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ABSTRACT

Automatic Tuning of

Continuous-Time Filters. (August 2004)

Taner Sumesaglam, B.S., Bilkent University

Chair of Advisory Committee: Dr. Aydin I. Karsilayan

Integrated high-Q continuous-time filters require adaptive tuning circuits that

will correct the filter parameters such as center frequency and quality factor (Q).

Three different automatic tuning techniques are introduced. In all of the proposed

methods, frequency and quality factor tuning loops are controlled digitally, providing

stable tuning by activating only one loop at a given time. In addition, a direct rela-

tionship between passband gain and quality factor is not required, so the techniques

can be applied to active LC filters as well as Gm-C filters.

The digital-tuning method based on phase comparison was verified with 1%

tuning accuracy at 5.5 MHz for Q of 20. It uses phase information for both Q and

center-frequency tuning. The filter output phase is tuned to the known references,

which are generated by a frequency synthesizer. The core tuning circuit consists

of D flip-flops (DFF) and simple logic gates. DFFs are utilized to perform binary

phase comparisons. The second method, high-order digital tuning based on phase

comparison, is an extension of the previous technique to high-order analog filters

without depending on the master-slave approach. Direct tuning of the overall fil-

ter response is achieved without separating individual biquad sections, eliminating

switches and their parasitics. The tuning system was verified with a prototype 6th

order bandpass filter at 19 MHz with 0.6 MHz bandwidth, which was fabricated in

a conventional 0.5 µm CMOS technology. Analysis of different practical limitations
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is also provided. Finally, the digital-tuning method based on magnitude comparison

is proposed for second-order filters for higher frequency operations. It incorporates

a frequency synthesizer to generate reference signals, an envelope detector and a

switched comparator to compare output magnitudes at three reference frequencies.

The theoretical analysis of the technique and the simulation results are provided.
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CHAPTER I

INTRODUCTION

A. Motivation

Filters are essential components of many electrical systems. An electrical filter is a

two-port device, which modifies magnitude and phase of the input signal in order to

produce the desired signal at the output. A signal can be considered as a composition

of signals at various frequencies. Pass frequency band (passband) and stop frequency

band (stopband) are defined over the frequency of interest. From input to output, an

ideal filter will transmit the signals in the passband, while it will attenuate or reject

the signals in the stopband. Filters can be classified as lowpass, bandpass, highpass,

and bandstop depending on the allocation of pass and stop frequency bands [1].

High-selectivity (or high-Q) bandpass filters will be the focus of this dissertation.

filter
image−reject

filter
Q

I

V

channel−select 
filters

VLO1

LO2

band−select IF filter

LNALNA

Fig. 1. RF receiver architecture.

In today’s state-of-the-art designs, high-performance filters are required for sev-

This dissertation follows the style of IEEE Journal of Solid-State Circuits.
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eral applications such as equalization filtering in high-speed links, radio frequency

(RF), intermediate frequency (IF) filtering in RF receivers, anti-aliasing filtering in

A/D (analog-to-digital) converters [2]. A typical RF receiver is shown in Fig. 1. After

the antenna, RF band-select filter removes noise and interferers from the incoming

signal. Image-reject filter is used before the mixer to remove the undesired signals

at the image frequency. IF filter, on the other hand, removes the harmonics after

the mixing operation. Finally, channel-select filter passes the desired channel while

attenuating the other channels.

Many high-performance filters are required to operate at high frequencies, which

can be from megahertz to gigahertz depending on the specific application. Another

requirement is to have high dynamic range (DR), which can be defined as the maxi-

mum signal level that can be applied to a system divided by the minimum detectable

signal level by the same system in the presence of noise. Growing wireless commu-

nication market is forcing the systems to be portable and cheaper. This can be

accomplished by reducing the physical area and power consumption. High-frequency

high-DR integrated filter designs become even more challenging under these con-

straints.

There are many different types of filters used depending on the frequency of

interest and available technology. Figure 2 shows the choice of filter type as a function

of the operating frequency range [1]. Based on implementation, filters can be broadly

categorized into two as on-chip and off-chip, as shown in Fig. 3. Off-chip discrete

filters such as SAW (Surface Acoustic Wave) and ceramic filters are widely used

in commercial products due to their large dynamic ranges and reliable frequency

characteristics. However, off-chip filters are expensive, bulky, and occupy large area.

Off-chip components usually increase the chip pin count of the system. They also

require matching circuits and buffers with challenging design specifications such as
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capability of driving 50 Ω, which increases the power consumption.

10
2

10
8

10
10

10
7

10
5

10
4

101 1k 1M 1G

Digital filters

Off−chip SAW, crystal filters

SC active filters

Opamp−C active filters Active LC

Frequency, Hz

Gm−C active filters

Fig. 2. Filter-type choice vs frequency of operation.

On-chip filters can be divided into three types depending on the input-output

signal nature as digital, sampled (or discrete-time), and analog (or continuous-time).

Digital filters have accurate responses and can be easily integrated. One of the main

drawbacks of the digital filters is that they require analog-to-digital converters to

be able to process the continuous-time input signal. This constraint limits their

frequency of operation to a few megahertz. Another main problem is power con-

sumption. Power, area, and cost constraints prohibit their usage in high-frequency

applications [3]. Switched-capacitor (SC) filters, which process signals at discrete

times, provide accurate filter responses. They are worse off in terms of linearity and

noise with respect to discrete passive filters. Finite gain-bandwidth product, charge

injection, and clock feed-through problems limit their performances at high frequen-

cies [4]. Other types of filters using opamp such as active RC, Gm-C -opamp, and

MOSFET-C have limited frequency responses as well due to finite gain-bandwith

product. Gm-C filters can operate at relatively higher frequencies for a given power



4

SC

Sampled

Filters

Digital Analog

Gm−C
Active LC

Active RC
Gm−C−opamp. . .

On−chip Off−chip

Discrete Filters

SAW
LC

Ceramic

Crystal. . .

Fig. 3. Practical filter types.

consumption and area. With the advent of high-Q inductors in CMOS (Complemen-

tary Metal Oxide Semiconductor) technology, active-LC filters have become another

alternative for high-frequency applications [5]. They are superior in terms of dy-

namic range compared to Gm-C filters. In summary, from different integrated filter

options, Gm-C and active LC filters seem to be possible alternatives for high perfor-

mance filters operating at high frequencies.

Main disadvantage of on-chip active filters is that they require automatic tun-

ing circuits to correct the deviation of filter parameters [1]. Filter parameters such

as center frequency and quality factor are typically a function of resistance R, ca-

pacitance C, inductance L, or transconductance Gm values. In conventional CMOS

technology, on chip R, C, L, and Gm values may have 20−30% variation due to pro-

cess tolerances. Temperature changes and aging are also important factors causing

those parameters to drift from the desired values.

A second-order bandpass filter can be characterized by its center frequency (f0),

where the peak gain occurs, and its 3-dB bandwidth. Essentially, it passes the
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signals within 3-dB bandwidth and the filter gain drops tremendously as the input

frequency deviates from f0 as shown in Fig. 4. Quality factor (Q) is a measure of

selectivity of the filter, which can be defined as the ratio of f0 to bandwidth. The

center-frequency accuracy required for a bandpass filter depends on Q. To illustrate

the tuning accuracy required for high-Q filters, let us examine a filter with a Q of

100 shown in Fig. 4. Solid curve shows the desired magnitude response while the

dashed one is with 1% frequency tuning error. Obviously, the desired frequency band

is totally out of filter’s passband, which leads to great loss in the input signal power.

0df f0

=1.01*f0df0

( f )HBP

3 dB

f

1% freq. error

Q=100

Fig. 4. Illustration of 1% tuning error on a high-Q biquadratic bandpass filter.

Automatic tuning circuits can also be used for applications employing pro-

grammable filters. For instance, third-generation wireless systems require receivers to

support different wireless communication standards. Therefore, channel-select filters

should exhibit programmable bandwidth to accommodate different standards [6].

Integration of continuous-time filters can be achieved with a reliable automatic

tuning system that can operate at high frequencies. Most Q-tuning schemes, which

have been reported so far, impose equality of passband gain and quality factor to filter
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design. This constraint itself suffers from parasitics. Also Q-tuning circuits assumes

that the center frequency is tuned correctly by another tuning circuit; however,

having two active control loop on a high-Q filter may cause stability problems. In

this dissertation, robust, digital, accurate and reliable automatic tuning techniques

are proposed that overcome the problems with the existing tuning techniques.

B. Organization

The dissertation is organized as seven chapters including the introduction. In Chap-

ter II, high frequency filters, namely, Gm-C and active LC filters are discussed briefly.

In Chapter III, some of the reported tuning methods are revisited and their prob-

lems are addressed. In the following Chapters IV, V, and VI, the proposed tuning

techniques Digital Tuning Method based on Phase Comparison (DTPC), High-order

Digital Tuning Method based on Phase Comparison (HDTPC), and Digital Tun-

ing Method based on Magnitude Comparison (DTMC) are introduced, respectively.

DTPC and HDTPC techniques use the phase information of the filter output sig-

nal to tune the filter, on the other hand, DTMC uses the magnitude information.

HDTPC is intended for direct tuning of high-order filters without separating individ-

ual biquad sections. Finally, Chapter VII concludes the dissertation with suggestions

for further research work.
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CHAPTER II

HIGH-FREQUENCY CONTINUOUS-TIME FILTERS

A. Introduction to Continuous-Time Bandpass Filters

A bandpass filter passes the components in input signal frequency spectrum within

the passband to output, while it attenuates other frequency components. A second-

order bandpass filter can be implemented with a two-integrator loop shown in Fig. 5.

One of the integrators is lossy with a negative feedback factor of Kq [7]. There are two

feedback loops in this configuration L1 and L2. The one including both integrators

(L1) determines the natural frequency or the center frequency of the system. The

feedback loop including one integrator (L2) determines the selectivity or Q factor of

the filter. The transfer function from the input Vin to the bandpass output Vbp can

be written as

H(s) =
Vbp

Vin
=

Kg s

s2 + sKq + Kw
(2.1)

−Kq

Vin
Kg

Vbp

L2

−Kw

L1

Vlp
+ 1/s1/s

Fig. 5. Two-integrator loop.
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Fig. 6. Magnitude response of a typical second-order bandpass filter.

The magnitude response is shown in Fig. 6. The center frequency, which is the

frequency where the peak gain occurs, is given as

ω0 = 2πf0 =
√

Kw (2.2)

3-dB frequencies, fl and fu, which is shown in Fig. 6, are defined as the frequencies

where the peak gain drops by 3 dB. The 3-dB bandwidth (BW ) is the difference

between 3-dB frequencies. For the second-order case, it can be found as

BW = fu − fl = Kq (2.3)

Quality factor is defined as the ratio of the center frequency to the bandwith.

Q =

√
Kw

Kq

(2.4)
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The passband gain or peak gain of the filter can be found as

G = |H(jω)|
∣

∣

∣

∣

ω=ω0

(2.5)

=
Kg

Kq
(2.6)

Mainly, two parameters are required to represent an ideal second-order or bi-

quadratic filter; center frequency (f0) and quality factor (Q). Passband gain (G) is

not a critical parameter in the sense that it does not directly change the frequency

selectivity of filter.

Note that in general, there is no direct relation between G and Q unless imposed

in the implementation. As it will be addressed in Chapter III, some tuning techniques

assume G = Q in order to tune Q.
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Fig. 7. High-order bandpass filter magnitude response.

In a second-order filter case, more attenuation at stopband cannot be achieved

for a given bandwidth and center frequency. In other words, when Q is increased

for more attenuation, the bandwidth will also get smaller. A high-order filter, on

the other hand, can achieve more attenuation in stopband for a fixed bandwidth. A

bandpass filter can be specified as shown in Fig. 7. Attenuation in the passband and
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stopbands have to satisfy

αmax ≥ α(f) for fp1 ≤ f ≤ fp2

αmin ≤ α(f) for f ≤ fs1, f ≥ fs2

(2.7)

where α(f) is defined as the attenuation with respect to maximum gain (in the pass-

band). It is usually expressed in dB unit. fp1 and fp2 are passband frequencies while

fs1 and fs2 are stopband frequencies. αmax and αmin are maximum allowed atten-

uation in the passband and the minimum required attenuation in the stopbands,

respectively. A high-order bandpass filter can be designed by using different magni-

tude approximation techniques such as Butterworth, Chebyshev, inverse Chebyshev,

and elliptical, based on the allocation of poles and zeros [1]. There are many software

tools available to synthesize filter with different approximation methods.

B. Gm-C Filters

A typical Gm-C biquadratic filter implementation is shown in Fig. 8. It has two

outputs as lowpass (VLP ) and bandpass (VBP ) available. Ideally, Gm is voltage

controlled current source.

C1

Gm2

Gmq

VBP VLP

Gm3

C2

VI

Gm1

Fig. 8. A typical Gm-C implementation of a biquadratic filter.
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The transfer functions from input to bandpass and lowpass outputs can be

written as,

VBP

VI
(s) =

s
Gm1

C2

s2 + s
Gmq

C2

+
Gm2Gm3

C1C2

(2.8)

VLP

VI
(s) =

Gm1Gm2

C1C2

s2 + s
Gmq

C2

+
Gm2Gm3

C1C2

(2.9)

Assuming all the transconductor values and capacitor values are the same ( Gm =

Gm1 = Gm2 = Gm3 and C = C1 = C2), the center frequency, the quality factor, and

the passband gain can be written as

ω0 =
Gm

C
(2.10)

Q =
Gm

Gmq
(2.11)

G =
Gm

Gmq

(2.12)

Usually Q is not directly measurable quantity. With this implementation, Q is set

equal to a measurable quantity, which is the passband gain. However, in the analysis

parasitic capacitances and losses associated with VLP and VBP nodes are ignored.

The circuit shown in Fig. 9 is more reliable model. Go1 and Go2 represent resistive

losses associated with bandpass on lowpass outputs, respectively. Cp1 and Cp2 are

parasitic capacitors. Including the parasitics, the bandpass transfer function becomes

H(s) =

Gm1

Ĉ2

(

s +
Go2

Ĉ1

)

s2 + s

(

Go2

Ĉ1

+
Go1

Ĉ2

+
Gmq

Ĉ2

)

+

(

Go2(Go1 + Gmq)

Ĉ1Ĉ2

+
Gm2Gm3

Ĉ1Ĉ2

) (2.13)
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where Ĉ1 and Ĉ2 defined as

Ĉ1 = C1 + Cp1 (2.14)

Ĉ2 = C2 + Cp2 (2.15)

Approximate Q and G can be written as

Q ≈
√

Ĉ1Ĉ2[Gm2Gm3 + Go2(Go1 + Gmq)]

Go2Ĉ2 + (Go1 + Gmq)Ĉ1

(2.16)

G ≈ Gm1

Go2
Ĉ2

Ĉ1

+ Go1 + Gmq











1 +
Go2Ĉ2

Ĉ1

(

Go1 + Gmq +
Gm2Gm3

Go2

)











1/2

(2.17)

Apparently, certain assumptions have to be made to claim Q = G. First of all, the

parasitic conductances Go1 and Go2 should be very small compared to Gmq. Also,

matching between transconductors and capacitors is required so that Gm1 = Gm2 =

Gm3 and Ĉ1 = Ĉ2 are satisfied. Due to unknown parasitics, these conditions are

difficult to achieve especially at high frequencies. Parasitic values (Cp1, Cp2, Go1,

and Go2) become more dominant and comparable to actual values (C1, C2, Gmi) at

high frequencies.

VI

VLP
Gm2

Gm3

Gm1

Gmq

C1
C2Cp2

Cp1

VBP

Go1
Go2

Fig. 9. Gm-C type biquadratic filter with parasitics included.
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C. Active-LC Filters

In current CMOS technology, on-chip inductors are realized with relatively low Q

values (∼ 5). High-Q can be achieved by cancelling the losses with a negative

resistor. This type of filters are also referred as Q-enhanced LC filters [8], [9]. They

provide better DR and consume much less power compared to Gm-C filters at high

frequencies [10].

L

Gm1

G

Vo
Vi

−GC m2L

Fig. 10. Q-enhancement LC filters.

Gm2 −Gm2

Fig. 11. Negative resistor.

Figure 10 depicts the conceptual circuit diagram of active-LC filters. The con-

ductance GL shown in Fig. 10 represents the losses of inductor L. Negative resistor

is achieved by employing positive feedback with Gm2 as shown in Fig. 11. In actual

implementation, transconductors Gm1 and Gm2 are simply realized by a couple of
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transistors. The transfer function of the representative active-LC filter can be found

as,

Vo

Vi

(s) =
s
Gm1

C

s2 + s
GL − Gm2

C
+

1

LC

(2.18)

Filter parameters can be found as

ω0 =
1√
LC

(2.19)

Q =
Gm1

GL − Gm2

(2.20)

G =
1

GL − Gm2

√

C

L
(2.21)

Tunability of the center frequency can be achieved with a varactor while Q can be

tuned by changing Gm1. Note that Q and G are arbitrarily set by process-dependent

circuit parameters. Note that it is more difficult to match different type of circuit

elements than the same type, which was the case for Gm-C filters.
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CHAPTER III

EXISTING TUNING METHODS

Integrated analog filters require continuous automatic tuning circuits to correct de-

viation of the filter parameters due to aging, temperature and process variations.

Section A mentions more general tuning approaches such as direct, indirect, and

switching filters. Then, the following Sections B, C, and D summarize some of the

center frequency, quality factor, and high-order filter tuning techniques which have

been already reported in the literature. It is difficult to make fair comparison of

tuning techniques; nevertheless, each technique is presented by its weakness and

superiority in terms of accuracy and practicality at high frequencies.

A. Filtering and Tuning

Filters with practical tuning systems cannot process the actual input and tuning ref-

erence signals simultaneously. There are different approaches to resolve the problem

such as master/slave (or indirect) tuning, direct tuning and switching filters which

will be presented shortly.

