Hydro-Québec’s operations planning department is tested for contingency 

screening.  Due to a larger number of transmission lines and generators, power systems 

are more complicated in the actual industrial settings. It is thus important to extract the 

key elements so as to reduce the dimension of the input vector. Determination of these 

discriminatory feature vectors could require some further study.  
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CHAPTER V 

SECURITY ANALYSIS FOR SYSTEM OPERATION 

USING BAYES CLASSIFIER 

A. Problem Formulation 

In power system operation, on-line security assessment is one of the important 

issues. Faster methods are required for on-line security assessment since the system may 

be operating closer to security boundaries with smaller safety margins in the deregulated 

environment.  

When a contingency causes violation of operating limits (e.g. line capacity or 

voltage limits), the system is insecure or unsafe. One of the conventional methods in 

security assessment is using a deterministic criterion in which certain contingency cases 

such as sudden removal of a power generator or loss of a transmission line are studied. 

Such an approach is computationally time consuming for operating decisions due to a 

large number of contingency cases to be studied. Moreover, when local phenomenon 

such as voltage stability is considered for contingency analysis, computation burden is 

even more increased. For on-line use, excessive computation time in security assessment 

still remains an unsolved problem. 

In order to alleviate these drawbacks, power system security assessment can be 

treated as a pattern classification problem. A number of approaches using artificial neural 

networks (ANN) such as back-propagation and Self Organizing Maps [28-34] have been 

applied for security assessment in power systems over the past decade. The practical 

implementation of these methods for security assessment, however, has not been fully 

accomplished in the industry. The key problem of ANN is the determination of optimal 

ANN architecture, which is decided by trial and error in the selection of number of 

neurons in the hidden layer. The Bayes classifier can overcome the drawbacks of ANN. 

Although the Bayes classifier has been applied to various areas such as signal processing, 

it has seldom been used in power system applications. Recently a few papers based on the 

Bayesian rule [38-41] have been published in the field of power system applications. The 

reference [38] suggests a Bayesian-based classification method for forecasting power 
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market clearing prices. The reference [39] presents a method based on Bayesian 

estimation for identification of parallel flows.  

This Chapter shows how a Bayes classifier [42 - 43] can be implemented for 

security assessment. As applied to pattern classification, the fundamental role of a Bayes 

classifier is similar to that of ANN. After the selection and analysis process of feature 

vectors, system security can be tested by the Bayes decision rule. The security status in a 

Bayes classifier is decided on the basis of maximum value of Bayes decision function, 

while that of ANN is determined by interpolating new data with a known security status.  

 

B. Bayes Classifier and Decision Rule 

Consider one of the n classes to which a feature vector x may belong. The joint 

probability density of a feature vector x and a class i can be expressed as follow. 

 

p(x,ci) = p(x|ci) ⋅ P(ci)     (5-1) 

where  

p(x|ci) : the conditional probability density function for the feature vector x, given  

     that it belongs to class ci. 

P(ci) = 1/n  : the prior probability of  class ci. 

 

When assuming equal prior probabilities for every class, the assignment of the 

feature vector to the class with the highest prior probability can be easily made by the 

conditional density function. Therefore, Bayes decision rule is to choose the class with 

maximum p(x,ci) among n number of joint probability densities of the feature vector x.  

 

x ∈ ci   If     p(x,ci) =   Max{p(x,c1), ------, p(x,cn) }             (5-2) 

where   

p(x,ci) : joint probability density of pattern x and class i 

 

When the density functions associated with the feature vectors are assumed to be 

Gaussian, conditional probability density function can be estimated by the equation (5-3). 
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After estimating mean and covariance for each class, the general multidimensional 

Gaussian density [42] for feature vector x with 2m-dimensional functions is expressed as 

 
)]()(5.0exp[)||)2(()|( 112/12/)2( ∑−− −−−∑=

i i
t

ii
m

i xxcxp µµπ   (5-3) 

 where     x : 2m-dimension feature vector 

    µi   : 2m-dimension mean vector of  class i 

     ∑i  : 2m by 2m covariance matrix of  class i 

 | ∑i  |  : determinant  of  ∑i  of  class i 
 

C. Bayes Classifier in Security Study 

1. The Feature Vector  

The security assessment under a certain operating condition can be defined by its 

load variation. In this Chapter, system load is selected by random sampling from an 

assumed normal distribution function. According to the variation of system load, the 

system operating points moves to a new location with new load. The system operating 

status can be represented in different ways such as voltage magnitude and angle, real and 

reactive power of each bus or real and reactive power of transmission lines etc.. Since 

real and reactive powers in transmission lines vary over a wide range compared with 

voltage magnitude and angle, they are selected as parameters of the feature vector. The 

ith feature vector corresponding to system operating status with m transmission lines can 

be represented as  

 

Xi = [ P1,i --- Pk,i -----Pm,i Q1,i --- Qk,i---- Qm,i ]T       (5-4) 

 

Where  

Pk,i  : Real power of  transmission line k in the i th feature vector 

Qk,i : Reactive power of transmission line k in the i th feature vector 

 

The selection of the feature vector in Baysian classifier has great influence on 

classification accuracy.  In power system security analysis, it is impossible to store all 
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possible contingency cases with load variation. The suitable selection of feature vectors, 

therefore, is one of the important factors in the success of the Bayes classifier. In the 

power system security study, feature vectors should reflect various types of system 

operating status. The types of feature vectors are defined as a base case, single line or a 

generator contingency and double contingency etc. The base case is the case without 

generator or transmission line outage.  

