

AGENT-ORIENTED FAULT DETECTION, ISOLATION AND RECOVERY

AND

ASPECT-ORIENTED PLUG-AND-PLAY TRACKING MECHANISM

A Thesis

by

FEILONG CHEN

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

August 2003

Major Subject: Computer Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/4268457?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

AGENT-ORIENTED FAULT DETECTION, ISOLATION AND RECOVERY

AND

ASPECT-ORIENTED PLUG-AND-PLAY TRACKING MECHANISM

A Thesis

by

FEILONG CHEN

Submitted to Texas A&M University
in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Approved as to style and content by:

 _____________________________ _____________________________
 Richard A. Volz Yoonsuck Choe

 (Chair of Committee) (Member)

 _____________________________ _____________________________

 Reza Langari Valerie Taylor
 (Member) (Head of Department)

August 2003

Major Subject: Computer Engineering

iii

ABSTRACT

Agent-Oriented Fault Detection, Isolation and Recovery and Aspect-Oriented Plug-and-

Play Tracking Mechanism. (August 2003)

Feilong Chen, B.S., China Agricultural University

Chair of Advisory Committee: Prof. Richard Volz

Fault detection, isolation, and recovery are some of the most critical activities in which

astronauts and flight controllers participate. Recent systems to perform the FDIR activity

lack portability and extensibility, and do not provide any explanation of the system’s ac-

tivity. In this research, we explore the use of an agent-oriented paradigm and Java tech-

nology for better performance of FDIR activity. Also, we have explored the use of

explanation in agent-oriented systems, and designed a system-activity tracking mecha-

nism that helps the user to understand the agents’ behavior. We have explored different

ways to generalize this mechanism for arbitrary agent systems to use. Furthermore, we

studied mechanisms to automatically add the tracking mechanism to an existing agent

system. By using AspectJ, an aspect-oriented tool, a plug-and-playable tracking system

has been built that can add the capability to track the activity of the system to any JACK

agent system easily. Our experience can help further research on using aspect-oriented

tools with agent-oriented paradigms together to obtain better performance.

iv

TABLE OF CONTENTS

 Page

1.INTRODUCTION ... 1

2.BACKGROUND ... 4

2.1. Space Shuttle Fault Detection, Isolation and Recovery 4
2.2. Explanation Component .. 7
2.3. Agent-Oriented Programming... 7
2.4. Aspect-Oriented Programming.. 9

3.PHASE 1: EXPLANATION-BASED, AGENT-ORIENTED FDIR SYSTEM 12

3.1. The FDIR System.. 12
3.2. Tracking System.. 20

4.THE SECOND PHASE: UTILIZING THE PREPROCESSOR................................... 26

5.THE THIRD PHASE: ASPECT-BASED TRACKING.. 32

5.1. Aspect Interaction with Tracking System 32
5.2. A Simple Processing Tool... 34
5.3. Initializing Tracking Fields in a Plan 37
5.4. Using Pointcuts to Capture Event Posting within Plans.......... 38
5.5. Using Pointcuts to Capture Event Posting within Agents,

beliefSets and Automatic Event Posting 39
5.6. Using Pointcuts to Display System Activity 40
5.7. Plugging in the Tracking Mechanism 43

6.EXAMPLE AND RESULTS... 45

7.CONCLUSIONS AND FUTURE WORK .. 47

REFERENCES… ... 50

APPENDIX……... 53

VITA……………... 77

v

LIST OF FIGURES

FIGURE Page

1 System Schematic for the RCS.. 5

2 Relation of major component types in the FDIR system............................... 15

3 Partial decision tree for leak isolation.. 16

4 The sample tracking tree.. 22

5 The interaction of diagnostic system and tracking system 25

6 Code for leakIsolEvent before modification... 28

7 Code for leakIsolEvent after modification... 28

8 Code for leakIsolPlan before modification .. 30

9 Code for leakIsolPlan after modification... 31

10 Overview of the system with AspectJ.. 32

11 Overview of the modified system.. 34

12 The preprocessing tool... 35

13 Selecting a folder containing the JACK system .. 36

14 The pointcut initiating the fields for a plan.. 37

15 Pointcut for @post(...) ... 39

16 Pointcut for event posting within agents.. 40

17 Pointcut for event postings outside of plans .. 40

18 The pointcut initiating TrackDisplayer.. 41

19 Modified pointcut for adding nodes to the tracking tree................................ 42

20 Pointcuts setting text-display for plans .. 42

vi

FIGURE Page

21 A sample .lst file .. 43

22 Using command prompt to execute AspectJ.. 44

23 Introduction aspect... 45

24 A sample Tracking Tree... 46

1

1. INTRODUCTION

Fault detection, isolation, and recovery (FDIR) are some of the most critical activities in

which astronauts and flight controllers participate. Researchers have been investigating

automatic tools for training and assisting in these activities for some time. The Proce-

dural Reasoning System (PRS) [1, 2, 3] and Distributed Multi-Agent Reasoning Sys-

tem(dMARS) have been used to developed FDIR applications. However, applications of

both PRS and dMARS lack platform-independence and neither provides explanation of

system behavior.

Developing an explanation component [4] to help a user understand what the

agent system is doing is essential for two reasons. First, doing so makes the agent system

usable as a training aid. Second, understanding what the agent system is doing is an im-

portant part of building human confidence in the system as an operational assistant and

for recognizing when the agent system has been unable to take all factors into account.

Thus, we explored different mechanisms to incorporate an explanation component into an

agent system, and have designed a tracking mechanism that allows observation of what

the agent system is doing and how it arrives at its decisions.

Our objectives in this research are to study the use of agent-oriented technique for

building a highly portable, explanation-based system that is easily extensible and to ex-

plore approaches to provide effective explanation of the agent system’s behavior. Agent-

Oriented Programming techniques are utilized to get better extensibility, and an

This thesis follows the style of IEEE Transactions on Systems, Man, and Cybernetics.

2

effective explanation component, we call system activity tracking, has been designed to

let the users observe the system activities. Furthermore, we will find a way to generalize

the system activity tracking mechanism so that it can be applied to an arbitrary system

and a way to automatically add the tracking mechanism to an arbitrary system. As a ve-

hicle for developing the ideas and demonstrating the results, we have chosen the Space

Shuttle Diagnostic domain.

As an initial approach, this thesis explores how to create a tracking system and its

relation to general agent oriented systems. Subsequently, we examine different ways to

separate the incorporation of the tracking mechanism from the development of the agent-

oriented system being tracked. In particular, we create mechanisms that allow observa-

tion of system activity to be obtained automatically, with minimal developer input. We

first approach this by developing a preprocessing tool that reads the agent, event, and

plan code, and inserts the hooks to the tracking system automatifcally [5]. Doing so

changes a program from a single tracking system to a tool for building a tracking system

for arbitrary agent systems.

Then, in the next phase, we explore an even simpler way to implement the track-

ing system independently of the specific agent system, the use of Aspect-Oriented Pro-

gramming. A open software tool, AspectJ is used to fulfill this mission. AspectJ enables

clean modularization of crosscutting concerns, such as error checking and handling, syn-

chronization, context-sensitive behavior, and multi-object protocols. AspectJ is a tool for

Java. However, we use JACK, an Agent-Oriented Programming software to ease the de-

velopment the FDIR system, and AspectJ cannot be applied directly to JACK programs.

We describe the techniques we have developed to integrate AspectJ with JACK programs.

3

In section 2, we briefly describe the background for the work described here, in-

cluding the Belief Desire Intention (BDI) model, two predecessor systems, PRS and

dMARS, JACK and AspectJ. In subsequent sections, we describe the design and imple-

mentation of our agent-based FDIR system, the tracking system, and how the two sys-

tems interact; two different approaches are described after that. Examples are shown.

4

2. BACKGROUND

In this section, we describe background information of space shuttle FDIR, explanation-

based systems, agent-oriented and aspect-oriented programming paradigms.

2.1. Space Shuttle Fault Detection, Isolation and Recovery

Researchers have been investigating automatic tools for training and assisting in the

FDIR activities for some time. As a test domain in which to conduct our studies, we have

used the Reaction Control System (RCS) of the Space Shuttle. The RCS provides pro-

pulsive forces from a collection of jet thrusters to control the attitude of the spacecraft [1].

