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ABSTRACT

Analysis, Modeling and Simulation of Ring Resonators and Their Applications to Filters
and Oscillators. (May 2004)
Lung-Hwa Hsieh, B.S., Chung Yuan Christian University;
M.S., National Taiwan University of Science and Technology

Chair of Advisory Committee: Dr. Kai Chang

Microstrip ring circuits have been extensively studied in the past three decades. A
magnetic-wall model has been commonly used to analyze these circuits. Unlike the
conventional magnetic-wall model, a simple transmission-line model, unaffected by
boundary conditions, is developed to calculate the frequency modes of ring resonators of
any general shape such as annular, square, or meander ring resonators. The new model
can be used to extract equivalent lumped element circuits and unloaded Qs for both
closed- and open-loop ring resonators.

Several new bandpass filter structures, such as enhanced coupling, slow-wave,
asymmetric-fed with two transmission zeros, and orthogonal direct-fed, have been
proposed. These new proposed filters provide advantages of compact size, low insertion
loss, and high selectivity. Also, an analytical technique is used to analyze the
performance of the filters. The measured results show good agreement with the
simulated results.

A compact elliptic-function lowpass filter using microstrip stepped impedance
hairpin resonators has been developed. The prototype filters are synthesized from the
equivalent circuit model using available element-value tables. The filters are evaluated
by experiment and simulation with good agreement. This simple equivalent circuit
model provides a useful method to design and understand this type of filters and other
relative circuits.

Finally, a tunable feedback ring resonator oscillator using a voltage controlled

piezoelectric transducer is introduced. The new oscillator is constructed by a ring



v

resonator using a pair of orthogonal feed lines as a feedback structure. The ring
resonator with two orthogonal feed lines can suppress odd modes and operate at even
modes. A voltage controlled piezoelectric transducer is used to vary the resonant
frequency of the ring resonator. This tuned oscillator operating at high oscillation

frequency can be used in many wireless and sensor systems.
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CHAPTER I

INTRODUCTION

A. Objective

The objectives of this dissertation are to introduce the analyses and modelings of the
ring resonators and to apply them to the applications of filters and oscillators.

For the past three decades, the microstrip ring resonator has been widely utilized to
measure the effective dielectric constant’ dispersion, and discontinuity parameters and to
determine optimum substrate thickness [1-4]. Beyond measurement applications, the
microstrip ring resonator has also been used in filters, oscillators, mixers, and antennas
[5] because of its advantages of compact size, easy fabrication, and narrow passband
bandwidth. Recently, interesting compact filters using microstrip ring or loop resonators
for cellular and other communication systems were reported [6-8].

The field theory for the ring resonator was first introduced by Wolff and Knoppik
[2]. They used the magnetic-wall model to describe the curvature effect on the resonant
frequency of the ring resonator. Furthermore, based on this model, Wu and Rosenbaum
found the mode chart [9] or frequency modes [5] of the ring resonator obtained from the
eigen-function of Maxwell’s equations with the boundary conditions of the ring.

Specifically, they found the mode frequencies satisfying 2777 =nA, , withn=1, 2, 3...,
where 7 is the mean radius of the ring resonator, 7 is the mode number and A, is the

guided-wavelength. Although the mode chart of the magnetic wall model has been
studied extensively, it provides only a limited description of the effects of the circuit
parameters and dimensions [5]. A further study on a ring resonator using the

transmission-line model was developed later [10]. The transmission-line model used a

This dissertation follows the style and format of IEEE Transactions on Microwave
Theory and Techniques.



T-network in terms of equivalent impedances to analyze a ring circuit. However, this
model showed a complex expression for the ring circuit. Another distributed-circuit
model using cascaded transmission-line segments for a ring was reported [11]. The
model can easily incorporate any discontinuities and solid-state devices along the ring.
Although this model could predict the behavior of a ring resonator well, it could not
provide a straightforward circuit view such as equivalent lumped elements G, L and C
for the ring circuit. On the other hand, so far, only the annular ring resonator has the
theory derivation for its frequency modes. For the square or meander ring resonator
[5,12], it is difficult to find the frequency modes using magnetic-wall model because of
its complex boundary conditions. Thus, in [5], the square ring resonator was treated as a
special case of an annular ring resonator, but it is not a rigorous approach. Also, the
magnetic-wall model cannot be used to explain the dual-mode behavior for the ring
resonator with complex boundary conditions.

Due to the sharp cut-off frequency response, most of the established bandpass filters
were built by dual-mode ring resonators, which were originally introduced by Wolff
[13]. The dual-mode consists of two degenerate modes, which are excited by
asymmetrical feed lines, added notches, or stubs on the ring resonator [5,13,14,15,16].
The coupling between the two degenerate modes is used to construct a bandpass filter.
By proper arrangement of feed lines, notches, or stubs, the filter can achieve Chebyshev,
elliptic or quasi-elliptic characteristics with sharp rejection. Recently, one interesting
excitation method using asymmetrical feed lines with lumped capacitors at input and
output ports to design a bandpass filter was proposed [17]. A conventional end-to-side
coupling ring resonator suffers from high insertion loss, which is due to circuit’s
conductor, dielectric, radiation losses and an inadequate coupling between feeders and
the ring resonator. The size of the coupling gap between ring resonator and feed lines
affects the strength of coupling and the resonant frequency [5]. For instance, for a
narrow coupling gap size, the ring resonator has a tight coupling and can provide a low
insertion loss but the resonant frequency will be influenced greatly and for a wide gap

size, the resonator has a high insertion loss and the resonant frequency is slightly



affected. In order to improve insertion loss, some structures and active filters have been
reported [18-23]. In this dissertation, several new structures have been developed to
enhance the performance of ring resonators and filters. These include ring resonators
using enhanced L-shape coupling, slow-wave filters, direct-connected ring resonators
with orthogonal feed lines, ... In addition, some novel configurations have been
demonstrated to incorporate active devices incorporated into the ring resonator to

provide gain to compensate for the loss and to build oscillators [19-20].

B. Organization of This Dissertation

This dissertation is organized in ten Chapters. Chapter II presents the frequency
modes of the microstrip ring resonators of any general shape by using a simple
transmission line analysis [24]. Also, a literature error has been found and discussed.
Chapter III introduces an equivalent lumped elements G, L, C and unloaded Qs of
closed- and open-loop ring resonators that provides an easy method to design ring
circuits [25]. In Chapter IV, a new bandpass filter is shown. The filter using ring
resonators with enhanced-coupling tuning stubs has high selectivity and low insertion
loss characteristics. Chapter V shows a new slow-wave bandpass filter with a low
insertion loss that constructed by a transmission line with periodically loaded ring or
stepped impedance hairpin resonators. Chapter VI discusses the filter with two
transmission zeros that gives a sharp cut-off frequency response next to the passband. In
addition, a piezoelectric transducer is used to tune the passband of the filter. The
characteristics of the PET [26,27] are also described in this chapter [28]. In Chapter VII,
a compact, low insertion loss, sharp rejection and wideband microstrip bandpass filter is
presented [29,30]. The filter is designed for satellite communication applications, which
require wide passband, sharp stopband rejection and wide stopband. Chapter VIII shows
a compact elliptic-function lowpass filter microstrip stepped impedance hairpin
resonators [31,32]. This compact lowpass filter with low insertion loss and a wide

stopband is useful in many wireless communication systems. Chapter IX presents a high



efficiency piezoelectric transducer tuned feedback microstrip ring resonator oscillator

operating at high resonant frequencies [33]. The last chapter summaries all studies.



CHAPTER II

SIMPLE ANALYSIS OF THE FREQUENCY MODES FOR MICROSTRIP
RING RESONATORS*

A. Introduction

The field theory for the ring resonator was first introduced by Wolff and Knoppik
[2]. They used the magnetic-wall model to describe the curvature effect on the resonant
frequency of the ring resonator. Furthermore, based on this model, Wu and Rosenbaum
found the mode chart [9] or frequency modes [10] of the ring resonator obtained from
the eigen-function of Maxwell’s equations with the boundary conditions of the ring.

Specifically, they found the mode frequencies satisfying 2777 =nA, , with n = 1,2,3...,
where 7 is the mean radius of the ring resonator, 7 is the mode number and A, is the

guided-wavelength. So far, only the annular ring resonator has the theory derivation for
its frequency modes. For the square ring resonator, it is difficult to use the magnetic-
wall model to obtain the frequency modes of the square ring resonator because of its
complex boundary conditions. Thus, in [10], the square ring resonator with complex
boundary conditions was treated as a special case of an annular ring resonator, but it is
not a rigorous approach. Also, the magnetic-wall model does not explain the dual-mode
behavior very well, especially for ring resonators with complex boundary conditions.

In this chapter, a simple transmission-line model is used to calculate frequency
modes of ring resonators of any general shape. Also, it points out a literature error for
the frequency modes of the one-port ring resonator. Moreover, it provides a better

explanation for dual-mode behavior than the magnetic-wall model.

*Reprinted with permission from “Simple analysis of the frequency modes for
microstrip ring resonators of any general shape and the correction of an error in
literature” by Lung-Hwa Hsieh and Kai Chang, 2003. Microwave and Optical
Technology Letters, vol. 3, pp. 209-213. © 2004 by the Wiley.



B. Frequency Modes for Ring Resonators
Fig. 1 shows the configurations of the one-port square and annular ring resonators.

For a ring of any general shape, the total length / may be divided into /; and /, sections.

l
—Z,
A
Vo >1 I I=1+1,
Bk L
(a) (b)

Fig. 1. The configurations of one-port (a) square and (b) annular ring resonators.

In the case of the square ring, each section is considered to be a transmission line. z; and
z, are the coordinates corresponding to sections /; and /,, respectively. The ring is fed by
the source voltage V' at somewhere with z;, <0. The positions of the zero point of z; »
and the voltage J are arbitrarily chosen on the ring. For a lossless transmission line, the

voltages and currents for the two sections are given as follows:

Via(22) =V, (7777 +T,,(0) 77) (la)
— Vu+ ~jBz, iBz,
[1,2(21,2) = 7 (e ' _rl,z(o) e’?) (1b)
where Ve ™72 is the incident wave propagating in the +z,, direction, VT ,(0) ¢ Faz

is the reflected wave propagating in the —z; » direction, [ is the propagation constant,



[',,(0) is the reflection coefficient at z; > = 0, and z, is the characteristic impedance of

the ring.

When a resonance occurs, standing waves set up on the ring. The shortest length of

the ring resonator that supports these standing waves can be obtained from the positions

of the maximum values of these standing waves. These positions can be calculated from

the derivatives of the voltages and currents in (1). The derivatives of the voltages are

aVl,2<Zl,2) -

621’2

_],B Vg+ (e‘fﬁzl,z _ rl)z (0) e/ﬂzl,z ) )

aVl,Z (Zl,z)

Z12

Letting =0, the reflection coefficients can be found as

% =0
r,0)=1.
Substituting I',, (0)=1 into (1), the voltages and currents can be rewritten as

Via(z,) =2V, cos(Bz,,)
_ gy
]1,2(21,2) -~ 7

o

sin(Bz,,).

Therefore, the absolute values of the maximum voltages on the ring can be found as

p)
V2(z0)|, =20, for z,, = ng m=0,-1,-2,-3,.........

In addition, the currents 7, , at the positions of z,, =m—* are

2

3)

(4a)

(4b)

()



15(z,) A = 0. (6)

Z) p=m—=
’ 2

Also, the absolute values of the maximum currents can be found as

2V 2m—1
—* for z,, :( 2 )Ag, m=0,-1,-2,-3,........ (7)

o

‘11,2 (z,,)

max

and the voltages V|, at the positions of z,, = (2m ~1)

Ag are

I/1,2 (Zl,z )‘z :M/] = 0 . (8)
12 1 e

Fig. 2 shows the absolute values of voltage and current standing waves on each section

[, and [, of the square ring resonator. Inspecting Fig. 2, the standing waves repeat for

multiples of A, /2 on the each section of the ring. Thus, to support standing waves, the
shortest length of each section on the ring has to be A, /2, which can be treated as the

fundamental mode of the ring. For higher order modes,
A
[, InTg for n=1,23,........ 9)

where n is the mode number. Therefore, the total length of the square ring resonator is
[=1+l,=nA, (10)

or in terms of the annular ring resonator with a mean radius » as shown in Fig. 1(b),



[=nA, =27mr. (11)

Equation (10) shows a general expression for frequency modes and may be applied to

any configuration of microstrip ring resonators including those shown in [11,6].

| I (Z1)| |V1(Zz)|

|

/;
| 7 7 = _
VL ] ;Zl —/]g —/]g/2 21=0
],2:
Viz,
Vod T [=1,+1, l |1,(2)| Vi) .
¢ :
A8 b \
N \\\
-=Zz -A g -A g/ 2 =0

Fig. 2. Standing waves on each section of the square ring resonator.

C. An Error in Literature for One-Port Ring Circuit
In [10,34], one- and two-port ring resonators show different frequency modes. For

one-port ring resonator as shown in Fig. 3(a), the frequency modes are given as

A
2ﬂr=n?g, n=123,... (12a)

(12b)
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where £, is the effective dielectric constant, f, is the resonant frequencies, and ¢ is

the speed of light in free space.

X
: ‘V‘max ’ X ‘V‘max
: [=0 @®: [=0
V=0 ®: V=0
. ‘I‘max L ‘]‘max
(a) (b)

Fig. 3. Simulated electrical current standing waves for (a) one- and (b) two-port ring
resonators at n = 1 mode.

For the two-port ring resonator as shown in Fig. 3(b), the frequency modes are

271r =nA,, 1=1230 (13a)

=l (13b)

=
27Tr,/€eff

However, in section B, the one-port ring resonator has the same frequency modes given
in (11) as those of the two-port ring resonator given in (13a). The results can also be
investigated by EM simulation performed by the IE3D electromagnetic simulator based
on the method of moment [35]. The ring resonators in Fig.3 are designed at fundamental

mode at 2GHz with dielectric constant £ = 10.2 and thickness # = 50 mil. As seen

from the simulation results in Fig. 3, both exhibit the same electrical current flows,

which are current standing waves. Therefore, both one- and two-port ring resonators
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have the same frequency modes as given in (11) or (13a). Furthermore, to
experimentally verify the frequency modes of the one-port ring resonator, two one-port
ring resonators are designed at fundamental mode of 2GHz based on (12a) and (13a),

respectively. They are fabricated on RT/Duriod 60102.2 with dielectric constant &, =

10.2 and thickness 2 = 50mil and demonstrated in Figs. 4(a) and (b), respectively.

w=1.191mm
for 50 - ohms

w=1.191mm
for 50- ohms A, =56.913mm

)Ig /2 =28.457mm

(a) (b)
Fig. 4. Configurations of one-port ring resonators for mean circumferences of (a) A, /2
and (b) 4, .

As seen the measured results in Fig. 5, the one-port ring resonator (Fig. 4(b))
designed by the frequency mode of (13a) illustrates five resonant frequencies from the
fundamental mode of 2GHz to the mode n = 5. However, the one-port ring resonator
(Fig. 4(a)) designed by the frequency mode of (12a) only shows two modes, n =2 and 4.
With n = 2,4,6... in (12a), Equation (12a) is identical to (13a). Therefore, from the
measured results, it also confirms that the one-port ring resonator has the same
frequency modes as the two-port ring resonator. This observation shows the statement
on frequency modes in [10,34] regarding one-port ring resonator is not correct. Equation

(13a) should be used for both one- and two-port ring circuit designs.



12
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Frequency (GHz)

Fig. 5. Measured results for one-port ring resonators with modes n =1 to 5.

D. Dual Mode

The dual mode concept was originally introduced by Wolff [13]. The dual mode is
composed of two degenerate modes or splitting resonant frequencies that may be excited
by perturbing stubs, notches, or asymmetrical feed lines. The dual mode follows from

the solution of Maxwell’s equations for the magnetic-wall model of the ring resonator:

E. =[AJ,(kr)+ BN, (kr)] cos(n®) (14a)

H, =—"[4J (kr)+ BN, (kr)]sin(n®) (14b)
Jjou,r

Hy =547 (k) + BN (k)] cos(n) (14c)
Jjou,

and E_ =[AJ (kr)+ BN, (kr)]sin(n®) (15a)

H, =—"[AJ (kr)+ BN, (kr)| cos(n®) (15b)
Jew,r

Hy =47 (k) + BN (k)] sin(nd) (15¢)

Jjou,
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where J, (kr) and N, (kr) are the Bessel functions of the first and second kinds of order
n. The wave number is k=,/€ €M, where & and g, are the permittivity and

permeability in free space. The dual mode explanation of the magnetic-wall model is
given as followings. If a ring resonator without any perturbations is excited by
symmetrical feed lines, only one of the degenerate modes is generated. Both modes
traveling clockwise and counter-clockwise on the ring resonator are orthogonal to each
other without any coupling. Also, if the ring resonator is perturbed, two degenerated
modes are excited and couple to each other.