The number of feature vectors also plays an important role in Bayes classifier. With 

more feature vectors used for obtaining the distribution, the classification accuracy may 

be better but more computation effort is needed for characterization of a feature vector. 

The characterization of a feature vector is explained in detail in the next section.  
 

2. Characterization of the Feature Vector 

As shown in Chapter III, the characterization of system states in static security 

assessment requires the evaluation of post contingency steady state. For successful 

operation, a system should supply system load without the violation of operating 

conditions and load shedding in steady state. The optimal power flow (OPF) is performed 

under the constraints such as the limit of power flow and power generation for a 

contingency.  

If the system has any problem such as load shedding or voltage instability, it is in 

emergency state. A feature vector corresponding to emergency state belongs to “group-

zero” If all equipment and operating constraints are within their limits, the feature vector 

under these conditions is defined “group-one” in this Chapter. When there are n feature 

vectors in “group-one” (X1) and o feature vectors in “group-zero” (Xo), these can be 

arranged as follow: 

 

 X1
 = [ X1, - - - - - - ,Xn ]       (5-5) 

   Xo
 = [X1+n , - - - - - - ,Xo+n ]          (5-6)  
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3. Classification and Testing of Feature Vectors 

In the last section, feature vectors are assigned as group-one or group-zero. The 

parameters of feature vectors for each group should be assumed to have a particular 

probability function. In this Chapter, Gaussian function is implemented as the probability 

density function of each parameter. If the parameter histogram of feature vectors for a 

group is far from a Gaussian function, the feature vectors should be separated into 

subclasses of a group. The dimension of the mean vector for each group is the same as 

that of the feature vector. When a group without subclasses has n feature vectors, the 

mean vector and covariance matrix are given by the equation (5-7) and (5-8) respectively. 

 

M= [M1 --- Mk ---- Mm   Mm+1 ---Mm+k ---- M2m ]T    (5-7) 

 

where  
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n :  the total number of feature vectors 

m : the number of transmission lines 

Mk  : the real power average of k th element of feature vectors 

Mm+k  : the reactive power average of k th element of feature vectors 

Pk,i   :  Real power of transmission line k in the i th feature vector 

Qk,i  :  Reactive power of transmission line k in the i th feature vector 
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Xi,j  : i th element of the feature vector Xj 
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Here, covariance matrix describes the interrelationship between elements of 

feature vectors. It can be used for multidimensional distribution shown in the equation (5-

3). Since feature vectors are selected by random sampling based on Gaussian function, 

the parameter function of a certain contingency type may be Gaussian too. The separation 

by every contingency type may lead to many subclasses. Once the average of feature 

inputs for each contingency type is computed, similar feature inputs based on their 

Euclidean distances are clustered. The number of subclasses is an important parameter 

for classification. When a group with t subclasses is considered, the general form of the 

mean vector is given by the equation (5-9). Covariance vectors for a group with t 

subclasses consist of t number of covariance vectors in the form of the equation (5-8). 
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where 

b
PPPP

M bakbakakak
sk

+−+++ ++−−−++
= ,1,2,1,

,      

b
QQQQ

M bakbakakak
skm

+−+++
+

++−−−++
= ,1,2,1,

,  

k : k th parameter of the feature vector   

a : the number of last element of the k th parameter vector in the (s-1) th subclass  

b : the dimension of  the k th parameter vector in the s th subclass   
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The procedure for the off-line process of Bayes classifier is as follows. 

Step1 : Select the level of system load by random from Gaussian function. A feature 

vector is decided by the level of system load and a contingency. The active and 

reactive power of transmission lines is selected as feature vectors. 

Step2 : Perform state characterization of feature vectors, which can be classified as 

group-one and group-zero. A group is able to have several subclasses. 

Step3 : Obtain the mean and variance of feature vector elements for each subclass or 

group. 

 

After obtaining the mean and variance of each subclass or group, the Bayesian 

decision rule is ready to be applied for the operating decision in power systems. With a 

given a new sampled feature vector, the classes are sorted by the conditional probabilities 

calculated with the Bayes’ rule. The testing procedure for a new feature vector is 

described in following steps.  