There are three RCS modules, two aft and one forward, each of which contains a collec-

tion of primary and vernier jets, a fuel tank, an oxidizer tank, two helium tanks, and

manifolds(see Figure 1 for an overview of RCS). Each system provides both fuel and

oxidizer propellant flows. These flows are maintained by pressurizing the propellant

tanks with helium. The helium supply is fed to its associated propellant tank through two

redundant lines, designated A and B. A number of pressure and temperature transducers

are attached at various parts of the system for monitoring. Each RCS module receives

manual and automatic commands via the shuttle’s general-purpose computers. The prob-

lem is to automate the malfunction procedures that diagnose and reconfigure the RCS

when leaks are detected (see Figure 1for an overview of RCS).

5

Figure 1. System Schematic for the RCS

Applications for space shuttle fault diagnosis have been developed using two ar-

chitectures, the Procedural Reasoning System (PRS) of Ingrand and Georgeff [1, 2, 3]

and the Distributed Multi-Agent Reasoning System (dMARS), a C++ implementation of

the PRS architecture [6]. For fault handling purposes, they used fault analysis trees as a

basis for developing agent plans. These applications utilize an expert’s procedural knowl-

edge [7, 8, 9] for accomplishing goals and tasks. Procedures for monitoring, diagnosing

6

faults upon detection, and recovering from failures are automatically selected and exe-

cuted to help keep the RCS working within required specifications. The applications

demonstrate the real-time management of the Reaction Control System (RCS) on the

NASA space shuttle. However, both PRS and dMARS, implemented in Lisp and C++ re-

spectively, lack portability and extensibility, and neither provides efficient and sufficient

explanation of the system activity to the user at runtime.

The PRS and dMARS architectures have grown out of using the BDI paradigm [1,

6]. The BDI architecture [10] is the basis for most agent-oriented systems. It typically

contains four key components: beliefs, goals, intentions, and a library of plans. A BDI

agent’s belief represents the agent’s knowledge about the world. An agent’s desires (or

goals) are descriptions of desired tasks or behaviors. Intentions are an ordered set of cho-

sen desires; an agent will try to achieve an intention until either it believes the intention is

satisfied, or it believes that the intention is no longer achievable. The plan library con-

tains a set of plans, which may be executed to achieve intentions.

A PRS module is made up of four components: a database, a set of current goals,

a set of plans, and an intention structure, corresponding to the four keys of BDI architec-

ture, respectively. The database stores the system’s current belief about the world. The in-

tention structure consists of a (partially) ordered set of all plans chosen for execution at

run-time. The set of plans are also called Knowledge Areas (KAs). Each KA describes a

sequence of actions to perform in certain situations or to achieve some goal. Each KA

consists of a body, which describes the steps of the procedure (usually in form of a tree,

see section 3.1 for a similar tree), and an invocation condition, which specifies the situa-

tions for which the KA is useful. Together, the invocation condition and body of a KA

7

express a declarative fact about the results and utility of performing certain sequences of

actions under certain conditions [1].

2.2. Explanation Component

A system becomes more complicated as it becomes more powerful. Sometimes it is diffi-

cult for a user to understand a system’s behavior. Obviously, understanding the system

makes a user more comfortable with and more confident in the system, and makes the

coordination between the user and the system more effective. More, explanation is essen-

tial for training purposes.

An explanation component can provide users with a problem-solving context, dis-

course history, domain knowledge structure, etc. [4, 11]. All this information helps users

understand the system’s behavior. An effective explanation component therefore can be

very useful and sometimes critical, especially when the system is highly sophisticated.

In this thesis we create an explanation mechanism that traces the sequence of ac-

tivity involved the execution of an agent-oriented program, and displaysto users the activ-

ity in a tree-like structure The tracking mechanism is described in detail in Section 3.2.

2.3. Agent-Oriented Programming

Agent-Oriented Programming (AOP) [12] can be viewed as a specialization of the ob-

ject-oriented programming (OOP) paradigm. OOP proposes viewing a computational sys-

tem as collection of modules that are able to communicate with each other and that have

individual ways of handling incoming messages. AOP specializes the framework by fix-

ing the mental state of the agents (one kind of module) to consist of components such as

beliefs, capabilities, and decisions. AOP makes development of agents easier.

8

JACK is an Agent-Oriented development environment built on top of and fully in-

tegrated with the Java programming language. It includes all components of the Java de-

velopment environment as well as offering specific extensions to implement agent

behavior. There are four basic constructs in JACK [13]: agent, event, plan, and beliefSet.

Another construct, capability, is basically a collection of events and plans. As an object-

oriented system is modeled in terms of objects, an agent-oriented system is modeled in

terms of agents. In JACK, agents exhibit reasoning behavior following the BDI model of

artificial intelligence [10]. In accordance with the BDI model, a JACK agent is an

autonomous software component that has explicit goals to achieve or events to handle

(desires). These agents are programmed with a set of plans. An agent pursues its given

goals (intentions), adopting the appropriate plans according to its current set of data (be-

liefs) about the state of the world. This combination of desires and beliefs initiating con-

text-sensitive, intentional behavior is part of what characterizes a BDI agent.

Events are the origin of all activities in a JACK system. Events can be posted

within plans, agents and beliefSets. Furthermore, there is a specific type of event, called

an automatic event, which is posted automatically whenever some logical condition is

satisfied. This latter is particularly useful for initiating a goal upon the occurrence of

some external event, e.g., the detection of a leak. Within plans and agents, events can be

posted explicitly through a variety of reasoning methods. This corresponds to establishing

a goal in the BDI methodology. Some agent must be defined to handle each type of event

(one agent can handle multiple event types, if desired). Agents can select among various

plans to handle the event, depending upon the situation.

9

In a JACK agent system, each event type is handled by a specific agent. The agent

may try one or more (in case of plan failure) plans for handling the event. These plans

may post yet other events for the same or other agents. For example, in trying to isolate a

leak, an agent may ask another agent to read the pressure on a specified manifold. The

sequence and relationships of these events give the user a good picture of the process be-

ing used to resolve a situation. The sequence of events can be represented in a hierarchi-

cal structure that resembles the file structure on a computer. We will explore allowing a

user to look selectively at portions of the hierarchical representation, much the same as

one manipulates a file system in Windows Explorer. In addition, we want to show values

returned from events, which further helps the user follow what the agent system is doing.

Each plan is capable of handling a single event, which is identified by a #han-

dles event declaration in the plan. When an instance of a given event arises, an agent

may execute one of the plans that declare they handle this event type. A JACK plan con-

sists of a plan body, user-defined reasoning methods, and normal Java methods. Within

the first two, additional events can be posted. A plan body is the sequence of actions to be

executed when the plan is invoked. Other methods are called within the body.

2.4. Aspect-Oriented Programming

Aspect-Oriented Programming (ASOP) [14, 15, 16, 17, 18] is based on the idea that

computer systems are better programmed by separately specifying the various concerns

(properties or areas of interest) of a system, and composing them into a coherent program

using the ASOP technique. In a typical application, there is one core concern and number

of other concerns [15, 16]. For instance, the core concern of the FDIR system is fault de-

tection, isolation, and recovery; another concern is the tracking of system activity. The

10

behavior of other concerns, such as the tracking of system activity, would normally cross-

cut behaviour of the core concern of the application. If developed as in the past, the code

for such a concern would often scatter into several structural elements and become un-

necessarily complicated. ASOP separates such crosscutting concerns from the core con-

cerns and simplifies the realization of them. To do so, ASOP provides the concept of

aspects: mechanisms for localizing the expression of crosscutting concerns. By collecting

crosscutting concerns into aspects, ASOP congeals behavior that traditional programming

languages would distribute throughout the system into a single textual structure, and

makes the code cleaner and easier to understand.

Human beings think and speak by specifying various concerns. For example, “call

a method track() before any event is posted. ” Using traditional programming languages,

we have to transform such a sentence into something like: “call track() before an event

E1 is posted; and before E2 is posted; and so on. ” Code has to be inserted wherever an

event is posted. The power of ASOP is that it supports a richer set of structural expres-

sions in which human beings think and speak. For instance, the sentence above can be re-

alized as the pseudo-code below:

Before(): any event is posted{

 Call track();

}

with this code being state only once, rather that having to insert code at every posting of

an event.