1. Master/Slave (or Indirect) Tuning Approach

The conceptual master/slave tuning architecture is shown in Fig. 12 [11],[12]. The

master filter stays connected to the tuning circuit and is not used for signal pro-

cessing. The tuning circuit applies a reference signal to the master filter, processes

the output signal coming from the filter, then adjusts the voltage control signals

accordingly. The same voltage control signals are applied to both master and slave

filters. Slave filter is available for signal processing all the time. Essentially, this

technique indirectly tunes the slave filter. The master can be a VCO (voltage con-
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trolled oscillator), which is made out of the same type of the slave filter with positive

feedback, or a replica of the slave filter (see Section B). This approach wastes area

with the additional filter. More importantly, this approach extensively depends on

the matching of master and slave filters. The accuracy of the tuning is limited by the

matching of the two filters. With today’s CMOS technology, the component match-

ing (capacitor-capacitor or resistor-resistor) is within 0.1%. In component matching,

different layout techniques such as inter-digitizing and common centroid can be used

for better matching; however, some of the techniques are difficult to apply to match

the whole circuit. Evidently, matching of the whole filters will have worse figures.

Also note that both master and slave will have different loadings and and different

signal paths. Although master filter can be tuned correctly, due different loadings,

matching of master and slave and consequently tuning accuracy will degrade.

automatic

filter in
slave filter

master filter

tuningreference

signals
control

ref in

filter out

ref out

Fig. 12. Master-slave tuning approach.
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2. Direct-Tuning Approach

Direct-tuning approach is depicted in Fig. 13. The filter is tuned only when the

tuning is enabled, i.e., the filter is connected to the tuning circuit when the control

enable signal EN is high. When the tuning is disabled, the voltage control signals

are kept at the same level as tuned. This approach is more appropriate for time

division multiplexed systems such as TDMA (Time Division Multiple Access). The

filter is tuned in idle times [13].

reference

EN

control signals

ref in

filter in

tuning
automatic

filter

filter out

EN

Fig. 13. Direct-tuning approach.

3. Switching-Filters Tuning Approach

Direct tuning may not be applicable for applications that require continuous filtering

such as CDMA (Code Division Multiple Access) systems [14]. As shown in Fig. 14,

this methods employs two filters. While filter 1 is tuned, filter 2 processes incoming

signals. Then, filter 2 is tuned while filter 1 is used. When EN signal is high, filter 2

is connected to the tuning circuit. During this time, the voltage controls of filter 1

are kept the same. When the EN signal is low, filter 1 is tuned and the voltage

controls of filter 2 are kept the same. This approach eliminates the matching of
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tuning
automaticreference

ref in

control signals

filter 1

filter 2

ENEN

filter in filter outENEN

Fig. 14. Switching-filters tuning approach.

filters requirement, which is the case in master and slave approach.

B. Frequency-Tuning Techniques

1. Tuning of Integrator Time Constant with Magnitude-Locked Loop

Tuning of integrator time constant with Magnitude-Locked Loop (MLL) architecture

is given in Fig. 15 [15], [16]. The loop forces the gain of Gm-C integrator to be unity.

When the gain of the integrator is unity, the following holds

∣

∣

∣

∣

Gm

s C

∣

∣

∣

∣

s=jωR

= 1 (3.1)

Gm

C
= ωR (3.2)

The value of Gm/C, which is process dependent, is forced to be equal to the reference

signal ωR = 2πfR.

The loop tunes the master integrator and applies the same control voltages
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Vcntl

Gm
fR

Gm Gm

peak
detector

peak
detector

C

. . .

filter

Fig. 15. Tuning of integrator time constant with magnitude-locked loop.

to other integrator blocks in the filter. This technique has limited accuracy for

several reasons. First, it depends on the matching of master and slave Gm-C cells.

Moreover, peak detectors have to match. Furthermore, DC offset of the amplifier will

directly degrade the accuracy. Note also that (3.1) ignores parasitics due to finite

output impedance of Gm block and any possible internal node in the transconductor

causing parasitic poles and zeros. Finally, this technique requires a perfect sinusoidal

reference which is hard to achieve. Any harmonics in the reference signal will be

accumulated by the integrator and result in inaccuracies.

2. Tuning Method Based on Phase-Locked Loop Using Voltage-Controlled Filter

This technique is based on the fact that the ideal biquadratic filter will have zero

phase shift from input to bandpass output [17]-[18]. The system architecture is shown

in Fig. 16. The phase difference between the reference signal and the filter output is

detected and lowpass-filtered to generate the control voltage for the center frequency.
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When the center frequency of the filter is tuned to fR, the phase difference will be

zero. The accuracy of the technique is limited by the offsets of the phase detector

and lowpass filter (LPF).

fR

biquad filter

phase
detector LPF

Fig. 16. Tuning method based on phase-locked loop using voltage-controlled filter.

3. Tuning Method Based on Phase-Locked Loop Using Voltage-Controlled

Oscillator

The tuning method is illustrated in Fig. 17. At steady state, the master Voltage-

Controlled Oscillator (VCO) oscillates at the reference frequency, which is the desired

center frequency fR. Phase-Locked Loop (PLL) locks to the reference frequency fR

and some constant phase instead of 0◦ phase, which is the case in the previous

technique. This, in turn, eliminates the absolute phase accuracy required so the

phase detector design is more relaxed. Master VCO has to be the same type of slave

filter. A biquadratic filter can be formed by inverting and non-inverting integrators

while one can obtain an oscillator with two non-inverting integrators. This technique

has been applied for Gm-C filters in [19]-[22] and MOSFET-C filters in [12].

The technique relies on the matching of the filter and the master VCO. Oscilla-

tion amplitude has to be limited to ensure the linear operation. Note that the filter
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fR
LP

biquad
filter

master
VCO

phase
detector

Fig. 17. Phase-locked loop for VCO tuning method.

is used in its linear region, naturally for better matching, VCO has to be in linear

region as well. To achieve better matching, the filter and VCO should be physically

as close as possible; however, the performance of the filter is degraded in terms of

noise due to the feed-through from VCO. The method involves a trade-off between

matching and isolating the filter from the noise of VCO.

4. Tuning Method Based on Charge-Comparison

The block diagram of this technique is shown in Fig. 18 [23]-[26]. φ1 and φ2 are two

non-overlapping clocks that determine the charge transfer phases of the system. In

phase one (when φ1 is high), the capacitor C is charged up to IR/Gm. In phase two

(when φ2 is high), however, the charge is transfered to the holding capacitor CH .

At steady state, the averages of the voltages V1 and V2 are constant. Therefore, the

transferred charge will be balanced by the extracting current source NIR,

IR

Gm
C = NIRT (3.3)
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where T is period of the clock, i.e., total duration of phase one and two. Then (3.3)

can be rewritten as

Gm

C
=

fclk

N
(3.4)

Note that the value of Gm/C is fixed by the precise clock signal frequency (fclk) and

the current mirror ratio (N). One advantage of this technique is that the reference

signal is at a frequency of NGm/C, which eliminates the clock interference in the

band of interest. The control voltage is copied to Gm blocks in the filter. This scheme

suffers from inaccuracies caused by mismatch between the master Gm-C block and

the slaves due to different loadings and different parasitics. The offset of the OTA

(Gm) circuit increases the tuning error. Moreover, finite gain of OTA and opamp

produces tuning errors almost equal to the reciprocal of the individual gains.

VDD

V2
V1

φ1 φ2

N IR.
VSS

IR
CH

Vcntl

C

Gm

Gm Gm

LPF

. . .

filter

Fig. 18. Charge-comparison based tuning.
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A similar charge-comparison technique for the tuning of MOSFET-C filters is

reported in [27]. This technique suffers from timing inaccuracies of the tuning clocks

in addition to the previously mentioned problems. Both techniques are limited to

low-frequency operations.

5. Maximum-Gain Search Tuning

This tuning scheme relies on the fact that the peak gain of a second-order filter

occurs at the center frequency [28]. A reference signal is applied to the filter at the

desired center frequency (fR). The control voltage of the master filter (Vfm) is swept

within a reasonable range covering process variation. The magnitude of the filter

output is detected by an envelope detector as shown in Fig. 19. The value of the

frequency control voltage yielding the maximum gain (Vfs) is sampled and applied

to the slave filter. This scheme is verified at 120 MHz with less than 0.3% tuning

error [28]. One drawback is that continuous sweeping the frequency control voltage

makes Q-tuning difficult.

Vfm

Vfs

fR envelope
detector

tuning circuit

filter
master

filter
slave

Fig. 19. Maximum-gain search tuning.
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C. Quality-Factor Tuning Techniques

1. Envelope Matching Tuning

The envelope matching tuning method exploits the similarity of step responses of

a first-order and a second-order filters [25]. The step-response envelope of a unity-

gain first-order filter with a 3-dB frequency of f3dB is equivalent to a second-order

filter with a bandwidth of 2f3dB. The block diagram of the scheme is shown in

Fig. 20. The reference signal VR is a pulse train operating at lower frequency with

a period of T . Envelope detectors and a difference integrator are used to extract

the envelope information and to generate the Q-control voltage (Vcntl). Desired Q

value is set by the ratio of OTAs, which are used in the implementation of the filters.

One advantage of the technique is that the reference signal is at a lower frequency.

Thus, the interference with the main filter is minimized. Also, it does not assume

passband gain and quality factor equality. However, the accuracy is limited due to

several reasons. First of all, the matching of OTAs are limited to 1-3%. Second, the

offset of the OTA degrades the performance. Another design issue is good matching

requirement for the envelope detectors. The work in [29] reports a theoretical error

of 8% for an OTA with offset of 10 mV and T -BW product of 8.

2. Magnitude-Locked Loop for Q Tuning

This technique uses the peak gain (or passband gain) of the filter to tune Q [11],[28].

It assumes that Q of the filter always tracks the peak gain of the filter (G). The

tuning system is depicted in Fig. 21. A sinusoidal reference signal is applied to

the filter at the desired center frequency. Assuming the center frequency is tuned

correctly, the output signal magnitude will be the same as the reference signal with

employing a divide-by-Q circuit. Using peak detectors and difference integrator, the
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1  order filterst

Vcntl

VR

envelope
detector

envelope
detector

biquad filter
slave

master

biquad filter

Fig. 20. Envelope matching tuning.

control voltage is generated. At steady state the following holds

Q

Qd
= 1 (3.5)

where Qd is the desired Q value set by the divider ratio.

One of the main problems of this approach is that the reference signal is assumed

to be sinusoidal. Thus, any harmonics in the reference signal will introduce error.

In case a square wave is used as the reference for instance, the division ratio has to

be modified to π Qd/4. Another problem is the error in the assumption of G = Q.

It ignores parasitics and requires perfect matching for transconductors and capaci-

tors (discussed in Chapter II). Implementing an accurate divide-by-Q circuit is also

challenging issue at high frequencies. Note that any inaccuracy in this block directly

degrades the tuning accuracy. Observe also that the matching is required for peak

detectors. In addition, this technique assumes that the center frequency is already

tuned correctly by another tuning circuit. Therefore, any error in the center fre-

quency will degrade the performance of MLL for Q-tuning technique. Furthermore,
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1/Qd

1/Qd

Q/Qd

peak
detector

peak
detector

fR
QV

G=Q

biquad filter

1

1

LP

Fig. 21. MLL for Q tuning.

requirement of another tuning circuit for frequency tuning degrades the reliability of

this technique because having two tuning loops operational at the same time may

cause the filter to oscillate. Note that the filter becomes sensitive to control voltages

at high-Q values.

There are other Q-tuning techniques based on MLL with different implemen-

tations. Charge pumps and comparators are used instead of peak detectors in [18].

The work in [30], however, proposes a digital implementation based on a latched

comparator and counters. This technique suffers from the undesired phase shifts in

the latched comparator in addition to common drawbacks of MLL technique.

3. Adaptive Gain Control Based on LMS Tuning

In this tuning technique, filter output signal is matched to desired output by mini-

mizing the mean-square error between them [31]. A general block diagram is given
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in Fig. 22. The LMS algorithm essentially implements the following equation

Vwi

dt
= µ(Vd − Vo)Vgi, i = 1, 2, ..., n (3.6)

where Vo and Vd are filter output and the desired output signals, while Vwi and Vgi

are the tuning and the gradient signals, respectively. The gradient signals, which

are the derivative of Vo with respect to Vwi, determine the direction of the tuning.

At steady state, time derivative of the tuning signals becomes zero. As a result, the

filter yields the desired output signal implying that the filter is tuned.

µ /s

µ /s

Vt1

Vtn

.

..

.

..

V

x

Vgn

Vg1

Vd

+o

Vw1

Vwn
x

master filter

Fig. 22. LMS tuning.

A similar LMS approach proposed in [32] is implemented by using delta-sigma

oscillators [33]. The tuning input signals are generated by delta-sigma oscillators

within the passband of the filter with certain amplitudes and frequencies. These

values are stored in digital registers. Main problem of [32] and [33] is the system

complexity and the requirement of DACs operating at a higher frequency greater
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than the passband of the filter itself.

More practical and simple methods based on combination of LMS and MLL

tuning techniques are reported in [34] and [21]. The the number of reference signals

is reduced to one. They are similar to the MLL Q tuning in that Q is assumed to

have the same value as the filter passband gain; however, the use of peak detectors

are eliminated. Furthermore, they do not require perfect sinusoidal reference signals.

The architecture is shown in Fig. 23. The modified LMS equation is given as

dVQ

dt
= µ(VR − Vo)Vo (3.7)

These techniques also suffer from the same problems as MLL technique such as

implementing high frequency divide-by-Q circuit and inaccuracies due to Q = G as-

sumption. Note also that accurate multiplier and summer circuits at high frequencies

can be challenging and power consuming.

VQ

VR Vo

x

1/Qd

µ /s

slave

biquad filter

biquad filter

master

−+ +

G=Q

Fig. 23. LMS-MLL tuning.
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4. Magnitude Comparison Tuning

Magnitude comparison tuning technique applies reference signals at three frequencies

fR−∆, fR, and fR+∆ and forces the gains at the edge reference frequencies (fR±∆)

to be half of the gain at the middle reference frequency (fR). At steady state the

following equation holds,

|H(j2πfR)| =
1

2
|H(j2π(fR ± ∆))| (3.8)

From (3.8), the tuned Q and f0 values can be found as

f0t ≈ fR (3.9)

Qt ≈
√

3fR

2∆
(3.10)

The architecture is shown in Fig. 24. It uses a peak detector and switched-capacitor

integrators to compare the magnitudes at different frequencies. A selective attenuator

is utilized in order to eliminate the non-linearity of the peak detector. This technique

is verified with 3% accuracy by a second-order bandpass filter having center frequency

of 200 MHz and Q of 29 [35].

It provides an accurate tuning method by eliminating Q = G; however, simul-

taneous operation of frequency and Q tuning loops still exists. Also, the switched-

capacitor integrators used occupy large area.

D. High-Order Filter Tuning

Necessity of tuning circuits for second-order filters is a well-known problem and many

different frequency and Q tuning techniques are reported as mentioned in previous

sections. On the other hand, there is almost no reported general tuning method

for high-order filters. One convenient way of implementing high-order filters is to
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Fig. 24. Magnitude comparison tuning.

cascade biquadratic sections. The tuning techniques mentioned previously can be

applied to cascade of biquads with master-slave approach [11],[22]. It can also be

applied to ladder type Gm-C filters, where each Gm-C integrator is indirectly tuned

by copying the tuned control voltage of the master. However, the tuning accuracy is

limited by the matching of components (Section A-1).

A tuning technique for magnetically-coupled Q-enhanced LC type 4th-order

bandpass filters is reported in [36]. It employs a VCO of the same type as the filter

in the frequency synthesizer (PLL VCO technique); thereby the frequency tuning

accuracy is limited by the matching of master and slave filters. A general block dia-

gram of the tuning system is shown in Fig. 25. It indirectly tunes the filter response

by making Q of the LC resonator infinite. The bandwidth of the filter is determined

by mutual magnetic coupling of the inductors, which is set by the physical layout of

the inductors. Although the shunt losses are cancelled out by the positive feedback,

the series losses cause ripples in the passband. This technique does not actually tune

Q, i.e, it does not provide the tuning of individual Q values to certain target Q(s).

The tuning method in [37] is proposed for leap-frog type filters. LC resonators
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Fig. 25. Loss-control tuning.

are realized by Gm-C biquads. The switches are employed in order to isolate each

shunt and series biquad sections. The parasitics associated with the switches will

limit the use of this technique to low frequencies and will degrade the performance

of the filter. More importantly, the technique does not completely define the transfer

function of the filter. Also, it relies on the matching of transconductors forming the

biquad, which is known to be poorer than simple component matching. Furthermore,

it assumes that Gm ratios do not change with the change of the control voltages.
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CHAPTER IV

DIGITAL-TUNING METHOD BASED ON PHASE COMPARISON

An automatic tuning method for second-order continuous-time filters is proposed in

this chapter. The digital-tuning method based on phase comparison (DTPC) uses

phase information of the filter output signal to tune center frequency and quality

factor [38],[39]. Basic principle, circuit implementation, simulation results, prototype

design, and experimental results are presented, as well as limitations on the tuning

accuracy.

A. Principle

In general, a second-order bandpass filter has lowpass output available. Transfer

function for a typical second-order lowpass and bandpass outputs can be written as

HLP (s) =
K1

s2 + sω0/Q + ω2
0

(4.1)

HBP (s) =
K2s

s2 + sω0/Q + ω2
0

(4.2)

where the lowpass phase response can be calculated from

6 HLP (ω) = φ(ω) = − tan−1

(

ω0 ω/Q

ω2
0 − ω2

)

(4.3)

Magnitude response of the bandpass and phase response of the lowpass outputs

are shown in Fig. 26; where fa and fb are 3-dB frequencies. The gain is maximized

at the center frequency, f0 = ω0/2π. The phases corresponding to 3-dB frequencies

at the lowpass output are given as

φ(fa) = −45◦ (4.4)

φ(fb) = −135◦ (4.5)
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Fig. 26. Bandpass magnitude and lowpass phase responses of a typical biquadratic
filter.