Step 4 : Obtain a new feature vector consisting of the real and reactive power through 

monitoring operating status.  

Step 5 : The conditional probabilities are calculated based on the Bayes’ rule in the 

equation (5-3). For convenience, applying a log on the decision function makes 

the equation (5-3) simplify. Since the dimension of feature vectors for the 

comparison of the decision function is always the same, first right part of the 

equation ( -mlog(2π) ) can be omitted. The Bayes decision function is rewritten 

in the equation (5-10). 

)()(
2
1||log

2
1)( 1∑ −

−−−∑−=
i i

t
iii xxxg µµ      (5-10) 

 

Step 6 : On the basis of the maximum value of the Bayes decision function, the feature 

vector is classified as group one or zero. For the Bayesian decision with a 

subclass k, given a feature vector x is 
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where  

ci  :  subclass i for classification of feature vectors   

G1 :  group-one without any system problem     

G0 :  group-zero with any system problem 

 

After a feature vector under decision is tested in every subclass using equations (5-

10) and (5-11), subclass of the feature vector is decided. If the subclass belongs to group-

zero, the new operating statue has a system problem. Otherwise, a system is in normal or 

alert state in which all equipment and operation constraints are within their limits. 

 

D. Case Study 

The Western System Coordinating Council (WSCC) 3-machine, 9-bus system [12]  

is shown in Chapter III. The base MVA is 100 and system frequency is 60 Hz. The 

parameter and thermal limit of transmission lines are shown in Chapter III. 

 

Table XVII. Example of State Characterization for Contingency Type  

Contingency type Result 

Base case Group-one 

One Generator outage (G1,G2,G3) Group-zero 

One line outage(T1,T2,T3,T4) Group-zero 

One line outage(T5,T6,T7,T8,T9) Group-one 

One generator outage +One line outage Group-zero 

One generator outage +One line outage Group-zero 

 

An example of contingency types with load levels of 125, 90, and 100 are shown in 

Table XVII. This state characterization results from optimal power flow for load 

shedding minimization and voltage instability. For example, the outage of transmission 

lines (T4) results in voltage instability, leading to group-zero.  
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Fig. 12. The Histogram of Feature Vectors with Group-One (P1, P2, Q1 and Q2) 

 

Although there are several elements in the feature vectors of group one, only P1, 

P2, Q1, and Q2 parameters of feature vectors that belong to group-one for reasons of 

space limitations are shown in Fig. 12. Even though the histogram of feature vectors is 

not an exact Gaussian function, the mean and covariance matrix is calculated assuming a 

Gaussian function. 
  

 

 
 

(a) The Histogram of P1 for Each Subclass 



 

 

72

 

 

 
 

(b) The Histogram of Q1 for Each Subclass 
 

Fig. 13. The Histogram of Parameters (P1, Q1) in Feature Vectors 
(Group-one: subclass 1, Group-zero: subclass 2-6) 

 
Since the parameter histogram of feature vectors for group-zero is far from a 

Gaussian function, the feature vectors are separated into 5 subclasses as shown in Fig. 13.  

The classified feature vectors have their mean and covariance matrix. Table XVIII 

shows the mean vector of each subclass for Bayes decision function. Here, the covariance 

matrix is omitted. 

A given feature vector can now be tested with the equation (5-10) and (5-11). The 

classification rate of Bayes classifier is compared with that of Self-Organizing Maps. Out 

of 7200 feature vectors including new feature vectors, only 57 sampling data is 

misclassified in Bayes classifier. Self-Organizing maps consist of 368 neurons with the 

same feature vectors. The results are shown in Table XIX. 
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Table XVIII. The Mean Vector of Subclasses 

 P1 

Q1 

P2 

Q2 

P3 

Q3 

P4 

Q4 

P5 

Q5 

Group 

-one 

Subclass 

1 

83.0667 

34.5475 

143.387 

10.3622 

90.6687 

-0.1917 

56.9564 

23.8189 

25.5819 

12.2292 

Subclass 

2 

34.0648 

15.0254 

142.207 

1.4302 

53.3019 

-6.7161 

22.4629 

16.1995 

7.4927 

6.6065 

Subclass 

3 

64.6934 

26.3776 

64.5409 

1.1412 

123.612 

-3.5761 

63.5211 

26.7872 

1.409 

6.6439 

Subclass 

4 

42.3753 

21.8608 

178.513 

14.8871 

65.8487 

-7.3335 

-0.2195 

9.7122 

42.3934 

17.1939 

Subclass 

5 

1 19.18 

33.6497 

128.661 

15.1791 

73.4679 

2.8210 

106.323 

26.3336 

12.0857 

2.5293 

 

 

 

 