11

In section 5, the third phase of the research is described, in which we use ASOP

techniques to develop a stand-alone tracking mechanism that can plug into the FDIR sys-

tem as well as general JACK systems easily.

AspectJ[14] is an aspect-oriented extension of Java. It adds a new concept, a join

point, and several new constructs: pointcuts, advice, introduction and as-

pects to Java. An aspect is AspectJ’s unit of modularity for crosscutting concerns,

and is defined in terms of the other three described above. Pointcuts and advices

dynamically affect program flow, while an introduction affects a program’s class

hierarchy statically.

A join point is a well-defined point in the program flow. Pointcuts cap-

ture certain join points (and sometimes, values at those points), and invokes Advice

code that will be executed.

An introduction changes existing classes by adding new members to exist-

ing classes and declaring a hierarchy between existing classes, e.g.: adding methods to an

existing class, adding fields to an existing class, extending an existing class from another,

implementing an interface in an existing class, and converting checked exceptions into

unchecked exceptions. This provides a mechanism for aspects to set, modify and get

values to help them achieve the cross-cutting conerns. While advice primarily operates

dynamically at run time, an introduction works statically at compilation time.

12

3. PHASE 1: EXPLANATION-BASED, AGENT-ORIENTED FDIR

SYSTEM

In this section, the first phase of this research is described. An agent structure to perform

the FDIR tasks, and an explanation component, the system activity tracking, are created.

Their integration as a comprehensive FDIR system is described.

3.1. The FDIR System

Fault detection, isolation, and recovery for the shuttle is typically based on malfunction

procedures developed by NASA and its contractors. Once a failure is detected (based on

sensor readings), these procedures describe a process for making additional tests and

identifying the element that caused the failure. Malfunction procedures are essentially de-

cision trees closely related to fault trees, which provide a logical analysis of conditions

that could have caused the fault. The use of an agent architecture for implementing these

provides great flexibility in adding or modifying procedures and in specifying the context

in which each is appropriate to use. This was also the basis for the PRS FDIR implemen-

tation [1]; aside from being obsolete, however, the PRS implementation provided no ex-

planation of agent activity. In this section, we describe the development of the isolation

and recovery system, and in Section 4, we describe the addition of the activity tracking

system.

We describe our approach to building agent-oriented FDIR systems by example in

terms of the isolation of a leak within the Reaction Control System (RCS). There are five

manifolds, multiple pressurized gas tanks, several feed tubes connecting the tanks to the

13

manifolds and a number of valves in an RCS system, and a leak in any of them could

cause an overall leak to be detected (see Figure 1).

To maintain knowledge of the state of the world a beliefSet is defined. Our agent

system monitors the world (i.e., the RCS) and manipulates its beliefSet according to the

sensed status. In order to initiate fault isolation activity, a set of automatic events are de-

fined. For example, Leak (shown in part below) defines the automatic event that initi-

ates activity for a fault in the forward RSC system. When a change of the world’s state is

detected, the system may take action based on the rules defined (via automatic events, for

instance). For example, when a sensor detects a leak, the FDIR system modifies a belief-

Set to record the leak. An automatic event Leak is then triggered, resulting in the addi-

tion of a goal to handle this leak. The following code illustrates the automatic posting of

the event Leak:

public event Leak extends InferenceGoalEvent {

#uses data DisplayLeak dl;

logical String $sub-system;

…

#posted when (dl.leaking($sub-system));

…

}

The statement #posted when (dl.leaking($sub-system)); de-

fines the condition under which this event will be triggered; it also serves as the con-

structor of the event and can be expanded to the following form:

14

#posted when (dl.leaking($sub-system)){

 //constructs the event

};

The variable dl is an instance of a beliefSet DisplayLeak (declared by the

#uses data statement), dl.leaking($sub-system) is a beliefSet querying

function, in this case, will return true if a leak is detected and the variable $sub-

system will be bound to the sub-system where a leak is detected using unification (and

the value of $sub-system cannot be changed after that). The querying function will

be performed whenever DisplayLeak is modified and the event will be raised auto-

matically when the querying function returns true.

This exposes a general mechanism for establishing isolation goals. The initial de-

tection consists of two stages, the updating of the beliefSet based upon sensor inputs, and

the definition of the conditions under which automatic events are to be raised (and, of

course, the events themselves). Since plans and agents are defined independently to han-

dle each event type, a flexible and easily extensible system results. One can simply add

automatic event conditions, event types, agents and plans as needed. This notion is illus-

trated in Figure 2.

15

Triggers

Monitors Selects

Modifies Posts Handles

Modifies

Modifies

Inquiries

AgentsWorld Plans

BeliefSets Events

Figure 2. Relation of major component types in the FDIR system

As shown by Figure 2, postings of events (addition of goals) invoke agents to

handle the events (to achieve the goals). Agents then select plans to handle the events.

The plans may cause postings of other events directly or indirectly (via modifying the be-

liefSets, which then triggers automatic events). In this FDIR system, these correspond to

raising and achieving a sequence of goals such as checking pressure of devices of the

RCS system (inquiring the world), securing the RCS system (modifying the world), and

finally isolating the leak (modifying beliefSets) and recovering the RCS system.

Figure 3 shows a partial decision tree for isolating a leak. This is similar to the

Knowledge Areas used in PRS [1].

To reason about which plan to use to try to achieve a goal, an agent may use the

following three steps. First, only a plan defined to handle the event can be used. Second,

each plan may have a #context clause containing the conditions that test one or more

of the agent's beliefset relations. Only if the conditions are satisfied may such a plan be

used. Third, a plan may have a #relevant clause, which takes an event instance as pa-

rameter and states an admission condition based upon parameters of the event. The first

step is similar to PRS-KA’s triggering conditions, and the other two steps are similar to

PRS-KA’s context part.

16

start

Press decreasing or < 190

• • • • • • • • • • • •

(Get Manf1 press. & change direc.)

yes

(Get Manf2 press. & change direc.)

no

Secure RCS System

(Get Manf2 press. & change direc.)

Press decreasing or < 190 Press decreasing or < 190
yes

no no
yes

Figure 3. Partial decision tree for leak isolation

When the conditions defined by #context clause and the #relevant clause

(if available) is satisfied, the plan starts its execution, i.e., the execution enters the body

of the plan. Within the body, a plan can call user-defined reasoning methods or pure Java

methods, and can post events if necessary to add goals for agents (the one that “owns” the

plan itself or other agents) to achieve. Below is part of the plan that performs the tasks

based on the decision tree shown in Figure 3.

plan leakIsolPlan extends Plan {
 #reads data Who w;
 #uses data MessageDialog messageDialog;

 #handles event leakIsolEvent lie;
 #sends event Response re;
 #posts event getPressPresschgEvent pressPressChng;

17

 #posts event getPresschgEvent pressChng;
 #posts event secureEvent sec;

 logical String $agent;
 double Limit = 190;

 context(){
 …
 }

 #reasoning method
 descreasing(String what){
 …
 }
 #reasoning method
 increasing(String what){
 …
 }
 #reasoning method descreasingOrBelowLimit(
 logical String what,double limit){
 …
 }
 #reasoning method increasingAndAboveLimit(
 logical String what, double limit){
 …
 }

body() {
 @subtask(sec.secure());
 if (increasingAndAboveLimit($manf1, Limit)) {
 if (descreasingOrBelowLimit($manf2, Limit)) {
 lie.leaking_part = $manf2.toString() ;
 }
 else {
 if(increasingAndAboveLimit($manf3, Limit)){
 if(increasingAndAboveLimit($manf4,Limit)){
 if (increasing($hetk.toString())){
 if(increasing($proptk.toString())){
 lie.leaking_part="Helium leg of "+
 lie.rcs+" "+$manf5.toString()+" Leak";
 }
 else {
 lie.leaking_part=$proptk.toString();
 }
 }
 else {
 lie.leaking_part = $hetk.toString() ;

18

 }
 }
 else {
 lie.leaking_part = $manf4.toString() ;
 }
 }
 else{
 if(increasingAndAboveLimit($manf4, Limit)){
 lie.leaking_part = $manf3.toString() ;

 }
 else {

 lie.leaking_part = "3-4-5-TANK-LEG Leak";
 }
 }
 }
 }
 else {
 if(descreasingOrBelowLimit($manf2, Limit)){
 lie.leaking_part ="1-2-TANK-LEG";
 }
 else {
 lie.leaking_part =$manf1.toString() ;
 }
 }

 @wait_for(messageDialog.display(lie.leaking_part));
 @reply(lie, re.response());
 }

}

While one could use a single agent to handle all event types in the system, it is an

inelegant and difficult-to-maintain solution. First, as the system grows, the agent file be-

comes so huge with a whole lot of event and plan definitions in it that it is difficult to

maintain. Second, such an agent is hardly reusable. In reality, a human performs only a

certain type of jobs and incorporates with others when a task is beyond his capability. An

agent system usually employs multiple agents (multi-agent system has become a popular

research area). In our example, there are two agents that work together to manage a leak

alarm and isolate the leak. An agent, called LeakManager, monitors the world. When it

detects a possible leak, it will issue an alarm, check for regulator blockage or failure, and

19

put the system into a safe mode if either of these has occurred. If these are not the failures,

it determines that a leak has occurred and raises an event, leakIsolEvent, to set a

goal for another agent to isolate the leak. It is worth noting that this also models a kind of

teamwork.