In [10], however, the ring resonator with a perturbing stub or notch at

@ =45°, 135%, 225°, or 315° generates the dual mode only for nllodd modes.
Inspecting (15) and (16), they cannot explain why the dual mode only happens for
nJodd modes instead of even modes when the ring resonator has a perturbing stub or
notch at @ =45°, 135°, 225°, or 315°. Also, the magnetic-wall model cannot explain
the dual mode of the ring resonator with complicate boundary conditions. This dual
mode phenomenon may be explained more simply and more generally using the
transmission-line model of section B, which describes the ring resonator as two identical
A ./ 2 resonators connected in parallel. As seen in Fig. 3, two identical current standing
waves are established on the ring resonator in parallel. If the ring itself does not have
any perturbation and is excited by symmetrical feed lines, two identical resonators are
excited and produce the same frequency response, which overlap each other. However,
if one of the A, /2 resonators is perturbed out of balance with the other, two different
frequency modes are excited and couple to each other. To investigate the dual mode
behavior, a perturbed square ring resonator is simulated in Fig. 6. The perturbed square
ring designed at fundamental mode of 2 GHz is fabricated on a RT/Duroid 6010.2 & =

10.2 substrate with a thickness 4 =25 mil.
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X
' ®
Input ~ Output
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Fig. 6. The simulated electrical currents of the square ring resonator with a perturbed

stub at @ =45for (a) the low splitting resonant frequency of n = 1 mode (b) high
splitting resonant frequency of mode » = 1, and (c) mode n = 2.
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Fig. 6 shows the simulated electric currents on the square ring resonator with a
perturbing stub at ® = 45° for the n = 1 and the n = 2 modes. For the » = 1 mode, one

of A, /2 resonators is perturbed so that the two A, /2 resonators do not balance each

other. Thus, two splitting different resonant frequencies are generated. Figs. 6(a) and
(b) show the simulated electrical currents for the splitting resonant frequencies. Fig. 7
illustrates the measured S,; confirming the splitting frequencies for the » = 1 mode
around 2 GHz. Furthermore, for the n = 2 mode, Fig. 6(c) shows the perturbing stub
located at the position of zero voltage which is a short circuit. Therefore, the perturbed

stub does not disturb the resonator and both A . /2 resonators balance each other without

frequency splitting. Measured results in Fig. 7 has confirmed that the resonant

frequency at the n = 2 mode of 4 GHz is not affected by the perturbation.

S21
-20
m -40
°
(]
©
=]
'€ -60
()]
©
=
-80
| |
1 2 3 4 5
Frequency (GHz)

Fig. 7. The measured results for modes » = 1 and 2 of the square ring resonator with a
perturbed stub at @ =45°.
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E. Conclusions

A simple transmission-line model has been used to calculate the frequency modes of
microstrip ring resonators of any shape such as annular, square, and meander. A
literature error for frequency modes of the one-port ring resonator is proved by theory,
electromagnetic simulation, and measured results. Furthermore, the transmission-line
model gives a better explanation for dual mode behavior than the magnetic-wall model,
especially for a ring resonator with complex boundary conditions. Experiments and

simulations show good agreement with theory.
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CHAPTER III

EQUIVALENT LUMPED ELEMENTS G, L, C AND UNLOADED QS OF
CLOSED- AND OPEN-LOOP RING RESONATORS*

A. Introduction

For the past three decades, the microstrip ring resonator has been widely utilized to
measure the effective dielectric constant, dispersion, and discontinuity parameters and to
determine optimum substrate thickness [1-4]. Beyond measurement applications, the
microstrip ring resonator has also been used in filters, oscillators, mixers, and antennas
[5] because of its advantages of compact size, easy fabrication, narrow passband
bandwidth, and low radiation loss. Recently, interesting compact filters using microstrip
ring or loop resonators for cellular and other mobile communication systems were

reported [6-7].

The basic operation of the ring resonator based on the magnetic wall model was
originally introduced by Wolff and Knoppik [2]. In addition, a simple mode chart of the
ring was developed to describe the relation between the physical ring radius and resonant
mode and frequency [9]. Although the mode chart of the magnetic wall model has been
studied extensively, it provides only a limited description of the effects of the circuit
parameters and dimensions [5]. A further study on a ring resonator using the
transmission-line model was proposed [10]. The transmission-line model used a T-
network in terms of equivalent impedances to analyze a ring circuit. However, this
model showed a complex expression for the ring circuit. Another distributed-circuit

model using cascaded transmission-line segments for a ring was reported [11]. The

*Reprinted with permission from (complete publication information) “Equivalent
lumped elements G, L, C and unloaded Qs of closed- and open-loop ring resonators” by
Lung-Hwa Hsieh and Kai Chang, 2002. /[EEE Trans. Microwave Theory Tech., vol. 50,
pp. 453- 460. © 2004 by the IEEE.
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model can easily incorporate any discontinuities and solid-state devices along the ring.
Although this model could predict the behavior of a ring resonator well, it could not
provide a straightforward circuit view such as equivalent lumped elements G, L and C

for the ring circuit.

In this chapter, a simple equivalent lumped element G, L, and C circuit for closed-
and open-loop ring resonators through transmission-line analysis is developed. By using
the equivalent lumped elements, the unloaded Q of the closed- and open-loop rings are
obtained. Two different dielectric substrates with different types of rings are used to

verify the unloaded Q calculation and equivalent circuit representation.

B. Equivalent Lumped Elements and Unloaded Qs for Closed and Open-Loop
Microstrip Ring Resonators

1) Closed-Loop Ring Resonators
Fig. 8 shows the geometry of a closed-loop microstrip ring resonator. The simple

equations of the ring are given by

27 =n, (16a)

nc

fozzm\/?eff

(16b)

where A, is the guided-wavelength, r is the mean radius of the ring, n is the mode

number, f, is the resonant frequency, c is the speed of light in free space, and €, is

static effective relative dielectric constant. Observing this structure, if the width of the
ring is narrow, then the ring might have the same dispersion characteristics as a
transmission line resonator [36]. Therefore, the ring resonator can be a closed loop

transmission line and analyzed by transmission-line model [5].
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Fig. 8. A closed-loop microstrip ring resonator.

Fig. 9(a) illustrates the one-port network of the ring and its equivalent circuit. Inspecting
Fig. 9(a), the equivalent input impedance of the ring is not easily derived from the one-
port network. Another approach using the two-port network is shown in Fig. 9(b) with
an open circuit at port 2 (i, =0) to model the one-port network and find the equivalent
input impedance through ABCD and Y parameters matrixes operations [37]. As seen in

Fig. 9(b), the mean circumference /=A, =277 for the fundamental mode n=1 is
divided by input and output ports on arbitrary positions of the ring with two sections /,

and /,. The two sections form a parallel circuit. For this parallel circuit, a transmission-

line ABCD matrix is utilized to find each section parameters. The ABCD matrix of the

individual transmission line lengths /, and /, is given as follows:

A B h(y/,,) Z,sinh(Y, :
{ } :{ cosh(Y/, ,) sinh(Y, ,) y=a+ip (17)

C D Y, sinh(Y/,,)  cosh(}i,,)

where subscript 1 and 2 are corresponding to the transmission lines /, and /,,

respectively, Z, =1/Y, is the characteristic impedance of the microstrip ring resonator,

o
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y is the complex propagation constant, @ is the attenuation constant, and [ is the

phase constant.

(b)

Fig. 9. The input impedance of (a) one-port network and (b) two-port network of the
closed-loop ring resonator.

The overall Y parameters converted from ABCD matrix in (17) for the parallel circuit

are given by
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{Yn Yn}{ Y, [coth(),) + coth(), )] _Ya[CSCh(ll)-'-CSCh(MZ)]:| (18)

Yy Y] [~Y[esch(yf)+cesch(y,)] ¥, [coth(/,) +coth(),)]

By setting i, to zero, the input impedance Z, of the closed-loop ring in Fig. 9(b) can be

found as follows:

z =2 _Z, sinh()f) (19)
A =0 2 cosh(y) -1
Letting /, =1/2=A, /2, Equation (19) can be rewritten as
_Z, 1+ jtanh(al, ) tan(/l,) 20)

“ 2 tanh(al,)+jtan(A,)

In most practical cases, transmission lines have small loss so that the attenuation term

can be assumed that a/, <<land then tanh(al,)=al,. Considering the [ term and

letting the angular frequency w=w, + Aw, where @), is the resonant angular frequency

and Ac is small,

A, = 2 @1)

where v, is the phase velocity of the transmission line. When a resonance occurs,

v
w=w, and [, =A, /2 =—+"_ Thus, Equation (21) can be rewritten as
w

o
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A, =m+ 2% (22a)

o

and tanh(/3,) :%. (22b)

o

Using these results, the input impedance Z,. can be approximated as

A (23)

. AN .
Since al, —— <<1, Z, can be rewritten as
w

o

- (2,121,

e B W 4
1+
al,w,
For a general parallel G L C circuit, the input impedance is [38]
1
Z =— . (25)
G +2jAaC

Comparing (24) with (25), the input impedance of the closed-loop ring resonator has the
same form as that of a parallel GLC circuit. Therefore, the conductance of the

equivalent circuit of the ring is

G =—t=—% (26a)
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and the capacitance of the equivalent circuit of the ring is

C=—. (26b)

The inductance of the equivalent circuit of the ring can be derived from w, =1/,/L.C,

and is given by

(26¢)

where G., C,, and L. stand for the equivalent conductance, capacitance, and inductance
of the closed-loop ring resonator. Fig. 10 shows the equivalent lumped element circuit
of the ring in terms of G., C,., and L.. Moreover, the unloaded Q of the ring resonator

can be found from equation (26) and the unloaded Q is

Q,=—"%*=——. (27)

Fig. 10. Equivalent elements G., C., and L. of the closed-loop ring resonator.
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For a square ring resonator as shown in Fig. 11, the equivalent G., C., L. and
unloaded Q can be derived by the same procedures as above. Through the derivations, it
can be found that the equivalent G., C,, L. and unloaded Q of the square ring resonator is

the same as that of the annular ring resonator in Fig. 9.

Fig. 11. Transmission-line model of the closed-loop square ring resonator.

2) Open-Loop Ring Resonators

Fig. 12(a) illustrates the configuration of an open-circuited A /2 microstrip ring
resonator. As seen in Fig. 12(a), /; is the physical length of the ring, C, is the gap
capacitance, and Cyis the fringe capacitance caused by fringe field at the both ends of the
ring. The fringe capacitance can be replaced by an equivalent length A/ [39].

Considering the open-end effect, the equivalent length of the ring is /; +2Al=A,/2=1,

for the fundamental mode.
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Fig. 12. Transmission-line model of (a) the open-loop ring resonator and (b) its
equivalent elements G, L,, and C,.

In Fig. 12(a), the parallel circuit split by input and output ports is composed of the gap
capacitor C, and the ring resonator. Furthermore, the 4BCD matrix of the individual

element of C, and the ring can be expressed as follows:
A B 1 1/Y,
= ) (28)
cC D|. [0 1

{A B} _{cosh(ylg) Zosinh(ytg)}

C D], ~|Ysinh(y,) cosh(y,) 29)

where subscripts C, and open are for the gap capacitor and the open-loop ring resonator,

respectively, Y, = jwC, is the admittance of C, Z,=1/Y, is the characteristic
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impedance of the ring. The overall Y parameters converted from ABCD matrix in (28)

and (29) for the parallel ring circuit are given by

{Yn ﬂz}:{Yg+Yuco‘[h(ylg) Y, =Y, csch(y,) 30)

Y, Y| |-Y,-Ycsch(y,) Y, +Y, coth(y,) |’

Observing the two-port network shown in Fig. 12(a), the input impedance of the ring

can be calculated by setting output current i, to zero. In this condition, the input

impedance Z,, can be written as

v Y, cosh(}, ) +7Y, sinh()/,)
© Q| Ysinh(4,)+2Y,Y,[cosh(y,) 1]

i,=0

(€1))

If the gap size between two open ends of the ring is large, then the effect of the gap

capacitor Cg for the ring can be ignored [40]. This implies ¥, =0. Therefore, the input

impedance Z, of the open-loop ring can be approximated as

1+ jtanh(al,)tan(f4,)
“ 7 tanh(al,) + jtan(Al,)

(32)

Also, using the same assumptions and derivations for a/, and A, as in part / of this

section, the input impedance can be obtained by

Z, =— 5 (33)
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Comparing (33) with (25), the input impedance of the ring has the same form as that of a

parallel GLC circuit. Thus, the conductance, capacitance and inductance of the

equivalent circuit of the ring are

oA
: n -1 (34)

The equivalent circuit in terms of G,, C,, and L, is shown in Fig. 12(b). Moreover, the

unloaded Q of the ring is given by

w,C n . (35)

Vio—= ||

Fig. 13. Transmission-line model of the U-shaped open-loop ring resonator.

Fig. 13 illustrates an U-shaped open-loop ring. Also, following the same derivations
used in this section, the equivalent lumped elements G,, C,, L, and unloaded Q of the U-

shaped ring resonator can be found to be identical to those of the open-loop ring

resonator with the curvature effect.  Inspecting the equivalent conductances,

capacitances, and inductances of the closed- and open-loop ring resonators from (26) and
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(34), the relations of the equivalent lumped elements GLC between these two rings can

be found as follows:

G, = 2G, for the same attenuation constant, (36a)

C.=2C,,and L,=L,/2. (36b)

In addition, observing (27) and (35), the unloaded Q of the closed- and open-loop ring

resonators are equal, namely

0.. =0, for the same attenuation constant. (37)

Equations (36a) and (37) sustain for the same losses condition of the closed- and the
open-loop ring resonator. In practice, the total losses for the closed- and the open-loop
ring resonator are not the same. In addition to the dielectric and conductor losses, the
open-loop ring resonator has a radiation loss caused by the open ends [41]. Thus, total
losses of the open-loop ring are larger than that of the closed-loop ring. Under this

condition, (36a) and (37) should be rewritten as follows:

Quc > Quo and Gc < 2Go ‘ (38)

C. Calculated and Measured Unloaded Qs and Equivalent Lumped Elements for Ring
Resonators
1) Calculated Method

The attenuation constant of a microstrip line is given as follow: [42]

a=a,+a, (39)
where a, and a, are dielectric and conductor attenuation constants, respectively. The

dielectric attenuation constant is given by
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E . —1
a,=273-5 Ea " @00
e -1 .Je A,

(40)
reff

where &, is the relative dielectric constant, tand is the loss tangent, and A, is the

wavelength in free space. If operation frequency is larger than dispersion frequency [37]

Zu
£ —1

r

f,(GHz)=0.3 P (41)

where /4 is the substrate thickness in centimeters, then (40) has to include the effects of

dispersion [43] as follows:

gr gre]f (f) _1 tan 5

a,=27.3 (42)
g}" _1 greff (f) AO
The conductor attenuation constant @, can be approximately expressed as [42]
w/h<1/2n
2
a, = 8.68R,, 1- Yoy 1+ U + U In 41w + L dB/unit length  (43a)
27z, h 4h Wy T, tw

1/2n<w/h<2

2
g, = BO8R [y (Vo gy R (m%—ij dB/unit length ~ (43b)
27z h 4h Wy T, t h

wlh=2

-2
a, _ B8R [ W 21 o7el 2 4 0.94 W 4 W 711 X
zh | W7 2h b Y oo
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{1+L+ h (m%—éﬂ dB/unit length (43¢)

Wer 77Wef/ t

2
with R, :Rs{l +£tanlll 4(?] ]} and R =1/% [44] where R, is the surface-
ﬂ s

roughness resistance of the conductor, R, is the surface resistance of the conductor, A is
the surface roughness, J, =1/(R,0) is the skin depth, o is the conductivity of the

microstrip line, f is the frequency, K

o

is the permeability of free-space, ¢ is the
microstrip thickness, andw is the width of the microstrip line. The effective width w,;

can be found in [45]. The unloaded Q of the closed-loop ring can be calculated by

L:L+i (44)
Quc Qd Qc
where Q, = is the Q-factor caused by the dielectric loss of the ring and
g
Q.= 1;\ is the Q-factor caused by the conductor loss of the ring. The attenuation
a
g

constant of the closed-loop ring is

a, =a, +a. Np/unitlength for the fundamental mode. (45)

The radiation loss caused by open ends of the open-loop ring resonator in terms of
radiation quality factor is [41]
Z

Q= 480T[(h; A)F (46)
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where F =

E () +1_[€,,()-1] 1l N5 (f)+1 . The unloaded © of the open-
£ (1) A& (NI | (&, () -1

loop ring can be given by

_:_+L+L. (47)

The attenuation constant of the open-loop ring resonator can be derived from (35).

That is

a = Np/unit length for the fundamental mode. (48)

By using the attenuation constants in (45) and (48), the calculated equivalent lumped

elements for closed- and open-loop rings can be obtained from (26) and (34).