Group 

-zero 

Subclass 

6 

91.4927 

26.4605 

134.769 

24.2652 

99.4664 

11.4899 

2.684 

6.5069 

87.7713 

15.9363 

 P6 

Q6 

P7 

Q7 

P8 

Q8 

P9 

Q9 

Group 

-one 

Subclass 

1 

-67.673 

0.6901 

-64.5852 

3.5492 

74.4349 

7.5379 

-24.7533 

-6.4874 

Subclass 

2 

-62.277 

-2.9615 

-34.5237 

-0.0227 

80.5107 

6.5153 

-10.5382 

-8.9565 

Subclass 

3 

-37.927 

-1.9960 

-48.6879 

2.3514 

4.9068 

4.2647 

-74.1322 

-10.2685 

Subclass 

4 

-126.02 

-8.2788 

-48.2991 

3.6181 

49.6586 

-1.9262 

-16.8407 

-4.7455 

Subclass 

5 

-19.600 

2.1175 

-79.4499 

-4.2759 

108.353 

13.9447 

7.4896 

-1.1533 

 

 

 

 

Group 

-zero 

Subclass 

6 

-125.76 

-14.379 

-3.5839 

0.3976 

6.0477 

-1.7408 

-95.0281 

-10.9994 
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Table XIX. The Classification Rate of a Proposed Method 

 Proposed Method Self-Organizing Map 

Classification rate 99.2% 98.1% 

 

E. Summary 

A method for security assessment employing the Bayes classifier is proposed in this 

Chapter. This method can be useful for system operators to make security decisions in 

on-line power system operation. Through an example of the WSCC system, the Bayes 

classifier shows how the power system operating condition can be classified. The results 

indicate that the classification rate of the Bayes classifier is 99.2%, which is a little better 

than that of Self-Organizing Maps in this study.  
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CHAPTER VI 

CONSIDERATION OF THE RELIABILITY BENEFITS  

IN PRICING TRANSMISSION SERVICES 
 
A. Problem Formulation 

The embedded costs of transmission transactions are usually the largest component 

of the total transaction cost. The embedded cost methodologies [44, 45] have not fully 

included reliability benefits, which is reliability based on transmission charge while 

pricing transmission services. References [46, 47] emphasize the importance of reliability 

benefits to recover the true value of embedded costs. This method, however, can be 

improved. 

The embedded costs can be taken into account by a combination of two parts, 

allocation based on capacity-use and allocation based on reliability benefits. However, 

the portion of each allocation can be changed by the ratio of these two parts. There is no 

established rule to assign the ratio between these two components.  

The transmission line capacity in an actual power system is an important factor. 

Therefore, reliability benefits in pricing transmission transaction costs should be 

computed under the constraint of transmission line capacity.  

In this Chapter, we shall first consider reliability benefits under the constraint of 

transmission line capacity and then show how to combine allocation based on 

transmission line capacity-use and allocation based on reliability benefits. We shall 

describe how to calculate the ratio between capacity-use and reliability benefits based on 

a reliability index.  We also look at reliability benefits when transmission line capacity is 

considered. We then review the example presented in [46] and discuss the use of 

transmission transaction costs. 
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B. Description of a Pricing Method 

 Most of the traditional approaches in defining transmission transaction costs 

ignore reliability cost/worth. To get equitable and reasonable transmission transaction 

costs for both customers and power suppliers, it is desirable that pricing should reflect 

reliability cost. Since the embedded costs for using transmission facilities, such as 

transformers and transmission lines, are generally large, this Chapter focuses only on 

embedded costs in total transmission transaction cost. When considering reliability cost, 

embedded costs are composed of two parts: allocation based on capacity-use and 

allocation based on reliability benefits. Hence, the total embedded cost can be expressed 

as: 

 

       Embedded cost = Capacity-use + Reliability benefits 

 

Here, the buyers do not pay any additional cost as reliability cost. The total 

embedded cost is the same as they are when not considering reliability cost, because the 

total embedded cost is a fixed charge.  

For allocation based on capacity-use, an AC power flow algorithm based on a MW-

mile method [46, 48] is implemented in this Chapter. This method allocates the charges 

for each wheeling participant based on the use of existing transmission facilities. This 

method is simple to understand and to apply to real power systems. The impact on system 

reliability depends on pricing methods. The MW-mile method provides better system 

reliability than the other methods due to inherent mechanism of discouraging long 

distance transactions. Since capacity-use is determined by amount of transmitted power 

and transmission line length, this method gives us satisfactory results. The capacity-use 

component of embedded cost of transmission line j for transaction Ti is defined in the 

equation (6-1). 
 

    















••

=
∑
i

Tij

jjTij
Tij MW

fLMW
C

;

;
;        (6-1) 

 
where 



 

 

77

 

TijMW ;  : The power transmitted in line j for transaction Ti. 

jL        : The length of the line j. 

jf        : The cost per unit transmission line length. 
 