In a JACK system, one agent contacts another by referencing its name. Thus,

there has to be some means by which LeakManager can determine the isolator’s name.

We could simply make the former remember the name of the latter. However, a more

scalable and maintainable approach is needed. For example, when the system grows and

hundreds and thousands of agents have to be incorporated, it will be extremely inefficient

to make the agents remember each other. Language for Advertisement and Request for

Knowledge Sharing (LARKS) [19, 20, 21] addresses the problem of agent interoperabil-

ity. LARKS is an agent capability description language that lets an agent register a de-

scription of its capabilities with a middle agent; an agent can also request a service

through the middle agent, and the middle agent will search its database to find a capabil-

ity description that is similar enough with the service requested; if found, the service will

be filled. The LARKS matchmaking process employs a matching engine that has five dif-

ferent customizable filters for context matching, word frequency profile comparison,

similarity matching, signature matching, and constraint matching. In our FDIR system, a

simpler but still effective way is used, which is to build a database to use as a look-up di-

rectory for the agents to find names corresponding to necessary functions. For example,

the LeakManager queries the database for an agent that can do “leak isolation”. The

query returns the name of an agent that performs leak isolation.

20

To aid in the explanation of what an agent is doing, our system tracks the se-

quence of events, agents and plans involved in achieving a goal and displays them to the

user. The explanation is in form of a hierarchical tree, with nodes representing events,

agents, and plans. The relationship of the events, plans and agents is represented in the

branching of the nodes, and part of the FDIR system’s belief will be shown when a user

puts the cursor upon a node. Details of the tracking mechanism are described below.

During this work, some general rules of constructing agent-oriented FDIR system

based on the decision trees are summarized as following:

• For each decision tree, construct a plan.

• For each plan, construct a goal (an event) for invoking it.

• For invoking of another decision tree(a plan)

o in the middle of execution of a decision tree (plan), raises a goal as

a subtask (uses @subtask(..));

o at the end of a decision tree(plan), raises a goal as a separate task

• System’s belief stored in beliefSets

• Use automatic events to construct rule-based actions

The advantage of our system over PRS and dMARS is that it is a platform-

independent, inherently distributed, agent-oriented, explanation-based system.

3.2. Tracking System

In order to help a user understand how an agent oriented system operates, an agent activ-

ity tracking system has been created. All activity starts with the posting of an event.

When an event is posted, an agent will handle it using a plan. The tracking system is

based on displaying the nesting of event postings, agent handling, and plan usage in a

21

JTree. Different colors and icons are used to distinguish the three kinds of nodes: event,

agent, and plan.

In order to keep track of the relationships among the events and plans in a nested

posting hierarchy, a unique argument called TrackingInfo is associated with each

event instance. The plan(s) that can be used by an agent to handle a specific event can be

thought of as sharing the same TrackingInfo with the event. For example, the very

first event posted, called E1, would be assigned “1” as its TrackingInfo. Suppose a

plan P1 is used to handle E1; then if P1 posts events, E2, E3, E4 in order, the Track-

ingInfo of E2, E3, E4 would be 1.1, 1.2, 1.3, respectively. The dot indicates the rela-

tionship “posted by”; and the increasing numeric values indicate the sequence order.

Since the TrackingInfo is unique for each event (and the plan(s) handling them), the

relationship among them is sufficiently well defined.1 (See Figure 4)

As described above, the system starts with the posting of an event. The first event

posting must occur outside of a plan, i.e., by an agent or an automatic posting. For the

first event, TrackingInfo must be initialized to “1”. If subsequent events are posted

outside of a plan, the corresponding TrackingInfo must be initialized to the next in-

crement of the number last used, i.e., the second one would be “2”, etc.

Maintenance of TrackingInfo for events posted within plans involves two is-

sues: appending a “.1” to TrackingInfo or incrementing TrackingInfo. The for-

mer occurs only when the first event within a plan is posted. The latter occurs when

subsequent events are posted in a plan.

1 The relationship is actually only partially defined. For E1 and E2 with TrackingInfo 1.3.4 and
2.2.5, we cannot determine their posting order. However, the order is not needed for representing the
agents’ activities using a tree-like structure.

22

1

1.1

1.2

1.2.1

1.3

Figure 4. The sample tracking tree

Two extra fields are added to each plan in order to maintain the correct Track-

ingInfo. The first is a boolean firstEvent, which is initialized to true when

a plan is created and used to control the TrackingInfo passed to events the plan raises.

The second is a String, tracking, which is used to assign TrackingInfo to

every event posted within this plan. When a plan is created, tracking will be initial-

ized to the value of TrackingInfo of the event handled by that plan. When an event is

posted within a plan, the value of firstEvent will be checked; if is true, the value

of tracking will be assigned to the TrackingInfo of the event being posted and

the value of firstEvent will be changed to false; otherwise, the value of

tracking will be incremented and then assigned to the event being posted. This strat-

egy maintains the sequence and nesting-level information.

In order to provide more details of the operation of the FDIR system, a technique

for displaying the current system belief has been developed in addition to the process

tracking system. When the user moves the cursor over an event or a plan in the tracking

tree, a portion of the system belief associated with the event/plan will be displayed, tell-

ing what is going on. If the plan handling the event has not finished its execution, and the

cursor is over an event, a text description will be displayed, telling what the event is for.

23

If the plan has finished, the result of the execution will be appended to the original text

display of the event. For example, in the FDIR system, “possible leak or regulator failed

closed” is displayed when the event Leak is first posted but “possible leak or regulator

failed closed-Leak alarm on” is displayed after the event has been successfully handled.

For plans, in the first case, the display will just say that the plan is still working; while in

the second case, the result will be displayed.

A protocol has been developed for expressing the textual descriptions and data to

be displayed. First, for each event in the system, an extra property called goal is added,

which is a text description of the goal of the event. Another property, called result will

be used to specify what result should be displayed. If the event has parameters whose

values are to be decided by the plan handling the event, result specifies which

parameters are to be displayed; otherwise, result can be a message that says the event

has been handled successfully and the goal achieved. JACK program developers are re-

quired to provide meaningful, customized values for goal and result. Since the

former is static, it can be directly defined in each event type. For example, the code be-

low is included in the event type leakIsolEvent:

String goal = “Isolate the leak.”

However, the latter can be dynamic and undetermined before runtime. For in-

stance, when a programmer wants to include a variable in result, that variable usually

is not initialized until the event is handled successfully. Our solution is to require the pro-

grammer to define a method, called getResult() within the event type, which re-

turns the value of result. This method will be called only at the end of the execution of

24

a plan, after all related variables have had their values defined. Below is a sample of the

getResult() method for leakIsolEvent.

String leaking_part;

getResult(){

 return result =

“The leaking part is “ + leaking_part;

}

The plan used to handle this event type will, if successful, place the correct value

in the string leaking_part. The plan then passes the result to the tracking system to

enable it to display the result for the user.