2) Measured Method

The measured unloaded Q of a microstrip resonator can be obtained by [5]

— Q ,meas
O, meas = lléﬁ (49)

where the subscript meas stands for measured data, Qj.eqs 1s the loaded Q and L4 18
the measured insertion loss in dB of the resonator at resonance. The loaded Q is defined

as

jfu,meas
BW,

3dB,meas

O meas = (50)
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where f

0,meas

is the measured resonant frequency and BW, is the measured 3 dB-

dB,meas
bandwidth of a resonator. Also, using (27) and (35), the measured attenuation constant

for closed- and open-loop rings can be given by

Ay meas = ﬁ Np/unit length for the fundamental mode. (51a)
cu,meas g
and a =T Np/unit length for the fundamental mode. (51b)

oa,meas Q A
ou,meas " g

Thus, the equivalent lumped elements G, L, and C of the closed- and open-loop rings can

be found as follows:

aca meas)\ 4 n 1
Gc meas = : . s Cc meas = > Lc meas = N (5 2 a)
’ Z o ’ Z o wo,meas , (.L)i ,meas Cc,meas
a oa meav)\ n 1
Go meas = : —= s Ca meas = s Lu meas = 2 : (Szb)
) 2Zo ) 2Zu wo,meas ’ wu,meas Ca,meas
D. Calculated and Experimental Results

To verify the calculations presented in section C, four configurations of the closed-
and open-loop ring resonators were designed at the fundamental mode of 2 GHz. The
circuits, shown in Fig. 14, were fabricated for two different dielectric constants:

RT/Duriod 5870 with £ =2.33, h =10 mil and ¢ = 0.7 mil and RT/Duriod 6010.2 with
£ =10.2, h =10 mil and ¢ = 0.7 mil.
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(b)

(d)

Fig. 14. Layouts of the (a) annular (b) square (c) open-loop with the curvature effect and
(d) U-shaped open-loop ring resonators.

Table I Unloaded Qs for the parameters: £ =2.33, h=10mil, = 0.7 mil, w = 0.567
mm for a 60-ohms line, A =1.397um and A, = 108.398 mm

Resonators Annular Ring ~ Semi-Annular Ring  Square Ring Semi-Square Ring
Designed Frequency (GHz) 2 2 2 2
Measured Frequency (GHz) 1.963 1.964 1.977 1.983
Measured Insertion Loss 32.66 31.33 32.3 33.12
Measured BW;ap, meas (MHz) 19 19.5 19 19.5
Measured Loaded Q 103.32 100.72 104.05 101.69
Measured Unloaded QO 105.78 103.53 106.64 103.98

Calculated Unloaded QO 103.35 102.41 103.35 102.41




34

Table II Equivalent elements for the parameters: & =2.33, =10 mil, = 0.7 mil,
w =0.567 mm for a 60-ohms line, A =1.397um and A, = 108.398mm

Resonators Annular Ring Semi-Annular Ring Square Ring Semi-Square Ring
Calculated @ (dB/mm) 2.45%10° 2.43%10° 2.45%10° 2.43%10°
Calculated Conductance G (mS) 0.508 0.256 0.508 0.256
Calculated Capacitor C (pF) 4.17 2.08 4.17 2.08
Calculated Inductor L (nH) 1.52 3.04 1.52 3.04
Measured @,eqs (dB/mm) 238%10° 243%10° 2.36X10° 2.42%10°
Measured Conductance G (mS)  0.495 0.253 0.49 0.252
Measured Capacitor C (pF) 4.25 2.12 4.22 2.1

Measured Inductor L (nH) 1.55 3.1 1.54 3.07

As seen in Tables I through IV, the measured unloaded Qs and lumped elements of
the closed- and open-loop rings show good agreement with each other. In comparison of
the measured results with calculated ones, the differences are caused by measurement
uncertainties and accuracies of the calculated equations. The largest difference between
the measured and calculated unloaded Q showing in Table III for the closed-loop square
ring resonator is 5.7%. Furthermore, considering the radiation effect of the open-loop

ring resonator fabricated by & = 2.33 with £ = 10mil, an EM simulator is used to

investigate. The simulator is based on an integral equation and method of moment [35].

Table III Unloaded Qs for the parameters: £ =10.2, 4= 10 mil, #=0.7 mil, w = 0.589
mm for a 30-ohms line, A =1.397um and A, = 55.295 mm

Resonators Annular Ring  Semi-Annular Ring  Square Ring Semi-Square Ring
Designed Frequency (GHz) 2 2 2 2
Measured Frequency (GHz) 1.974 1.968 2.03 2.03
Measured Insertion Loss 35.83 35.48 35.48 334
Measured BW;ap, meas (MHz) 20.5 21 20.5 21
Measured Loaded Q 96.29 95.36 97.71 95.38
Measured Unloaded QO 97.87 96.99 99.38 97.46

Calculated Unloaded QO 93.65 93.21 93.65 93.21
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Table IV Equivalent elements for the parameters: £, = 10.2, 4= 10 mil, t=0.7 mil,
w = 0.589 mm for a 30-ohms line, A =1.397um and A, =55.295 mm

Resonators Annular Ring Semi-Annular Ring Square Ring Semi-Square Ring
Calculated @ (dB/mm) 5.29%10° 5.27%10° 5.29%10° 5.27%10°
Calculated Conductance G (mS) 1.12 0.56 1.12 0.56
Calculated Capacitor C (pF) 8.33 4.17 8.33 4.17
Calculated Inductor L (nH) 0.76 1.52 0.76 1.52
Measured @ eqs (dB/mm) 5.04x10° 5.09%10" 4.97%10° 5.06x10
Measured Conductance G (mS)  1.06 0.54 1.05 0.54
Measured Capacitor C (pF) 8.44 423 8.21 4.11
Measured Inductor L (nH) 0.77 1.54 0.75 1.5

E. Conclusions

An equivalent lumped-element circuit representation for the closed- and open-loop
ring resonators was developed by a transmission-line analysis. Using the calculated G,
L, C element values, the unloaded Qs for both the closed- and open-loop ring resonators
were obtained. Two different dielectric constant substrates were used to verify the
unloaded Qs and the equivalent lumped elements. The measured results show good
agreement with the theory. These novel expressions using the equivalent lumped
elements G, L, C and unloaded Q for the ring resonators can provide a simple way to

design ring circuits.
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CHAPTER IV

DUAL-MODE BANDPASS FILTERS USING RING RESONATORS WITH
ENHANCED-COUPLING TUNING STUBS*

A. Introduction

The microstrip ring resonator has been widely used to evaluate phase velocity,
dispersion and effective dielectric constant of microstrip lines. The main attractive
features of ring resonator are not only limited to its compact size, low cost and easy
fabrication but also presents narrow passband bandwidth and low radiation loss. Many
applications, such as bandpass filters, oscillators, mixers, and antennas using ring
resonators have been reported [5]. Moreover, most of the established bandpass filters
were built by dual-mode ring resonators, which were originally introduced by Wolff
[13]. The dual-mode consists of two degenerate modes, which are excited by
asymmetrical feed lines, added notches, or stubs on the ring resonator [5,13,14]. The
coupling between the two degenerate modes is used to construct a bandpass filter. By
proper arrangement of feed lines, notches, or stubs, the filter can achieve Chebyshev,
elliptic or quasi-elliptic characteristics. Recently, one interesting excitation method
using asymmetrical feed lines with lumped capacitors at input and output ports to design
a bandpass filter was proposed [17].

Low insertion loss, high return loss, and high rejection band are the desired
characteristics of a good filter. However, a conventional end-to-side coupling ring
resonator suffers from high insertion loss, which is due to circuit’s conductor, dielectric,

radiation losses and an inadequate coupling between feeders and the ring resonator. The

*Reprinted with permission from (complete publication information) “Dual-mode quasi-
elliptic-functionbandpass filters using ring resonators with enhanced-coupling tuning
stubs” by Lung-Hwa Hsieh and Kai Chang, 2002. [EEE Trans. Microwave Theory Tech.,
vol. 50, pp. 1340- 1345. © 2004 by the IEEE.
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size of the coupling gap between ring resonator and feed lines affects the strength of
coupling and the resonant frequency [5]. For instance, for a narrow coupling gap size,
the ring resonator has a tight coupling and can provide a low insertion loss but the
resonant frequency will be influenced greatly and for a wide gap size, the resonator has a
high insertion loss and the resonant frequency is slightly affected. In order to improve
the insertion loss, some structures have been published to enhance the coupling strength
of ring resonators [18-21]. Several recent developments of the ring resonator using high
temperature superconductor (HTS) thin film and micromachined circuit technologies
have been presented [46-48]. This approach has the main advantage of very low
conductor loss and therefore, a low insertion loss is expected. In addition, some
configurations are suggested to use active devices combined into the ring resonator to
provide gain to compensate for the loss [22,23]. In this chapter, novel quasi-elliptic-
function bandpass filters using microstrip ring resonators with low insertion loss have
been developed. A L-shape coupling arm was introduced to enhance the coupling and to
generate perturbation for dual mode excitation. The effects of the coupling gap and stub
length have been studied. Filters using one, two, and three ring resonators are
demonstrated and compared. These new types of bandpass filters have been verified by
simulation and measurement. Both simulated and measured results exhibit a good

agreement.

B. Dual-mode Bandpass Filter Using a Single Ring Resonator

The basic structure of the proposed dual-mode filter is shown in Fig. 15(a). The
square ring resonator is fed by a pair of orthogonal feed lines and each feed line is
connected to a L-shape coupling arm. Fig. 15(b) displays the scheme of the coupling
arm that consists of a coupling stub and a tuning stub. The tuning stub is attached to the
end of the coupling stub. As seen from the circuit layout, the tuning stub extends the
coupling stub to increase the coupling periphery. In addition, the asymmetrical structure
perturbs the field of the ring resonator and excites two degenerate modes [13]. Without

the tuning stubs, there is no perturbation on the ring resonator and only a single mode is
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excited [6]. Comparing the new filter with conventional ones [5], which use perturbing
notches or stubs inside the ring resonator, the conventional filters only provide dual-
mode characteristics without the benefits of enhanced coupling strength and

performance optimization.

Feed line

Tuning

/ / stub

Coupling
stub

(a) (b)

Fig. 15. New bandpass filter (a) layout and (b) L-shape coupling arm.

The new filter was designed for the center frequency of 1.75 GHz and fabricated on
a 50-mil thickness RT/Duroid 6010.2 substrate with a relative dielectric constant &, =

10.2. The length of the tuning stubs is L and the gap size between the tuning stubs and
the ring resonator is s. The length of the feed lines is a = 8 mm; the width of the
microstrip line is w = 1.191mm for a 50-ohm line; the length of the coupling stubs is b =
18.839+s mm; the gap size between the ring resonator and coupling stubs is g = 0.2 mm;
the length of one side of the square ring resonator is ¢ = 17.648 mm. The dimension of
the ring was designed for first mode operation at the passband center frequency. The

coupling gap g was selected in consideration of strong coupling and etching tolerance.
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The simulation was completed using IE3D electromagnetic simulator, which gives full-

wave solution using integral equations and the method of moment [35].
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Fig. 16. Measured (a) S,; and (b) S;; by adjusting the length of the tuning stub L with a
fixed gap size (s = 0.8 mm).
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By adjusting the length L and gap size s of the tuning stubs adequately, the coupling
strength and the frequency response can be optimized. Single mode excitation (Fig. 16)

or dual mode excitation (Fig. 17) can be resulted by varying s and L.
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Fig. 17. Measured (a) Sy; and (b) S;; by varying the gap size s with a fixed length of the
tuning stubs (L = 13.5 mm).
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Figs. 16 and 17 show the measured results for five cases from changing the length L of
tuning stubs with a fixed gap size (s = 0.8 mm) and varying the gap size s with a fixed
length (L = 13.5mm).

Observing the measured results in Fig. 16, two cases for L = 4.5 and 9 mm with a fixed
gap size only excite a single mode. The coupling between the L arms and the ring can be

expressed by external O (Q,) as follow: [49]:

QL = 3 1 = f(’ (53)

where Q; is the loaded Q, Q, is the unloaded Q of the ring resonator, f, is the resonant

frequency, and (Af )3dB is the 3-dB bandwidth. The unloaded Q (Q, = 137) for the

square ring resonator can be obtained from the measurement using the circuit shown in

Fig. 18.

Fig. 18. A square ring resonator for the unloaded Q measurement.

From (53), Q. is given by

- 2QuQL . 54
N 0,-9, Y

The performance for these two single-mode ring resonators is shown in Table V.
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Table V Single mode ring resonator

Casel: L=4.5 mm Case2: L =9 mm

s =0.8 mm s=0.8 mm
Resonant Frequency fo 1.75 GHz 1.755 GHz
Insertion Loss IL 2.69 dB 0.97 dB
3 - dB Bandwidth 70 MHz 150 MHz
Loaded QO 25 11.7
External Q 61.16 25.58

On the other hand, the three cases shown in Fig. 17 by varying gap size s with a fixed
length L = 13.5 mm generate dual-mode characteristics. The coupling coefficient

between two degenerate modes is given by [48]

2 2
pr_fpl
2 2
fp2+fp1

(55)

where f,; and f,; are the resonant frequencies. In addition, the midband insertion loss L,

corresponding to Q,, O, and K can be expressed as [49]

L= 20105{ (i+0./0,) | KQ@} dB. (56)
2KO D

The external Q can be obtained from (56) through measured L4, K, and Q,. Moreover,
the coupling coefficient between two degenerate modes shows three different coupling
conditions. Let K, = 1/Q.+1/Q,. If the coupling coefficient satisfies K >K,, then the
coupling between two degenerate modes is overcoupled. In this overcoupled condition,
the ring resonator has a hump response with a high insertion loss in the middle of the

passband [19]. If K = K,, the coupling is critically coupled. Finally, if K<K,, the
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coupling is undercoupled. For both critically coupled and undercoupled coupling
conditions, there is no hump response. Also, when the coupling becomes more
undercoupled, the insertion loss in the passband increases [49]. The performance for the
dual-mode ring resonators is displayed in Table VI.

Observing the single-mode ring in Table V, it shows that a higher external Q
produces higher insertion loss and narrower bandwidth. On the other hand, for the dual-
mode ring resonator in Table VI, its insertion loss and bandwidth depend on the external
0, coupling coefficient K, and coupling conditions. For an undercoupled condition, the
more undercoupled, the more the insertion loss and the narrower the bandwidth. To
obtain a low insertion-loss and wide-band pass band characteristic, the single-mode ring
resonator should have a low external O, which implies more coupling periphery between
the feeders and the ring resonator. Also, the dual-mode ring resonator can achieve the
same performance by selecting a proper external Q and coupling coefficient K for an

undercoupled coupling close to an overcoupled coupling.

Table VI Dual mode ring resonator

Casel: L=135mm Case2: L=13.5mm Case3: L=13.5mm

s=0.3 mm s=0.5 mm s=0.8 mm
Resonant Frequencies (i1, f»2) (1.72,1.855) GHz (1.7,1.84) GHz (1.67,1.81) GHz
Coupling Coefficient K 0.075 0.078 0.08
External Q 6.24 7.9 9.66
Midband Insertion Loss IL 2.9dB 1.63 dB 1.04 dB
3- dB Bandwidth 160 MHz 175 MHz 192.5 MHz

Coupling Condition undercoupled undercoupled undercoupled
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Fig. 19. Simulate and measured results for the case of L = 13.5 mm and s = 0.8 mm.

Fig. 19 shows the simulated and measured results for the optimized quasi-elliptic
bandpass filter. It can be found that an orthogonal-feed dual-mode ring resonator
produces a quasi-elliptic characteristic [14,50,51]. As seen in Fig. 15, without the tuning
stubs L, the fields of the ring are unaffected and the filter exhibits a stopband at the
fundamental resonant frequency [5]. With the tuning stubs, the fields of the ring are
perturbed and excited a dual mode. Also, two additional transmission zeros are
generated. Both transmission zeros locate on either side of the passband [5,50]. This
frequency response is treated as a quasi-elliptic characteristic. In comparison of this new
filer in Fig. 15 with the conventional filer, which is constructed by one-element hairpin
[52], edge-coupled, and interdigital microstrips [49], the new filter can provide a quasi-
elliptic characteristic with a wide bandwidth while the conventional filter can only have

a Chebyshev characteristic with a narrow bandwidth.
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C. Dual-mode Bandpass Filter Using Multiple Cascaded Ring Resonators Dual-mode
1) Dual-mode Bandpass Filter Using Two Cascaded Ring Resonator

Cascaded multiple ring resonators have advantages in acquiring a much narrower
and shaper rejection band than the single ring resonator and many bandpass filters using

multiple ring resonators are fabricated by HTS [46-48].

— L —

S“— = :
-f_D

i 3

Wi Lc

T

Fig. 20. Layout of the filter using two resonators with L-shape coupling arms.