Meanwhile, embedded costs based on reliability benefits allocate the charge for 

each wheeling participant by the reliability index for each transaction. It's computed as 

the difference of probability of system failure when all lines are up and when only line j 

is down. Fig. 14 shows a flowchart for the reliability benefits calculation of line j for each 

transaction. It is similar to the capacity-use equation after computing difference of 

probabilities of system failure. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 14. A Flowchart for the Reliability Benefits Calculation 

 

The embedded cost of the transmission line j allocated to transaction Ti based on 

reliability benefits is formulated as the equation (6-2).  
    

                jj
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where 

TijR ;  : The reliability benefits for line j for transaction Ti   
 

The calculations of probability of system failure when all lines are up service 

The calculation of probability of system failure when line j is down 

The calculation of difference of probability of system failure 

The calculation of reliability benefit 
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The total embedded cost of capacity-use and reliability benefits can be expressed as 

the sum of equations (6-1) and (6-2). The ratio between these is explained in the 

following section in detail.  
 
 

1. The Relationship of Capacity-use and Reliability Benefits 

Capacity-use and reliability-benefits of transmission line j are expressed separately. 

This section describes how to combine capacity-use and reliability benefits. The problem 

is to allocate a portion of the total embedded cost to reliability benefits, because the total 

embedded cost should not be changed. If the ratio between capacity-use and reliability 

benefits depends on an expert's decision, the ratio problem of transmission transaction 

cost allocation can be a matter of dispute. The ratio should then be decided not by an 

individual's opinion but by the probability of system failure. If a system has very high 

reliability, reliability benefits don't need to be considered in calculation of embedded 

costs. If a system has very low reliability, reliability benefits should occupy a large 

portion in the computation of embedded cost. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 15.  An Example of Each Transaction Portion According to  

the Probability of System Failure 
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An example of embedded cost portion for each transaction is shown in Fig. 15. As 

shown in Fig 15-(a), embedded costs of all transactions can’t be changed in allocation of 

capacity-use as well as in allocation of reliability benefits when the ratio is fixed by an 

individual opinion. Only the portion of embedded costs for each transaction can be 

changed in both capacity-use and reliability benefits. The portion of reliability benefits 

for each transaction can be varied by the change of line parameter such as transmission 

line availability and transmission line capacities. For example in Fig 15-(a), the portion of 

reliability benefits for transaction T2 is increased while the portion of reliability benefits 

for transaction T1 is decreased. They then have a trade-off relationship due to the fixed 

ratio. Even though both transactions worsen system reliability, transaction T1 can charge 

much less for its responsibility.  

Fig 15-(b) denotes the change of ratio according to the probability of system failure. 

Now, suppose that the portion of transaction T1 and transaction T2 in both reliability 

benefits and capacity-use is the same as in Fig. 15-(a) even though the ratio is changed. 

Because the portion of reliability benefits in the total embedded cost is increased, 

reliability benefits for both transaction T1 and T2 become larger than those of Fig. 15-(a). 

It means this transaction has more responsibility to pay according to the system 

reliability. 

The proposed method based on the probability of system failure P(SF) then is more 

reasonable and effective than adjusting by each individual's opinion in solving the ratio 

between capacity-use and reliability benefits. The analytical method is used in order to 

solve the probability of system failure. The probability of total system failure can be 

expressed as in the equation (6-3).  
 

))(()(
1
∑
=

•=
n

i
Ti SFiPPSFP                (6-3) 

 
where P(SFi) is the probability of sytem failure for transaction Ti and PTi is the 

probability of occurrence for transaction Ti.  

The embedded costs allocated to transaction Ti based on reliability benefits and 

capacity-use are expressed as follows. 
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The parameter of capacity-use is ),(1 SFP−  while that of reliability benefits is 

)(SFP . The sum of those is the total embedded cost. The transmission transaction 

does not actually affect any new transmission costs. The embedded costs of each 

transaction (STi) are 

 
     ∑ ∑ ∑−−=

j j j
TijTijTijTi RBCSFPCS ))(( ;;;

 

                  TiTi RBC +=                       (6-5) 
 

From the equation (6-5), the embedded cost allocated to transaction Ti depends 

on the probability of system failure, the portion of capacity-use and the portion of 

reliability benefits. When the probability of system failure is zero, reliability benefits 

cannot affect the total embedded cost. It means the total embedded cost is only for 

capacity-use. Capacity-use also cannot influence the total embedded cost when 

probability of system failure is one.  

The total embedded cost of all transactions is the sum of each transaction. 

Therefore, the total embedded cost (ST) is 

 

∑=
i

TiT SS                                                      (6-6) 

 

The computation of embedded cost is formulated by equations in this section. 