The key component of the tracking system is a tracking agent created to handle

two event types, TrackingEvent and returnValueDisplayEvent; it uses two

plans, TrackingPlan and returnValueDisplayPlan. As described above, extra

fields are added to events and plans in FDIR system. Then, in each plan other than the

two plans belonging to the tracking system, an instance of TrackingEvent that packs

TrackingInfo and other information about the event/plan is created and sent to the

tracking system. This is done at the beginning of the execution of each plan in the FDIR

system. The TrackingPlan decodes this information and displays the activity of the

FDIR system based on this information. When a plan succeeds, an instance of return-

ValueDisplayEvent that packs TrackingInfo and the result of the event is

created and sent to the tracking system immediately before the plan returns. The re-

turnValueDisplayPlan decodes the TrackingInfo and associates the re-

25

sult with proper event and plan. Figure 5 Shows the interaction of the FDIR and track-

ing systems.

Tracking
System

FDIR
System

Tracking Tree

Figure 5. The interaction of diagnostic system and tracking system

The following code, which is part of a plan shows how this is done. Note that track-

ingAgent is a String representation of name of the agent handling tracking stuff, and

_tracking_Event is an instance of TrackingEvent.

body() {

/********Here is the beginning of a plan’s execu-

tion********/

@send(trackingAgent, _tracking_Event =

_tracking_Event.tracking(lie.TrackingInfo,"leakIsolEvent"

,"leakIsolPlan", agnt,lie.initialDisplay)) ;

…

}

26

4. THE SECOND PHASE: UTILIZING THE PREPROCESSOR

In order to avoid the onerous task of manually inserting all calls to the tracking system, a

preprocessor has been built that automatically inserts all code necessary for use of the

tracking system.

The preprocessor has four parsers for JACK files, one each for agents, events,

plans, and capabilities. Given a folder containing a JACK agent system, the preprocessor

searches for the JACK files and then uses the parsers to analyze the files and insert neces-

sary code. There is also a parser for Java files. The preprocessor looks for the Java file

which contains the main() method, and inserts the code that instantiates the tracking

system.

The event parser will add an extra parameter called TrackingInfo to each

event. Extra code is also added to initialize TrackingInfo.

The agent parser will insert the reference code to import the tracking agent and

events, and a declaration that two events, TrackingEvent and returnVal-

ueEvent, be sent by the agent. If there is any event posted within the agent file2, code

will be inserted to generate the tracking information for the event the agent is posting.

The capability parser is similar to the agent parser.

The plan parser does the toughest work. It inserts reference code and declaration

code as described above; it inserts code that maintains local tracking information within

itself; it assigns proper tracking information to any event it posts. It also inserts code that

2 All events could be said to be posted by the agents, whether they are posted within a plan, a da-
tabase, or elsewhere; but here we are talking about the case in which there is a method of an agent, which
posts an event.

27

creates instances of TrackingEvent and returnValueEvent carrying proper in-

formation and sends them to the TrackingAgent. An instance of TrackingEvent

will be sent each time an event (except the two above) is posted. ReturnValueEvent,

however, is sent only at the successful completion of a plan’s execution. In JACK, a plan

has two member methods, called pass() and fail(). If the plan succeeds, the for-

mer will be executed immediately before the plan returns; the latter will be executed oth-

erwise. Both can be overloaded by the user to include user code to be executed. The plan

parser checks whether or not these two methods are overloaded. If they are, the parser

adds code necessary to create an instance of returnValueEvent that carries proper

information about the current plan and sends it to TrackingAgent. If the two methods

are not overloaded, then the parser adds the overload that performs the same actions as

described above. By doing so, TrackingAgent is informed of the success or failure of

a plan’s execution and the result of its execution.

In this section, we show the code of an event leakIsolEvent, both before and after

preprocessor modification, and the plan that handles that event, leakIsolPlan. The extra

code added by the preprocessor is in bold.

Figure 6 shows the code for leakIsoEvent before the preprocessor modifies it.

This event is posted whenever a leak is detected. The field goal specifies the reason for

posting this event, i.e., to “find out which part caused leak”; The method getResult(),

which returns a String telling the result of the handling of the event, uses a variable

leaking_part that is not defined until the successful execution of the plan that han-

dles this event.

28

event leakIsolEvent extends BDIMessageEvent {
 String rcs;
 String goal;
 String result;
 String leaking_part;

 #posted as isolate(String rcs) {
 this.rcs = rcs;
 goal=rcs+" is leaking,
 finding out which part caused leak";
 }
 public String getResult(){
 return result ="Leak Isolated.The leaking
 part is " + leaking_part;
 }
}

Figure 6. Code for leakIsolEvent before modification

Figure 7 shows the modified leakIsoEvent. The preprocessor adds the code

shown in bold. Note that an extra field, TrackingInfo is added to the event; and the

constructor (or posting function, as JACK documentation refers to it) of the event is

modified to include an extra parameter that will initialize TrackingInfo.

event leakIsolEvent extends BDIMessageEvent {
 String rcs;
 String goal;
 String result;
 String leaking_part;
 String TrackingInfo;
 #posted as isolate(String t, String rcs) {
 TrackingInfo = t;
 this.rcs = rcs;
 goal=rcs+" is leaking,
 finding out which part caused leak";
 }
 public String getResult(){
 return result ="Leak Isolated.
 The leaking part is " + leaking_part;
 }
}

Figure 7. Code for leakIsolEvent after modification

29

Figure 8 shows the plan, leakIsoPlan, which handles leakIsoEvent. The

modified version is shown in Figure 9. Notice that the preprocessor adds extra code to the

plan that imports the necessary package (containing the tracking system), that declares

and maintains an extra field, String_tracking_info, and that interacts with the

tracking system. At the end of the plan, two methods, pass() and fail() are added,

which overload the two methods in the parent class plan. Upon the successful end of exe-

cution of the plan, pass() will be called, which sends necessary information to the

tracking system so that the tracking system can display the result of the plan’s execution

to the user. If the plan fails, fail() will be called instead, which informs the tracking

system the failure of the plan’s execution.

30

package Isolator;
...
plan leakIsolPlan extends Plan {
 #handles event leakIsolEvent lie;
 #sends event Response re;
 #posts event getPressPresschgEvent pp;
 #posts event secureEvent sec;
 ...
 #reasoning method descreasingOrBelowLimit
 (logical String what,double limit) {
 pp.getValue(…);
 …
 } //end of reasoning method
//other reasoning methods ...
 body() {
 @subtask(sec.secure());
 if(increasingAndAboveLimit($manf1,Limit)){
 if(descreasingOrBelowLimit($manf2,
 Limit)){
 lie.leaking_part = $manf2.toString();}
 else{
 if(increasingAndAboveLimit($manf3,
 Limit)){ ... } ... } ...
 } ...
 @reply(lie, re.response());
 }
}

Figure 8. Code for leakIsolPlan before modification

A full set of rules for tracking code insertion is appended at the end of this thesis.

Please see the appendix for more details.

31

package Isolator;
import TrackingAgent.*;
plan leakIsolPlan extends Plan {
 #sends event TrackingEvent _tracking_Event;
 #sends event returnValueEvent return_Event;
 String _tracking_info;
 String trackingAgent = "Tracker";
 #handles event leakIsolEvent lie;
 #sends event Response re;
 #posts event getPressPresschgEvent pp;
 #posts event secureEvent sec;
 #reasoning method descreasingOrBelowLimit
 (logical String what,double limit) {
 …
 pp.getValue(_tracking_info=_tracking_Event.
 increment(_tracking_info),…);
 …} //of reasoning method
//other reasoning methods ...
 body() {
 String agnt = getAgent().name();
 @send(trackingAgent, _tracking_Event =
 _tracking_Event.tracking(
 lie.TrackingInfo,"leakIsolEvent",
 "leakIsolPlan",
 agnt,lie.initialDisplay));
 _tracking_info =
 _tracking_Event.append(lie.TrackingInfo);
 @subtask(sec.secure(_tracking_info =
 _tracking_Event.
 increment(_tracking_info)));
 if(increasingAndAboveLimit($manf1,Limit)){
 if(descreasingOrBelowLimit($manf2, Limit)){
 lie.leaking_part = $manf2.toString();}
 else{
 if(increasingAndAboveLimit($manf3,
 Limit)){ ... } ... } ...} ...
 @reply(lie, re.response(_tracking_info =
 _tracking_Event.increment(_tracking_info)));
 } //end of body
 #reasoning method pass(){
 @send(trackingAgent,
 return_Event.returned(..));}//end of method
 #reasoning method fail (){ ..}
 } //end of reasoning method
} //end of plaN

Figure 9. Code for leakIsolPlan after modification

32

5. THE THIRD PHASE: ASPECT-BASED TRACKING

In Section 4, a preprocessing tool is described that automatically adds the system-activity

tracking capability to an arbitrary agent system. The preprocessing tools saves system

developers’ effort and time to build the tracking mechanism from scratch. However, it

modifies the original code of the agent system and it is difficult to undo the insertion

without backup of the original. In this section, a more flexible and powerful approach is

described with use of Aspect-Oriented Programming tool. In particular, AspectJ is used.