After fabrication, the filter will have arbitrary f0 and Q values, and consequently

fa and fb are unknown. Assume that the tuning circuit generates reference signals

at f1 and f2. The tuning circuit changes the filter parameters in such a way that the

following conditions are satisfied,

φ(f1) = −45◦ (4.6)

φ(f2) = −135◦ (4.7)

Once (4.6) and (4.7) are achieved, the tuned f0 and Q values can be found as

f0t =
√

f1f2 (4.8)
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Qt =

√
f1f2

f2 − f1
(4.9)

Note that the lowpass output is chosen for convenience since it has relatively

larger gain at low frequency. The tuning can also be achieved by using bandpass

output. If this is the case, the reference phases are needed to be modified to ±45◦.

An algorithm has to be implemented to achieve the tuning conditions given in

(4.6) and (4.7). Define two binary numbers A and B to indicate whether the phases

at reference signal is larger or smaller than the reference phases

A =















0 , φ(f1) > −45◦

1 , φ(f1) < −45◦
(4.10)

B =















0 , φ(f2) > −135◦

1 , φ(f2) < −135◦
(4.11)

Based on the values of A and B, filter’s lowpass output phase can be one of the

four different cases as shown in Fig 27. Dashed lines show the reference window;

reference frequencies and phases. When the filter is tuned, the phase curve will pass

through the cross-section points. Phase transition from −45◦ to −135◦ occurs within

the bandwidth of the filter. At the center frequency of the filter, the corresponding

phase is 90◦. Fig. 27(a) corresponds to AB =11, the current center frequency of the

filter needs to be increased. In Fig. 27(b), the center frequency needs to decreased

(AB =00). In (c), the current Q is larger than the desired Q. Note that larger

the Q, the sharper the phase transition from −45◦ to −135◦. In a way, the slope

of the phase curve at the center frequency will give an idea about how large the Q

is. In Fig. 27(d), the Q has to be increased. The tuning actions for each case are

summarized in Table I.

This tuning strategy assigns only one tuning action for each case. The digital
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Fig. 27. Four different cases of filter based on A and B.

TABLE I

Tuning process of DTPC

Case A B Action

(a) 1 1 f0 ⇑

(b) 0 0 f0 ⇓

(c) 0 1 Q ⇓

(d) 1 0 Q ⇑
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approach allows using digital logic circuits and binary phase comparators. Note that

in general digital circuits are more reliable and robust. Another important advantage

is that Q tuning is enabled only when the center frequency of the filter is within the

reference window, namely f1 < f0 < f2. Therefore, Q-tuning loop will not cause the

filter oscillate before the center frequency is tuned close to the desired value. Other

tuning techniques, where Q and frequency tuning circuits simultaneously enabled,

do not have good control on this issue (discussed in Chapter III).

B. Circuit Implementation

The overall tuning system can be implemented as shown in Fig. 28. The biquad filter

has two control voltages VF and VQ to adjust f0 and Q. In most practical cases, f0 and

Q cannot be changed independently, herein, independent tunability is not assumed.

The two reference frequencies can be generated using a programmable synthesizer.

When CLK is low, the frequency of the reference signal is f1 = (N − 1)/MfR,

otherwise it is f2 = (N + 1)/MfR. V0, V−45, and V−135 are pulse signals with 50%

duty cycle which are available from frequency synthesizer (FS). V0 is applied to the

filter input, −45◦ and −135◦ delayed signals and the output of the filter are processed

by the tuning circuit. Then, the control voltages are generated and applied to the

filter. Note that this tuning technique does not require perfect sinusoidal reference

signals. On the other hand, the reference signals should have fundamental frequency

at the reference frequency and 50% duty cycle. Therefrom, distorted signals other

than pulse and sinusoidal are also acceptable.

The block, FS, shown in Fig. 28 is a standard frequency synthesizer with pro-

grammable dividers (see Fig. 29). A fixed input signal at a frequency of fR coming

from an accurate generator (such as a crystal oscillator) is applied to the input. The
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Fig. 28. Overall tuning system.
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Fig. 29. Frequency synthesizer.
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division ratio of frequency divider in the loop can be changed by CLK signal. Either

(N − 1) or (N + 1) is multiplexed depending on the value of CLK. A ring voltage-

controlled oscillator (VCO) provides the delayed clock signals (see Fig. 30). It is

also possible to generate 45◦ delayed reference clock signals by using a ring counter

circuit in case a ring VCO is not available in FS.

V−135

V0

V0

VC

−45V

−45 V−135V

Fig. 30. Ring oscillator.

Binary phase comparison of reference signals (V−45 and V−135) and the lowpass

output signal VLP can be achieved by using a single D flip-flop (DFF) as shown in

Fig. 31. Depending on whether S2 signal is delayed or not with respect to S1, DFF

yields output digital 1 or 0. One problem in using DFF is that the output signal of

the filter is expected to be sinusoidal due to high-Q. Therefore, a comparator has to

S2

S2

S1

outS1

S2 CLK

D Q

1

0

out

Fig. 31. Binary phase comparison by using a DFF.
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be used to convert sinusoidal filter output to rail-to-rail clock/pulse signal so that

DFF can be used for phase comparison.

A
C

D

A
C

DD Q

Q

D Q

Q
VF

VQ
D Q

Q

D Q

Q

dn

B

dn

VLP

V−45

V−135

CLK

CLK

A
up

up

Fig. 32. Core tuning circuit.

The core tuning circuit is shown in Fig. 32. The first set of DFFs accomplish

the binary phase comparison. The second set is used to store A and B since both

reference frequencies cannot be applied at the same time. When the CLK is low, f1

is applied and A is generated. When it is high, f2 is applied and B is generated. Both

A and B are available right before CLK signal makes low to high transition. Then,

frequency and Q counters are updated. Digital output of counters are converted

to analog by using a simple digital-to-analog converter (DAC). From Table I, the

up-down control signals can be extracted as

fu = AB (4.12)

fd = ĀB̄ (4.13)

qu = AB̄ (4.14)

qd = ĀB (4.15)
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With this implementation of DTPC, f1 and f2 are given as

f1 =
(N − 1)

M
fR (4.16)

f2 =
(N + 1)

M
fR (4.17)

By substituting (4.16) and (4.17) into (4.8) and (4.9), the tuned values can be found

as

f0 =
√

N2 − 1
fR

M
(4.18)

Q =

√
N2 − 1

2
(4.19)

As it can be seen, the tuned values are digitally set by the choice of fR, N and M .

Note that since N is an integer number, the tuned Q value will can have certain

discrete values.

The tuning is enabled as long as EN signal is high. When the tuning has

converged, the tuning circuit can be disabled while holding the tuned control voltages.

Convergence speed of the tuning circuit depends on the settling time of the FS and

the resolution of the DAC-counter pair. The tuning will converge roughly in 2Lc · ts,

where Lc and ts are the resolution of the DAC-counter pair and the settling time of

FS, respectively.

C. Limitations

In this section, the limitations of the tuning system will be investigated. The effect

of the parasitics will be analyzed. Pre-distortion technique will be proposed for very

high-frequency applications where the parasitics are more dominant. In addition,

the effect of the resolution of the DAC-counter pair on the tuning accuracy will be

analyzed.
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1. Parasitic-Pole Effect

In the analysis so far, the filter has been assumed to have only two poles. In reality,

there might be parasitic poles and zeros located at higher frequencies. For high-

frequency filters, parasitics become more effective on the filter response. In the

presence of parasitics, the reference phases at reference frequencies shift slightly.

Consequently, some error is involved in the tuning scheme. The effect of parasitic

pole on a Gm-C bandpass filter is analyzed in this section.

The transfer function of a typical Gm-C filter as seen at bandpass and lowpass

outputs are given as

HBP (s) =
sKGm/C

s2 + s Gmq/C + (Gm/C)2
(4.20)

HLP (s) =
K(Gm/C)2

s2 + s Gmq/C + (Gm/C)2
(4.21)

A transconductor with a parasitic pole at frequency ωp can be modeled by [40], [41],

Gm =
Gm0

1 + s
ωp

(4.22)

Substituting (4.22) into (4.21) results in

H ′
LP (s) =

K





Gm0/C

1 + s
ωp





2

s2 + s
Gmq0/C

1 + s
ωp

+





Gm0/C

1 + s
ωp





2 (4.23)

Defining ωoo = Gm0/C and Qo = Gm0/Gmq0 yields

H ′
LP (s) =

Kω2
oo

s2

(

1 +
s

ωp

)2

+ s
ωoo

Qo

(

1 +
s

ωp

)

+ ω2
oo

(4.24)
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Rewriting the H ′
LP by substituting s = jω yields

H ′
LP (jω) =

Kω2
oo

j

(

ω
ωoo

Qo

− ω3 2

ωp

)

+

(

ω4 1

ω2
p

− ω2(1 +
ωoo

Qo ωp

) + ω2
oo

) (4.25)

Defining

R(ω) = ω4 1

ω2
p

− ω2(1 +
ωoo

Qo ωp
) + ω2

oo (4.26)

I(ω) = ω3 2

ωp
− ω

ωoo

Qo
(4.27)

(4.25) simplifies to

H ′
LP =

Kω2
oo√

R2 + I2
(R + jI) (4.28)

From (4.28), the lowpass phase can be written as,

φ′(ω) = tan−1

(

I(ω)

R(ω)

)

(4.29)

After the tuning has converged, assuming M = 1 for simplicity, the circuit

parameters ωoo and Qo will take their values to satisfy the following tuning conditions

φ′[(N−1)ωR]==−45◦ (4.30)

φ′[(N+1)ωR]=−135◦ (4.31)

From (4.29)-(4.31),

I[(N − 1)ωR] = R[(N − 1)ωR] (4.32)

I[(N + 1)ωR] = −R[(N + 1)ωR] (4.33)

Define X as the relative location of the pole as X = ωp/ωoo. For a fixed target center

frequency (keeping NωR constant), equations (4.32) and (4.33) are numerically solved

by using Maple (see Appendix A). Calculated ωoo and Qo values are substituted into
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(4.28) in order to find the tuned effective center frequency and quality factor values.

Note that the filter is not second-order anymore with the additional parasitic poles.

Frequency and Q-tuning errors generated for different target Qs and Xs are shown in

Figs. 33 and 34 (see Appendix B for Matlab code). For larger values of X, the tuning

error gets smaller as expected. The Q-tuning error is less than 1 % for X > 30.

0
50

1000
50

100
150

0

0.5

1

1.5

2

Q

X

Fig. 33. Frequency-tuning error with a parasitic pole at X f0.

2. Predistortion of the Parasitic-Pole Effect

When the frequency of operation is very high for a given technology, having parasitic

poles close to ω0 is unavoidable. In such cases, the tuning error can be decreased by

modifying the reference frequencies according to the estimated value of the parasitic

pole location. Assume that the filter is designed but the parasitic pole could not be

pushed high enough to minimize the error. Using simulation results, the reference

frequencies that give −45◦ and −135◦ phases from the lowpass phase response can be
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Fig. 34. Q-tuning error with a parasitic pole at X f0.

found. Note that they will be slightly different from the 3-dB frequencies. The tuning

circuit is programmed to generate the frequencies N1ωR and N2ωR (with M = 1) as

the two references. When there is no parasitic pole, N1ωR and N2ωR are symmetrical

(at high-Q) around ω0 as (N − 1)ωR and (N + 1)ωR.

A bandpass filter with Q = 40 and f0 = 40 MHz having a parasitic pole at

480 MHz (X = 12) is investigated as an example. The Q-tuning error without

compensation is 5%. Theoretically, compensation decreases the error to zero if the

pole is located exactly at the predicted value. However, due to unpredictable behavior

of the parasitic pole, the actual error may be different. Nevertheless, smaller errors

can be achieved using a good layout extraction tool in the estimation of X. Figures 35

and 36 show the tuning errors with and without compensation for a variation of X

from -50% to 100%. This method essentially shifts the error curve in such a way that

the error around the estimated value of X is minimized. The predistortion approach

can be employed for any Gm modeled with arbitrary poles and zeros.
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Fig. 35. Parasitic predistortion effect on the frequency-tuning error for a filter
with Q = 40 and f0 = 40 MHz, solid line is the compensated case.
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Fig. 36. Parasitic predistortion effect on the Q-tuning error for a filter with Q = 40
and f0 = 40 MHz, solid line is the compensated case.
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3. Parasitic-Zero Effect

The effect of a parasitic zero on the tuning performance will be examined in this

section. As in Section 1, the transconductor element is assumed to have a parasitic

zero located at X · ωoo,

Gm = Gm0

(

1 +
s

Xωoo

)

(4.34)

Substituting (4.34) into (4.20), the modified transfer function is obtained as following,

H ′(s) =

s2

X
+ s ωoo

(

1 +
1

X2

)

s2 + s

(

ωoo

Qo
+

2ωoo

X

)

+ ω2
oo

(4.35)

where ωoo = Gm0/C and Qo = Gmq/Gm0 as defined previously. Note that 1/X2 term

can be ignored since X is expected to be large. From (4.35), the following can be

written,

H ′(jω) =
jωωoo − ω2/X

jωωoo

(

1

Qo
+

2

X

)

+ ω2
oo − ω2

(4.36)

=

(

jωoo −
ω

X

)

(

−jωoo(
1

Qo

+
2

X
) +

ω2
oo

ω
− ω

)

denominator
(4.37)

=

(

ω2
oo(

1

Qo

+
2

X
)−ω2

oo

X
+

ω2

X

)

+j

(

ω3
oo

ω
−ωωoo+

ωωoo

X
(

1

Qo

+
2

X
)

)

denominator
(4.38)

Phase of H ′(jω) is given as

6 H ′(jω) = tan−1

(

Im[H ′(jω)]

Re[H ′(jω)]

)

(4.39)

At the steady state, the tuning conditions given in (4.6) and (4.7) will be satisfied,

which can be shortly expressed as

Im[H ′(jω)]

Re[H ′(jω)]
= ±1 (4.40)
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Note that (4.40) is +1 for one reference value of ω and -1 for the other. By substi-

tuting real and imaginary parts of (4.36),

(

ω2
oo(

1

Qo

+
2

X
) − ω2

oo

X
+

ω2
1

X

)

= +

(

ω3
oo

ω1

− ω1ωoo +
ω1ωoo

X
(

1

Qo

+
2

X
)

)

(4.41)

(

ω2
oo(

1

Qo
+

2

X
) − ω2

oo

X
+

ω2
2

X

)

= −
(

ω3
oo

ω2
− ω2ωoo +

ω2ωoo

X
(

1

Qo
+

2

X
)

)

(4.42)

By eliminating 1/X2 terms, Qo can be found from (4.41) and (4.42), Note that there

are two unknowns (Qo and ωoo) and two equations:

Qo =
ω2

oo −
ω1 ωoo

X
(

ω3
oo

ω1
− ω1 ωoo −

ω2
oo

X
− ω2

1

X

) (4.43)

Qo =
−ω2

oo −
ω2 ωoo

X
(

ω3
oo

ω2
− ω2 ωoo −

ω2
oo

X
− ω2

2

X

) (4.44)

where ω1 and ω2 are the reference frequencies. By dividing (4.43) by (4.44), one of

the unknowns, Qo, can be eliminated.

ω3
oo

(

ω1 + ω2

ω1 ω2

)

− ω2
oo

1

X

(

2 +
ω2

1 − ω2
2

ω1 ω2

)

− ωoo(ω1 + ω2) −
ω2

1 + ω2
2

X
= 0 (4.45)

The value of ωoo will be one of the roots of (4.45). Then, Qo can be found either from

(4.43) or (4.44). As X goes to infinity, (4.45) yields ωoo =
√

ω1 ω2 while Qo becomes

ωoo =
√

ω1 ω2/(ω2 − ω1) as expected. Unfortunately, the roots of (4.45) is not exact

solution of (4.41) and (4.42). Therefore, (4.43) and (4.44) yield two different Qo

values. Better approximations can be made by finding roots of (4.41) and (4.42) in

terms of Qo, then finding Qo value that makes the roots equal.

By substituting Qo and ωoo back to the modified transfer function given in (4.35),

the tuned (effective) quality factor and center frequency values can be found (most

likely numerically). Figures 37 and 38 show the tuning errors calculated by using
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Matlab for various X and desired Q values (see Appendix C). The results show that

the frequency tuning error is less than 0.1%. For Q-tuning the error is less than

1%. Note that the actual tuning errors are expected to be less than the ones shown

in Fig. 37 and Fig. 38 since part of the error can attributed to the error due the

approximation of Qo and ωoo. The irregularity in Fig. 38 can also be attributed to

the error in the approximation.
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Fig. 37. Frequency-tuning error with a parasitic zero at X f0.

4. Resolution of DAC-Counter Pair

One limitation of the proposed tuning circuit architecture in Section B is the effect

of the finite resolution of the DAC-counter pair (Lc) on the tuning accuracy (see

Fig. 32). First of all, the output voltage range of DAC should be large enough to

cover the process variation. For a given filter design, the required voltage range

can be determined by Monte-Carlo and corner simulations. The next step is to
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Fig. 38. Q-tuning error with a parasitic zero at X f0.

determine the minimum required resolution so that the error due to finite resolution

is reasonably small.

Let the amount of the expected center frequency variation is ∆f0. Assume the

variation is exactly covered by the output voltage range of DAC and the center

frequency, f0, is linearly proportional to the control voltage. Based on these as-

sumptions and ignoring other limitations, the frequency-tuning error can be written

as

f0 error =
∆f0/2Lc

fd0
· 100% (4.46)

where fd0 is the desired center frequency. Note that ∆f0/2Lc is the center frequency

shift corresponding to one increment of the control voltage. If ±50% variation for

the center frequency is assumed, i.e., ∆f0 = fd0, (4.46) simplifies to

f0 error =
1

2Lc
· 100% (4.47)
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For 1% frequency tuning error, Lc should be at least 7 bits from (4.47).