When considering the change of transmission line capacities, embedded costs of both 

reliability benefits and capacity-use may be changed for each transaction. 
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2. Embedded Costs Under Line Capacity Constraints 

In an actual power system, transmission lines have their capacities along with the 

probability of availability. Line flow should not exceed these capacities. The maximum 

flow in a network can be obtained by a max-flow algorithm [49] used with a network 

representation from a given source node (S) to a sink node (N) under constraints of 

transmission line capacities. This approximation, which relies only on Kirchhoff's first 

law, may be suitable for this application to power systems. A simple network for 

transactions is shown in Fig. 16. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 16. A Simple Network with Capacities for Transactions. 

 
  

In power system network analysis, a transaction T1 is one of the cases, where a 

power utility that owns several generating plants sells power to several buyers. The sum 

of flow into node 1 and 2 is the total flow of a transaction (T1), which is the total supply 

of power from the seller. It should be equal to the sum of flow out of node 3 and 4. If not, 

this transaction may be failed. The problem of maximal flow calculations is expressed as 

follow: 
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where  F  : The total flow of a transaction 

      ijx  : The line flow from node i to node j (S : source node,  N : sink node) 

           ijC  : The line capacitor of from node i to node j 
 

The purpose of maximum flow calculations for each transaction is to determine 

whether or not the transaction is possible. When the total required line flow for each 

transaction is larger than maximum flow in a network, the probability of system failure is 

one.  

Capacity-use for any transaction is changed according to transmission line 

capacities. An AC OPF program under the constraints for transmission line capacities 

computes capacity-use. Since the transmitted power of each transmission line is different 

due to transmission line capacities, capacity-use for each transaction is also changed.  

Reliability benefits for any transaction are calculated as the difference of the total 

probability of system failure. The process of the reliability benefits computation itself is 

similar to a conventional method as described before in this Chapter. The considerations 

of transmission line capacities, however, make the computation of reliability benefits 

complicated.  

The sensitivity of reliability benefits shows that the transaction affects reliability 

benefits by the change of transmission line capacities. The sensitivity of reliability 

benefits is taken into account by the difference of each transaction as follow.  

 
TiRBSenstivity ∆=                          (6-8) 

 
 For example, suppose that the embedded costs of reliability benefits for a particular 

transaction are increased and embedded costs of reliability benefits for the others are 

almost the same when the transmission line capacities are changed. This transaction has 

the responsibility to charge more.  

The proposed approach is explained explicitly in the flowchart as shown in Fig. 17. 

 



 

 

83

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 
Fig. 17.  A Flowchart for the Proposed Pricing Method 
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C. Numerical Example 

 

Fig. 18 shows a simple eight-bus system for embedded cost study as used in [46]. 

All data of this system are shown in Table XX. In transaction T1, utility company owns 

generators and several loads.  Transaction T2 and transaction T3 are wheeling 

transactions. The probability of occurrence for each transaction is assumed the same. The 

cost function of bus 1 and bus 2 are 0.01P2+10P and 0.08P2+5P respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 18. One Line Diagram of Eight-Bus System 
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Table XX. The Data of Eight-Bus System 

(a) Transmission Line Data 

No. of Line R(p.u.) X(p.u.) L(km) P. O. A. 

1 .015 .045 300 0.9 

2 .005 .015 100 1.0 

3 .015 .045 300 0.9 

4 .015 .045 300 0.9 

5 .005 .015 100 1.0 

6 .005 .015 100 1.0 

7 .015 .045 300 0.9 

8 .005 .015 100 0.9 

                           
                             P.O.A. : probability of availability 

 
(b) Transaction and Generation Data 

Transaction From To 

T1 G1 : 1000 [MW rating] 

G2 : 600 [MW rating] 

Bus 3 : 350 [MW] 

Bus 4 : 300 [MW] 

Bus 5 : 250 [MW] 

T2 Bus 8 : 100 [MW] Bus 6 : 100 [MW] 

T3 Bus 8 : 100 [MW] Bus 7 : 100 [MW] 

 
Power factor : 0.86 

 

(c) Probability of Occurrence for Each Transaction 

Transaction Probability (%) 

T1 1/3 

T2 1/3 

T3 1/3 
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As shown in Fig. 19, an example of Fig. 18 can be simplified. The number in the 

circle represents a bus number. Since the probability of line availability of line number 2, 

5 and 6 is one, those lines is not considered. The lines between bus 3 and 4 is expressed 

as line 18.  The first one and second one in parenthesis are transfer power and line 

capacities respectively.  

 

 

 

 

 

 

 

 

 

Fig. 19. A Simplified Model of Transaction T1 for Maximum Flow  

 

When a transmission capacity for each line is 400 [MW], the probability of 

system failure for transaction Ti with all lines P(SFi) can be calculated by state transition 

diagram as shown in Fig. 20. For example, cases such as case 6, 7, 9, 11, 12, 13, 14 15 

and 16 cause a system failure, which means the power of sending node can not be deliver 

the sink node. The sum of the probability of these cases is the probability of system 

failure for transaction Ti. 