5.1. Aspect Interaction with Tracking System

Both the static and dynamic constructs of AspectJ are important to this project. We em-

ploy introduction to add an extra parameter, TrackingInfo, to all events, as well as

methods to set and get that parameter. We define Pointcuts to capture the points in

program flows where an event is posted, and advice to set the extra field, TrackingInfo,

for the event being posted, and pass the information on to the plan handling this event.

Together with other AspectJ constructs, we can track and display the JACK system activ-

ity in a tracking tree, as we did previously, but without using code-parsers and tracking

agent. The aspects will form the tracking system. Figure 10 is an overview of the pro-

posed system.

Aspects

Jack Agent
System

Tracking

Tree

Figure 10. Overview of the system with AspectJ

33

The pointcuts were originally developed for specific events and plans. How-

ever, the straightforward approach would require that pointcuts be produced for each

individual event and plan. With such an approach, if one wanted to use AspectJ for a dif-

ferent JACK system with different events and plans, the pointcuts would have to be

re-written, making it difficult to reuse them. To generalize the pointcuts as well as

the tracking mechanism, we developed two interfaces (In appendix, see 1A.2),

ajcBasePlanInt and ajcBaseEventInt, for the plans and events, respectively.

The pointcuts are defined to see only the activity of these two interfaces. We then re-

quire that the events and plans in a specific JACK system implement these interfaces; in

this manner, the activity of the system is visible to the pointcuts and can be tracked

and displayed to the user, regardless of what JACK-based system is used.

All events and plans in given JACK system will be declared to implement the cor-

responding interface using the AspectJ introduction. For instance, the following

code makes plan leakIsolPlan implement ajcBasePlanInt.

declare parents: leakIsolPlan implements ajcBasePlanInt;

Also via the AspectJ introduction, an additional field, ajcBaseEventInt

handled_event, is added to each plan; this field is used to refer to the event handled

by the plan. The pointcuts then deal with the base classes rather than individual

events and plans; therefore, a single copy of each pointcut is enough, no matter how

many events and plans there are in a given JACK system. Moreover, the pointcuts,

which are generalized, are separated from the AspectJ introduction, which is dedi-

34

cated to a specific JACK system. Therefore, the aspect containing the pointcuts

need not be modified when it is applied to different JACK systems.

However, as seen in the code sample above, each plan and event must explicitly

appear in the introduction. Fortunately, it is easy to write a short preprocessor to

examine the directory in which the JACK code is placed and to generate the needed in-

troduction automatically. Details will be provided in 5.2.

The modified system is shown as in Figure 11.

Aspects

Base

classes

Tracking

Tree

Jack Agent

System

Figure 11. Overview of the modified system

5.2. A Simple Processing Tool

To make the events and plans in a specific JACK system implement the interfaces auto-

matically, a preprocessing tool has been developed. When running the processing tool

and specifying a folder that contains the JACK system, the preprocessing tool collects the

necessary information, i.e., the event and plan types, and then generates an aspect that

makes the event and plan types implement the interfaces. It then adds to them extra fields

and methods as needed for tracking purposes. This is accomplished via an AspectJ intro-

duction. Figure 12 is a snapshot of the preprocessing tool.

35

Figure 12. The preprocessing tool

As shown in the figure, the preprocessing tool allows the user to specify the loca-

tion; events and plans found in that location are displayed to the user. If for some reason

the userwants to remove an event from the list so that it won’t be tracked, he or she can

click Change Events. The list then becomes editable. The default state for the list is un-

editable to prevent accidental editing of the list.

To specify the location of a JACK system, the user types the path directly, or

clicks Browse to select a folder (see Figure 13). After selecting a folder, the user clicks

OK and then the lists of events and plans are updated. After the lists are updated, the user

clicks Confirm, and the preprocessor generates an aspect, based on the lists and then ex-

its. The aspect is named following the convention jack-

36

Folder_relation_modifier.

java, where jackFolder is the name of the folder that contains the JACK system; for

the example, in Figure 13, the aspect will be named no_tracking_diagnosis_

relation_modifier.java. The aspect generated will be stored where the package

of the preprocessing tool is located.

Figure 13. Selecting a folder containing the JACK system

In the remaining of this section, several pointcuts are described in detail. The

aspect that contains a full set of developed pointcuts can be found in the appendix

(See 1A.2).

37

5.3. Initializing Tracking Fields in a Plan

First, we describe a pointcut (Figure 14) that detects the creation of every plan and

initializes the two fields of that plan. The field handled_event is initialized to the

event that the current plan will handle, and the string tracking is initialized to the

string obtained taking the tracking information of the handled_event, i.e., han-

dled_event. TrackingInfo and appending a “.1” to it.

A difficulty arises in finding an appropriate plan-creation call that AspectJ can

trap. The creation code does not appear in the user-written plan code; rather, it is in the

code generated by the JACK compiler. By studying the Java code generated, we found

that a method with prototype

Plan createPlan(Event, Task)

is called by each plan to initiate itself, and this method can be used to define the point-

cut, as shown in Figure 14.

pointcut handled_event(Event e): call(Plan
createPlan(Event, Task)) && args(e, ..);

after(Event e) returning(ajcBasePlanInt pa):
handled_event(e){
 pa.handled_event=(ajcBaseEventInt)e;
 pa.tracking = Tracker.append(pa.
 handled_event.getTrackingInfo());
 …
}

Figure 14. The pointcut initiating the fields for a plan

The code args(e, …)in the figure means that e is a reference to the first argument of

createPlan(Event, Task) which gives the aspect access to that reference. The

code within the braces is called advice in AspectJ; it is additional code that is run at

38

the joinpoints. The advice in this pointcut initiates the two fields for the plan,

using e.

5.4. Using Pointcuts to Capture Event Posting within Plans

A second pointcut captures the joinpoints where an event is posted within a plan

via the posting function @post(…). Figure 15 shows the pointcut. Note that all

event postings happen in either the plan body or a user-defined reasoning method. Again,

the code that AspectJ needs to trap is not in the user-written code, but within the JACK-

generated code. By studying the corresponding Java code, we found that both the plan

body and the user-defined reasoning methods will be translated to a class that extends

PlanFSM. Thus, (See Figure 15)

call(public * Agent.postEvent(..)) && args(ev,..) &&

this(fsm)

defines the joinpoints desired. Note a reference to the event being posted is obtained by

call(public * Agent.postEvent(..)) && args(ev,..)

and a reference to the currently executing object is obtained by

this(fsm)

Using the two references, the aspect has access to the reference of the current

plan, together with its three fields and the event being posted. The advice then checks

whether or not the event is the first event posted by this plan; if it is the first, the plan’s

tracking is assigned to the event’s TrackingInfo and firstEvent is set to false;

39

otherwise the value in the rightmost position of the plan’s tracking value is incre-

mented and assigned to the event’s TrackingInfo.

after(ajcBaseEventInt ev, PlanFSM fsm) returning():
 call(public * Agent.postEvent(..)) && args(ev,..)
 && this(fsm) {
 ajcBasePlanInt pa = (ajcBasePlanInt)fsm.getPlan();
 if(pa.firstEvent){
 ev.setTrackingInfo(pa.tracking);
 pa.firstEvent = false;
 }
 else
 ev.setTrackingInfo(Tracker.increment(
 pa.tracking));
 }

Figure 15. Pointcut for @post(...)

Another posting function @subtask(…) has also been implemented. This

pointcut is defined by

call(public * *.push(..)) && args(ev) && this(fsm)

and the same advice is used. That is, the “call” part of Figure 15 is replaced by the one

shown above.

More posting functions such as @send(..), @reply(..), @achieve(..), @insist(..)

and @maintain(..),have been implemented, but are not described individually here.