For Q-tuning, bandwidth variation as well as f0 variation play role on the tuning

accuracy. Considering only the error due to finite resolution, Q can be written as

Q =
fd0 ±

∆f0

2Lc

BW ± ∆f0

2Lc

(4.48)

where BW is the desired bandwidth value. (4.48) can be further simplified;

Q =

fd0

(

1 ± ∆f0/fd0

2Lc

)

BW

(

1 ± ∆f0/BW

2Lc

) (4.49)

=

fd0

(

1 ± ∆f0/fd0

2Lc

)

BW

(

1 ± Q∆f0/fd0

2Lc

) (4.50)

= Qd











1 +

∆f0/fd0

2Lc
(1 ∓ Qd)

1 ± Qd
∆f0/fd0

2Lc











(4.51)

where Qd is the desired quality factor (Qd = f0d/BW ) .

From (4.51), Q-tuning error can be written as

Q error =

∆f0/fd0

2Lc
(1 ∓ Qd)

1 ± Qd
∆f0/fd0

2Lc

· 100% (4.52)

For ±50% center frequency variation, the Q-error expression simplifies to

Q error =
1 ∓ Qd

2Lc ± Qd

· 100% (4.53)

≈ Qd

2Lc ± Qd
· 100% (4.54)

Using (4.47) and (4.54), one can determine the resolution required for DAC-
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counter pair for ±50% variation of center frequency. Note that in the worst case,

the sign of Qd in the denominator in (4.54) will be minus. Obviously, for a given

resolution, larger Qd increases the error. Fig. 39 shows the minimum required reso-

lution to achieve 1% Q-tuning accuracy in the worst case for ±50% center-frequency

variation.
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Fig. 39. Minimum required resolution Lc for 1% Q-tuning error (worst case).

D. Simulation Results

The tuning system is simulated using Matlab. Figure 40 shows the snapshots of

bandpass magnitude and lowpass phase responses during simulation. Initially, the

filter has low Q and low f0 as indicated green solid curve. The tuning start with

increasing f0, note that the control voltage VF is inversely proportional to f0 (Fig. 41).

Once f0 is between f1 and f2, Q starts increasing. Eventually, both parameters



52

converge to desired values. The system is simulated in Cadence using ideal filter and

tuning circuit. Figure 42 shows the convergence of control voltages. Zoomed version

clearly shows that VF and VQ do not change simultaneously.
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Fig. 40. Snapshots of filter response during tuning.



53

0 100 200 300 400 500
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

time

V
F
 

V
Q

 

Fig. 41. Transient response of control voltages (Matlab simulation).

Fig. 42. Transient response of control voltages (Cadence simulation).
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E. Prototype Design

Discrete version of automatic tuning circuit is built on a Printed Circuit Board (PCB)

to verify the system experimentally.

1. Filter

A discrete LC-type filter shown in Fig. 43 is used as tunable high-Q filter. A chip

inductor and a chip capacitor are used to achieve high-Q values. Frequency tuning

is achieved through voltage variable capacitance diodes (NTE 612, 614 and 616 with

33 pF, 12 pF and 5 pF diode capacitances connected in parallel). Q-tunability

is accomplished by JFET N-channel transistor connected to the output node. The

current drawn from the output node is controlled by VQ control voltage, consequently,

it changes the quality factor of the filter. The component values are given in Table II.

It is not explicitly shown, but large bypass capacitors and a buffer (MAX4005) at the

output are used for filter characterization. Note that this filter has only one output

which is bandpass. Therefore, the reference signals are slightly modified.

Vin

VF Cb1

R1

R2

Cb2

V V

4

VQ

Vout

DD SS

R3
R

LC

Fig. 43. Tunable discrete LC-type filter.
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TABLE II

Component values used for LC-type tunable filter

L 0.56 µH

C 330 pF

Cb1, Cb2 10 nF

R1 10 kΩ

R2 1 kΩ

R3 150 kΩ

R4 56 kΩ

2. Tuning Circuit

Discrete version of the tuning circuit is constructed using various commercial chips.

Three MAX4223 chips are used as comparators. One is used in the signal path

to convert sinusoidal signal to rail-to-rail signal, and the other two are used in the

reference path for delay compensation.

D Q

Q

D Q

Q

D Q

Q

D Q

Q

V−45 V
Ref

0 V45

Fig. 44. Reference phase generator circuit.
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Quad D-type flip-flop chips (VHC175) are used for the generation of the reference

clock and 45◦ delayed versions (see Fig. 44) and binary phase comparators (see

Fig. 32). Since the filter does not have lowpass output, V−45 and V45 clock signals

are used as references instead of V−135 and V−45. Up/down counter and logic circuit

is constructed by using 74 family integrated circuits. Table III shows the complete

list of commercial ICs used in the test setup.

TABLE III

Commercial ICs used in the test setup of prototype tuning system

MAX4223 1 GHz Current feedback amplifier

MAX4005 950 MHz FET-input buffer with 75 Ω output

VHC175 Quad D-type flip-flop chip

SN74F00N Quad 2-input nand-gate

SN74F04N Hex inverters

SN74F08N Quadruple 2-input positive and-gate

SN74F74N Dual positive-edge-triggered DFFs with clear and preset

74LS14N Hex inverter schmitt trigger

74F191N Up/Down binary counter with reset and ripple clock

A simple 8-bit digital-to-analog converter shown in Fig. 45 is built with LM741

opamps. The second opamp stage allows the adjustment of output control voltage

level through V1 and V2 bias voltages.
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Fig. 45. Simple DAC circuit based on summing amplifier.

F. Experimental Results

The discrete prototype circuit discussed in the previous section is constructed and

the tuning system is verified experimentally. Agilent 81110A-pulse generator is used

as the frequency synthesizer. Synchronization of FS and the tuning circuit is achieved

through a computer using Labview, which sends a signal to FS to switch frequency

generated f1 or f2. Right before sending the switch-frequency signal, it sends a rising

edge to tuning core circuit (see Fig. 32) and the result of binary phase comparison

is sampled to the succeeding DFF. Once both phase comparisons performed, i.e., A

and B are determined, Labview sends update signal to counters.

Since the system is digital, the tuning speed can be as slow as desired. With

this setup, the duration of a single tuning slot is limited by slow GPIB connection.

In general the speed of the tuning circuit is limited by the settling time of FS and

resolution of DAC-counter pair. The control voltages VF and VQ are observed for

a while, when they converged, the tuning circuit is disabled. Then, using spectrum

analyzer, the tuned magnitude response is measured for different target center fre-

quency and Q values. Since an external FS is used, target f0 and Q values do not

have to be fixed. Therefore, the experiment was repeated for various target values
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within the tuning range of the filter. Figure 46 shows the measured bandpass filter

magnitude response for a fixed desired Q (Qd = 18) and varying reference frequency.

Table IV summarizes the results. In Fig. 47, the reference frequency is fixed at fR

= 5.4 MHz and the desired Q is varied. Table V summarizes the measurement data

for this plot. Due to discrete design, offline tuning method is preferred in order to

verify the operation.

TABLE IV

Frequency-tuning range for Qd = 18

Desired Tuned Error (%)

fR (MHz) Qd f0 (MHz) Q F Error Q Error

5.2 18 5.20 18.1 0.0 +0.6

5.4 18 5.39 18.2 -0.2 +1.1

5.9 18 5.86 18.2 -0.7 +1.1
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Fig. 46. Measured bandpass filter magnitude response for fixed target Q of 18 and
target center frequencies of 5.2, 5.4, and 5.9 MHz.
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Fig. 47. Measured bandpass filter magnitude response for fixed center frequency
of 5.4 MHz and target Qs of 16, 18, and 20.
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TABLE V

Q-tuning range at fo = 5.4 MHz

Desired Tuned Error (%)

fR (MHz) Qd f0 (MHz) Q F Error Q Error

5.4 16 5.39 15.8 -0.2 -1.2

5.4 18 5.39 18.2 -0.2 +1.1

5.4 20 5.38 20.0 -0.3 0.0
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CHAPTER V

HIGH-ORDER DIGITAL-TUNING METHOD BASED ON PHASE

COMPARISON

In this chapter, an automatic tuning technique is proposed for the tuning of high-

order filters [42]-[43]. As mentioned in Chapter III, efficient high-order automatic

tuning techniques with direct tuning approach are required while no practical method

has been reported in the literature yet. High-order digital-tuning method based on

phase comparison (HDTPC) is an extension of DTPC to high-order filters. The

principle, practical limitations, circuit implementation, simulation, prototype design,

and experimental results are presented.

A. Principle

A high-order filter can be constructed by cascading biquads as shown in Fig. 48.

Each biquad section has its own desired center frequency (f0di) and quality factor

(Qdi). Lowpass outputs (Vlp) are used for convenience as in the case of DTPC since

it has relatively large gain at low frequencies. Note that only difference between

lowpass and bandpass outputs is the 90◦ phase shift in terms of phase response.

inV

Qd1 Qd2 QdN

.. .
outV
lpNVlp1V lp2VLP

BP

LP

BP

f0d1 f0d2

LP

BP

f0dN

Fig. 48. A bandpass filter formed by cascading biquads.
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Define the phase response seen at the ith lowpass output as,

φi(f) = 6
Vlpi

Vin
(5.1)

The tuning circuit applies two reference frequencies for each biquad and calibrates

each lowpass output phase to satisfy the following

φdi(fai) = φai (5.2)

φdi(fbi) = φbi (5.3)

where φdi(f) is the desired phase response at the output Vlpi and fai, fbi, φai and

φbi are reference frequencies and phases, respectively. How to determine reference

frequencies are explained in the following section (Section B). Note that for φa1 =

−45◦ and φb1 = −135◦, the situation simplifies to second-order case (see Chapter IV).

Analytical expressions for tuned f0ti and Qti can be found as follows. Lowpass

phase response of a single biquad is given as

φlp(f) = − tan−1

(

f f0/Q

f 2
0 − f 2

)

(5.4)

while bandpass phase is given as

φbp(f) = 90◦ − tan−1

(

f f0/Q

f 2
0 − f 2

)

(5.5)

When the systems are connected in cascade, the phase responses of the individual

systems are added. Using (5.5), the phase at ith output can be written as

φi(f) = 6
Vlpi

Vin
= (i − 1) 90◦−

i
∑

j=1

tan−1

(

f0jf/Qj

f 2
0j − f 2

)

(5.6)

Solving (5.3), (5.2), and (5.6) simultaneously for fai = kaifR and fbi = kbifR, where

fR is a fixed reference frequency and kai and kbi are scaling factors, the expressions
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for tuned values f0ti and Qti can be found as

f0ti = fR

√

k2
bi − k2

ai

1 − Λi
+ k2

ai , (5.7)

Qti =
kai

Γi(k2
bi − k2

ai)

√

(Λik2
ai − k2

bi)(Λi − 1) (5.8)

where

Λi =
kbiΓi

kai tan



(i − 1) 90◦ − φbi −
i−1
∑

j=1

tan−1

(

f0jkbifR/Qj

f 2
0j − f 2

Rk2
bi

)





(5.9)

and

Γi = tan



(i − 1) 90◦ − φai −
i−1
∑

j=1

tan−1

(

f0jkaifR/Qj

f 2
0j − f 2

Rk2
ai

)



 (5.10)

An algorithm has to be implemented that will converge and achieve the tuning

conditions given in (5.2) and (5.3) at the steady state. Define two binary numbers

Ai and Bi to indicate whether the phases at the reference frequencies is larger or

smaller than the reference phases

Ai =















0 , φi(fai) > φai

1 , φi(fai) < φbi

(5.11)

Bi =















0 , φi(fbi) > φai

1 , φi(fbi) < φbi

(5.12)

Assuming the parameters of previous biquads f0i and Qi are tuned close to

the desired values, based on the definitions of Ai and Bi, four different plots can

be generated for ith lowpass output as shown in Fig. 49. Only one tuning action is

assigned for each case as summarized in Table VI. The previous discussion on DTPC

can be repeated here for high-order tuning as well. In Fig. 49(a) and (b), f0i has to

be increased and decreased, respectively. In Fig. 49(c) and (d), however, Qi has to

be decreased or increased, respectively. Dashed lines indicating reference frequencies
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and phases show the tuning reference window. When the filter is tuned, the phase

curve will pass through the cross-section points.

TABLE VI

Tuning process for the ith biquad, enabled only if Ai−1 ⊕ Bi−1 = 1

Case Ai Bi Action

(a) 1 1 f0 ⇑

(b) 0 0 f0 ⇓

(c) 0 1 Q ⇓

(d) 1 0 Q ⇑

The tuning for ith biquad should be enabled when the center frequency of the

(i− 1)th biquad is tuned close to the target value for reliable tuning. The tuning for

ith biquad can be conditioned on the status of the previous biquad. Note that when

the Q tuning is enabled for ith biquad, its center frequency is within the reference

window, i.e., fa(i−1) ≤ f0t(i−1) ≤ fb(i−1). From the truth table given in Table VI, it

can be seen that Q tuning for (i − 1)th biquad is enabled when Ai−1 ⊕ Bi−1 = 11.

Note that the tuning of the first biquad is always enabled.

The flowchart describing the overall tuning algorithm can be seen in Fig. 50.

The tuning circuit performs all the phase comparisons in one tuning cycle starting

from the first lowpass output, i.e., Ai and Bi are determined, and consequently the

tuning logic determines the tuning actions whether to increase or decrease Qi or

f0i. After processing the last output, at the end of the tuning cycle, all the control

voltages (Vfi and Vqi) are updated. Then the next tuning cycle starts.

1⊕ represents the XOR operation
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Fig. 49. Phase response at the output Vlpi, φi(f), for different states of the ith

biquad.
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Fig. 50. A flowchart showing the overall tuning procedure for high order filters.

Initially, there will be some error since the previous biquads are not tuned cor-

rectly; however, the errors will converge to zero as the outputs are tuned. Eventually,

all the outputs and the overall output response of the filter will be tuned correctly.

As long as the tuning is enabled, the tuning loops will be functional indefinitely.

After certain point in time, all the loops converge, the tuning can be disabled and

the filter can be used to process signals. The convergence of the tuning loops can

also be sensed by digital means since up-down control signals will toggle between 1

and 0 at steady state.

B. Determination of Reference Frequencies and Phases

For a (2N)th order filter, the reference frequencies (fai, fbi) and the reference phases

(φai, φbi) are needed to be determined. The following graphical approach can used.

Each lowpass output phase, φi(f), is plotted by varying Qi around the desired value
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Qdi with previous biquads having the desired values, i.e, Qj = Qjd and f0j = f0jd

for 1 ≤ j ≤ i − 1. As an example, the third output of an arbitrary filter is plotted

in Fig. 51 with ±50% variation of Qi from the desired value. All the curves with
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Fig. 51. φi(f) with ±50% variation of Qi from the desired value (for i=3).

different Qs cross at certain critical phase φci. The references maximizing ∆φ/∆Q

and satisfying the following conditions should be chosen.

φai > φci > φbi (5.13)

φai = −Pai
180◦

M
(5.14)

φbi = −Pbi
180◦

M
(5.15)

where Pai, Pbi, and M are integers numbers. Being multiple of 180◦/M serves certain

circuit implementation purposes, which will be addressed in Section E. Also having

larger variation of phase at the reference frequency is desired to have less sensitivity

to any possible phase offsets in the circuit implementation (see Sections C and E). φci
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can be different for different types of filters depending on individual quality factors

and center frequencies of the previous sections. The condition in (5.13) guarantees

proper operation of the tuning as shown in Table VI. For the particular example

shown in Fig. 51 −135◦ and −270◦ are chosen, and corresponding frequencies are

extracted from ideal filter response either graphically or numerically.

C. Limitations

In this section, practical limitations of the tuning technique such as resolution of

frequency synthesizer, phase offset of the detector, and parasitics of the filter are

analyzed.

1. Resolution of Frequency Synthesizer

The reference frequencies eventually will be generated by using a single frequency

synthesizer. The resolution of the synthesizer may become an issue, especially when

many different reference frequencies are needed to be generated.

A conventional frequency synthesizer with a resolution of L generates signals at

frequencies fR, 2fR, 3fR, · · ·2LfR, where fR is the fixed input signal to the synthesizer.

fR can be chosen as the maximum reference signal to be generated divided by 2L as

fR =
max(fai, fbi)

2L
(5.16)

As previously defined, scaling factors kai and kbi are given as

kai =
fai

fR
(5.17)

kbi =
fbi

fR
(5.18)
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kai and kbi can be approximated by rounding them to the closest integer,

Kai = round(kai) (5.19)

Kbi = round(kbi) (5.20)

Substituting (5.19) and (5.20) into (5.7)-(5.10), exact tuning errors can be found

for each Q and f0. The errors are not necessarily additive from one biquad section

to another; an error in a particular biquad may compensate errors in succeeding

biquad(s) or worsen. This depends on particular design, i.e, type of the filter, choice

of L and fR. One rough measure of error is the deviation of Kai or Kbi from the

desired value,

Error =
|Ki − ki|

ki

(5.21)

Worst case rounding error can be |K − k| = 0.5. Ignoring the effects of the previous

filter sections, the largest frequency error for a biquad section is encountered when

the rounding errors are in the same direction such as

Kai = kai + 0.5 (5.22)

Kbi = kbi + 0.5 (5.23)

or

Kai = kai − 0.5 (5.24)

Kbi = kbi − 0.5 (5.25)

However, the following gives the largest Q error

Kai = kai + 0.5 (5.26)

Kbi = kbi − 0.5 (5.27)
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or

Kai = kai − 0.5 (5.28)

Kbi = kbi + 0.5 (5.29)

The worst-case frequency-tuning error with respect to L is plotted for different

target Q values in Fig. 52. The error is found to be less than 0.2% for L > 8 bits.

The frequency error shows negligible dependence on quality factor. Figure 53 shows

that the worst case Q tuning error increases as Qd increases as expected since it

requires more resolution with decreasing bandwith of the biquad section. 11 bits is

required to achieve 1% tuning accuracy for Qd of 40 (in the worst case).
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Fig. 52. Worst-case frequency-tuning error for a fixed center frequency.