Fig. 20 illustrates the circuit composed of two ring resonators. This bandpass filter
was built based on the L = 13.5 mm and s = 0.8 mm case of the single ring resonator of
Fig. 20. Each filter section has identical dimensions as the single ring resonator. A short
transmission line L. of 6.2 mm with a width w; = 1.691mm connects to the coupling
stubs to link the two ring resonators. The energy transfers from one ring resonator
through the coupling and tuning stubs (or a L-shape arm) and the short transmission line
to another ring resonator. Observing the configuration for the L-shape and the short
transmission line L. in Fig. 20, it not only perturbs the ring resonator but also can be

treated as a resonator.
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A
Open End Effect

(b)

Fig. 21. Back-to-back L-shape resonator (a) layout and (b) equivalent circuit. The
lengths L, and L; include the open end effects.

Considering this type resonator in Fig. 21(a), it consists a transmission line L. and
two parallel-connected open stubs. Its equivalent circuit is shown in Fig. 21(b). The

input admittance Y, is given by

Y, + ¥, tan(BL )

Y =Y +7, 57
" " 1|:},1 +ijltan(ﬁLc)j| ( )

where Y;,; = jY,[tan(BL,)ttan(BLy)], Y= 1/Z;, Y, = 1/Z, and Bis the phase constant. Y;
is the characteristic admittance of the transmission line L., and Y, is the characteristic
admittances of the transmission lines L,, and L,. Letting Y;, = 0, the resonant
frequencies of the resonator can be predicted. In Fig. 21, the resonant frequencies of the
resonator are calculated as f,; = 1.067, f,, = 1.654 and f,; = 2.424 GHz within 1-3 GHz.

To verify the resonant frequencies, an end-to-side coupling circuit is built as shown in
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Fig. 22. Also, the measured resonant frequencies can be found as f,,,; = 1.08, f,2 =

1.655, and f,,,; = 2.43 GHz, which show a good agreement with calculated results.
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Fig. 22. Measured S;; for the back-to-back L-shape resonator.

Inspecting the frequency responses in Figs. 22 and 23, the spike at f,,,,; = 2.43 GHz is
suppressed by the ring resonators and only one spike appears at low frequency (f..; =
1.08 GHz) with a high insertion loss, which dose not influence the filter performance.
Furthermore, the resonant frequency (f,,> = 1.655 GHz) of the resonator in Fig. 22
couples with the ring resonators. By changing the length L., the resonant frequencies
will move to different locations. For a shorter length L., the resonant frequencies move
to higher frequency and for a longer length L., the resonant frequencies shift to lower
frequency. Considering the filter performance, a proper length L. should be carefully
chosen. The filter has an insertion loss of 1.63 dB in the passpband with a 3-dB
bandwidth of 155 MHz.
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Fig. 23. Simulated and measured results for the filter using two resonators with L-shape
coupling arms.

2) Dual-mode Bandpass Filter Using Three Cascaded Ring Resonators

Fig. 24 illustrates the filter using three cascaded ring resonators. Any two of three
resonators are linked by a L-shape arm with a short transmission line L. of 6.2mm with a
width w; = 1.691 mm. The simulated and measured results are shown in Fig. 25. The
filter has an insertion loss of 2.39 dB in the passpband with a 3-dB bandwidth of 145
MHz. Table VII summarizes the filter performance with one, two and three ring

resonators.
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wj

Fig. 24. Layout of the filter using three resonators with L-shape coupling arms.
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Fig. 25. Simulated and measured results for the filter using three resonators with L-shape
coupling arms.
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Table VII Filter performance

One ring Two rings Three rings

Fig. 19 Fig. 23 Fig. 25
Minimum S21 1.04 dB 1.63 dB 2.39dB
Frequency Range  1.655to 1.665 to 1.685 to
for S11< 10 dB 1.835 GHz 1.81 GHz 1.83 GHz
3-dB Bandwidth 192.5 MHz 155 MHz 145 MHz
Fractional 0 0
Bandwidth % 8.9% 8.45 %
Band Rejection Better than Better than Better than

10 dB 20 dB 30dB

D. Conclusions

A novel type of microwave dual-mode filter using square ring resonators with an
enhanced L-shape coupling arm is proposed. By changing the length of tuning stubs and
gap sizes between tuning stubs and ring resonator, the insertion loss and frequency
response of the filter can be optimized. To acquire a low insertion-loss and wide-band
pass band characteristic, the single-mode ring resonator should have stronger coupling
between the feeders and the ring resonator. Also, the dual-mode ring resonator should
choose a proper external O and coupling coefficient K to achieve the low insertion-loss
and wide-band pass band characteristics. Filters using cascaded ring resonators provide

a sharp rejection band and narrow passband bandwidth with quasi-elliptic characteristics.
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CHAPTER V

SLOW-WAVE BANDPASS FILTERS USING RING OR STEPPED IMPEDANCE
HAIRPIN RESONATORS*

A. Introduction

Microstrip ring and stepped impedance hairpin resonators have many attractive
features and can be used in satellites, mobile phones and other wireless communication
systems. The main advantages of the resonators are their compact size, easy fabrication,
narrow bandwidth and low radiation loss. Therefore, the resonators are widely used in
the design of filters, oscillators, and mixers [5,53].

Some of the bandpass filters that use the ring resonator utilize the dual-mode
characteristic to achieve a sharp cut-off frequency response [14]. However, the filters
use perturbation notches or stubs that make their frequency response sensitive to
fabrication uncertainties [14]. In addition, bandpass filters that use using parallel- or
cross-coupling ring resonators to produce Chebyshev- or elliptic-function characteristics
[54,55] suffer from high insertion loss. Recently, the ring resonator filters using high
temperature superconductor (HTS) and micromachined circuit technologies have
demonstrated low insertion loss and a sharp cut-off frequency response, but at the
expense of high fabrication costs [56].

The hairpin resonator was first introduced to reduce the size of the conventional
parallel-coupled half-wavelength resonator with subsequent improvements made to
reduce its size [53,57]. Beyond the advantage of the compact size, the spurious

frequencies of the stepped impedance hairpin resonator are shifted from the integer

*Reprinted with permission from (complete publication information) “Slow-wave
bandpass filters using ring or stepped impedance hairpin resonators” by Lung-Hwa
Hsieh and Kai Chang, 2002. [EEE Trans. Microwave Theory Tech., vol. 50, pp. 1795-
1800. © 2004 by the IEEE.
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multiples of the fundamental resonant frequency due to the effect of the capacitance-load
coupled lines. Also, compact size bandpass filters using stepped impedance hairpin
resonators with parallel- or cross-coupling structures have shown high insertion loss
[52,58]. An interesting slow-wave bandpass filter has been reported [59] that uses
capactively loaded parallel- and cross-coupled open-loop ring resonators. This filter also
shows high insertion loss.

In this chapter, slow-wave bandpass filters using a microstrip line periodically
loaded by ring or stepped impedance hairpin resonators are introduced. By using the
parallel and series resonance characteristics of the resonators, the slow-wave periodic
structures perform as a bandpass filter. The new slow-wave bandpass filters, designed at
fundamental resonant frequency of the resonators, also are different from conventional
slow-wave filters, which utilize higher order modes to build up a bandpass filter with a
wide passband [60] or to provide lowpass or bandstop features [61,62]. In comparison
with bandpass filters that use parallel- and cross-coupled resonators with coupling gaps
between the resonators, these new slow-wave bandpass filters show lower insertion loss
at similar resonant frequencies [52,54,55,58]. This is an important finding since the new
filter structure uses more conductor than the parallel- and cross-coupled structures. This
implies that the new filter topology significantly reduces the insertion loss caused in
parallel- and cross-coupled bandpass structures by eliminating coupling gaps between
resonators. The performance of the new slow-wave filters is evaluated by experiment

and calculation with good agreement.

B. Analysis of the Slow-Wave Periodic Structure

Fig. 26(a) illustrates a conventional slow-wave periodic structure. The transmission
line is periodically loaded with identical open stub elements. Each unit element includes
a length of d transmission line with a length of / open stub, where Z;,; is the input
impedance looking into the open stub. The conventional slow-wave periodic structure
usually works as a lowpass or stopband filter [61,62]. Also, using higher order modes,

the conventional slow-wave periodic structure can act as a wide band bandpass filter, by
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constructing two consecutive stopbands close to the passband [60]. Considering the
slow-wave periodic structure in Fig. 26(b), a loading impedance Z; is connected at the

end of the open stub. The input impedance Z;,, is given by

Z, +jZ, t .
Z,,=7, =~ JZ, tan(A) for lossless line (58)
ZU +jZL tan(a)

where Z, and [ are the characteristic impedance and phase constant of the open stub,

respectively.

element

(a)

unit
element

(b)

Fig. 26. Slow-wave periodic structure (a) conventional type and (b) with loading Z; at
open end.
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If Z, =00 or 0 with a very small value of tan(fl), the input impedance Z,, — o or 0,

respectively. Under these cases, the slow-wave periodic structure loaded by Z;,; in Fig.
26(b) provides passband (Z,, — o) and stopband (Z,, — 0) characteristics. For
example, the conventional capacitance-load Kuroda-identity periodic structure is the

case of Z, =00 with / =/, /8 [38].

Fig. 27 shows lossless parallel and series resonant circuits. At resonance, the input

impedance Z; ¢ of the parallel and series resonant circuits is c and 0, respectively.

L
o o Y
|—~ L - C |—* _— C
ZLC ZLC
(a) (b)

Fig. 27. Lossless (a) parallel and (b) series resonant circuits.

The input impedance Z; ¢ of the resonant circuits can act as the loading impedance Z;,
in Fig. 26(a) for the passband and stopband characteristics of a slow-wave periodic
structure. In practice, for the high QO ring and hairpin resonators, the input impedance of
the resonators shows very large and small values at parallel and series resonant
frequencies, respectively. Thus, a slow-wave periodic structure loaded by ring or hairpin
resonators with two series resonant frequencies close to a parallel resonant frequency
[5,53] can be designed for a bandpass filter at fundamental mode.

The key point behind this new slow-wave filter topology is that both the series and
the parallel resonances of the loading circuit are used to achieve bandpass

characteristics. The approach can, in fact, be interpreted as using the stop bands of two



55

series resonances in conjunction with the pass band of a parallel resonance to achieve a
bandpass frequency response. It is noted, however, that in some cases, undesired pass
bands below and above the main pass band may require a high pass or band pass section

to be used in conjunction with this approach.

C. Slow-Wave Bandpass Filters Using Square Ring Resonators

Fig. 28 shows a transmission line loaded by a square ring resonator with a line-to-
ring coupling structure and its simple equivalent circuit, where Z;,3 is the input
impedance looking into the transmission line /, toward the ring resonator with the line-

to-ring coupling.

o O
Input 7 Z,s Z, Output
O 3 I O
(a) (b)

Fig. 28. Slow-wave bandpass filter using one ring resonator with one coupling gap (a)
layout and (b) simplified equivalent circuit.

As seen in Fig. 29(a), the coupling structure includes the coupling line, one side of
the square ring resonator and a coupling gap. This coupling structure can be treated as
symmetrical coupled lines [63]. The coupling gap between the symmetrical coupled

lines is modeled as a capacitive L-network as shown in Fig. 29(b) [37].
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Fig. 29. Line-to-ring coupling structure (a) top view (b) side view and (c) equivalent
circuit.

C, is the gap capacitance per unit length, and C, is the capacitance per unit length
between the strip and ground plane. These capacitances, C, and C,, can be found from

the even- and odd-mode capacitances of symmetrical coupled lines [64]. Fig. 29(c)
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shows the equivalent circuit of the capacitive L-network, where the input impedance of
the ring resonator Z, can be obtained from [37]. The input impedance Z,; looks into the

line-to-ring coupling structure toward the ring resonator. The input impedance Z;,3 is

_Z,*jZ, tan(pl,)

3 ; (59)
Zo + ]Zrl tan(lglb)

where Z,=(Z.+Z )| Z,, Z,=1/jwC,Al, Z, =1/ jwC,Al, and @ is the angular

frequency. The parallel (f,) and series (f;) resonances of the ring resonator can be

obtained by setting

Y,

in3 |=| 1/Zin3 ||:|O and |Zin3 |DO : (60)
The frequency response of the ring circuit can be calculated using the equivalent circuit

in Fig. 28(b). The ABCD matrix of the ring circuit is

A B [ cos(BL) jzZ,sin(BL)|[ 1 0] cos(B) jZ, sin(Al,)
LY, sin(Bl,)  cos(Bl,) || Y, 1] jY,sin(fl,)  cos(Bl,)

| 1=2sin’(BL,) + jZ,Y,; sin(BL,) cos(Bl,)
| Y5 cos(BL)+ j2Y, sin(BL,) cos(Al,)

-Z2Y,,sin’(BL)+ j2Z, sin(BL)cos(BL,)
1-2sin’*(fl,) + jZ,Y,; sin(Bl,) cos( BL,)

(61)

where Y, = 1/Z,. Using Y, ;(f,) and Z,,(f,), the passband and stopband of the ring

circuit can be obtained by calculating S;; and S;; from the ABCD matrix in (61).
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Fig. 30. Variation in input impedance |Z;,;| for different lengths of /, showing (a) parallel
and series resonances and (b) an expanded view for the series resonances.

The ring circuit was designed at the center frequency of 2.4 GHz and fabricated on a
RT/Duroid 6010.5 substrate with a thickness # = 50 mil and a relative dielectric constant

& =10.5. The dimensions of the filter are /; = 12.07 mm, s = 0.2 mm, /, = 12.376 mm,

[y = 6.5mm, w, = 1.158 mm, and w; = 0.3 mm. These parameter values are synthesized
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from the design equations using numerical optimization to construct a bandpass filter
with attenuation poles centered at + 330 MHz about the parallel resonant frequency.
Fig. 30(a) shows the calculated input impedance Z;3 with parallel and two series
resonances of the ring resonator at different lengths of /;. The parallel (f,), lower (f;;)
and higher (f;y) series resonances corresponding to the passband and stopband of the
ring circuit in Fig. 28 are denoted by A, O, and O, respectively. By adjusting the
length of /, properly, the parallel resonance can be centered between two series
resonances. Also, Fig. 30(b) shows an extended view for series resonances. The

measured and calculated frequency response of the ring circuit is illustrated in Fig. 31.

0 - -
-10[ 7
)
=)
o -20[ 7
©
=2
= I |
2-30
S 4
v — Measurement
-40( i ---- Calculation 7
| | | |
15 2.0 2.5 3.0
Frequency (GHz)

Fig. 31. Measured and calculated frequency response for the slow-wave bandpass filter
using one square ring resonator.

The filter has a fractional 3-dB bandwidth of 15.5%. The insertion and return losses are
0.53 dB and 25.7dB at 2.3GHz, respectively. Two attenuation poles are at 1.83 and 2.59
GHz with attenuation level of 35.2 and 31.3 dB, respectively. The measured unloaded QO
of the closed-loop ring resonator is 122.

To improve the passband and rejection, a slow-wave bandpass filter using three ring

resonators has also been built. As seen in Fig. 32, the transmission line is loaded
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periodically by three ring resonators, where Z;,, is the input impedance looking into /.
toward the ring. The filter uses the same dimensions as the filter with a single ring
resonator in Fig. 28, but with the transmission lengths /; = 15.686 mm and /, = 5.5 mm,
which are optimized by the calculation equations to obtain wider stop bands than the

filter in Fig. 28.

(a)
O O
InPUt ZO ZinS I Zin4 I ZiﬂS Zo OUtput
O O
la la’ l d Za
(b)

Fig. 32. Slow-wave bandpass filter using three ring resonators (a) layout and (b)
simplified equivalent circuit.
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The frequency response of the filter can be obtained from ABCD matrix of the
equivalent circuit in Fig. 32(b). Fig. 33 illustrates the measured and calculated results.
The filter with an elliptic-function characteristic has a 3-dB fractional bandwidth of
8.5% and a pass band from 2.16 to 2.34 GHz with return loss better than 10 dB. The
maximum insertion loss in the pass band is 1.45 dB with a ripple of +£0.09 dB. In
addition, the two stop bands exhibit a rejection level larger than 50 dB within 1.76-2
GHz and 2.52-2.7 GHz. Observing the frequency response of the filters in Figs. 31 and
33, the differences between the calculated and measured results are due to the use of a

lossless calculation model.

80 I'.' ,
-100 | : ~ 1
H — Measurement
120 ! ---- Calculation 7
| | | |
1.5 2.0 2.5 3.0

Frequency (GHz)

Fig. 33. Measured and calculated frequency response for slow-wave bandpass filter
using three square ring resonators.