To get reliability benefits, the probability of system failure is shown in Table 

XXI-(a) when only line j is out or down. The probability of system failure without line j 

can be computed in the same manner as the probability of system failure with all lines. 

P(SF j,i) is the probability of system failure for transaction Ti when only line j is out. 

P(SFi) is the probability of system failure for transaction Ti with all lines. The difference 

between P(SF j,i)  and P(SFi)  has an important meaning. From this table, P(SF 5,1) - 

P(SF1) is largest value and transmission line 5 has the most crucial role in transaction T1. 

Table XXI-(b) presents the percentage of reliability benefits for each transaction when 
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transmission line j is down. It can be seen that when line 4 or line 8 is down, transactions 

T2 and T3 of line 4 or 8 do not affect reliability benefits. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 20. State Transition Diagram of Eight-Bus System 
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Table XXI. The Probability of System Failure and Percentage of Reliability Benefits 

(a) The Probability of System Failure without the Transmission Line j P(SF j,1) and 

Difference of Probability of System Failure P(SF j,1) - P(SF1) according to Transmission 

Line Change in Transaction T1. 

Capacity = 700 [MW] Capacity = 400 [MW] Line  

No.  j P(SF j,1) P(SF j,1) - P(SF1) P(SF j,1) P(SF j,1) - P(SF1) 

1 0.109 0.08019 0.109 0.06561 

2 0.02881 0.0 0.04339 0.0 

3 0.1172 0.08839 0.01901 0.14671 

4 0.0613 0.03249 0.3439 0.30051 

5 0.729 0.70019 1 0.95661 

6 0.1172 0.08839 0.01901 0.14671 

7 0.1172 0.08839 0.01901 0.14671 

8 0.109 0.08019 0.109 0.06561 

 

(b) The Percentage of Reliability Benefits for Each Transmission Line in Each 

Transaction 

Capacity = 700 [MW] Capacity = 400 [MW] Line 

 No.  j T1 T2 T3 T1 T2 T3 

1 8.25 91.74 0 6.86 93.14 0 

2 0 0 100.0 0 0 100.0 

3 52.18 47.82 0 64.63 35.57 0 

4 100.0 0 0 100.0 0 0 

5 89.63 10.37 0 92.19 7.81 0 

6 24.59 22.54 52.87 35.12 19.39 45.49 

7 52.18 47.82 0 64.43 35.57 0 

8 100.0 0 0 100.0 0 0 
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Fig. 21.  The Probability of System Failure with Line Capacity Change 
 

The probability of system failure for each transaction according to transmission line 

capacity change is shown in Fig. 21. When transmission line capacities are increased, the 

probability of system failure in transaction T1 is also increased. The probability of system 

failure in transactions T2 and T3 is constant because these two transactions transmit only 

100 [MW]. Total probability of system failure is 0.051 by the equation (6-3) when 

transmission line capacities are 400 [MW]. 

Table XXII-(a) is the result of the proposed approach including only capacity-use, 

only reliability benefits, and capacity-use plus reliability benefits according to 

transmission line change. When transmission line capacities are decreased from 700 

[MW] to 400 [MW], the total percentage of reliability benefits is 4.6 and 5.1 respectively 

due to the probability of system failure. For transaction T1, reliability benefits are 

increased because this transaction worsens system reliability. Hence, embedded costs of 

reliability benefits for transaction T1 become higher than other transactions due to 

sensitivity of reliability benefits. The sensitivity of reliability benefits for transactions T2 

and T3 is almost zero. 

Table XXII-(b) shows the comparison of the proposed method and two 

conventional methods. Postage stamp (D) is not equitable because it ignores the actual 

system power flow. A conventional method (E) cannot explain transmission line capacity 

change in reliability benefit calculation even though reliability benefits are considered. 

Also, the portion of reliability benefits is so high that it occupies a large part of the total 
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embedded cost. Meanwhile, the portion of reliability benefits (4.6%) is more or less small 

in the proposed method compared with the conventional method (E). Also, the change of 

transmission capacities can be explained too.   
 

Table XXII. The Embedded Costs of Proposed and Conventional Methods 

(a)The percentage of embedded costs of (A) capacity-use, (B) reliability benefits and (C) 

capacity-use + reliability benefits according to the change of transmission line capacity 

Capacity = 700 [MW] Capacity = 400 [MW]  

A B C A B C 

T1 59.6 2.5 62.1 55.9 3.0 58.9 

T2 23.6 1.7 25.3 27.4 1.7 29.1 

T3 12.2 0.4 12.6 11.6 0.4 12.0 

Total 95.4 4.6 100 94.9 5.1 100 
 

 
 (b) The percentage embedded costs of conventional method (D) postage stamp (E) 

capacity-use + reliability benefits with fixed ratio ( 0.8  : 0.2 ) and proposed method 

when transmission line capacity is 700MW. 