The effect of resolution on a 6th-order prototype filter (with Qs of 33, 16, 33) is

illustrated in Figs. 54 and 55. Lower precision causes ripples in the passband region

due to relatively large Q-tuning errors, while the center frequency error is less. For
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Fig. 53. Worst case Q-tuning error for a fixed center frequency.

this particular case, the tuned magnitude response and the desired response are in

a good agreement for 8-bit resolution although the worst case analysis yields 20%

Q-tuning error for the prototype filter.

The performance of the tuning circuit can be improved by employing a narrow-

band frequency synthesizer [44]. In the FS model, the frequency synthesizer covers

low-frequency band unnecessarily. Note that high-Q filters are usually narrow de-

vices. A narrow-band frequency synthesizer can be used to achieve better tuning

accuracy for a given resolution.
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Fig. 54. L vs tuned (normalized) magnitude response.
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2. Phase Offset Error

The tuning method does not require the detection of absolute phase values. Hence, a

binary phase comparator can be employed; however, any possible phase offset in the

comparison or any additional delay in the reference path or signal path will degrade

the performance of the overall system.

Figures 51 and 56 illustrate the phase variation at references with a variation

of Q by ±50% and center frequency by ±10%, respectively. The phase change at

references are more sensitive to the center frequency variation. Consequently, the

frequency tuning is expected to be more robust to the phase offset errors.
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Fig. 56. φi(f) with ±10% variation of f0i from the desired value (for i=3).

Assume ∆φai and ∆φbi to be the phase offsets, then (5.2) and (5.3) become

φdi(fai) = φai + ∆φai (5.30)

φdi(fbi) = φbi + ∆φbi (5.31)
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By solving (5.30) and (5.31), the tuned values f0ti and Qti, and the error can be

found. The previous results given in Eqs. (5.7) - (5.10) are still valid with the

exception that φai and φbi are replaced with φai + ∆φai and φbi + ∆φbi, respectively.

For a given design, assuming different phase offsets, the tuning errors for each f0 and

Q can be calculated by using the resulting equations. For high-order filters, there is

no commonly accepted tuning-error measure. One way to define the tuning accuracy

would be in terms of accuracy of the center frequency or bandwidth of the overall

filter response.

To see the overall effect of individual f0 and Q-tuning errors, the filter response

can be plotted and compared with the desired response to evaluate the performance

of the tuning. Assuming |∆φai,bi| = 0◦, 5◦, 10◦, and 15◦, the tuned responses of a

6th-order Butterworth (with Qs of 33.2, 16.6, and 33.2) and a 6th order Chebyshev

filters (with Qs of 71.4, 35.7, and 71.4) are shown in Figs. 57 and 58, respectively. In

both cases, additional phase offsets increase the ripple in the passband regions while

the center frequencies of the filters are affected relatively less. The ripple error due

to phase offset is relatively larger in the case of Chebyshev due to larger Q values.
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Fig. 57. Effect of phase offset error on tuned magnitude response of a 6th-order
Butterworth filter.
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Fig. 58. Effect of phase offset error on the tuned magnitude response of a 6th-order
Chebyshev filter.
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3. Parasitic Pole and Zero Effect

In the ideal case, a biquad has only two poles. In reality, there might parasitic poles

and zeros at higher frequencies. To illustrate the effect of the parasitics on the tuning

performance, a Gm-C filter shown in Fig. 59 will be analyzed. The transfer function

VBP
VLP

VI

C
C

Gm
Gm

Gmq

KGm

Fig. 59. A second-order Gm-C filter.

seen at bandpass output can be written as

H(s) =
VLP

VI
=

sKGm/C

s2 + s Gmq/C + (Gm/C)2
(5.32)

A Gm having a parasitic pole at a frequency ωp can be modeled as [40], [41]

Gm =
Gm0

1 +
s

ωp

(5.33)

X is defined to represent the relative location of parasitic pole,

X =
ωp

Gm0/C
(5.34)

Equation (5.33) can be rewritten in terms of X,

Gm =
Gm0

1 + s
C

XGm0

(5.35)
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By substituting (5.35) into (5.32), the modified transfer function can written as a

function of X

Hp(s) = K

s
Gm0/C

1 + s C/XGm0

s2 + s Gmq/C +

(

Gm0/C

1 + s C/XGm0

)2 (5.36)

Similarly, a Gm having a parasitic zero at a frequency ωz can be modeled as,

Gm = Gm0

(

1 +
s

ωz

)

(5.37)

and X can be defined as

X =
ωz

Gm0/C
(5.38)

In this case, the modified transfer function can be found as

Hz(s) = K
s2/X + s Gm0/C

s2 + s

(

Gmq/C + 2Gm0/XC

1 + 1/X2

)

+
(Gm0/C)2

1 + 1/X2

(5.39)

In the presence of parasitics (one pole and one zero cases), the modified transfer

functions are found as in (5.36) and (5.39). Note that Q and f0 is only defined for

2nd-order systems and with the inclusion of a parasitic pole, the modified transfer

function is not biquadratic. Instead, effective center frequency can be defined as the

frequency where the gain is maximized,

ω̂0 = arg maxω

(

|Hp,z(jω)|
)

(5.40)

Parasitic poles and zeros will cause slight phase shift at the reference frequencies. To

simplify the analysis, the phase shifts at the references can be assumed to be equal

to the phase shift at the effective center frequency of the filter. Hence, equivalent

phase offset can be expressed as

Equivalent phase offset = 6 Hp,z(jω)
∣

∣

∣

∣

ω=ω̂0

(5.41)
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Equivalent phase offsets versus relative location of the parasitic pole or zero (X) is

plotted2 in Fig. 60. Both pole and zero cause almost the same amount of phase

shifts but in the opposite direction. In case Gm has both parasitic pole and zero,

their effect may cancel each other.
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Fig. 60. Equivalent phase offset due to parasitic pole and zero in the transconductor:
equivalent phase offset vs. relative location of parasitic.

Once the equivalent phase offset is found, as described in Section C-2, the tuned

filter response can be superimposed with the ideal response in order to see the effect.

Alternatively, a specification (X) for the transconductor element can be extracted

by finding the maximum tolerable phase offset error.

D. Design Procedure and a Design Example

A general design flow diagram for HDTPC is given in Fig. 61, which is implemented

in Matlab (refer to Appendix E). Bandpass filter specification may include the

2Refer to Appendix D for the Matlab code
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passband (fp1, fp2) and the stopband frequencies (fs1, fs2), maximum attenuation

in the passband (αmax), minimum required attenuation in the stopband (αmin), and

filter type. The first step is to approximate the magnitude response of the filter

satisfying the given specifications. A prototype Butterworth bandpass filter is chosen

as specified in Table VII.

TABLE VII

Specifications of the prototype filter

Filter Type Butterworth

Passband frequencies (MHz) fp1,fp2 18.81, 19.67

Stopband frequencies (MHz) fs1,fs2 18.03, 20.52

Max. attenuation in passband (dB) αmax 3

Min. attenuation in stopband (dB) αmin 20

The block “Filter approximation” in Fig. 61 produces the minimum number of

required biquads, desired center frequencies (fd0i) and quality factors (Qdi) as shown

in Table VIII. The order of the biquad sections can be arranged arbitrarily. To

optimize the dynamic range of the overall filter, it is desirable to order biquads from

minimum to maximum Q value in an increasing fashion. N is found as 3 so the

prototype is a 6th-order bandpass filter with three biquads.

Next step is to “Determine references” as described in Section B. M is chosen as 4

so that all the reference phases will be multiple of 45◦. The phase response seen at the

first output is shown in Fig. 62. As in DTPC case, the optimum references are −45◦

and −135◦. The phases at the second and the third outputs are shown in Figs. 63

and 64. All the reference phases and corresponding frequencies are summarized in
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DESIGN SPECS
filter type

Qdifd0i

φai φbi fai fbi

K

0i Qi

Increment
L

Initialize
L=5

Kai φbibi φaifR
fd0i Qdi

L
OUTPUTS

N

N

Satisfy?

Yes

No

Filter approximation

Determine references

Tuning process

Check design specs

Fig. 61. Design flow diagram.
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TABLE VIII

Desired f0 and Q values for the example

Biquad # 1 2 3

fd0i (MHz) 18.74 19.23 19.75

Qdi 33.23 16.61 33.23

Table IX.

18 19 20

−135

−90

−45

0

Frequency ( MHz )

P
ha

se
 (
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 )

Fig. 62. Phase at the first output, φ1(f).

Ignoring the other effects, if all the references could be generated exactly, the

tuned filter response would be same as the desired response. The function of the

“Tuning process” block in Fig. 61 is to determine required resolution of the frequency

synthesizer (L). The process starts with an initial small value of L such as 5. fai and
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Fig. 63. Phase at the second output, φ2(f).
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Fig. 64. Phase at the third output, φ3(f).
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TABLE IX

Reference frequencies and phases for the prototype design

i 1 2 3

fai (MHz) 18.488 18.881 19.432

fbi (MHz) 19.039 20.140 20.061

φai (deg) -45 -90 -135

φbi (deg) -135 -225 -270

fbi are approximated with the given resolution as (see Section C-1 for details)

fR =
max(fai, fbi)

2L
(5.42)

f̂ai = fR · Kai (5.43)

f̂bi = fR · Kbi (5.44)

Substituting (5.43) and (5.44) into (5.7) and (5.8), tuned values of f0ti and Qti are

calculated.

The filter response is reconstructed with tuned values, and checked to see whether

all the initial filter specification given are satisfied. If not, L is incremented by 1.

This loop continues till the design specs are satisfied.

Besides N , fd0i, and Qdi, the overall output of the design procedure is L, fR,

Kai, Kai, φai and φbi for 1 ≤ i ≤ N as given in Table X for the prototype design. The

design procedure, although seem to be burdensome at first, can be easily implemented

with any programming language. Refer to Appendix E for the Matlab code.
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TABLE X

Reference frequencies, phases, and K values for the prototype

design

Resolution L 8

Number of biquad N 3

i 1 2 3

Kai 235 240 247

Kbi 242 256 255

φai (deg) -45 -90 -135

φbi (deg) -135 -225 -270

E. Circuit Implementation

Circuit implementation of the overall high-order tuning system is shown in Fig. 65.

The filter consists of N biquadratic sections. Each biquad has control voltages Vf and

Vq to adjust the center frequency and Q. All the reference phases and frequencies are

generated by a frequency synthesizer (FS). V0 is applied to the filter. Delayed versions

of V0, Vφji
j = a, b and i = 1, 2, . . . , N , are also available from FS. Each lowpass

output, after converting to rail-to-rail clock signal by using a comparator, is processed

by the tuning circuit. The control voltages are generated by the tuning circuit and

fed back to filter. A clock generator circuit is used to achieve the synchronization of

FS and the tuning circuit.

Frequency synthesizer, which is shown in Fig. 66, generates reference signals

at frequencies of fR Kji for j = a, b and i = 1, 2, . . . , N . The frequency applied

is controlled by clock signals (see Fig. 67), which can be obtained from the clock

generator circuit shown in Fig. 68. When CLKb1 is high, for instance, the frequency
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Fig. 65. Complete high-order tuning system.
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Fig. 66. Programmable frequency synthesizer.
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fR · Kb1 is generated.

. . .
CLKb1

CLKa1

CLKaN

CLKbN

CLK

time ( s )

( 
V

 )

. . .

. . .

. . .

. . .

. . .

Fig. 67. Synchronizing clock signals.

D Q

Q

D Q

Q

CLK CLKbN

D Q

Q

D Q

Q

aN

CLK
...

a1 CLKb1 CLK

...

Fig. 68. Clock generator.

A ring voltage-controlled oscillator (VCO) is employed to generate the reference

phases as shown in Fig. 69. The number of OTAs depends on the choice of M (see

Section B for details). ∆φ is the minimum possible phase difference between two

references and defined as

∆φ =
180◦

M
(5.45)
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(M−1)V ∆φV2∆φV∆φ

VC

V2∆φ V(M−1) ∆φV∆φ

. . .

. . . V0

V0

Fig. 69. Ring oscillator (assuming M is even).

The tuning circuit for the ith biquad section is shown in Fig. 70. The first

DFFs perform binary phase comparisons. The second set of DFFs stores Ai and

Bi until CLKbN makes high-to-low transition. All the up-down signals, which are

generated by AND-gates, will have correct values right before CLKbN makes high-to-

low transition. Then, frequency and Q counters are updated, DACs converts digital

output of counters to analog signals to generate Vfi and Vqi.

D Q

Q

D Q

Q

A

Vfi

Vqi

A
C

D

A
C

D

Voi

aiφV

biφV

CLKbi

CLKai

CLKbN

D Q

Q

D Q

Q

Bi−1

i−1

Bi

Ai

UP

DN

DN

UP

Fig. 70. Tuning circuit for the ith biquad.

F. Simulation Results

The prototype 6th-order Butterworth bandpass filter specified in Table VIII is sim-

ulated in Cadence with parameters given in Table X. In the simulation, an ideal



89

FS and filter are used to reduce the simulation overhead. Transient responses of

the control voltages, Vfi and Vqi, are shown in Figs. 71 and 72, respectively. Tuning

circuit first starts increasing Vf1, while all the other controls are kept the same. Once

the center frequency of the first biquad is tuned to the reference window (around

t = 200 µs), Q tuning is enabled, i.e, Vq1 decreases. Since f01 is tuned to the reference

window (fa1 ≤ f01 ≤ fb1), frequency tuning for the second biquad is enabled, i.e, Vf2

decreases. Then, Q tuning for second biquad and frequency tuning for the third bi-

quad are enabled. Eventually, all the control voltages are tuned correctly. With the

converged control voltages, the tuned magnitude response is plotted together with

the ideal response in Fig. 73. As it can be seen, the tuned and the desired responses

closely match although largest Q tuning error is 2.5% due to finite resolution of FS

(L = 8).

Fig. 71. Transient response of frequency control voltages.
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Fig. 72. Transient response of Q control voltages.

Fig. 73. Desired and tuned filter magnitude responses (simulation result for L = 8).
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G. Prototype Design

This section summarizes the prototype tuning system for a 6th-order bandpass filter

designed in transistor-level and fabricated in conventional 0.5 µm CMOS technology.

1. Filter

The biquad sections of the filter are realized by the Gm-C topology shown in Fig. 74

with C = 2.5 pF. Figure 75 shows the transistor-level operational transconductor

amplifier (OTA), where source degeneration improves the linearity [45]. Resistors

are realized by poly 1 layer. Overall transconductance of this architecture is given

by

Gm =
gm

1 + gmR
(5.46)

where gm is the transconductance of the input transistors. It can be tuned by chang-

ing the tail current through Vcntrl. R values are chosen as 800 Ω, 10 kΩ, and 10 kΩ

for Gm and Gmi, and Gmq, respectively.

2C

2C

G mVI

2C

2C

VLP VBPGmi Gmq m G

Fig. 74. Gm-C type biquad section of the filter.

Note that OTA circuit has high output impedance so DC level at the output

is not well defined. A common-mode feedback (CMFB) circuit is required to adjust

the DC level at the output. The circuit shown in Fig. 76 is employed as CMFB

circuit [35]. The output common-mode level can be sensed from Vcm of the next
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Fig. 75. Source-degenerated differential OTA circuit realizing Gm.

VSS

VDD

Vcmfb b

2Ib

I

Vcm

Fig. 76. Common-mode feedback circuit.
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OTA circuit [15]. Then, Vcm is compared with reference voltage level, which is

ground. Hence, Vcmfb voltage is generated and applied to the tail transistors.

Fig. 77. AC magnitude responses of Gm and Gmq.

The AC magnitude responses of Gm and Gmq are shown in Fig. 77. As it can be

seen, nominal values are 620 µA/V and 64 µA/V. OTA has a parasitic zero located

at 4.286 GHz. That implies an X of about 200 for a desired center frequency of

20 MHz. Figure 78 shows tuning range of Gm and Gmq. Approximately ±100%

tuning range can be achieved.

Although the tuning circuit corrects the process variations, the tuning circuit

may need to be optimized regarding control voltage range, sensitivity of the filter

parameters to the control voltages, and required resolution in order to achieve better

accuracy. Monte Carlo and corner parameter simulations can be performed to see the

effect of the process variations on the design parameters. In Monte Carlo simulations,
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Fig. 78. Tuning range of transconductors.

some of the parameters such as threshold voltage and mobility are defined by random

variables with certain mean and standard deviation. In corner simulations, on the

other hand, model files with fast (F), slow (S), and typical (T) corner parameters,

which are provided by MOSIS, are used for transistors. The actual circuit behavior

would be most likely within the simulated results. Simulations are performed with

different corner parameters to see the variation of nominal transconductor values for

the prototype design. Variation of Gm AC magnitude response is shown in Fig. 79.

Transconductor and parasitic-zero frequency (fz) values are summarized in Table XI.

2. Tuning Circuit

At steady state, the filter output signals will have the same phase as the reference

phases. DFF is supposed to perform binary phase comparison; however, there is a
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Fig. 79. Corner simulations for AC magnitude response.

dead zone that DFF output is not correct because positive edges of two inputs (D

and φ) are too close. Therefore, fast DFF with minimal dead zone are needed to

minimize phase offset errors. True Single Phase Clock (TSPC) type DFFs shown in

Fig. 80 are employed as phase comparator.

The comparator circuit is given in Fig. 81. The comparators are used to convert

sinusoidal outputs of filter to rail-to-rail clock signals. It is crucial that the compara-

TABLE XI

Corner simulations results for OTA

Parameter TT SS SF FS FF

Gm ( µ A/V ) 620 595 660 590 650

fz ( GHz ) 4.29 4.56 3.98 4.67 4.06
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Fig. 80. TSPC-type fast DFF.

tors are fast so that rise and fall times of the output signal are small. M3 provides

positive feedback and boosts the gain. M5 and M7 forms the second gain stage. Note

that the path through M ′
4-M

′
6-M7 provides additional gain. Since the comparators

are used in open loop, additional gain stages can also be added. Input stage needs to

be carefully designed to minimize the offset; using common-centroid, inter-digitized

input transistors methods in the layout.