5.5. Using Pointcuts to Capture Event Posting within Agents, beliefSets and

Automatic Event Posting

Events can also be posted from within agents, through automatic events and from within

beliefSets. Different pointcuts are required for these. There are two posting func-

tions postEvent(…) and postEventAndWait(…) that can be used by an agent to

40

post events. A pointcut was created for each of the two posting functions. Figure 16

illustrates the pointcut corresponding to postEvent(…).

before(ajcBaseEventInt ev) : call(public *
Agent.postEvent(..)) && args(ev,..)&& this(Agent){
 ev.setTrackingInfo(Tracker.NextNum()+"";
 }

Figure 16. Pointcut for event posting within agents

However, this pointcut can be generalized for automatic event postings and event

postings within beliefSet, by changing this(Agent) to !this(PlanFSM). The

modified pointcut is shown in Figure 17.

before(ajcBaseEventInt ev):call(public Agent.postEvent(..))
 && args(ev,..)&& !this(PlanFSM){
 ev.setTrackingInfo(Tracker.NextNum()+"";

}

Figure 17. Pointcut for event postings outside of plans

Changing postEvent(..) to postEventAndWait(..) we get the

pointcut for the latter posting function.

5.6. Using Pointcuts to Display System Activity

pointcuts can also be developed to display the system activity. A class TrackDis-

player has been built to create the tracking window and dynamically add the nodes

(events, plans and agents) to the tracking tree. The code shown in Figure 18 initiates an

instance of TrackDisplayer when the system starts.

41

TrackDisplayer track;
pointcut main():
 execution(public static void main(..));
before() : main(){
 track = new TrackDisplayer();
 }

Figure 18. The pointcut initiating TrackDisplayer

Then the pointcut shown in Figure 14 is modified such that a method in

TrackDisplayer is called to add to the tracking-tree nodes corresponding to the event be-

ing posted, the agent handling the event, and the plan used. The modified pointcut is

shown in

Figure 19. handledEvent() and getAgent() are JACK plan methods.

They return the string representation of the event type that the plan handles and the refer-

ence to the agent the plan belongs to, respectively. The method name() is a JACK

agent’s method, which returns a String representation of the agent. The method add-

Nodes(…) has the prototype:

addNodes (String trackingInfo, String event, String agent,

String plan, String eventLabel)

By decoding the first parameter, TrackDisplayer finds the correct location to which to

add the nodes; then it creates a node for each of the next three parameters. The last pa-

rameter is the text that will be displayed when the user moves the cursor over an event.

Currently “No comment” is used for all events. Later, this parameter will be used to dis-

play the goal of the event.

42

after(Event e) returning(ajcBasePlanInt pa): handled_event(e){
 pa.handled_event = (ajcBaseEventInt)e;
 pa.tracking =
 Tracker.append(pa.handled_event.getTrackingInfo());
 String planName = pa.toString();
 String agentName = pa.getAgent().name() ;
 StringTokenizer st = new StringTokenizer(planName);
 track.addNodes(pa.handled_event.getTrackingInfo(),
 "Event " + pa.handledEvent(),"Agent " +
 agentName.substring(0,agentName.indexOf("@")),
 "Plan " + st.nextToken(), "No comment");

 }

Figure 19. Modified pointcut for adding nodes to the tracking tree

Another two pointcuts are created to set the text that will be displayed when the user

places the cursor on a plan. Different comments will be displayed, depending on whether

the plan succeeds or not. Figure 20 shows the two pointcuts.

before(ajcBasePlanInt pa): call(* pass()) && target(pa){
 track.returnValueDisplay(pa.getEvent().getTrackingInfo(),
 pa.getEvent().getResult());

 }

before(ajcBasePlanInt pa): call(* fail()) && target(pa){
 track.returnValueDisplay(pa.handled_event.
 getTrackingInfo(), "Plan failed.
 Try another plan.");
}

Figure 20. Pointcuts setting text-display for plans

Note that a method, pass(), will be called when a plan successfully completes its exe-

cution, and fail() will be called if it does not. The advice calls a method

track.returnValueDisplay(…) to set proper text for the plan. The system

builder could define the text (by defining the getResult() method) to be displayed for

each plan and the advice will pick it up.

43

5.7. Plugging in the Tracking Mechanism

After the execution of the preprocessing tool, the tracking mechanism is ready to be

plugged in. Next we describe how the tracking mechanism can be added to a specific

JACK system.

First, we compile the JACK system using the JACK pre-compiler to generate cor-

responding Java files. This could be done either before or after execution of the preproc-

essing tool. AspectJ can apply only to Java code and thus the aspect-based tracking

mechanism is useless without the Java code.

Second, we write an .lst file that includes all the Java files needed for compilation.

The files include the two aspects and the two interfaces described above, files for track-

ing and displaying, files needed for the GUI, and the files generated from the specific

JACK system. This file will be used as the “make file” for the AspectJ compiler. Refer to

the AspectJ document for detailed format of the .lst file. Figure 21 shows a sample .lst

file.

../EventTracking_display.java

../no_tracking_diagnosis_relation_modifier.java

../TrackDisplayer.java

../ajcBaseEventInt.java

../ajcBasePlanInt.java

../Tracker.java
*.java

GetPressureCap/*.java
Isolator/*.java
Leakmanager/*.java
PublicDatabases/*.java

Figure 21. A sample .lst file

44

Third, we execute ApectJ, giving the .lst file as an argument. One way for doing

that is to use the windows command prompt (See Figure 22). Refer to AspectJ document

for further instruction.

Figure 22. Using command prompt to execute AspectJ

After successful compilation, we can run the JACK system as usual. However,

this time the activity of the JACK system will be tracked and displayed using a tree-like

system. We can explore the tree and read about what the system is doing and how the

event has been handled.

To unplug the tracking mechanism, we compile the system again using the JACK pre-

compiler (Using the –clean option to remove JACK-generated files first). The aspect-

based tracking mechanism is highly portable, easy to apply and easy to remove.

45

6. EXAMPLE AND RESULTS

We used the FDIR system to test the aspects. As described above, a preprocessor

scanned the directory containing the sample system and produced an aspect containing

introductions declaring events and plans implement the two base interfaces. Figure

23 shows part of the relation-modifying aspect generated for the FDIR system.

aspect no_tracking_diagnosis_relation_modifier {
/*********code weaving GetPressureCap.getPresschgEvent**********/
 declare parents: GetPressureCap.getPresschgEvent implements
ajcBaseEventInt;
 String GetPressureCap.getPresschgEvent.TrackingInfo;
public String GetPressureCap.getPresschgEvent.getTrackingInfo(){
 return TrackingInfo;
 }
public void GetPressureCap.getPresschgEvent.setTrackingInfo(String s){
 TrackingInfo = s;
 }……
/******code weaving GetPressureCap.getPressPresschgPlan**********/
 declare parents:GetPressureCap.getPressPresschgPlan implements
 ajcBasePlanInt;
 String GetPressureCap.getPressPresschgPlan.tracking;
 boolean GetPressureCap.getPressPresschgPlan.firstEvent = true;
 ajcBaseEventInt GetPressureCap.getPressPresschgPlan.handled_event;
public String GetPressureCap.getPressPresschgPlan.getTracking(){
 return tracking;
 }
public void GetPressureCap.getPressPresschgPlan.setTracking(String s){
 tracking = s;
 }
public boolean GetPressureCap.getPressPresschgPlan.isFirst(){
 return firstEvent;
 }
public void GetPressureCap.getPressPresschgPlan.setFirst(boolean b){
 firstEvent = b;
 }
public ajcBaseEventInt GetPressureCap.getPressPresschgPlan.getEvent(){
 return handled_event;
 }
public void
GetPressureCap.getPressPresschgPlan.setEvent(ajcBaseEventInt e){
 handled_event = e;
 }……
}

Figure 23. Introduction aspect

46

Then the FDIR system was compiled together with the aspects, including the

relation-modifying aspect mentioned above and the one containing the pointcuts.3

When the compiled system was run, a tracking tree, as shown in Figure 24, was displayed.

Figure 24. A sample Tracking Tree

3 Assume that the sample system has been compiled by the JACK compiler to generate Java code.

47

7. CONCLUSIONS AND FUTURE WORK

In this work, we have explored general issues in agent-based FDIR systems, such as

monitoring and recording the change of world’s states in agents’ belief, rule-based ac-

tion-triggering, and composing plans based on decision trees. We have also studied the

communication and interoperability among heterogeneous agents in a limited scale.