D. Slow-Wave Bandpass Filters Using Stepped Impedance Hairpin Resonators

The hairpin has parallel and series resonance characteristics and can also be used as
the loading impedance Z; in the slow-wave periodic structure of Fig. 26(b) to construct a
bandpass response. Fig. 34 shows the filter using one stepped impedance hairpin

resonator and its simple equivalent circuit, where Z;,s is the input impedance looking
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into /, toward the resonator. Z,,, the input impedance of the stepped impedance hairpin
resonator, can be obtained from [53]. Similar to the ring circuit in Fig. 28, the frequency
response of the hairpin circuit can also be obtained from the 4BCD matrix of the
equivalent circuit in Fig. 34(b). The filter was designed at the center frequency of 2
GHz and fabricated on a RT/Duroid 6010.2 substrate with thickness # = 25 mil and a
relative dielectric constant £ = 10.2. The parameters of the filter are shown as follows:
lg =3 mm, /; =3 mm, /[, =335 mm, /3=2.5 mm, /[, =2.596 mm, w, = 0.591 mm, w; =

1.425mm, w, = 0.3 mm, g = 0.25 mm, /,=12.345 mm and /, = 8.9 mm.

(a)
O O
Input Z z.. Z,  Output
O O
l l,
(b)

Fig. 34. Slow-wave bandpass filter using one stepped impedance hairpin resonator (a)
layout and (b) simplified equivalent circuit.
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These parameter values are synthesized from the design equations, similar to (61), using
numerical optimization to build a bandpass filter with attenuation poles centered at
+ 530 MHz about the parallel resonant frequency. Calculated and measured results
similar to Figs. 30 and 31 have been obtained. Also, by adjusting the length of /,
properly, the two series resonances can be centered about the parallel resonance when /,
=3 mm.

Fig. 35 shows the transmission line loaded periodically by six stepped impedance
hairpin resonators. The filter uses the same dimensions as the filter using a single
hairpin resonator in Fig. 34, but with the transmission length /; =14.755 mm, which is

optimized by the calculation equations for maximum rejection.

O O
ZinS Zl'nS ZinS
Input  Z, - =3 5 Z, Output
O O
Iy I Il I
(b)

Fig. 35. Slow-wave bandpass filter using six stepped impedance hairpin resonators (a)
layout and (b) simplified equivalent circuit.

Fig. 36 illustrates the measured and calculated results. The filter with a Chebyshev
characteristic has a 3-dB fractional bandwidth of 8.55%. A pass band is from 1.84 to
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1.98GHz with a return loss better than 10 dB. The maximum insertion loss in the pass
band is 1.82 dB with a ripple of £0.06 dB. In addition, two stop bands exhibit a
rejection level greater than 60 dB within 1.32-1.57 GHz and 2.38-2.76 GHz. The
measured unloaded Q of the stepped impedance hairpin resonator is 146. Due to the use
of the lossless model for calculation, these calculated responses show small differences

from measured results.

-----

N e

—— Measurement
---- Calculation

Magnitude (dB)
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Fig. 36. Measured and calculated frequency response for slow-wave bandpass filter
using six stepped impedance hairpin resonators.

E. Conclusions

Novel slow-wave bandpass filters using a microstrip line periodically loaded with
ring or stepped impedance hairpin resonators are proposed. By using the parallel and
series resonance characteristics of the resonators, the new slow-wave periodic structures
behave as bandpass filters. The new filters with a narrow passband designed at the
fundamental mode of the resonators are different from the conventional slow-wave

filters. Furthermore, the new filters have lower insertion loss than those of filters using
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parallel- or cross-coupled ring and stepped impedance hairpin resonators. The filters

have been investigated by experiment and calculation with good agreement.
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CHAPTER VI

TUNABLE MICROSTRIP BANDPASS FILTERS WITH TWO TRANSMISSION
ZEROS*

A. Introduction

The characteristics of compact size, high selectivity, and low insertion loss for
modern microwave filters are highly required in the next generation of mobile and
satellite communication systems. To achieve the high selectivity characteristic, Levy
introduced filters using cross-coupled structure [65]. The cross coupling between
nonadjacent resonators creates transmission zeros that improve the skirt rejection of the
microstrip filters [66]. However, microstrip filters using the cross-coupled structure
need at least four resonators and show a high insertion loss [66,67]. Recently, microstrip
bandpass filters were proposed that used hairpin resonators with asymmetric input and
output feed lines tapping on the first and the last resonators to obtain two transmission
zeros lying on either side of the passband [67]. In comparison with the cross-coupled
filter [66,67], the filter using two resonators shown in this chapter can also provide a
sharp cut-off frequency response but has lower insertion loss due to less conductor losses
and fewer coupling gaps. However, [67] only shows a special case of two hairpin
resonators with two asymmetric feed lines tapped at the center. Thus, the locations of
two transmission zeros are at the fundamental and higher odd mode resonances. Hairpin
filters with tunable transmission zeros using impedance transformers tapped on the
resonators were later reported in [68]. Furthermore, [67] did not discuss the variation in

the coupling between the resonators due to the placement of the tapping positions of the

*Reprinted with permission from (complete publication information) “Tunable
microstrip bandpass filters with two transmission zeros” by Lung-Hwa Hsieh and Kai
Chang, 2003. [EEE Trans. Microwave Theory Tech., vol. 51, pp. 520- 525. © 2004 by
the IEEE.



67

asymmetric feed lines. The coupling conditions between resonators are very important
for a filter design.

In this chapter, a simple transmission-line model is used to calculate the locations of
the two transmission zeros corresponding to the tapping positions of the asymmetric and
symmetric feed lines. The coupling effects due to the tapping positions of the
asymmetric feed lines are also discussed. This model makes it possible to accurately
design cascaded bandpass filters to obtain high selectivity and excellent out-of-band
rejection. A filter using four cascaded resonators shows a better rejection than the cross-
coupled filters using four resonators. The measured performance of the cascaded filter
shows good agreement with the new theory. Moreover, the passband tuning is

demonstrated using a piezoelectric transducer.

B. Analysis of Filters with Asymmetric and Symmetric Tapping Feed Lines
Fig. 37 shows the configuration of the filter using two hairpin resonators with
asymmetric feed lines tapping the resonators. The input and output feed lines divide the

resonators into two sections of /, and /,. The total length of the resonator is
I=1+1,=A,/2, where A, is the guided-wavelength at fundamental resonance. The
coupling between the two open ends of the resonators is simply expressed by the gap
capacitance C, [67,69].

Inspecting Fig. 37, the whole circuit represents a shunt circuit, which consists of

upper and lower sections. Each section is composed of /, /,, and C,,. The ABCD

matrixes for the upper and lower sections of the lossless shunt circuit are

g g =M, M, M, (62a)
LC Dl

g g =M, M, M, (62b)
L Jlower
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with M, :{ cos Bl jz,sin ,6’11} M, = {1 ZL} Land M. :{ cosBl,  jz,sin ,6’12}

Jjy,sin Bl cos [l Jy,sin Bl,  cos fl,
where [ is the propagation constant, z, =1/ jwC,, is the impedance of the gap
capacitance C,, @ is the angular frequency, z, =1/ y, is the characteristic impedance

of the resonator. The Y parameters for this shunt circuit can be obtained by adding the
upper- and the lower-section Y -parameters, which follow from (62a) and (62b),
respectively. The S,; of the circuit can then be calculated from the total Y -parameters

and is expressed as

j4(20 sin Bl - cos B3I, cos [, j Y,

wC,
S21 = . 2 (63)
{2cosﬂl+ v, sin [l +j(20 sin Al _cos fB, cos 'BIZJYL} 4
axjsl aﬁsl

where Y, is the load admittance. Comparing (62)-(63) with (12), (13), and (16) in [55],

(12), (13), and (16) in [68] only present a special case of the two hairpin resonators with

two asymmetric feed lines tapped at the center.

Input

Output

[=1+,=A,2

Fig. 37. Configuration of the filter using two hairpin resonators with asymmetric tapping
feed lines.
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Equations (62) and (63) given here are more general for the asymmetric feed lines
tapped at arbitrary positions on the resonators. The transmission zeros can be found by
letting S»; = 0, namely

) cos Sl cos Sl
sin Bl ——1——2=0. 64
z,sin B (64)

sl

For a small C,, (64) can be approximated as
cos Sl cos GBI, 0. (65)

Inspecting (65), it shows the relation between the transmission zeros and the tapping

2711 &
C

positions. Substituting £ = ~ into (65), the transmission zeros corresponding to

the tapping positions are

™ and f,=—"5 n=1, 3, 5. (66)

41, Ey

€

where [ is the frequency, €, is the effective dielectric constant, n is the mode

number, c¢ is the speed of light in free space, and f, and f, are the frequencies of the
two transmission zeros corresponding to the tapping positions of the lengths of / and /,

on the resonators. At the transmission zeros, S;; = 0 and there is maximum rejection.
Fig. 38 shows the measured results for different tapping positions on the hairpin
resonators in Fig. 37. The filter was designed at the fundamental frequency of 2 GHz
and fabricated on a RT/Duroid 6010.2 substrate with a thickness 2 = 25 mil and a

relative dielectric constant £ = 10.2. Table VIII shows the measured and the calculated

results for the transmission zeros corresponding to the different tapping positions.

Inspecting the results, the measurements agree well with the calculations.



70

ol _
—=== [ =],=1/2= 1443 mm
— [, =12.69mm, /, = 16.16 mm
m
S 201 L= 1124 mm, [, = 17.61 mm
0 )
Q@ T 4 WS T -
S -40
c
(=)
©
= 60 y
| | | | |
-80
1.0 1.5 2.0 2.5 3.0
Frequency (GHz)

Fig. 38. Measured results for different tapping positions with coupling gap
s, = 035 mm.

Table VIII Measured and calculated results of the hairpin resonators for different tapping

positions
Measurements Calculations
l=1,=1/2=14.43 mm No passband at 2 GHz f,=/f,=2GHz

I=12.69mm, [=16.16mm f~ 1.8GHz, f=225GHz f=1.79 GHz, f~ 227 GHz

I~ 11.24mm, |~ 17.61mm /= 1.68 GHz, f= 248 GHz  f=1.64 GHz, f;=2.57 GHz

Fig. 39 shows the configuration of the filter using two hairpin resonators with
symmetric feed lines tapping the resonators. The ABCD matrixes for the upper and

lower sections of the lossless shun circuit are given by

{ } =M M, M (67)
1 MV MG
C D upper

A B
¢ b =M, M, M,. (68)
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Input Output

=1+ =2

Fig. 39. Configuration of the filter using two hairpin resonators with symmetric tapping
feed lines.

Also, by using the same operations as above, the S,; of the circuit can be obtained as

2MNY,
Sy = R (68)
(P+MY,) =N

where

M =z cos’ Bl cos® B, —z>sin2 Bl sin2 B, + j2z,z, sin B cos A, cos A,,
N=z, (cos2 Bl +cos’ ,Blz) +j2z, (sin B, cos B, +sin A, cos A3,), and

P=z, (cos2 Bl +cos’ Bl, —=2sin ,Bl) +jsin ,81(220 cos Bl +z’y, cos A, cos ﬂz).

Observing (68), it is not easy to inspect the value of S,; to find any transmission zero.
To investigate the results in (68), a filter tapped by the symmetric feed lines with lengths
of [, =12.56 mm and /, = 16.56 mm is used. As shown in Fig. 40, the calculated results
agree well with the measured results. Also, in Fig. 40, there is no transmission zero,
which implies S,, # 0 in (68). Comparing with the asymmetric tapping feed line
structure in Fig. 37, the filter that uses the symmetric tapping feed lines shows a

Chebyshev frequency response.
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Fig. 40. Measured and calculated results for the filter using symmetric tapping feed lines
with coupling gap s, = 0.35 mm.

Input y }
Center . Center
Output

I=1+L=A2

Fig. 41. Layout of the filter using two open-loop ring resonators with asymmetric
tapping feed lines.

C. Compact Size Filters
1) Filters Using Two Open-Loop Ring Resonators

Fig. 41 shows the filter using two open-loop ring resonators [55]. This type
resonator with two folded arms is more compact than the filter in Fig. 37. This filter has
the same dimensions as the filter in Fig. 37, except for the two additional 45 degree

chamfered bends and the coupling gap g = 0.5 mm between the two open ends of the
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ring. Fig. 42 shows the measured results for the different tapping positions on the rings.
The measured locations of the transmission zeros are listed in Table IX. Comparing
with Table VIII, the locations of the transmission zeros of the filters using open-loop
rings are very close to those of the filters using hairpin resonators. This implies that the
coupling effects between the two rings and the effects of two additional 45 degree
chamfered bends only slightly affect the locations of the two transmission zeros. Thus,
(66) can also be used to predict the locations of the transmission zeros of the filters using

open-loop rings.

Table IX Measured results of the open-loop ring resonators for different tapping
positions

Measurements
l=1=1/2=14.43 mm No passband at 2 GHz
[=12.69 mm, = 16.16 mm f=1.83 GHz, £,=2.24 GHz

[=11.24 mm, [=17.61 mm f=1.69 GHz, f=2.5 GHz

Observing the measured results in Figs. 38 and 42, the tapping positions also affect

the couplings between two resonators. The case of /, = 12.69 mm and /, = 16.16 mm in

Fig. 42 shows an overcoupled condition [49,70], which has a hump within the passband.

The overcoupled condition is given by

K>—+— (69)

where K is the coupling coefficient, QO

u

is the unloaded Q of either of the two

resonators, and Q,, is the external Q. The coupling condition of the filter can be found

using the measured K, Q,, and Q. [5,55,71]. The measured K is



74

2 2

2 2
fp2+ rl

(70)

where f,; and f,; are the high and low resonant frequencies.
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Fig. 42. Measured results for different tapping positions with coupling gap
s, = 035 mm.

The measured external Q is given by

(71)

where Af, . is the bandwidth about the resonant frequency, over which the phase varies

from -90° to +90°. Also, the expression for the measured unloaded Q can be found in

[5].
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Fig. 41 shows the tapping positions at a distance d from the center of the resonators
to the input and output ports. When d becomes shorter or the tapping position moves
toward to the center, the external Q becomes larger [57]. The larger external Q allows
the filter to approach the overcoupled condition in (70), causing a hump within the
passband. In addition, observing (66) and (69), for a shorter d, the two transmission
zeros appear close to the passband, providing a high selectivity nearby the passband.
But, this may easily induce an overcoupled condition. Beyond the coupling effects
caused by the tapping positions, the coupling gap s; also influences the couplings
between two resonators [55]. Therefore, to avoid overcoupling, the proper tapping

positions and gap size should be carefully chosen.

Magnitude (dB)

reesrprso====""

1.0 15 2.0 2.5 3.0
Frequency (GHz)

Fig. 43. Measured results of the open-loop ring resonators for the case of tapping
positions of /; = 11.24 mm and /, = 17.61 mm.

Fig. 43 shows the measured results of the filter for the case of /; = 11.24 mm and /, =
17.61 mm. This filter with K = 0.02 <1/Q,+1/Q. = 1/130+1/15.4 shows an
undercoupled condition [36,57], which does not have a hump in the passband. The filter

has an insertion loss of 0.95 dB at 2.02 GHz, a return loss of greater than 20 dB from
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1.98 to 2.06 GHz, and two transmission zeros at 1.69 GHz with —50.7 dB rejection and
2.5 GHz with —45.5 dB rejection, respectively. The 3-dB fractional bandwidth of the
filter is 10.4 %. Comparing with the insertion losses of the cross coupling filters at
similar fundamental resonant frequencies (2.8 dB in [67] and 2.2 dB in [55]), the filter in
Fig. 43 has a lower insertion loss of 0.95 dB.

2) Filters Using Four Cascaded Open-Loop Ring Resonators

The filter using cascaded resonators is shown in Fig. 44. The filter uses the same
dimensions as the open-loop ring in Fig. 41 with the tapping positions of /; = 11.24 mm
and /; = 17.61 mm at the first and last resonators. Also, the offset distance d; between
the rings 2 and 3 is designed for asymmetric feeding between rings 1, 2 and rings 3,4 to
maintain the sharp cut-off frequency response. Therefore, the positions of the two
transmission zeros of the filter can be predicted around 1.69 and 2.5 GHz, respectively.

The coupling gap size between rings is s.

Input

Output

Fig. 44. Configuration of the filter using four cascaded open-loop ring resonators.

The coupling gap s, = 0.5 mm and the offset distance d; = 2.88 mm are optimized by
EM simulation [35] to avoid the overcoupled condition.
The measured external Q and the mutual coupling M can be calculated from (70) and

(71), and they are
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0 -0.037 0 0
-0.037 0 0.035 0 . .
Q,, =154 and M = , Where the negative sign in
0 0.035 0 -0.037
0 0 -0.037 0

coupling matrix is for electrical coupling [55]. Fig. 45 shows the simulated and
measured results. The filter has a fractional 3-dB bandwidth of 6.25%. The insertion
loss is 2.75 dB at 2 GHz, and the return loss is greater than 13.5 dB within 1.95-2.05
GHz. The out-of-band rejection is better than 50 dB extended to 1 and 3 GHz and
beyond.
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Fig. 45. Measured and simulated results of the filter using four cascaded open-loop ring
resonators.