VDD

Vb

VSS

Vin+
Vin−

Vout+

33

Vout−

’MM1

’M2M4M5

M7 M6 MB

M M’M

1

2

’M7

’M4 ’M5

’M6

Fig. 81. Comparator circuit.
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An external FS is used for the prototype design. Reference signals are generated

on chip by utilizing the frequency-divider circuit shown in Fig. 82. This circuit

divides the frequency of input signal Ref by 8 to achieve 45◦-delayed clock signals.

Therefore, the reference signal generated by the external FS has to be 8 times higher

frequency than the actual reference frequencies.

D Q

Q

D Q

Q

D Q

Q

D Q

Q

V0

V−315 V−225

V−45V−90V−135

V−270

Ref

Fig. 82. On-chip reference phase generator circuit.

H. Experimental Results

The prototype filter designed in Sections F and G was fabricated in AMI 0.5 µm

CMOS technology with two poly and three metal layers. Layout, DRC (design-rule-

checker), extraction, LVS (layout-versus-schematic) tools of Cadence were used to

design and verify the circuits before fabrication.

The micrograph of the designed chip is shown in Fig. 83. Agilent 81110A 165/330

MHz Pulse/Pattern Generator was used to generate the reference signal Ref . The

tuning loops were completed on a PCB (printed circuit board) with the external

counters and DACs. Upon convergence of the tuning loops, the control voltages

were recorded. Then, the tuning was disabled, and the same control voltages were

applied to the filter. The tuned magnitude response of the filter is captured from
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Fig. 83. Micrograph of the chip.
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network analyzer as shown in Fig. 84. Synchronization of the FS and the tuning

circuit was achieved through a computer using Labview. During the measurements,

the speed of the tuning circuit was kept low. In fact, arbitrarily large tuning period

(set by CLK in Fig. 67) can be chosen since the phase information is stored on D

latches. The lower limit of the tuning period is set by the settling time (ts) of the FS.

It also depends on the resolution of the counter (Lc) and the order of the filter (N).

The tuning will converge roughly in N 2Lcts. For N = 3, Lc = 8, and ts = 10 µs,

the convergence time is less than 8 ms.

The center frequency was tuned with 0.7% error while the bandwidth was smaller

than expected. Ideal filter response is indicated as dashed lines on the measured

response (Fig. 84). The error can be partially attributed to the comparators used

at the lowpass outputs, although the comparator circuits used are expected to have

negligible delays. One solution can be using faster comparators. Another solution

would be to develop a better phase comparator technique to eliminate the use of

comparators. Another source of error was the precision of the external FS used.

Externally generated signal at around 160 MHz is divided on chip by 8. It was not

possible to measure how accurately reference signals are generated in terms of duty

cycle, phase noise, rise and fall times. On-chip FS is expected to achieve better

tuning accuracy.

To see the adaptation of the tuning circuit, the temperature was increased after

all tuning loops converged. The magnitude response of the tuned filter were captured

at different temperatures (approximately within the range of 20 ◦C – 100 ◦C) and

plotted in Fig. 85. For this particular case, temperature increase degraded the ripple

in the passband, while it improved the bandwidth.
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Fig. 84. Measured tuned magnitude response with the target response superim-
posed.



101

Fig. 85. Adaptation of the tuning circuit to temperature increase.
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CHAPTER VI

DIGITAL-TUNING METHOD BASED ON MAGNITUDE COMPARISON

The automatic tuning methods discussed in previous chapters use the phase infor-

mation to tune the filter parameters f0 and Q. The magnitude response of the

biquadratic filter can also be used to tune the filter.

One drawback of the phase-based tuning techniques is the difficulty of precise

phase comparison as frequency increases. Although DTPC does not require detect-

ing the exact phase shift caused by the filter, the sinusoidal filter output has to be

compared with the reference signals, which are most likely clock signals. The pro-

posed circuit architecture for DTPC in Chapter IV employs comparators to convert

sinusoidal filter output to rail-to-rail clock signal. At high frequencies, implementing

those comparators may lead to high power consumption. In this chapter, digital-

tuning method based on magnitude comparison is proposed [46].

A. Principle

A second-order continuous-time bandpass filter can be represented by the following

transfer function,

H(s) = G
s ω0/Q

s2 + s ω0/Q + ω0
2

(6.1)

where G is the pass band gain, Q and ω0 are the quality factor and the center fre-

quency, respectively. Magnitude response is shown in Fig. 86. Peak gain or passband

gain G occurs at f0. Lower and upper half gain frequencies, fL and fU , are defined

as the frequencies where the peak gain drops by half (6 dB).

The tuning circuit applies reference signals at three frequencies f1,
√

f1f2, and

f2, and forces the gains at f1 and f2 to be the half of the gain at the geometric mean
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Fig. 86. Magnitude response of a second-order bandpass filter.

frequency (fm =
√

f1f2) [35]. At steady state, the following equations hold

|H(j 2πf1)| =
1

2
|H(j 2πfm)| (6.2)

|H(j 2πf2)| =
1

2
|H(j 2πfm)| (6.3)

The tuned values can be found by solving (6.2) and (6.3) as

f0 =
√

f1f2 (6.4)

Q ≈
√

3

2

fm

f2 − f1

(6.5)

Now a tuning algorithm has to be developed to achieve the conditions given in

(6.2) and (6.3). Define the gains at frequencies f1, f2, and fm as G1, G2, and G0,

respectively. Normalized gains with respect to G0 can be written as

g1 =
G1

G0
(6.6)

g2 =
G2

G0
(6.7)

There are two critical values for gi; 0.5 and 1. gi can take values from three

possible ranges [0 0.5], [0.5 1], and [1 ∞]. Based on the definition of g1 and g2, an
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arbitrary filter can be in 9 different cases, one of which is not possible due to typical

shape of bandpass filter. In order to represent each range, define two binary numbers

Ai and Bi (i = 1, 2) as

Ai =















0, gi < 0.5

1, gi > 0.5
(6.8)

Bi =















0, gi < 1

1, gi > 1
(6.9)

Note that A1B1A2B2 can have 16 values; however, the rest of the cases are redundant.

Relevant eight cases are given in Table XII. Each case is illustrated in Fig. 87. The

horizontal lines 0.5 and 1 are drawn to distinguish the regions of g1 and g2, whereas

the vertical lines are the reference frequencies. The dashed curve shows the desired

normalized response. In Fig. 87(a), the magnitudes at the reference frequencies

are larger than 0.5, so the best tuning action should be to increase Q; whereas in

Fig. 87(b) is just the opposite. The rest of the possible states are shown in Fig. 87(c)

and (d) where f0 needs to be increased or decreased, respectively.

One immediate observation from Table XII is that only one tuning action ei-

ther to change f0 or Q is assigned for each case in order to avoid the simultaneous

operation of the two loops. Moreover, the Q tuning can only be enabled when the

current center frequency of the filter is between the reference frequencies f1 and f2,

i.e., when f1 < f0 < f2 holds. Note also that exact values of the gains do not have to

be detected but their relative values with respect to the gain at the middle frequency

are compared. Note that detecting exact magnitude/gain requires accurate envelope

detector, magnitude-comparison approach relaxes this requirement.
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TABLE XII

Tuning process

Case A1 B1 A2 B2 Tuning action

1 0 0 0 0 Q⇓

2 0 0 1 0 f0 ⇓

3 0 0 1 1 f0 ⇓

4 1 0 0 0 f0 ⇑

5 1 0 1 0 Q ⇑

6 1 0 1 1 f0 ⇓

7 1 1 0 0 f0 ⇑

8 1 1 1 0 f0 ⇑

0

0.5

1

1.5

f
1

f
2

|H
|/G

0

(a) Case: 5

5

0
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Fig. 87. Possible states of the filter.
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B. Circuit Implementation

System-level implementation of DTMC is shown in Fig. 88. Reference frequencies are

generated by a programmable frequency synthesizer. Applied frequency is controlled

by FS0 and FS1 signals. Four magnitude comparisons have to be performed to

determine A1, A2, B1, and B2 values in four different tuning slots shown in Table XIII.

TABLE XIII

Applied frequency, attenuator gain, and control voltages in each

tuning slot

FS0 FS1 Frequency Attenuator gain

T1 1 1 N
M

fR
Gatt

2

T2 0 1 (N+1)
M

fR Gatt

T3 1 0 N
M

fR Gatt

T4 0 0 N−1
M

fR Gatt

To eliminate the non-linearities of the envelope detector, a selective attenuator

is employed. When CLKatt is low, attenuator has a gain of Gatt, whose value may
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vary with process variation. The gain becomes Gatt/2 when CLKatt is high. With

the use of the selective attenuator, the filter output magnitude will have the same

values for different reference signals at steady state.

The four tuning slots can be described as follows. For simplicity, Gatt is as-

sumed to be unity. Note that Gatt and other losses will be eliminated in magnitude

comparison.

CLKdff
dn

D QD Q D Q D Q

tuning
logic

A1A2B2B1

qdfufd qu

up

VF

DAC

dn up

VQ

DAC

CLKcnt

Ve

SW1

SW0

0C

C1

Fig. 89. Tuning circuit.

T1: The applied frequency is fm = fRN/M and the attenuator gain is 0.5. G0/2

is sampled on C0 (see Fig. 89) by the clock SW0. C1 holds G1 from step T4 (see

below), therefore the comparator output is A1.

T2: The applied frequency is f2 = fR(N + 1)/M and the attenuator gain is 1. G2

is sampled on C1 by the clock SW1. C1 holds G0/2 from step T1, therefore the

comparator output is A2.

T3: The applied frequency is fm = fRN/M the the attenuator gain is 1. G0 is

sampled on C0 by the clock SW0. C1 holds G2 from step T2, therefore the comparator

output is B2.
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Fig. 90. Clock signals.

T4: The synthesized frequency is f1 = fR(N − 1)/M and the attenuator gain is still

1. G1 is sampled on C1 by the clock SW1. C0 holds G0 from step T3, therefore the

comparator output is B1.

The tuning periods and synchronizing clock signals are shown in Fig. 90. These

signals are generated by the clock generator circuit in Fig. 91. Each time CLKdff

goes high, the output of the comparator is shifted serially into D flip-flops in Fig. 89.

Ai and Bi become available for the tuning logic at the end of T4. Depending on

the values of Ai and Bi, the tuning logic generates update signals for the up-down

counters for frequency and Q control. The tuning logic functions are derived from
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Table XII, and can be given as follows:

fu = B1A2B̄2 + A1Ā2 (6.10)

fd = A1B̄1B2 + Ā1A2 (6.11)

qu = A1B̄1A2B̄2 (6.12)

qd = Ā1Ā2 (6.13)

Figure 92 shows an implementation with AND and OR gates. Counter outputs are

increased if (up,dn) = (1,0), decreased if (up,dn) = (0,1), and remains the same if

(up,dn) = (0,0). Note that (1,1) is avoided by the logic circuit. At the rising edge

of CLKcnt, the counters are updated. When the tuning circuits converged to the

steady state, the filter output at T1, T2, and T4 will have the same amplitude at

steady state, so the envelope detector output will have the same voltage value. As a

result, the envelope detector does not have to be precise and linear as long as it has

a monotonic response to the magnitude of its input.

D Q

Q

D Q

Q

D Q

Q

1

CLK

FS1

SW

0

SW0

CLK

CLKatt

dff
FS

CLKcnt

Fig. 91. Clock generator circuit.

The circuit topology shown in Fig. 93 is used as selective attenuator. It employs

resistors for voltage division. When CLKatt is high, V1+ and V1− differential signals

are amplified to the outputs. Otherwise, the amplifier on the left is switched on to
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Fig. 92. Tuning logic circuit.

amplify V2+ − V2−, which has twice as much signal magnitude.

R

1−

Vin+ Vin−

V

LVout− Vout+

R

R

CLKatt

V

R

V2−

V1+

2+

R

Fig. 93. Selective attenuator.

The tuned f0 and Q can be found by substituting f1 = fR(N − 1)/M , f2 =

fR(N + 1)/M , and fm = fRN/M into (6.4) and (6.5),

f0t = fR

√

√

√

√

(

N2 − 1

M2

)

≈ fR
N

M
(6.14)

Qt ≈
√

3

2
N (6.15)
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(6.14) and (6.15) are set by the input reference frequency, fR, and division ratios, N

and M , of frequency dividers.

−15

−10

−5

0

( 
dB

 )

Fig. 94. Normalized filter magnitude response as tuning progresses.

C. Simulation Results

The tuning system is simulated in Matlab (the code is included in Appendix F). The

normalized magnitude responses of the filter during tuning is captured as shown in

Fig. 94. For this particular case, the filter initially has a higher Q and a lower f0

(green solid curve). The reference frequencies, f1 and f2, are indicated as vertical

solid lines, whereas half gain magnitude level is shown as a vertical line. The tuning

first increases f0. The control voltages of the ideal filter is shown in Fig. 95. Once the

peak enters to the reference window (f0 ≥ f1), Q tuning is enabled and Q decreases.

Eventually, the control voltages converge, the magnitude response becomes red solid

curve in Fig. 94. The transistor-level circuit is simulated using Cadence. The control

voltages and tuned and desired filter responses are shown in Figs. 96 and 97.
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Fig. 95. System-level simulation: transient response of control voltages.

Fig. 96. Transistor-level simulation: transient response of control voltages.
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Fig. 97. Tuned and desired magnitude responses.

D. Limitations

The accuracy of the tuning circuit mostly depends on how accurately the filter output

signal is stored at different time periods and compared. In the first section, a better

comparator architecture with offset cancellation is presented. In the second section,

the performance of DTMC is investigated in the presence of parasitics.

1. Offset-Free Magnitude Comparison

The circuit shown in Fig. 98 is used to sample the input signal at different times which

is controlled by non-overlapping clock signals SW0 and SW1. When the signal SW0

is high, the input Vin = V0 is stored to capacitor C0. Similarly, when SW1 is high,

the input Vin = V1 is stored to capacitor C1. Once the output of the comparator,

Vout, has converged to the correct value, the output signal is sampled.

This architecture is vulnerable to the offset of the comparator. Several compara-

tors with offset cancellation techniques are reported in [47], [48]. They are usually
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C0

C1

SW1

SW0

Vin Vout

Fig. 98. Comparator without offset cancellation.

applied for the cases where the input needs to be compared with a reference signal.

In one phase the offset is stored to the capacitor, in the second phase the input

and reference subtracted offset free and the result is amplified. Both reference and

input signals are required to be available at the time of comparison. For this par-

ticular application, another circuit topology needs to be implemented. Offset of the

comparator and previous input (V0) are required to be stored and compared with V1.

Vout

S
Vin

C0 C1

Sf

S

2

1S1

Fig. 99. Proposed comparator with offset cancellation.

The circuit shown in Fig. 99 efficiently implements the comparison with offset

cancellation. Non-overlapping clock signals S1, S2, and Sf are shown in Fig. 100.

Note that Sf is advanced version of S1, to minimize the charge injection [48]. The

offset can be modeled as a voltage source at one of the inputs of the comparator as
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shown in Fig. 101. In the first phase, Sf is high, assuming high gain for comparator,

the inputs of the comparator will have the same potential, which is ground since V+

is connected to ground. Then, the offset is stored to C1 while V0 is stored to C0

as shown in Fig. 101. In the second phase, the voltage at the negative input of the

comparator is V1 − V0, as depicted in Fig. 102. The output Vout is either low or high

depending on the sign of V1 − V0.

Fig. 100. Clock signals for comparator.

Voff

VoffC1

V0

V0

C0

+−+ −

Fig. 101. Sampling phase.
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Fig. 102. Comparison phase.

2. Parasitic Pole and Zero Effect

In the presence of parasitic poles, half gain at reference frequencies will shift slightly.

Consequently, some error will be involved in the tuning scheme. For illustration, a

Gm-C filter is chosen.

The transfer function seen at the bandpass output of a typical Gm-C filter is

given by

H(s) =
sKGm/C

s2 + sGmq/C + (Gm/C)2
(6.16)

A transconductor with a parasitic zero at frequency ωz can be modeled by,

Gm = Gm0

(

1 +
s

ωz

)

(6.17)

Substituting (6.17) into (6.16) results in

H(s) =
K
(

Gm0

C

(

1 +
s

ωz

))2

s2 + s
Gmq

C
+
(

Gm0

C

(

1 +
s

ωz

))2 (6.18)

Defining ω00 = Gm0/C and b0 = Gmq/C yields

H(s) = Kω2
oo

s
(

1 +
s

ωz

)

s2 + s

(

bo + 2ω2
oo/ωz

1 + ω2
oo/ω

2
z

)

+
ω2

oo

1 + ω2
oo/ω

2
z

(6.19)
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Note that with 1 >> ω2
oo/ω

2
z , (6.19) can be simplified to

H(s) = K ′

s
(

1 +
s

ωz

)

s2 + s

(

bo + 2
ω2

oo

ωz

)

+ ω2
oo

(6.20)

After the tuning has converged, the circuit parameters ω2
oo and bo will take their

values to satisfy the following tuning conditions,

|H(jω1| =
1

2
|H(jωm)| (6.21)

|H(jω2)| =
1

2
|H(jωm)| (6.22)

The tuned ω2
oo can be found by using the following

|H(jω1| = |H(jω2)| (6.23)

In the calculation of ω2
oo, the term bo in (6.20) is ignored to simplify the analysis.

Using (6.20), we obtain

ω1

(

ω2
z + ω2

1

(ω2
oo − ω2

1)
2ω2

z + 4ω2
1ω

4
oo

)1/2

= ω2

(

ω2
z + ω2

2

(ω2
oo − ω2

2)
2ω2

z + 4ω2
2ω

4
oo

)1/2

(6.24)

(6.24) can be manipulated to obtain

Aω4
oo + Bω2

oo + C = 0 (6.25)

where

A = (D − 1)ω2
z + 4D ω2

2 − 4ω2
1 (6.26)

B = 2ω2
z(ω

2
1 − D ω2) (6.27)

C = ω2
z(D ω4

2 − ω4
1) (6.28)

D =
4ω2

1

ω2
2

ω2
z + ω2

1

ω2
z + ω2

2

(6.29)
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From (6.25), ω2
oo is found as

ω2
oo = (ω2

oo1ω
2
oo2)

1/2 = (C/A)1/2 (6.30)

where ω2
oo1 and ω2

oo2 are the roots of the second-order polynomial given in (6.25).