Conventional method  

D E 

Proposed 

method 

T1 81.8 60.7 62.1 

T2 9.1 27.2 25.3 

T3 9.1 12.1 12.6 
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D. Summary 

This Chapter has described a procedure for allocating transmission transaction costs 

when considering reliability benefits. The consideration of reliability benefits contributes 

to allocation of transmission transaction costs more equitably.  

In our proposed approach, we deal with reliability benefits according to the change 

of transmission line capacities. To decide success or failure of each transaction, a max-

flow algorithm is employed.  As explained through an example, the change of reliability 

benefits under constraints of transmission line capacities cannot be ignored. 

Therefore, the calculation of reliability benefits should include constraints of 

transmission line capacities. We also showed the relationship of capacity-use and 

reliability benefits, which depends on the probability of system failure. 
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CHAPTER VII 

CONCLUSIONS  

 

A. Summary of the Research Contribution 

This dissertation has presented new approaches for probabilistic security 

assessment and transmission pricing. The major contributions of the work developed in 

this dissertation can be summarized as follows: 

• A probabilistic method is developed for power system security assessment by 

sequential Monte-Carlo simulation. This method takes into account dynamic and 

static effects, which can be included by transient stability, satisfaction of load 

without violation of constraints and voltage stability studies. In the alert state, the 

consideration of additional contingencies based on the system state probability deals 

with a probabilistic approach in a better manner. The probabilities and frequencies 

for operating states represent reliability security indices for security assessment, 

which can provide valuable information on system security. The analytical method 

and Monte-Carlo simulation are tested in the WSCC system. To demonstrate the 

efficiency of this approach, Monte-Carlo simulation is applied  to the IEEE RTS 

with various system loads. 

• Monte-Carlo simulation in security assessment requires a large amount of 

computation time due to state characterization for each sampled state. This problem 

can be overcome by combining Monte-Carlo simulation and Kohonen Networks. 

Data classification by SOM can reduce sampling data. The SOM-MCS reduces 

computation time for reliability security indices when using classified data. The 

LVQ-MCS can avoid the drawback of straight Monte-Carlo simulation that the 

characterization of sampled state is time consuming. The simulation results of both 

SOM-MCS and LVQ-MCS approaches in modified IEEE RTS have shown a 

reasonable accuracy and significant reduction of computation time.  

• A Bayes classifier is proposed as a tool for static security assessment in power 

systems. This method can be useful for system operators to make security decisions 
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in on-line power system operation without a complicated contingency analysis in the 

testing stage. Security status of testing patterns including new feature vectors is 

determined by maximum a posteriori probability rule based on the Bayes rule. The 

proposed approach can contribute to improve on-line security assessment with 

accuracy as shown through the case study of WSCC system. 

• A transmission pricing method is developed for allocating transmission transaction 

costs based on reliability benefits in transmission services. The proposed 

methodology shows how to allocate transaction costs of reliability benefits when 

transmission line capacity is considered. Moreover, the ratio between allocation by 

transmission line capacity-use and allocation by reliability benefits is calculated 

based on a reliability index. Under restructured environment, the number of 

transactions may be increased. This may result in worsening system reliability. 

Embedded costs should be considered not only by allocation based on transmission 

line capacity-use, but also by allocation based on reliability benefits. It provides 

useful information on the planning of transmission line expansion.  
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B. Suggestions for Further Studies 

It may be possible to extend the studies presented in this dissertation in several 

directions. Some of recommendations are summarized as follows. 

1) In security studies, there are several issues that need further investigation: 

• In this dissertation, the dynamic behavior has been examined by transient stability. 

The evaluation of frequency drops following loss of a generator, multi-swing loss of 

synchronism, and voltage dynamics can also be investigated for including dynamic 

effects.  

• Three-phase-fault has been assumed as the fault type in this dissertation. Including 

other fault types, based on statistical data, can be investigated for their effect on the 

computed stability index.   

• In transient stability, bisection method has been implemented for the reduction of 

computation time. The development of faster and more powerful techniques can 

improve the computational efficiency.   

2) The IEEE RTS has been used to indicate the efficiency of the proposed SOM-MCS 

and LVQ-MCS methods. In practice, probabilistic reliability and security evaluation 

methods are generally  applied to reduced equivalent models or sections of systems 

that are of interest. However, further research needs to continue to increase its 

capability of methods to deal with large networks. 

3) A Bayes Classifier has been implemented for operation in security assessment. Like 

SOM-MCS or LVQ-MCS, the combination of Monte-Carlo simulation with a Bayes 

classifier can be implemented for security evaluation. 

4) This dissertation has presented a method for calculating contribution of reliability 

benefit in transmission service pricing. The inclusion of losses and reactive power 

aspects may still be required for equitable transmission pricing. 
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