3) Filters Tuning by a Piezoeletric Transducer
Electronically tunable filters have many applications in transmitters and receivers.
As shown in Fig. 46, the tunable filter circuit consists of the filter using cascaded

resonators, a piezoelectric transducer (PET), and an attached dielectric perturber [72]
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above the filter. The PET is a composition of lead, zirconate, and titanate [73]. The

PET shown in Fig. 46 consists of two piezoelectric layers and one shim layer.

Dielectric perturber

Input | ¥
J1 1
J1 Output
PET
@] @)
Vdc
(a)
Perturber

Test fixture

(b)
Fig. 46. Configuration of the tunable bandpass filter (a) top view and (b) 3D view.

The center shim laminated between the two same polarization piezoelectric layers
adds mechanical strength and stiffness. Also, the shim is connected to one polarity of a
DC voltage to deflect the PET and move it up or down vertically. The PET can be
deflected over + 1.325 mm at = 90 V.

Inspecting the structure in Fig. 46, when the perturber moves up or down, the effective

dielectric constant of the filter is decreasing or increasing [74], respectively, allowing the
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passband of the filter to shift toward the higher or lower frequencies. Fig. 47 shows the
measured results for the tuning range of the passband. With the maximum applied

voltage of 90 V and a perturber of dielectric constant & = 10.8 and thickness 4 = 50 mil,

the tuning range of the filter is 6.5 %. The small tuning range can be increased by using
a higher dielectric constant perturber. The 3-dB bandwidths of the filters with and
without PET tuning are 130 MHz and 125 MHz, respectively. This shows that the PET
tuning has little effect on bandwidth. The size of the PET is 70 mm x 32 mm x 0.635
mm. The overall size of the filter including the perturber and PET is 90 mm x 50 mm x

3.85 mm.
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Fig. 47. Measured results of the tunable bandpass filter with a perturber of £ = 10.8 and
h =50 mil.

D. Conclusions

A simple transmission-line model is used to calculate the locations of two
transmission zeros to design high-selectivity microstrip bandpass filters. In addition, the
coupling effects due to the tapping positions of the asymmetric feed lines are discussed.
The filter using two open-loop ring resonators with two transmission zeros show lower

insertion loss than a cross-coupled filter. Also, the filter using four cascaded resonators
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shows a better rejection than a cross-coupled filter using four resonators. Moreover, a
PET is used to vary the effective dielectric constant of the filter to tune the passband of
the filter. These compact size and high selectivity bandpass filters should be useful for

wireless and satellite communication systems.



81

CHAPTER VII

COMPACT, LOW INSERTION LOSS, SHARP REJECTION AND WIDEBAND
MICROSTRIP BANDPASS FILTERS*

A. Introduction

High performance, compact size, and low cost are highly desirable for modern
microwave filters in the next generation of many wireless systems. The microstrip ring
resonator satisfies these demands and is finding wide use in many bandpass filters [5].
However, the conventional end-to-line coupling structure of the ring resonator suffers
from high insertion loss [18]. Also, the coupling gaps between the feed lines and the
resonator affect the resonant frequencies of the resonator. To reduce the high insertion
loss, filters used an enhanced coupling structure or lumped capacitors were proposed
[14,21,51,70,75]. However, the filters using this enhanced coupling structure still have
coupling gaps. In addition, the filters using lumped capacitors are not easy to fabricate.
Ring resonators using high temperature superconductor (HTS) to obtain a very low
insertion loss have been reported [76]. This approach has the advantage of very low
conductor loss but requires a complex fabrication process.

In this chapter, a new compact, low insertion loss, sharp rejection, wideband
microstrip bandpass filter is proposed. The wide bandpass filter is developed from a
new bandsrop filter introduced in section B. Two tuning stubs are added to the bandstop
filter to create a wide passband. Without coupling gaps between feed lines and rings,
there are no mismatch and radiation losses between them. Thus, the new filter can

obtain a low insertion loss [77], and the major losses of the filter are contributed by

*Reprinted with permission from (complete publication information) “Compact, low
insertion loss, sharp rejection and wideband microstrip bandpass filters” by Lung-Hwa
Hsieh and Kai Chang, 2003. /[EEE Trans. Microwave Theory Tech., vol. 51, pp. 1241-
1246. © 2004 by the IEEE.
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conductor and dielectric losses. A simple transmission line model is used to calculate
the frequency responses of the filters. The measurements show good agreement with the

calculations.

B. Bandstop and Bandpass Filters Using a Single Ring with One or Two Tuning
Stubs
1) Bandstop Characteristic
The bandstop characteristic of the ring circuit can be realized by using two
orthogonal feed lines with coupling gaps between the feed lines and the ring resonator
[5]. For odd-mode excitation, the output feed line is coupled to a position of the zero
electric field along the ring resonator and shows a short circuit [78]. Therefore, no
energy is extracted from the ring resonator, and the ring circuit provides a stopband. A
ring resonator directly connected to a pair of orthogonal feed lines is shown in Fig. 48.
No coupling gaps are used between the resonator and the feed lines. The circumference

[, of the ring resonator is expressed as [5]

I =nA (72)

where 7 is the mode number and A, is the guided wavelength.

f
/
Input 1 L. =nA,
fe [
A
—> <—W1
Ou?put

Fig. 48. A ring resonator using direct-connected orthogonal feeders.
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Fig. 49. Simulated electric current at the resonant frequency for the ring and open stub
bandstop circuits.
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Fig. 50. Simulated results for the bandstop filters.

In order to investigate the behavior of this ring circuit, an EM simulator [35] and a
transmission line model are used. Fig. 49 shows the EM simulated electric current
distribution of the ring circuit and a conventional A,/4 open-stub bandstop filter at the
same fundamental resonant frequency. The arrows represent the electric current. The
simulated electric current shows minimum electric fields at positions A and B, which
correspond to the maximum magnetic fields. Thus, both circuits provide bandstop

characteristics by presenting zero voltages to the outputs at the resonant frequency that
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can be observed by their simulated frequency response of S,; as shown in Fig. 50. The
ring resonator and the conventional A,/4 open-stub bandstop filter are designed at
fundamental resonant frequency of f, = 5.6 GHz and fabricated on a RT/Duriod 6010.2
substrate with a thickness # = 25 mil and a relative dielectric constant £ = 10.2. The
dimensions of the ring are /; =5 mm, /. =20.34 mm, w; = 0.6 mm.

The equivalent ring circuit shown in Fig. 51 is divided by the input and output ports
to form a shunt circuit denoted by the upper and lower parts, respectively. The
equivalent circuits of the 45-degree-mitered bend are represented by the inductor L and

capacitor C [79] those are expressed by

C =0.0014[(3.39€. +O.62)(%)2 +7.6€, +3.8)(%)] pF (73a)

L=0.22h{1-1.35 exp[—O.lS(%)l'”} nH (73b)
where 4 and w; are in mm. The capacitance jBy is the T-junction effect between the feed
line and the ring resonator [80]. The frequency response of the ring circuit can be

calculated from the equivalent ring circuit using ABCD, Y, and S parameters. Fig. 52

shows the calculated and measured results with good agreement.

Upper part

C
Lower part —1— JBr N

Output

Fig. 51. Equivalent circuit of the ring using direct-connected orthogonal feed lines.
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Fig. 52. Calculated and measured results of the ring using direct-connected orthogonal
feed lines.

2) One Tuning Stub

The effect of adding a tuning stub on the gap-coupled ring resonator has been
discussed [5]. By changing the size or length of the tuning stub, the frequency response
of the ring resonator is varied. Fig. 53 illustrates the orthogonal-feed ring resonator with

a tuning stub of /; = A, /4 designed at the fundamental resonant frequency and placed at

the center of either side of the ring resonator. Furthermore, the ring resonator with one
tuning stub forms an asymmetric configuration and will excite degenerate modes. The
higher impedance of the tuning stub (w; for 50 ohms < w; for 64 ohms) is designed for a
better return loss of the filter using two tuning stubs that will be shown in the part 3 of

this section.
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Fig. 53. Configuration of the ring with a tuning stub of /, = 5.03 mm and w, = 0.3 mm at
® =90° or 0°.

Fig. 54 shows the equivalent circuit of the ring circuit with the tuning stub at

® = 90°. Y,is the admittance looking into the tuning stub and can be expressed by

}]t = yu tanh[y(lt +lapen )] +.jBT1 (74)

where y, is the characteristic admittance of the tuning stub, )/is the complex propagation

constant, /, is the equivalent open-effect length [69], and jB,, is the capacitance of

> Lopen
the T-junction between the ring and the tuning stub /.. The frequency response of the
ring circuit can be obtained from the equivalent circuit by using ABCD, Y, and S
parameter calculations. Fig. 55 shows the calculated results for the different lengths of
the tuning stub located at ® = 90°. Inspecting the results, when the length of the
tuning stub increases, the degenerate modes of the ring at the fundamental and the third
modes are excited and moved to the lower frequencies. In addition, at the length of /, =

Ay/4 = 5.03 mm, the ring circuit has three attenuation poles as shown in Fig. 56.
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Fig. 54. Equivalent circuit of the ring using a tuning stub at ® = 90°.
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Fig. 55. Calculated results of the ring with various lengths of the tuning stub at
® =90°.

Comparing the frequency response to that of the ring circuit without the tuning stub
in Fig. 52, the two additional degenerate modes are induced by the A,/4 tuning stub. The
three attenuation poles are f; = 3.81 GHz with -39 dB rejection, f, = 5.77 GHz with -36
dB rejection, and f> = 7.75 GHz with -37 dB rejection. Furthermore, inspecting the ring
resonators with the tuning stub at ® = 90° or ® = 0° in Fig. 53, S,; is the same for

both cases due to the symmetry between these reciprocal networks.
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Fig. 56. Calculated and measured results of the ring using a tuning stub at ® = 90°.

3) Two Tuning Stubs

Fig. 57 shows the layout and equivalent circuit of a ring resonator with two tuning

stubs of length /, = A, /4 at ® = 90° and ® = 0°. This symmetric ring circuit is

divided by the tuning stubs and the input/output ports into four equal sections. The ring

circuit can be treated as a combination of both perturbed ring circuits given in Fig. 53.

Input

Output

Fig. 57. Layout of the ring using two tuning stubs at ® = 90° and 0°.
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Also, by changing the lengths of two tuning stubs, the frequency response of the ring
circuit will be varied. Observing the calculated results in Fig.58, two attenuation poles
starting from the center frequencies of the fundamental and the third modes move to the
lower frequencies and form a wide passband. The measured and calculated results of the
filter with the tuning stubs of length A,/4 are shown in Fig. 59. In addition, due to the

symmetric structure, the ring circuit in Fig. 57 only excites a single mode.

Magnitude (dB)
A
o

/,=1.25mm
/,=2.50 mm
—Oo— [,=3.75mm
-<-- [,=5.03mm

1 3 5 7 9 11 13 15
Frequency (GHz)

Fig. 58. Calculated results of the ring with various lengths of the tuning stub at
® =90"and 0°.

Comparing the results in Fig. 59 with those in Fig. 56, the effects of adding two

tuning stubs with a length of [, =A,/4 at ® = 90° and ® = 0° provide a sharper cut-off
frequency response, increase attenuations, and obtain a wide pass band. Two attenuation
poles are f; = 3.81 GHz with -46 dB rejection and f> = 7.75 GHz with -51 dB rejection.
The differences between the measurement and the calculation on f; and f; are due to
fabrication tolerances that cause a slightly asymmetric layout and excite small

degenerate modes.
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The key point behind this new filter topology is that two tuning stubs loaded on the
ring resonator at ® = 90 and ® = 0°are used to achieve a wide passband with a
sharp cut-off characteristic. This approach can, in fact, be interpreted as using two
stopbands induced by two tuning stubs in conjunction with the wide passband. In some
cases, an undesired passband below the main passband may require a high passband

section to be used in conjunction with this approach.
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Fig. 59. Calculated and measured results of the ring with two tuning stubs of /, = A,/4 =
5.026 mmat ® = 90° and 0°.

C. Wideband Microstrip Bandpass Filters with Dual Mode Effects

Observing the frequency response in Fig. 59, the two stopbands of the filter show a
narrow bandwidth. To increase the narrow stopbands, a dual-mode design can be used
[5]. A square perturbation stub at ® = 45° on the ring resonator is incorporated in Fig.
60(a). The square stub perturbs the fields of the ring resonator so that the resonator can
excite a dual mode around the stopbands in order to improve the narrow stopbands. By

increasing (decreasing) the size of the square stub, the distance (stopband bandwidth)
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between two modes is increased (decreased). The equivalent circuits of the square stub

and the filter are displayed in Figs. 60(b) and (c), respectively.

Input

A7 ".1 w, W, Wt
{ —
Jj_ ’ = -\
il Pl - w,

Fig. 60. The dual-mode filter (a) layout, (b) equivalence of the perturbed stub and (c)
overall equivalent circuit.
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As seen in Fig. 60(b), the geometry at the corner of @ = 45° is approximately equal
to the square section of width w;+w, subtracting an isometric triangle of height w;.
Also, the equivalent L-C circuit of this approximation is shown in Fig. 60(c) where C,,
=C,-Cand L, = LL/(L-L,). The equivalent capacitance and inductance of the right
angle bend, C, and L,, are given by [79]

C. =0.001A[(10.35¢, +2.5) ("2 . RTINS 6e, +5.64)( . M1 pF (75a)

L =0.22h{1 - 135exp—018( p P)”"} nH. (75b)

The asymmetric step capacitance Cy is [81]

C, =w,(0.012+0.0039¢, ) pF. (76)

In the above equations, all lengths are in mm. The length of the tuning stubs and the size

of the square stub are /, =4.83 mmand w,xw, =0.5x 0.5 mm®,

The calculated and measured results of the filter are shown in Fig. 61. As seen in
Fig. 61, the square stub generates two transmission zeros (which are marked as x in Fig.
61) or dual modes located on either side of the passband at 3.66, 7.62 and 7.62, 8.07
GHz, respectively. Comparing S;; with that in Fig. 59, the dual mode effects or
transmission zeros increase the stopband bandwidth and also improve the return loss in
the edges of the passband. The filter has 3-dB fractional bandwidth of 51.6 %, a
insertion loss of better than 0.7 dB, two rejections of greater than 18 dB within 3.43 —
4.3 GHz and 7.57 to 8.47 GHz, and an attenuation rate for the sharp cut-off frequency
responses of 137.58 dB/GHz (calculated from 4.173 GHz with —36.9 dB to 4.42 GHz
with —2.85 dB) and 131.8 dB/ GHz (calculated from 7.44 GHz with 3.77 dB to 7.62 GHz
with -27.5 dB). In addition, comparing the new filter with some compact and low

insertion loss filters [82,83], those filters only show gradual rejections. To obtain a
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sharp cut-off frequency response, the filters need to increase numbers of resonators.
However, increasing numbers of resonators increases the insertion loss and the size of

the filter and also narrows the passband bandwidth [84,85].
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Fig. 61. Calculated and measured results of the dual-mode ring filter. The crosses (x)
show the two transmission zero locations.

To obtain even higher rejection, a filter using three cascaded ring resonators is
shown in Fig. 62. In this configuration, the three ring resonators are connected by a
short transmission line of length /. =A, /4 = 4.89 mm. The different length /,, = 4.85
mm, /; =4.88 mm, /, = 4.83 mm for the tuning stubs are optimized for a good return

loss.
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Output

Fig. 62. Configuration of the cascaded dual-mode ring resonator.

Fig. 63 shows the calculated and measured results. The calculation also uses the
transmission-line model with ABCD, Y, and S parameter operations. The 3-dB fractional
bandwidth of the filter is 49.3 %. The filter has an insertion loss better than 1.6 dB and
return loss greater than 13.3 dB in the passband from 4.58 to 7.3 GHz. Two stopbands
are located at 2.75-4.02 GHz and 7.73-9.08 GHz with rejection greater than 40 dB. The
attenuation rate of the filter for the sharp cut-off frequency responses is 99.75 dB/GHz
(calculated from 4.17 GHz with —34.9 dB to 4.49 GHz with -2.98 dB) and 101.56
dB/GHz (calculated from 7.32 GHz with —3.4 dB to 7.64 GHz with —35.9 dB).
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Fig. 63. Calculated and measured results of the cascaded dual-mode ring resonator filter.
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Fig. 64. Group delay of the cascaded dual-mode ring resonator filter.

The group delay of this wideband bandpass filter can be calculated by

7= —% (77)
ow
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where [1S,, is the insertion loss phase and w is the frequency in radians per second.

Fig. 64 shows the group delay of the filter. Within the passband, the group delay is
below 2 nS.