In order to find bo, (6.21) can be used with (6.20), which yields

2ω1

ωm

·
√

√

√

√

√

√

√

ω2
z + ω2

1

(ω2
oo − ω2

1)
2ω2

z + 4ω2
1

(

bo +
2ω2

oo

ωz

)2 =

√

√

√

√

√

√

√

ω2
z + ω2

m

(ω2
oo − ω2

m)2ω2
z + ω2

m

(

bo +
2ω2

oo

ωz

)2

(6.31)

bo can be extracted from (6.31) as

bo =

(

D′(ω2
oo − ω2

1)
2 − (ω2

oo − ω2
m)2

ω2
m − D′ω2

1

)1/2

− 2
ω2

oo

ωz
(6.32)

where ω2
oo is as given in (6.30) and D′ as

D′ =
ω2

1

ω2
m

ω2
z + ω2

1

ω2
z + ω2

m

(6.33)

With the proposed tuning circuit, the frequencies are approximated by a fre-

quency generator as ω1 = (N − 1)ωR, ωm = NωR, and ω2 = (N + 1)ωR. The tuned

circuit parameters, ω2
oo and bo, are found by substituting those values into (6.30) and

(6.32). Once ω2
oo, bo and consequently the transfer function of the filter are deter-

mined, the tuned center frequency, ωot, and the quality factor, Qt, can be found. The

center frequency is the frequency where the peak gain occurs, while Q is the center

frequency divided by 3-dB bandwidth.

The whole procedure described here is implemented using a Matlab code, which

is provided in Appendix G. Define X as the relative location of the zero as X =

ωz/ωm. For a fixed target center frequency (keeping NωR constant), frequency and

Q-tuning errors are generated as shown in Figs. 103 and 104 for different target Qs
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and Xs. Frequency-tuning error is relatively smaller in comparison with Q-tuning.

The effect of a parasitic zero depends on the desired Q value. The Q-tuning error is

larger for higher Q values. For high Qs (> 80), the Q-tuning error can be as high as

5% if X ≈ 30.
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Fig. 103. Frequency-tuning error.
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Fig. 104. Q-tuning error.
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CHAPTER VII

CONCLUSION

A. Conclusion

Continuous-time filters provide more efficient solutions in terms of power, area, and,

cost at high frequencies; however, on-chip realization of these filters necessitates

automatic tuning circuits since component values drift due aging, process, and tem-

perature variations. Major existing automatic tuning techniques reported in the

literature are summarized and advantages and disadvantages in terms of accuracy

and practicality are also provided. Most Q-tuning methods assume that quality fac-

tor is equal to passband gain of the filter, and this condition is imposed to filter

design; however, this requirement cannot be achieved for some filter types such as

active LC.

Novel digital automatic tuning techniques based on phase and magnitude com-

parisons (DTPC and DTMC) are proposed for second-order continuous-time filters

to provide better solutions. In order to tune the center frequency and quality fac-

tor, the techniques use certain characteristics of the magnitude and phase responses

of a generic second-order filter transfer function regardless of filter implementation.

These techniques also do not make any direct assumption on the relation between

passband gain and quality-factor of the filter. Digital tuning algorithm enables only

Q-tuning or frequency-tuning loops at a given time. In most practical cases, the

center frequency and quality factor cannot be changed independently. Therefore,

having both tuning loops active on the filter simultaneously may cause the filter

start oscillating at high-Q values since Q becomes very sensitive to control voltages.

This approach substantially relieves common problem of existing tuning techniques,
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and makes the tuning system more reliable.

The circuits realizing DTPC and DTMC are also discussed with possible lim-

itations due to parasitics. The DTPC system is verified with 1% tuning accuracy

at 5.5 MHz with discrete prototype on a LC-type tunable filter for Q of 20. While

DTPC technique provides accurate and reliable tuning, power requirement of com-

parators used in circuit implementation may limit its operation at gigahertz ranges.

On the other hand, DTMC can operate at very high frequencies since it uses a simple

high-frequency envelope detector with relaxed linearity requirement.

The high-order digital tuning method (HDTPC) is proposed for the tuning of

high-order filters (cascade of biquads). This technique does not require the use of

master-slave method, achieves efficient direct tuning without separating the individ-

ual biquad sections. Possible limitation of the system due to parasitics, phase offsets,

and finite resolution of synthesizer are also discussed. HDTPC is verified with a 6th-

order Gm-C -type bandpass filter (center frequency of 19 MHz and bandwidth of

0.6 MHz).

B. Future Work

Both second-order and high-order digital tuning methods based on phase comparison

prove to be accurate and reliable tuning techniques; however, their operation at

gigahertz range are limited due to use of comparators. Note that comparator is

employed to convert sinusoidal output of filter to rail-to-rail clock signal in order

to compare it with the reference clock signal by using a DFF. Alternative circuit

techniques are needed to be explored to achieve more efficient comparison of the

filter output and the reference signals.

The tuning technique based on magnitude comparison (DTMC) yields better
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results in simulation compared to the techniques based on phase comparison (DTPC

and HDTPC) in terms of frequency of operation, since it does not use comparators

but employs a simple envelope detector. A high-order tuning technique based on a

similar magnitude comparison approach can be explored in future for gigahertz-range

high-order filters.

Proposed high-order tuning technique can only tune filters formed by cascading

biquads. Although cascade topologies are easy to build and have larger tuning ranges,

ladder-type filters are also attractive due to their less sensitivity to variation of

component values. A digital tuning technique specific to ladder-type filters may be

explored as a future work.
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APPENDIX A

MAPLE CODE: PARASITIC POLE EFFECT ON DIGITAL TUNING METHOD

BASED ON PHASE COMPARISON

gms having parasitic pole

gm= gmo/ ( 1+s/wp ); pole located at wp = X woo

Solve two equations (comes from tuning steady state conditions)

obtain woo, Qo which are two parameters in TF

the desired center freq is arbitrarily chosen as 40MHz

w1 and w2 are the reference frequencies

Output format is either

target Q, X, Qo, woo

or

target Q, X, woo, Qo

> for N in [20,30, 40, 80, 160, 320] do

> wr:=40e6/N:

> for X in [12, 16, 20, 24, 30, 48, 60, 96] do

> eq1:=w1*woo/Q-2*w1^3/wp=woo^2-w1^2+w1^4/wp^2-woo*w1^2/Q/wp:

> eq2:=-w2*woo/Q+2*w2^3/wp=woo^2-w2^2+w2^4/wp^2-woo*w2^2/Q/wp:

> eq11:=subs(w1=(N-1)*wr,wp=woo*X,eq1):

> eq22:=subs(w2=(N+1)*wr,wp=woo*X,eq2):

> mysol:=solve({eq11,eq22},{woo,Q}):woox:=rhs(mysol[5,1]):

> Qox:=rhs(mysol[5,2]):

> print(N/2,X,Qox,woox);

> od;

> od;

10, 12, .4057458449 10e8 , 3.808047929

10, 16, .4039618707 10e8 , 4.481912845

10, 20, 5.024151963, .4029596709 10e8
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10, 24, 5.469538050, .4023210188 10e8

10, 30, .4017065327 10e8 , 6.005822378

10, 48, 7.051876669, .4008311683 10e8

10, 60, 7.489526111, .4005519776 10e8

10, 96, 8.261569479, .4001451954 10e8

15, 12, .4044145467 10e8 , 4.349780464

15, 16, .4030196308 10e8 , 5.263506857

15, 20, .4022557068 10e8 , 6.034083779

15, 24, .4017777320 10e8 , 6.692136839

15, 30, 7.516412303, .4013252672 10e8

15, 48, 9.233257468, .4006952183 10e8

15, 60, .4004983514 10e8 , 9.998097406

15, 96, .4002155217 10e8 , 11.42108612

20, 12, 4.679929662, .4037020649 10e8

20, 16, .4025037995 10e8 , 5.762844750

20, 20, .4018600439 10e8 , 6.704424756

20, 24, .4014629825 10e8 , 7.529903246

20, 30, .4010920074 10e8 , 8.592874184

20, 48, 10.91680077, .4005851459 10e8

20, 60, 12.00303982, .4004295652 10e8

20, 96, .4002088472 10e8 , 14.11421319

40, 12, 5.276753686, .4025747434 10e8

40, 16, 6.713529777, .4016741719 10e8

40, 20, .4012119818 10e8 , 8.038652195

40, 24, 9.263487592, .4009370199 10e8

40, 30, 10.93534517, .4006888858 10e8

40, 48, .4003674732 10e8 , 15.01506574

40, 60, 17.15365313, .4002739776 10e8

40, 96, 21.82206390, .4001465973 10e8

80, 12, .4019846847 10e8 , 5.633944565
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80, 16, .4012342065 10e8 , 7.314325550

80, 20, .4008633986 10e8 , 8.923613384

80, 24, .4006498186 10e8 , 10.46471824

80, 30, .4004633803 10e8 , 12.65646464

80, 48, 18.47795480, .4002349946 10e8

80, 60, .4001726121 10e8 , 21.83134539

80, 96, 30.00754725, .4000919774 10e8

160, 12, .4016830488 10e8 , 5.830740105

160, 16, .4010079337 10e8 , 7.656218638

160, 20, .4006829685 10e8 , 9.442549414

160, 24, 11.18923978, .4005001633 10e8

160, 30, .4003446424 10e8 , 13.73630073

160, 48, 20.88456548, .4001628462 10e8

160, 60, .4001160379 10e8 , 25.27562032

160, 96, 36.93129227, .4000587952 10e8
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APPENDIX B

MATLAB CODE: PARASITIC POLE EFFECT ON DIGITAL TUNING BASED

ON PHASE COMPARISON

% Tuning error in the presence of parasitic pole

% Qo and woo data calculated by Maple

datwoo=1e4*[4057.5,4039.6,4029.6,4023.2,4017.1,4008.3,4005.5,4001.4,

4044.1,4030.2,4022.6,4017.8,4013.2,4006.9,4005.0,4002.1,

4037.0,4025.0,4018.6,4014.6,4010.9,4005.8,4004.3,4002.1,

4025.7,4016.7,4012.1,4009.4,4006.9,4004.6,4002.7,4000.9,

4019.8,4012.3,4008.6,4006.5,4004.6,4002.3,4001.7,4000.9,

4016.8,4010.1,4006.8,4005.0,4003.5,4001.6,4001.2,4001];

datQ=[3.80805,4.48191,5.02415,5.4695,6.00582,7.05188,7.4895,8.26157,

4.34978,5.26351,6.03408,6.6921,7.51641,9.23326,9.9981,11.4211,

4.66799,5.76284,6.70442,7.5299,8.59287,10.9168,12.003,14.1142,

5.27675,6.71353,8.03865,9.2635,10.9353,15.0151,17.154,21.8221,

5.63394,7.31432,8.92361,10.465,12.6565,18.4780,21.831,30.0075,

5.83074,7.65622,9.44255,11.189,13.7363,20.8846,25.275,36.931];

% Desired Q values

Qdes=[10, 10, 10, 10, 10, 10, 10, 10,

15, 15, 15, 15, 15, 15, 15, 15,

20, 20, 20, 20, 20, 20, 20, 20,

40, 40, 40, 40, 40, 40, 40, 40,

80, 80, 80, 80, 80, 80, 80, 80,

160,160,160,160,160,160,160,160];

indN=0;

for N=[20,30,40,80,160,320],
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indN=indN+1;

indX=0;

for X=[12,16,20,24,30,48,60,96],

N

X;

indX=indX+1;

woo=datwoo(indN,indX);

Q=datQ(indN,indX);

wp=X*woo;

% Initialize

maxval=0;

wo=0;

% Find the tuned center frequency

for w=38e6:300:42e6,

dum=abs(woo^2*wp^2*Q/(-w^2*Q*wp^2-j*2*w^3*Q*wp+w^4*Q+j

*w*woo*wp^2-w^2*woo*wp+woo^2*wp^2*Q));

if (dum>=maxval), maxval=dum;wo=w; end

end

% Find the tuned Q

wlfound=0;

whfound=0;

wl=0;wh=0;

for w=37e6:300:43e6,

dum=abs(woo^2*wp^2*Q/(-w^2*Q*wp^2-j*2*w^3*Q*wp+w^4*Q+j

*w*woo*wp^2-w^2*woo*wp+woo^2*wp^2*Q));

if ((dum>=maxval/sqrt(2)) & (wlfound==0)),

wl=w;

wlfound=1;

end
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if ((dum<=maxval/sqrt(2)) & (whfound==0) & (wlfound==1) ),

wh=w; whfound=1;

end

end

Qa=wo/(wh-wl);

%Frequency error matrix

errwo(indN,indX)=abs(40e6-wo)/40e6*100;

Qarr(indN,indX)=Qa;

end %X

% Q error matrix

Qerr(indN,:)=abs( Qarr(indN,:)-Qdes(indN,:))/ Qdes(indN,1)*100;

end %N

% Plot 3D tuning errors

x=[12 16 20 24 30 48 60 96]; q=[10 15 20 40 80 160];

surf(x,q,Qerr), xlabel(’X’),ylabel(’Q’),title(’Q error (%)’);

%surf(x,q,errwo),xlabel(’X’),ylabel(’Q’),title(’Wo error (%)’);
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APPENDIX C

MATLAB CODE: PARASITIC ZERO EFFECT ON DTPC

% Parasitic zero effect (located at X*woo) on tuning accuracy

clear;

Nrange=20:10:100;

Xrange=50:10:120;

woo=zeros(length(Xrange),length(Nrange));

Qo=zeros(length(Xrange),length(Nrange));

% Calculate woo, Qo values satisfying tuning condition

i=0;

for X=Xrange,

i=i+1;

j=0;

for N=Nrange,

j=j+1;

w1=(N-1);

w2=(N+1);

diff=w1-w2;

sum=w1+w2;

mul=w1*w2;

A=1+1/X^2;

sol=roots([sum/mul -2/X-(sum*diff)/sum/X A*(-sum+w1/X^2-w2/X^2)

-A*(w1^2+w2^2-2*mul)/X A*(w1*w2^2/X^2-w1^2*w2/X^2)]);

woo(i,j)=sol(2);

dum=woo(i,j);

Qo(i,j)=(dum^2-w1*dum/X) /

(dum^3/w1-w1*dum*(A-2/X^2)-dum^2/X-w1^2/X*A);

dum=Qo(i,j)

end

end
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% Calculate actual (or tuned) Q and wo and tuning errors

% Desired center frequencies

wo_des=sqrt(Nrange.^2-1);

% Desired Q values

Q_des=wo_des/2;

dw=0.01;

i=0;

for X=Xrange,

i=i+1;

j=0;

for N=Nrange,

j=j+1;

% next woo, Qo

woo_nx=woo(i,j);

Qo_nx=Qo(i,j);

% Initialize

maxval=0;

wo=0;

% Transfer function with zero

% calculated over frequency range of wrange

wrange=(N-10:dw:N+10);

h=freqs([1/X woo_nx 0],[1+1/X/Qo_nx

woo_nx*(1/Qo_nx+2/X)/(1+1/X^2) woo_nx^2/(1+1/X^2)],wrange);

% Find the tuned center frequency

for w=wrange,

dum=abs(h(round((w-wrange(1))/dw+1)));

if (dum>=maxval), maxval=dum;wo=w; end

end

% Find the tuned Q
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wlfound=0;

whfound=0;

wl=0;wh=0;

for w=wrange,

dum=abs(h(round((w-wrange(1))/dw+1)));

if ((dum>=maxval/sqrt(2)) & (wlfound==0)),

wl=w;

wlfound=1;

end

if ((dum<=maxval/sqrt(2)) & (whfound==0) & (wlfound==1)),

wh=w;

whfound=1;

end

end

Qa=wo/(wh-wl);

%Frequency error matrix

errwo(i,j)=abs(wo_des(j)-wo)/wo_des(j)*100;

% Q error matrix

errQ(i,j)=abs(Q_des(j)-Qa)/Q_des(j)*100;

end %X

end %N

% Results, figures

errwo

errQ

figure(1)

set(gca,’Xgrid’,’on’,’Ygrid’,’on’,’FontSize’,24)

surf(Q_des,Xrange,errQ),ylabel(’X’),xlabel(’Q’),title(’Q error(%)’);

set(gca,’XTick’,[10 20 30 40 50])

set(gca,’YTick’,[50 70 90 110])

axis([10 50 50 120 0.5 4.5])
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figure(2)

set(gca,’Xgrid’,’on’,’Ygrid’,’on’,’FontSize’,24)

surf(Q_des,Xrange,errwo),ylabel(’X’),xlabel(’Q’),title(’Ferror(%)’);

set(gca,’XTick’,[10 20 30 40 50])

set(gca,’YTick’,[50 70 90 110])

axis([10 50 50 120 0.5 4.5])
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APPENDIX D

MATLAB CODE: PHASE SHIFT CAUSED BY PARASITICS

% Phase shift caused by a parasitic

% pole or a zero around the effective center frequency

% calculated for second-order case.

clear

dw=1e3;

w=1e6:dw:20e6;

%define s

s = j.*w;

%Define circuit parameters

C=10e-12; %capacitor

K=10;

gmq0=50e-6; %low frequency value of transconductance

gm0=100e-6;

i=0;

Xrng=5:10:100;

for X=Xrng,

i=i+1;

woo=gm0/C;

wz=X*woo;% Location of parasitic zero

wp=X*woo;% Location of parasitic pole

%Transfer function of gm-C biquadratic filter with zero

gm=gm0*(1+s/wz); %gm with zero

gmq=gmq0*(1+s/wz);

H=(s.*K.*gm/C)./(s.^2+s.*gmq/C+(gm/C).^2);

% finds the center freq. (where the maximum gain is.)
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[G I]=max(H);

ph=phase(G)/pi*180

ph_off(i)=ph;

%Transfer function of gm-C biquadratic filter with pole

gm=gm0./(1+s/wp); %gm with pole

gmq=gmq0./(1+s/wp);

H=s.*(K*gm/C)./(s.^2+s.*gmq/C+(gm/C).^2);

[G I]=max(H);

ph=phase(G)/pi*180

ph_offp(i)=ph;

end

plot(Xrng,ph_off,Xrng,ph_offp)

set(gca,’Xgrid’,’on’,’Ygrid’,’on’,’FontSize’,20)

axis([5 100 -10 13 ])
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APPENDIX E

MATLAB CODE: DESIGN TOOL FOR HIGH-ORDER TUNING METHOD

% A Design Tool for High-order high-Q bandpass filters

% with automatic high-order tuning method.