D. Conclusions

A new compact, low insertion loss, sharp rejection, and wideband microstrip
bandpass filter has been developed. A bandstop filter using a ring resonator with direct-
connected orthogonal feeders is introduced. Next, new filters are developed from the
bandstop filter to achieve a wideband passband and two sharp stopbands. Also, a dual-
mode design was used to increase the widths of rejection bands. Without any coupling
gaps between feed lines and rings, there are no mismatch and radiation losses between
them. Therefore, the new filters show low insertion loss. Simple transmission line
models are used to calculate the frequency responses of the new filters. The
measurements agree well with the calculations. The new filters were designed for

mitigating the interference in full duplex systems in satellite communications.
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CHAPTER VIII

COMPACT ELLIPTIC-FUNCTION LOWPASS FILTERS*

A. Introduction

Compact size and high performance microwave filters are highly demanded in many
communication systems. Due to the advantages of small size and easy fabrication, the
microstrip hairpin has been drawing much attention. From the conventional half-
wavelength hairpin resonator to the latest stepped impedance hairpin resonator, a size
reduction of the resonator has been dramatically achieved [52,57,67,86,87,88].
Conventionally, the behavior of the stepped impedance hairpin resonator has been
described by using even- and odd-mode and network models [52,67]. However, they
only showed limited expressions in terms of ABCD matrix, which do not provide a
useful circuit design implementation such as equivalent lumped element circuits.

Small size lowpass filters are frequently required in many communication systems to
suppress harmonics and spurious signals. The conventional stepped-impedance and
Kuroda-identity-stubs lowpass filters only provide Butterworth and Chebyshev
characteristics with a gradual cut-off frequency response [38]. In order to have a sharp
cut-off frequency response, these filters require more sections. Unfortunately, increasing
the number of sections also increases the size of the filter and insertion loss. Recently,
the lowpass filter using photonic bandgap and defect ground structures [89,90]
illustrated a similar performance as those of the conventional ones. A compact semi-
lumped lowpass filter was also proposed [91]. However, using lumped elements

increase the fabrication difficulties.

*Reprinted with permission from (complete publication information) “Compact elliptic-
function lowpass filters using microstrip stepped impedance hairpin resonators” by
Lung-Hwa Hsieh and Kai Chang, 2003. IEEE Trans. Microwave Theory Tech., vol. 51,
pp. 193- 199. © 2004 by the IEEE.
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The microstrip elliptic-function lowpass filters show the advantages of high
performance, low cost and easy fabrication [92,93]. In [93], the elliptic-function
lowpass filters using elementary rectangular structures provide a wide band passband
with a sharp cut-off frequency response, but a narrow stopband.

In this chapter, an equivalent circuit model for the stepped impedance hairpin
resonator is described. Also, a compact elliptic-function lowpass filter using the stepped
impedance hairpin resonator is demonstrated. The dimensions of the prototype lowpass
filters are synthesized from the equivalent circuit model with the published element-
value tables. The exact dimensions of the filter are optimized by EM simulation. The
filter using multiple cascaded stepped impedance hairpin resonators shows a very sharp
cut-off frequency response with a low insertion loss. Furthermore, additional attenuation
poles are added to suppress the second harmonic and achieve a broad stopband

bandwidth. The measured results agree well with simulated results.

B. Equivalent Circuit Model for the Step Impedance Hairpin
Fig. 65 shows the basic layout of the stepped impedance hairpin resonator. The
stepped impedance hairpin resonator consists of the single transmission line /; and

coupled lines with a length of /.. Z is the characteristic impedance of the single

transmission line /.

oe’ oo

Fig. 65. A stepped impedance hairpin resonator.
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Z, and Z  are the even- and odd-mode impedance of the symmetric capacitance-load

parallel coupled lines with a length of /.. By selecting Z>,/Z Z , the size of the
stepped impedance hairpin resonator is smaller than that of the conventional hairpin
resonator [94]. Also, the effect of the loading capacitance shifts the spurious resonant
frequencies of the resonator from integer multiples of the fundamental resonant

frequency, thereby reducing interferences from high-order harmonics.
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Fig. 66. Equivalent circuit of (a) single transmission line, (b) symmetric coupled lines,
and (c) stepped impedance hairpin resonator.
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The single transmission line is modeled as an equivalent L-C 7Fnetwork as shown in

Fig. 66(a). For the lossless single transmission line with a length of /;, the ABCD matrix
is given by

= v (78)
C D] [jYsin(Bl) cos(Bl,)

A B| | 1+Z,Y, Z, (79)
C D| |[Y.2+ZY) 1+Z7,

where Z; = jal, Y. = jaCs, wis the angular frequency, L, and C; are the equivalent

{A B}_{ cos(B.1,) jZSsin(,[z’SlS)}

inductance and capacitance of the single transmission line. Comparing (78) with (79),
the equivalent L; and C; can be obtained as

LS = ZS Sln(ﬁsls) H (Soa)
w

and ¢ = LZC0SBL) (80b)
aZ sin(B1,)

Moreover, as seen in Fig. 66(b), the symmetric parallel coupled lines are modeled as an

equivalent capacitive 7Fnetwork. The ABCD matrix of the lossless parallel coupled lines
is expressed as [52]

zZ,*Z, -j2Z,7Z, cot(B.1)
A B - -
e Z()e ) Z(m Z()e Z(m (81)
C D ]2 Z()e + Zoa
(Zoe _ZOU)COt(IBclc) Zoe _Zoa

where [, is the phase constant of the coupled lines. Also, the ABCD matrix of the

equivalent capacitive 7Enetwork is
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4 Bl [ 1+Z.7, Z, ©
C D| |Y,2+ZY,) 1+Z7, (82)

where Z, = 1/jaC, Y, = jaC,. In comparison of (81) and (82), the equivalent

capacitances of the 7#network are found as

C, = Lol (83a)
2aZ,,Z,, cot(B.1.)
1
and C,=—————— F. (83b)

! aZ()e COt(ﬁClC)

Furthermore, combining the equivalent circuits of the single transmission line and
coupled lines shown in Figs. 66(a) and (b), the equivalent circuit of the stepped
impedance hairpin resonator in terms of lumped elements L and C is shown in Fig. 66(c),

where C, =C, +C, +C,is the sum of the capacitances of the single transmission line,

coupled lines and the junction discontinuity (CA) [81] between the single transmission

line and the coupled lines.
The physical dimensions of the filter can be synthesized by using the available L-C
tables and (80) and (83). The widths of the single transmission line and coupled lines of

the filter can be obtained from selecting the impedances that satisfy the condition
Z>,\Z,Z, . The lengths of the single transmission line and coupled lines of the filter

transformed from (80a) and (83b) are

_sin™ (C‘%Lsz /ZS)
’ ﬁS
tan"'[.Z,, (C

pst

p.

(84a)

-C -G,y )]

and [ = (84b)
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where @, is the 3 dB cut-off angular frequency, Ly and C,y are the inductance and

capacitance chosen from the available L-C tables. C, and C, can be calculated from

(84a), (80b) and (84b), (83a), respectively.

C. Compact Elliptic-Function Lowpass Filters
1) Lowpass Filter Using One Stepped Impedance Hairpin Resonator
Fig. 67 shows the geometry and equivalent circuit of the elliptic-function lowpass

filter using one stepped impedance hairpin resonator with feed lines /.

W

L,
YY"
o | o
Cp— C, —cC s
(b)

Fig. 67. The lowpass filter using one hairpin resonator (a) layout and (b) equivalent
circuit.
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As seen from the equivalent circuit in Fig. 67(b), L, is the equivalent inductance of
the single transmission line of the filter. C, is the equivalent capacitance of the coupled
lines and C,, is sum of the capacitances of the transmission line /; and the coupled lines.
Using the available elliptic-function element-value tables [95] with impedance and
frequency scaling, the dimensions of the prototype lowpass filter can be approximately
synthesized by (80), (83) and (84). The exact dimensions are adjusted to optimize the
performance of the filter using EM simulation software IE3D [35] to account for the loss
and the discontinuity effects not included in the lumped-element model of Fig. 67(b).
The lowpass filter is designed for a 3-dB cut-off frequency of 2 GHz and fabricated on a

25mil thick RT/Duroid 6010.2 substrate with relative dielectric constant £ = 10.2.

Table X shows the equivalent L-C values from the available L-C tables,
approximated L-C values, and optimized L-C wvalues, respectively. Observing the
available L-C tables, the filter using one microstrip hairpin resonator is difficult to
synthesize. An approximate synthesis is introduced by using some inductances and
capacitances chosen from the available L-C tables and (80), (83), (84). For instance,
using the inductance and capacitance L, and C,, in the available L-C tables, the lengths
of the single and coupled lines can be found from (84) and (80b). Also, the capacitance
C, can be obtained from (83a).

Table X L-C values of the filter using one hairpin resonator

(:'ps Cg LS
Available L-C 1.52 pF 0.13 pF 4.2 nH
tables oop P "
Approximated L-C 1.52 pF 0.22 pF 4.2 nH
values
Optimized L-C 2.23 pF 0.34 pF 4.87nH

values
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Fig. 68 shows the simulated frequency responses of the filter using L-C values in
Table X. The simulated frequency response of the filter with the available L-C tables is
obtained using the Agilent ADS circuit simulator. The simulated frequency responses of
the filter with the approximated and optimized L-C values are obtained using the IE3D

EM simulator.

Magnitude (dB)

-60

—— Available L-C tables

---- Approximated L-C values
.80 |—*- Optimized L-C values .
| | | |

0 2 4 6 8 10
Frequency (GHz)

Fig. 68. Simulated frequency responses of the filter using one hairpin resonator.

Observing the simulated results in Fig. 68, the equal ripple response of the microstrip
filter at the stopband is affected by the harmonics of the filter. The optimized filter with
larger L-C values has a closer 3dB cut-off frequency at 2 GHz and a better return loss.
The optimized dimensions of the filter are [r = 8 mm, /; = 11.92 mm, /; = 4.5 mm, w; =
0.56 mm, w,= 0.3 mm, w; = 1.31 mm and g = 0.2 mm. Fig. 69 shows the measured and
simulated results of the filter with the optimized dimensions. Inspecting the measured
results, the elliptic-lowpass filter has a 3-dB passband from DC to 2.03 GHz. The
insertion loss is less than 0.3 dB, and the return loss is better than 15 dB from DC to 1.57
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GHz. The rejection is greater than 20 dB within 3.23-7.93GHz. The ripple is + 0.14 dB
as shown in Fig. 69(b).
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Fig. 69. Measured and simulated (a) frequency response and (b) S,; within the 3-dB
bandwidth for the filter using one hairpin resonator.



106

| wy e wle - wsle S w2 e
—

e

wy o owytw,

(a)

1 [
i

P Lo B (o

Wi+ W, wyl oy W,
(b)
L L
— YV L YV
C, C,

C—— _— C f Csp C—_— p— C+Csp

(c)

Fig. 70. The lowpass filter using cascaded hairpin resonators (a) layout, (b) asymmetric
coupled lines, and (c) equivalent circuit of the asymmetric coupled lines.
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2) Lowpass Filter Using Multiple Cascaded Stepped Impedance Hairpin
Resonators
Fig. 70(a) shows the lowpass filter using four multiple cascaded stepped impedance
hairpin resonators. Inspecting this structure, two resonators are linked by an adjacent
transmission line with width of w,, ws, or ws. Due to the adjacent transmission line, the
coupled lines become an asymmetrical coupling structure as shown on the left side of
Fig. 70(b). The asymmetrical coupled lines can be roughly treated as a symmetric
coupled lines with a separate parallel single transmission line as shown on the right side
of the Fig. 70(b) [96]. Therefore, as seen in Fig. 70(c), the equivalent circuit of the
asymmetric coupled lines can be approximately represented by that of the symmetric
coupled lines in Fig. 66(b) and a equivalent capacitance C, of a single transmission line

in shunt. The equivalent capacitance C, is given by

Cy = &&w/h (F/unit length) (85)

where w is the width of the adjacent transmission line and / is the substrate thickness.

The equivalent circuit of the lowpass filter is illustrated in Fig. 71.

® @ ® ®
L L, L, L,
N AAA A Yym YY1 YYN
G G G G
|| || || ||
O ] 1] 1] 1] %
C,— C,== C.— C,—— C,—=

Fig. 71. Equivalent circuit of the lowpass filter using cascaded hairpin resonators.
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Table XI shows the available L-C tables, approximated L-C values, and optimized L-
C values of the filter using four cascaded hairpin resonators. Also, observing the
available L-C tables, the inductances and capacitances between resonators show a high
variation, which is difficult to synthesize a lowpass filter using cascaded microstrip
hairpin resonators. For example, by using the inductances and capacitances L, Ly, Lg,
Ls, C;, Cs, Cs, C7, Cy in the available tables and (84), (85), the capacitances C, and Cjs
calculated from (83a) are very small. In this case, the 3 dB cut-off frequency of the filter
is larger than that of the filter using the available L-C tables. Moreover, if the filter is
synthesized by using the inductances and capacitances L», Ly, Lg, Ls, C>, Cy4, Cg, Cs in the
available tables and (80b), (84a), (85), (86), then the capacitances C;, Cs, and C; will
become large, where (86) transformed from (83a) for the synthesized length of the

coupled lines is given by

l _ tan_1[2a)(,C Z,Z /(Zoe _Zuo)]

gt~ oe"" 0o

' B.

(86)

where Cy, is the capacitance chosen from the available L-C tables. In this case, the 3 dB
cut-off frequency of the filter will be smaller than that of the filter using the available L-
C tables.

Table XI L-C values of the filter using four hairpin resonators

c, ¢, L, ¢, ¢, L, ¢, ¢, L, C, C, L, C,
Available 1.98 0.2 5.07 2.65 1.21 3.45 1.95 1.65 2.9 2.17 0.74 3.84 1.56
L-C tables pF pF nH pF pF nH pF pF nH pF pF nH pF

Approximated 1,98 024 5.07 4.83 0.61 3.45 497 0.44 2.9 4.49 0.45 3.84 2.16
L-C values pF pF nH pF pF nH pF pF nH pF pF nH pF

Optimized 1.79 0.23 4.89 3.93 0.23 4.89 4.48 0.234.89 3.93 0.23 4.89 1.79
L-C values pF pF nH pF pF nH pF pF nH pF pF nH pF
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To obtain a proper 3 dB cut-off frequency, an alternative approximate method is used.
In the beginning, one can use the capacitance and inductance C;, L; in the available L-C
tables and (80b), (83a), (84) to calculate C», C; and C,;, where the subscripts of s/ and
pl are the capacitances associated with the first resonator. Then, using C;, Ly in the
available L-C tables and (78b), (81a), (82), the capacitances Cy, C,; and C,, can be

obtained. Thus, the total synthesized value for Cj; is given by

C3 (Syn) = Cpl +Cvl +2CA +Cp2 +Cv2 +Csp lc' (87)

MAgnitude (dB)

-100( —— Available L-C tables
---- Approximated L-C values
-—e--  Optimized L-C values

| | | |

0 2 4 6 8 10
Frequency (GHz)

R

N

o
I

Fig. 72. Simulated frequency responses of the filter using four cascaded hairpin

resonators.

Furthermore, by adjusting the capacitance C, value (size of a adjacent microstrip
line), one can obtain C; (L-C tables) = C; (syn.). If the sum of the capacitances

C, +C, +2C, +C,, +C, is large than C; (L-C tables), the capacitance Cy, may be

selected by a proper size of a microstrip line to link two resonators. The rest of the

synthesized L-C values can be found by using the same procedure. Fig. 72 shows the
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simulated frequency responses of the filter using the available L-C tables, approximated
L-C values, and optimized L-C values shown in Table XI. Observing the simulated
results of the filter using the approximated L-C values in Fig. 72, they show a 3 dB cut-
off frequency close to 2 GHz but with harmonics at the stopband. These harmonics at

the stopband are due to the different L-C values (sizes) of the hairpin resonators.

—— Measurement
---- Simulation

Magnitude (dB)

0 2 4 6 8 10
Frequency (GHz)
(a)

Magnitude (dB)
S21

— Measurement !
210 ---- Simulation ; 7
-3r _
| | | |
0.0 0.5 1.0 15 2.0 25
Frequency (GHz)
(b)

Fig. 73. Measured and simulated (a) frequency response and (b) S,; within the 3-dB
bandwidth for the filter using cascaded hairpin resonators.
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To reduce the harmonics at the stopband, an optimized filter constructed by identical
hairpin resonators is used. Furthermore, during the optimization, it can be found that the
filter can achieve a low return loss by using a long single transmission line and short
coupled lines. The optimized L-C values are listed in Table XI. Inspecting the
simulated results in Fig. 72, the optimized filter using identical hairpin resonators can
reduce harmonics at the stopband and provide a low return loss in the passband.

The optimized dimensions of the filter in Fig. 70(a) are /3 = 3.2 mm, /, = 12.02 mm,
wys = ws = 0.8 mm, ws =2 mm. /; w;, wz, ws and g are the same dimensions as before.
The measured and simulated frequency responses of the optimized filter are shown in
Fig. 73. This lowpass filter provides a much sharper cut-off frequency response and
deeper rejection band compared to the results of using one hairpin resonator given in the
part / of this section. This filter has a 3-dB passband from DC to 2.02 GHz. The return
loss is better than 14 dB from DC to 1.96 GHz. The insertion loss is less than 0.6 dB.
The rejection is greater than 42 dB from 2.68 to 4.93 GHz. The ripple is £ 0.23 dB as
shown in Fig. 73(b).