% Overall outputs of the program for the design:

% N, f0, Q, Ka, Kb, ph_a, ph_b, L, fR

% It consists of 3 parts

% 1- Filter approximation (or synthesis)

% 2- Determination of Reference frequencies and phases

% 3- Finding the minimum required resolution L

% and other parameters (fr, Ka, Kb)

% Part-1 Synthesize the filter

% Inputs :fp1, fp2, fs1, a_min, a_max, ripple (filter specs )

% Outputs :N, f0, Q (Desired values)

answer=input

(’Enter new filter [n] specs or use the default [d]: ’,’s’);

% Get the filter specifications

if answer==’n’

fp1=input(’Lower end passband frequency : ’);

fp2=input(’Higher end passband frequency : ’);

fs1=input(’Lower end stop frequency : ’);

fs2=fp1*fp2/fs1; % Required by the filter synthesis method

a_max=input(’Max attenuation in passband (dB): ’);

a_min=input(’Min required attenuation at stop band (dB): ’);

type=input

(’Filter appr. type Butterworth [b], Chebyshev [c]: ’,’s’);
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% Other types of filters can also be added.

if type==’b’,

ripple=a_max;

else

ripple=input(’Max ripple in passband (dB): ’);

end

else % Default filter specs

fp1=18.81e6; % Passband frequencies

fp2=19.67e6;

fs1=18.03e6; % Stop band frequencies

fs2=fp1*fp2/fs1;

a_max=3; % Max attenuation in passband

a_min=20; % Min required attenuation at in stopband

type=’b’;

end

df=(fp2-fp1)/10000; % Frequency increment,

%may affect accuracy if not small enough

f=fs1*0.7:df:fs2*1.3; % Freq axis

global xstart xstop dx; % Global declaration for index scale

xstart=min(f); % function sc.m, it helps to convert freq.

xstop=max(f); % to matrix index for convenience

dx=df;

% Find the lowpass equivalent order (N) and pole-zeros

fs_lp=(fs2-fs1)/(fp2-fp1);

if type==’b’, % Butterworth

n=log10((10^(a_min/10)-1)/(10^(a_max/10)-1))/(2*log10(fs_lp));

N=ceil(n); % Round up

a_max_opt=10*log10((10^(a_min/10)-1)/(10^(2*N*log10(fs_lp)))+1);

f3dB_lp=1/(10^(a_max_opt/10)-1)^(1/2/N); % 3dB freq. of LP equiv.

BW=(fp2-fp1)*f3dB_lp; % Bandwidth of BP

fo=sqrt(fp1*fp2); % Center freq. of BP

[zl,pl,kl]=buttap(N); % 1st order LP zeros, poles
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elseif type==’c’, % Chebyshev

n=acosh(sqrt((10^(a_min/10)-1)/(10^(a_max/10)-1)))/acosh(fs_lp);

N=ceil(n); % Round up

a_max_opt=10*log10((10^(a_min/10)-1)/(cosh(N*acosh(fs_lp))^2)+1);

fo=sqrt(fp1*fp2); % Center freq.

BW=(fp2-fp1); % Bandwidth of BP

[zl,pl,kl]=cheb1ap(N,a_max_opt); % 1st order LP zeros, poles

% Other types of filters can be added here.

end

% Find the transfer function of overall filter

numl=poly(zl); % Numerator of lp func

denl=poly(pl); % Denominator of lp func

[numb denb]=lp2bp(numl,denl,fo,BW); % Transform lp to bp

hb=freqs(numb,denb,f); % Bandpass TF calculated along f

hb_db=20*log10(abs(hb))-20*log10(max(abs(hb)));% Normalize gain to 0dB

figure(1)

plot(f,hb_db,’r’); % Plot the magnitude of overall filter

xlabel(’Frequency ( MHz )’)

ylabel(’Magnitude ( dB )’)

% Find Qs and f0s from the denominator of bandpass transfer function

root_b=roots(denb);

count=1;

f0=zeros(1,N);

Q=zeros(1,N);

for j=1:2*N,

for i=j+1:2*N,

if round(real(root_b(j)))==round(real(root_b(i))),

if round(imag(root_b(j)))==-round(imag(root_b(i))),

f0(count)=real(sqrt(root_b(i)*root_b(j)));
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Q(count)=real(f0(count)/(-root_b(i)-root_b(j)));

count=count+1;

end

end

end

end

temp=[f0;Q]’;

temp=sortrows(temp);

% The outputs of the program, so far the filter is approximated

sprintf(’Number of biquads required: %d \n’, N)

f0=temp(:,1)’;

Q=temp(:,2)’;

disp(’Center Frequencies:’)

disp(f0)

disp(’ Q values:’)

disp(Q)

% Part-2 Determine the references

% Inputs: N, f0, Q (From part-1), ph_a, ph_b

% (user will be asked to choose them from phase response)

% Outputs: fre_a,fre_b

% initialize

hi=-pi/2*ones(1,length(f));

fre_a=zeros(1,length(f0));

fre_b=zeros(1,length(f0));

ph_a=zeros(1,length(f0));

ph_b=zeros(1,length(f0));

choice=input

(’Use the refs for the default filter[d] or continue[c]: ’,’s’);

if choice==’c’,

for i=1:N, % For each output 1 to N
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% Phase response with Q=Qd*1.5

hi_p=phase(freqs(1, [1 f0(i)/(Q(i)*1.50) f0(i)^2],f))+hi+pi/2;

% Phase response with Q=Qd*0.5

hi_n=phase(freqs(1, [1 f0(i)/(Q(i)*0.50) f0(i)^2],f))+hi+pi/2;

% Desired phase response

hi=phase(freqs(1, [1 f0(i)/Q(i) f0(i)^2],f))+hi+pi/2;

% Plot all phase curves for the ith output

figure(2);

plot(f,180/pi*hi,’b -’,f,180/pi*hi_p,’r --’,f,180/pi*hi_n,’r --’)

xlabel(’Frequency ( MHz )’)

ylabel(’Phase ( deg )’)

axis([min(f) max(f) min(hi)/pi*180 min(hi)/pi*180+270]);

confirm=’n’; % Initialize

while (confirm==’n’),

sprintf(’Output %d ’,i)

ph_a(i)=input

(’Choose the reference phase ph_a (deg): ’)/180*pi;

[value ind]=min(abs(hi-ph_a(i)));

fre_a(i)=ind*df+min(f); % Finds the corresponding frequency

% Draws a line on the graph

line([fre_a(i) fre_a(i)],[min(hi)/pi*180 min(hi)/pi*180+270]);

ph_b(i)=input

(’Choose the reference phase ph_b (deg): ’)/180*pi;

[value ind]=min(abs(hi-ph_b(i)));

fre_b(i)=ind*df+min(f); % Finds the corresponding frequency

% Draws a line on the graph

line([fre_b(i) fre_b(i)],[min(hi)/pi*180 min(hi)/pi*180+270]);

confirm=input(’please confirm y/n :’,’s’)

end

end
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else% Default reference phases and frequencies for the default filter

fre_a =[18460400 18903816 19457742];

fre_b =[19024388 20140152 20071610];

ph_a=[-45 -90 -135]/180*pi;

ph_b=[-135 -225 -270]/180*pi;

f0 =1e6 *[18.74 19.235 19.743];

Q =[33.2288 16.6088 33.2288];

end

% Part-3 Find the minimum required L, Ka, Kb and fR,

% plot the tuned magnitude responses

% Outputs: L, Ka, Kb, fR, err_f, err_Q (Individual tuning Errors)

Qt=zeros(1,N); % Tuned values

f0t=zeros(1,N);

L=4; % Initial value

cont_tune=1;

figure(1);

hold on

while cont_tune==1, % Increment L till the specs are satisfied

L=L+1;

fR=max([fre_a fre_b])/2^L;

Ka=round(fre_a/fR);

Kb=round(fre_b/fR);

suma=0;sumb=0;

% This part implements the equations found for Q and center freq

for i=1:N,

suma=0;sumb=0;

if (i >1)

for j=1:i-1,

suma=suma+atan(f0t(j)*Ka(i)*fR/Qt(j)/(f0t(j)^2-fR^2*Ka(i)^2));

sumb=sumb+atan(f0t(j)*Kb(i)*fR/Qt(j)/(f0t(j)^2-fR^2*Kb(i)^2));

end

end
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di=tan((i-1)*pi/2-ph_a(i)-suma);

ci=Kb(i)*di/(Ka(i)*tan((i-1)*pi/2-ph_b(i)-sumb));

f0t(i)=fR*sqrt((Kb(i)^2-Ka(i)^2)/(1-ci)+Ka(i)^2);

Qt(i)=

Ka(i)/di/(Kb(i)^2-Ka(i)^2)*sqrt((ci*Ka(i)^2-Kb(i)^2)*(ci-1));

end

% Find and plot the tuned magnitude response of the overall filter

ht=freqs([f0t(1)/(Qt(1)) 0],[1 f0t(1)/(Qt(1)) f0t(1)^2],f);

for i=2:N,

dum=freqs([f0t(i)/(Qt(i)) 0],[1 f0t(i)/(Qt(i)) f0t(i)^2],f);

ht=ht.*dum;

end

% Normalized magnitude

ht_db=20*log10(abs(ht))-max(20*log10(abs(ht)));

plot(f,ht_db);

% Find the ripple in the pass band

max_h=max(ht_db);

min_h=max_h;

for i=sc(fp1):sc(fp2),

if ( ht_db(i) <= min_h)

min_h=ht_db(i);

min_index=i;

end

end

min_index=min_index*df+min(f); % Convert vector index to frequency

ripplet=abs(min_h-max_h); % Ripple found in dB

% Check the specifications

if(ht_db(sc(fs1)) >= -a_min )

cont_tune=1;

elseif (ht_db(sc(fs2)) >= -a_min )%

cont_tune=1;
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elseif ( ht_db(sc(fp1)) <= -a_max )

cont_tune=1;

elseif (ht_db(sc(fp2)) <= -a_max )

cont_tune=1;

elseif (a_max <= ripplet )

cont_tune=1;

else

cont_tune=0; % Tuning is done

end

disp(’Press any key to continue’)

sprintf(’Current L : %d’,L)

pause

end % while

err_Q=abs(Q-Qt)./Q*100;

err_f=abs(f0-f0t)./f0*100;

disp(’Individual Q tuning errors :’),disp(err_Q)

disp(’Individual f tuning errors :’),disp(err_f)

sprintf(’Required bit-resolution for synthesizer: %d’, L)

sprintf(’Reference frequency (fR) for synthesizer: %d’, fR)

disp(’Coefficients Ka: ’),disp(Ka)

disp(’Coefficients Kb: ’),disp(Kb)

disp(’References phases ph_a:’),disp(ph_a*180/pi)

disp(’References phases ph_b:’),disp(ph_b*180/pi)
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APPENDIX F

MATLAB CODE: DTMC

% fo current center freq

% Q current Q

% Qd desired Q

% fod desired center frequency

% A1,B1,A2,B2; logic

% g1,g2 gains at f1 and f2

mq=10; % Sensitivity of Q to vq dQ/dV

mf=10e6; % Sensitivity of fo to vf dfo/dV

dt=1; % Time increment, one tuning step

tf=100; % Final time, should be large enough for convergence

off=0; % Offset in the comparator

t=0:dt:tf;

f1=8.5e6; % Reference frequencies

f2=11.5e6;

freq=2e6:1e3:18e6; % Frequency range over which TF calculated

fod=sqrt(f1*f2) % Target center freq. and Q

Qd=sqrt(3)*fod/(f2-f1)

% Following vectors keeps the values at each tuning step

vf=zeros(1,length(tf)); % Freq. control voltage

vq=zeros(1,length(tf)); % Q control voltage

fo=zeros(1,length(tf)); % fo values

Q=zeros(1,length(tf)); % Q values

g1=zeros(1,length(tf));

g2=zeros(1,length(tf));

dvf=10e-3; % Freq. control voltage increment

dvq=20e-3; % Q control voltage increment
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vf(1)=0.4; % Initialize

vq(1)=1.5;

figure(1)

set(gca,’NextPlot’,’replace’)

plot(1)

hold on

line([min(freq) max(freq)],20*log10([0.5 0.5]))

line([f1 f1],[-15 0])

line([f2 f2],[-15 0])

set(gca,’FontSize’,20)

set(gca,’XTick’,[])

set(gca,’Xgrid’,’on’,’Ygrid’,’on’)

ylabel(’( dB )’)

plot(freq,20*log10(bp_mag(Qd,fod,freq)),’r’);

axis([min(freq) max(freq) -15 0])

for i=1:dt:length(t)-1,

fo(i)=fod+mf*(vf(i)-1); %current f

Q(i)=Qd+mq*(vq(i)-1); %current Q

G1=abs(f1)/sqrt((fo(i)*fo(i)-f1*f1)^2+f1*f1*fo(i)*fo(i)/Q(i)/Q(i));

G2=abs(f2)/sqrt((fo(i)*fo(i)-f2*f2)^2+f2*f2*fo(i)*fo(i)/Q(i)/Q(i));

G0=abs(fod)/sqrt((fo(i)*fo(i)-fod*fod)^2+fod*fod*fo(i)

*fo(i)/Q(i)/Q(i));

g1(i)=G1/G0;%normalize

g2(i)=G2/G0;%normalize

A1=( g1(i) >= 0.5-off );

B1=( g1(i) >= 1-off) ;

A2=( g2(i) >= 0.5+off);

B2=( g2(i) >= 1+off);
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fu=(B1&A2&not(B2))|(A1&not(A2));

fd=(A1&not(B1)&B2)|(A2&not(A1));

qu=A1&not(B1)&A2&not(B2);

qd=(not(A2)&not(A1));

vf(i+1)=vf(i)+fu*dvf-fd*dvf; % Update voltages

vq(i+1)=vq(i)+qu*dvq-qd*dvq;

if ( mod(i,10)==0),

Go=1;

plot(freq,20*log10(bp_mag(Q(i),fo(i),freq)/Go),’k--’);

end

end

% Plot control voltages

t=1:dt:length(t);

figure(2)

set(gca,’FontSize’,20)

xlb=[0 100 200 300 400 500];

plot(t,vf,’r --’,t,vq,’b’)

title(’vf & vq’)

set(gca,’Xgrid’,’on’,’Ygrid’,’on’)

xlabel(’time’)

set(gca,’XTick’,xlb)

set(gca,’XTickLabel’,xlb)

Qt=(Q(length(t)-1)) % Tuned Q value at tf

fot=(fo(length(t)-1)) % Tuned fo value at tf

err_q=(Qd-Qt)/Qd*100 % Q tuning error

err_f=(fod-fot)/fod*100 % Frequency tuning error
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APPENDIX G

MATLAB CODE: PARASITIC EFFECT ON DTMC

% Zero effect on the magnitude based tuning is approximated

wm=10e6; % Middle reference frequency

wstart=0.4*wm; % Start frequency

wstop=1.6*wm; % Stop frequency

dw=(wstop-wstart)/10000;% Frequency increment

w=wstart:dw:wstop;

xrange=30:10:60; % Range of X, the location of parasitic

Nrange=10:10:100; % Range of N, freq. division ratio for mid freq.

%Initialize variables

Qt=zeros(length(Nrange),length(xrange));

wot=zeros(length(Nrange),length(xrange));

Qd=zeros(length(Nrange),length(xrange));

wod=zeros(length(Nrange),length(xrange));

j=0;

for N=Nrange,

j=j+1;

wr=wm/N;

w1=(N-1)*wr;

w2=(N+1)*wr;

Qd(j,:)=sqrt(3)/2*N; % Desired Q

wod(j,:)=wm; % Desired wo

i=0;

for x=xrange,

i=i+1;

wz=x*wm;
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D=w1^2/w2^2*(w1^2+wz^2)/(w2^2+wz^2);

A=wz^2*(D-1)+4*D*w2^2-4*w1^2;

B=2*wz^2*(w1^2-D*w2^2);

C=wz^2*(D*w2^4-w1^4);

% Tuned circuit parameter woo

woo=abs(C/A)^(1/4);

Db=1/4*wm^2/w1^2*(wm^2+wz^2)/(w1^2+wz^2);

% Tuned circuit parameter bo

bo=sqrt((Db*(woo^2-w1^2)^2-(woo^2-wm^2)^2)/(wm^2-Db*w1^2))

-2*woo^2/wz;

num=[1/wz 1 0];

den=[1 bo+2*woo^2/wz woo^2];

hb=freqs(num,den,w);

hbn=hb/max(abs(hb)); % Normalized transfer function of the filter

% Find tuned wo and Q

[m windex]=max(abs(hbn));

wot(j,i)=wstart+dw*windex;

htemp=hbn(1:windex);

[m wli]=min(abs(abs(htemp)-0.707));

wl=wstart+dw*wli;

htemp=hbn(windex:length(hbn));

[m wui]=min(abs(abs(htemp)-0.707));

wu=wstart+dw*(wui+windex);

Qt(j,i)=wot(j,i)/(wu-wl);

end % x

end %N

% Plot Error Figures

figure(1)

Qerr=abs(Qt-Qd)./Qd*100
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Ferr=abs(wot-wod)./wod*100

surf(xrange,sqrt(3)/2*Nrange,Qerr);

set(gca,’FontSize’,20)

xlabel(’X’),ylabel(’Q’)

figure(2)

surf(xrange,sqrt(3)/2*Nrange,Ferr);

set(gca,’FontSize’,20)

xlabel(’X’),ylabel(’Q’)
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