3) Broad Stopband Lowpass Filters

Observing the frequency response of the lowpass filter in Fig. 73, the stopband
bandwidth is limited by harmonics, especially for the second harmonic. In order to
extend the stopband bandwidth, additional attenuation poles at the second harmonic can
be added. The additional attenuation poles can be implemented by additional lowpass
filter using two cascaded hairpin resonators with a higher 3-dB cut-off frequency and
attenuation at the second harmonic as shown in Fig. 74. The desired higher 3-dB cut-off
and attenuation frequencies of the additional lowpass filter can be obtained by using
similar synthesis procedure as in part 2 of this section. The optimized dimensions of the
additional lowpass filter are /5 = 2.55 mm, /5= 10.02 mm, w; = 0.5 mm /;, w;, w», ws and

g have the same dimensions as before in part 2 of this section.
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Additional
lowpass
filter

Fig. 74. Layout of the lowpass filter with additional attenuation poles.

Fig. 75(a) shows the measured and simulated results. The additional lowpass filter
attenuates the level of the second harmonic and achieve a wider stopband bandwidth
with attenuation better than 33.3 dB from 2.45 to 10 GHz. The return loss of the filter is
greater than 13.6 dB within DC-1.94 GHz. The insertion loss is less than 1 dB. As seen
in Fig. 75(b), the ripple is £ 0.33 dB.
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Fig. 75. Measured and simulated (a) frequency response and (b) S,; within the 3-dB
bandwidth for the filter with additional attenuation poles.

D. Conclusions

Compact elliptic-function lowpass filters using stepped impedance hairpin resonators
are proposed. The filters are synthesized and optimized from the equivalent lumped-
element model using the available element-value tables and EM simulation. The

lowpass filter using multiple cascaded stepped impedance hairpin resonators shows a
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very sharp cut-off frequency response and low insertion loss. Moreover, with additional
attenuation poles, the lowpass filter can obtain a wide stopband bandwidth. The
measured results of the lowpass filters agree well with simulated results. The useful
equivalent circuit model for the stepped impedance hairpin resonator provides a simple

method to design filters and other circuits.
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CHAPTER IX

PIEZOELECTRIC TRANSDUCER TUNED FEEDBACK MICROSTRIP RING
RESONATOR OSCILLATORS*

A. Introduction

In the past years, many different oscillators using dielectric or microstrip ring
resonators have been reported. Due to their advantages of low cost, good temperature
stability, and easy fabrication, they are widely used in many RF and microwave systems.
The push-push type of the dielectric resonator is used in many oscillator designs [97-99].
However, due to the physical geometry of the dielectric resonator, it is not easy to mount
a varactor on the dielectric resonator to tune the oscillator frequency [100]. Recently,
the push-push microstrip ring resonator oscillators were proposed [101,102]. The
oscillator using a ring resonator is easier to fabricate than that of dielectric resonator in
hybrid or monolithic circuits. Moreover, a varactor can be easily mounted on a
resonator to tune the oscillation frequency [101]. In addition to the push-push type
oscillators, the feedback oscillators were also widely used in many RF and microwave
systems due to the simplicity of the circuit design [103,104].

Electronically tunable resonators and oscillators using varactors have been reported
[9,105,106,107]. However, mounting varactors on the resonator requires some slits to be
cut in the resonator and additional bias circuits. These modifications directly affect the
resonant frequencies of the resonator and make the resonator circuit more complicated.

Recently, a piezoelectric transducer tuned oscillator was reported [108]. The oscillator

*Reprinted with permission from (complete publication information) “High efficiency
piezoelectric transducer tuned feedback microstrip ring resonator oscillators operating at
high resonant frequencies” by Lung-Hwa Hsieh and Kai Chang, 2003. /[EEE Trans.
Microwave Theory Tech., vol. 51, pp. 1141- 1145. © 2004 by the IEEE.
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tuned by a voltage controlled piezoelectric transducer tuning without any cutting slit and
bias circuit on the resonator provides a wide tuning range.

In this chapter, a voltage controlled piezoelectric transducer tuned microstrip ring
resonator oscillator using a feedback structure is introduced. This new oscillator consists
of a ring resonator with two orthogonal feed lines, a feedback configuration and a
voltage controlled piezoelectric transducer. A close-loop ring resonator using a pair of
orthogonal feed lines suppresses odd resonant frequencies and operates at even resonant
frequencies. This operation has a similar characteristic of high operating resonant
frequencies as that of the push-push oscillators. A simple transmission-line model is
used to predict the high operating resonant frequency characteristic of the ring resonator
using the orthogonal feeding structure. The measured and simulated results agree well.
The oscillator has a high DC to RF efficiency of 48.7 % at 12.09 GHz with a power
output of 5.33 dBm. A voltage controlled piezoelectric transducer is used to change the
effective dielectric constant of the ring resonator and vary the resonant frequencies of the

resonator.

B. Ring Resonator with Orthogonal Feed Lines

As seen in Fig. 76, the closed-loop ring resonator with total length of / =nA, is fed by
two orthogonal feed lines, where n is the mode number and A, is the guided-

wavelength. The ring resonator fed by the input and output feed lines represents a shunt

circuit, which consists of the upper and lower sections of /, =3nA, /4 and [, =nA, /4,

respectively. The total Y parameters of the ring circuit are calculated from the individual

Y parameters of the upper and lower sections and are given by

|:Y11 Y, } _ |:_jyo (cos Bl +cot Bl,)  jy,(csc Bl +csc fBl,) } (88)

Y, Y| | jv,(cscBl+escfl)  —jv,(cos Bl +cot [l,)
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where [ is the propagation constant, y, is the characteristic admittance of the ring

resonator.

Input

I=1+1,=n),

o
Output

Fig. 76. Configuration of the ring resonator fed by two orthogonal feed lines.

Furthermore, S,; of the ring circuit can be found from (88) and is expressed as

3nmr nit
—j2(csc—— +csc—
J2( 5 2)

S21 = 3nir 1T, 3nir (89)
[1- j(cot 2% + cot P +[ese - +csc n—’?
2 2 2 2
For odd-mode excitation, SZI| =0,n=1,3, 5. (90a)
and for even-mode excitation, Sz1| =1,n=2,4,6... (90b)

The calculated results in (90) show that the ring resonator fed by two orthogonal fed
lines can suppress the odd mode resonant frequencies and operate at even mode resonant
frequencies only. This operation has a similar characteristic of high operating resonant
frequencies as that of the push-push oscillator [99]. Fig. 77 shows the layout of the ring
circuit using two orthogonal feed lines with coupling gap size of s. The detail design

regarding to the parallel coupling structure between the ring and the feed lines can be
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found in [77]. This ring circuit was designed at the fundamental mode of 6 GHz and
fabricated on a 20mil thick RT/Duroid 5870 substrate with a relative dielectric constant
of & =2.33. The dimensions of the ring circuit are /; = 27.38 mm, [, = 9.13 mm, /;=

8mm, w=1.49 mm and s = 0.2 mm.

Input

Output

Fig. 77. Configuration of the ring resonator using enhanced orthogonal feed lines.

o n=2 7

Magnitude S, (dB)
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Frequency (GHz)

Fig. 78. Simulated and measured results for the ring resonator using enhanced
orthogonal feed lines.
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The measured and simulated results of this circuit are shown in Fig. 78. The
simulation is performed using an EM simulator [35]. Observing the measured and
simulated results, they agree well with each other. The results also agree with the

predictions given by (90). The measured unloaded Q of the ring resonator is 125.2.

C. Feedback Ring Resonator Oscillators

Fig. 79 shows the configuration of the feedback ring resonator oscillator. This
configuration consists of a feedback ring circuit and a two-port negative-resistance
oscillator with input and output matching networks. The high Q ring resonator is used to
reduce the noise of the two-port negative-resistance oscillator. The active device used is
a NE 32484A HEMT. The dimensions of the oscillator are /3 =3 mm, I, = 6.95 mm, /5 =
15.19 mm, /4= 10.69 mm, /;= 7.3 mm, /g = 9.47 mm, and /o=21.19 mm.

Fig. 79. A feedback ring resonator oscillator.

The two-port negative-resistance oscillator shown in Fig. 80(a) uses the one-open-
end S terminal as a series-feedback element to obtain a potential instability. Also, with

input and output matching networks, the two-port oscillator with an applied bias of Vg =
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-0.65 V and V4 = 1 V has a negative resistance around 12 GHz as shown in Fig. 80(b).
The simulated results were performed using the measured S parameters of the transistor,
Agilent ADS, and IE3D. Inspecting the results in Fig. 78 and 80(b), the feedback loop
from the drain through the ring circuit to the gate maintains oscillation as Sy;; Szjo >1,
where S;;; = -5.2 dB is the loss of the ring circuit and S,;, = 20.3 dB is the gain of the

two-port negative-resistance oscillator.
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Fig. 80. Two-port negative-resistance oscillator (a) layout and (b) measured and
simulated results.
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Fig. 81 shows the measured efficiency and oscillation frequency as a function of Vg
with a fixed V4=1.5 V. The highest DC-to-RF efficiency is 43.3 % with output power
of 7.7 dBm at the oscillation frequency of 12.1 GHz. Also, Fig. 82 shows the measured
efficiency and oscillation frequency as a function of V4 with a fixed Vg =-0.4 V. The
highest DC-to-RF efficiency is 41.4 % with output power of 6.17 dBm at the oscillation
frequency of 12.104 GHz. Inspecting the equation of the DC-to-RF efficiency in (91), if
the decreasing rate of I4Vys is faster than that of the RF output power, Pout, then
oscillators can possibly research to a high DC-to-RF efficiency.

Efficiency = (%) = — 2 x100%. 1)

ds” ds

Observing the results in Figs. 81, 82 and (91), the maximum efficiency can be obtained

by selecting a low Vg and V.
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Fig. 81. Measured DC-to-RF efficiency and oscillation frequency versus Vg with Vg, =
1.5V.
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Fig. 82. Measured DC-to-RF efficiency and oscillation frequency versus Vg with Vg = -
0.4 V.

Fig. 83 shows the measured spectrum of the oscillator with applied voltages of Vg = -
0.65 V and V4 =1 V. Also, as shown in Fig. 83, the oscillator is operated at the second
harmonic of the ring resonator. The oscillator has the efficiency of 48.7 % with output
power of 3.41 mW at 12.09 GHz. The phase noise of the oscillator is -96.17 dBc/Hz at
offset frequency of 100KHz. The second and third harmonics of the oscillator are 22.8
dB and 15.1 dB down from the fundamental oscillation frequency. These harmonics
have less effect on the fundamental oscillation frequency. Comparing with other

oscillators [ 104], this oscillator provides a high DC-to-RF efficiency.
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Fig. 83. Output power for the feedback ring resonator oscillator operated at the second
harmonic of the ring resonator.

D. Tunable Feedback Ring Resonator Oscillators Using a Piezoelectric Transducer
Fig. 84 shows the configuration of the ring resonator oscillator integrated with a
piezoelectric transducer (PET) with an attached dielectric perturber. The PET is a
composition of lead, zirconate, and titanate [73]. The PET shown in Fig. 84 consists of
two piezoelectric layers and one shim layer. The center shim laminated between the two
same polarization piezoelectric layers adds mechanical strength and stiffness. Also, the
shim is connected to one polarity of a DC voltage to deflect the PET and move it up or
down vertically. This motion makes it possible to change the effective dielectric
constant of the ring resonator [74], thus varying resonant frequency of the ring resonator.

The PET can be deflected over + 1.325 mm at + 90 V with 1pA.
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Fig. 84. Configuration of the tunable oscillator using a PET (a) top view and (b) 3 D
view.

Fig. 85 shows the measured results of the oscillator using the PET tuning. The
perturber attached on the PET has a dielectric constant of & = 10.8 and thickness of 4 =

50 mil. The tuning range of the oscillator is from 11.49 GHz (+90 V) with a power
output of 3.17 dBm to 12 GHz (0 V) with a power output of 5.33 dBm.
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Fig. 85. Measured tuning range of 510 MHz for the tunable oscillator using a PET.
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Fig. 86. Tuning oscillation frequencies and output power levels versus PET tuning
voltages.

Fig. 86 shows the tunable oscillation frequencies and output power levels versus PET
tuning voltages. As seen in Fig. 84, the PET tuning range is about 4.25 % around the
oscillation frequency of 12 GHz and the output power is varied from 2.67 to 5.33 dBm.
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This good tuning rage is due to a wide area perturbation on the whole ring that
significantly tunes the resonant frequency of the ring. In addition, by using a higher

dielectric perturber, a wider tuning range and a lower DC applied voltage could be

achieved [109].

E. Conclusions

A tunable feedback microstrip ring resonator oscillator has been developed. The
new oscillator has the advantages of operating at second resonant frequency, high
efficiency, and low cost. The high operating resonant frequency characteristic is studied
and predicted by a simple transmission-line model. The simulated and measured results
agree well with each other. The new oscillator operated at the fixed frequency of 12.09
GHz has a high efficiency of 48.7 % and an output power of 5.33 dBm. A voltage
controlled piezoelectric transducer tuning provides a maximum perturbation on the ring
and shows a good tuning range. Unlike the varactor-tuned oscillators, the new oscillator
without any additional circuit on the resonator will not affect the natural resonant
frequencies of the resonator. The tuning rage of the PET-tuned oscillator is 4.25 %
around the oscillation frequency of 12 GHz. The VCO should be useful in many

wireless and sensor systems.



127

CHAPTER X

SUMMARY

In this dissertation, the analysis and modeling of the microstrip ring resonator has
been introduced. The analysis and modeling methods for the ring resonator include a
transmission-line model, ABCD, Y parameter conversions, EM simulation, and so on.
These simple methods and available commercial EM simulator provide a powerful tool
to help designers to understand how the ring circuits operate. In addition, through those
methods, new structures of the ring circuits have been invited applied to construct
passive and active filters, and oscillators. These new filters and oscillators should be
useful in many wireless systems.

A simple transmission-line model has been used to calculate the frequency modes of
microstrip ring resonators of any shape for annual, square, and meander. A literature
error for the frequency modes of the one-port ring resonator has been found. Moreover,
the transmission-line model provides a better dual-mode explanation than the magnetic-
wall model.

A simple lumped-element circuit of the closed- and open-loop ring resonators has
been derived. Using this equivalent lumped-element circuit, the equal unloaded Qs of
the close- and open-loop ring resonators were obtained. The useful equivalent lumped-
element circuit of the ring resonators can provide a simple method to design ring
circuits.

A new dual-mode filter using ring resonator with an enhanced L-shape coupling arm
has been developed. The enhanced L-shape coupling arm not only provides enhanced
couplings to reduce the insertion loss, but also generates a high selectivity characteristic.
The filter using cascaded ring resonators with enhanced coupling function shows a sharp

rejection and narrow passband.
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New slow-wave bandpass filters using a microstrip line periodically loaded with ring
or stepped impedance hairpin resonators have been proposed. The slow-wave bandpass
filter is constructed by the parallel and series resonance characteristics of the resonators.
These new bandpass filters have lower insertion loss than those of the filters using
parallel- or cross-coupled filters.

A simple transmission-line model is used to calculate the locations of two
transmission zeros to design a bandpass filter with a high selectivity. This filter using
two resonators shows lower insertion loss than the cross-coupled filters using four
resonators. A piezoelectric transducer (PET) is used to tune the passband of the filter.

A new compact, low insertion loss, high selectivity wideband bandpass filter has
been introduced. The filter using direct-connected ring resonator with orthogonal feed
lines and tuning stubs can obtain a wide passband and two stopbands. Due to the direct-
connected feed lines, the filter can obtain a low insertion loss.

Compact elliptic-function filters using stepped impedance hairpin resonators have
been developed. The filters are synthesized and optimized by using available element-
value tables and EM simulation. The lowpass filter using cascaded stepped impedance
hairpin resonators has a sharp rejection. In addition, by adding additional attenuation
poles, the filter can obtain a wide stopband bandwidth. The measured results of the filter
agree well with the simulated results.

A piezoelectric tuned feedback microstrip ring resonator oscillator has been
fabricated and designed. The oscillator operates at the second harmonic frequency. The
high operating resonator frequency characteristic of the ring resonator has been studied.
In addition, a high efficiency and good tuning range have been obtained. This VCO is

useful in many wireless systems.
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APPENDIX I

THE ABCD PARAMETERS FOR SOME USEFUL TWO-PORT CIRCUITS

Circuit ABCD parameters
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APPENDIX II

SOME USEFUL TWO-PORT NETWORK PARAMETER CONVERSIONS
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