Furthermore, we have researched how to provide effective explanation component

for an agent-oriented system. We have designed an agent reasoning tracking mechanism

that tracks the sequence of events occurring in an agent system, as well as theplans used

to handled the events and agents involved;these are dynamically displayed that to the use

in form of a tree. By exploring the tree of events, plans and agents, the user can obtain

more knowledge (problem-solving context, discourse history, etc.) of the system’s behav-

ior and understands the system better. We have also designed an approach for the system

developers to provide domain specific and system dependent information for the tracking

mechanism to use and shows to the users even more details about the system’s activity.

In addition, we have done research on automatic insertion of the tracking mecha-

nism to arbitrary agent systems. One way to do this is to use a preprocessing tool to

parse the original code for an agent system and then insert calls to the tracking system

into proper places. However, such a preprocessing tool is error prone, as it must deal

with various programming styles by different programmers. Thus, we studied the possi-

bility of using aspect-oriented programming paradigm. We have not only found a way to

use aspect-oriented technique to automate the insertion of the tracking mechanism, but

also obtained valuable experience of using aspect-oriented with agent-oriented paradigm

48

together to achieve cleaner and more organizable programming. This experience can

help us as well as other researchers in further research.

As shown above, the tracking mechanism can be reused, that is, plugged in to

other JACK systems with little effort. However, the approach of using AspectJ on JACK

systems is only reusable in limited situations, for instance, when one wants to build as-

pects related to event postings. Even then, the advice might have to be revised.

In the future, it should be possible to find a general approach which enables As-

pectJ to be used to program aspects easily in terms of JACK constructs. A possible way

to do that is to develop a pointcut library that contains pointcuts capturing all

critical join points in a typical JACK system (for example, pointcut

@subtask(..) captures the join points that an event is posted using

@subtask(..)); then system developer can reuse those pointcuts by referencing the

library and write their own advice.

In conclusion, the principle contributions of this work are:

1. We have studied and created general rules for performing the FDIR tasks

using agent-based technique. A platform-independent, agent-oriented,

automated FDIR system can assist astronauts and flight controllers in per-

forming fault detection, isolation, and recovery.

2. We have studied and designed a tracking mechanism for providing effec-

tive explanation to an agent system’s behavior.

3. We have generalized the tracking mechanism so that other JACK agent

systems can use this mechanism to track and display system activity. A

preprocessing tool can be used for automatic insertion of the generalized

49

tracking mechanism. This allows separate development of the tracking

mechanism and the agent system, and allows addition of an effective ex-

planation component to an existing agent system with little effort.

4. We have studied how to use aspect-oriented and agent-oriented paradigm

to obtain better performance. A plug-and-play agent system tracking

mechanism have been designed using aspect-oriented paradigm. Our ex-

perience can help others further explore the possibility of the two different

paradigms together. In the future, we are to continue our research on that.

50

REFERENCES

[1] M. P. Georgeff and F. F. Ingrand, "Final report, phase 2, Research on procedural

reasoning systems," Artificial Intelligence Center, SRI International, Menlo, Park,

CA, June 1990.

[2] M. Georgeff and F. Ingrand, “Decision-making in an embedded reasoning sys-

tem”, presented at International Joint Conference on Artificial Intelligence, De-

troit, MI, 1989.

[3] M. Georgeff and F. Ingrand, “Real-time reasoning: the monitoring and control of

spacecraft systems”, presented at the Sixth IEEE Conference on Artificial Intelli-

gence Applications, Santa Barbara, CA 1990.

[4] A. Cawsey, "Developing an explanation component for a knowledge-based sys-

tem:discussion," Expert Systems with Applications, vol. 8, pp. 527-531, 1995.

[5] F. Chen, and R. Volz (2003), “Tracking and understanding automated space shut-

tle fault detection, isolation and recovery”, in proceedings of International Con-

ference on Artificial Intelligence (IC-AI’03). Las Vegas, NV June 2003.

[6] M. d'Inverno, D. Kinny, M. Luck, and M. Wooldridge, "A formal specification of

dMARS," Intelligent Agents IV, vol. 1365, pp. 155-176, 1998.

[7] K. L. Myers, “A procedural knowledge approach to task-level control”, presented

at the Third International Conference on AI Planning Systems, Edinburgh, Scot-

land, May 1996.

[8] M. Georgeff and A. Lansky, “Procedural knowledge”, the IEEE Special Issue on

Knowledge Representation, vol. 74, pages 1383-1398, 1986

51

[9] M. Georgeff and A. Lansky, “A procedural logic”, presented at International Joint

Conference on Artificial Intelligence, Los Angeles, CA, 1985.

[10] A. S. Rao and M. Georgeff, "BDI agents: From theory to practice," presented at

First International Conference on Multi-Agent Systems (ICMAS-95), San Fran-

cisco, 1995.

[11] M. Wolverton, "Presenting significant Information in expert system explanation",

presented at Seventh Portugese Conference on Artificial Intelligence (EPIA95),

Funchal, Madeira Island, Portugal, 1995.

[12] Y. Shoham, “Agent oriented programming”, Journal of Artificial Intelligence, vol.

60, pp. 51-92, 1993.

[13] N. Howden, R. Rönnquist, A. Hodgson, A. Lucas, “JACK intelligent agents –

summary of an agent infrastructure”, presented at the Fifth International Confer-

ence on Autonomous Agents, Montreal, Canada, 2001.

[14] T. Elrad, R. E. Filman, and A. Bader, "Aspect-oriented programming: Introduc-

tion," Communications of the ACM, vol. 44, pp. 29-32, 2001.

[15] R. Walker, E. Baniassad, G. Murphy, “An initial assessment of aspect-oriented

programming”, presented at the 21st International Conference on Software Engi-

neering, Los Angeles, CA, May1999

[16] C. V. Lopes, "AOP: A historical perspective", In Aspect-Oriented Software De-

velopment, Addison-Wesley, 2003

[17] C. Constantinides, A. Bader, T. Elrad, P. Netinant, M. Fayad, “Designing an as-

pect-oriented framework in an object-oriented environment”, ACM Computing

Surveys (CSUR), vol. 32, no. 1es, pp. 41, 2000

52

[18] G. Kiczales, “Aspect-oriented programming”, ACM Computing Surveys (CSUR),

vol. 28, no. 4es, pp. 154, 1996.

[19] K. Sycara, S. Widoff, M. Klusch and J. Lu, “LARKS: Dynamic matchmaking

among heterogeneous software agents in cyberspace", Autonomous Agents and

Multi-Agent Systems, vol. 5, pp. 173–203, 2002.

 [20] K. Sycara, J. Lu, M. Klusch, and S. Widoff, “Dynamic service matchmaking

among agents in open information environments”, Journal ACM SIGMOD Re-

cord , Special Issue on Semantic Interoperability in Global Information Systems,

vol. 28, pp. 47-53, 1999.

[21] K. Sycara, J. Lu, M. Klusch, and S. Widoff, “Matchmaking among heterogeneous

agents in the internet”, presented at AAAI Spring Symposium on Intelligent

Agents in Cyberspace, Stanford, CA, 1999.

53

APPENDIX

A.1 Rules for tracking code insertion

This section contains an excerpt from a previous report to the research sponsor that de-

scribes the rules for traking code-insertion in greater detail.

A Preprocessor is used to automatically insert necessary code into JACK files so that

the modified JACK systems will display the activities of itself to the users when it runs.

When starting, the preprocessor will find all the JACK files that it needs to modify, and

then use the parsers to analyze and insert the necessary code into the proper places.

The event parser will insert reference code to import the tracking agent and events,

and add an extra parameter called TrackingInfo to each event.

The agent parser will insert the same reference code, and a declaration that two

events, TrackingEvent and returnValueEvent, can be sent by the agent. If there is any

event posted within the agent file4, code will be inserted to generate the tracking informa-

tion for the event the agent is posting.

The capability parser is similar to the agent parser except that it need not worry

about the initialization of tracking information since no event will be posted within Ca-

pabilities.

The plan parser does the toughest work. It inserts reference code to import the

tracking agent and events and declaration code as described above; it inserts code that

maintains local tracking information within itself; and, it assigns proper tracking informa-

tion to any event it posts. It also inserts code that creates instances of TrackingEvent and

4 All events could be said to be posted by the agents, whether they are posted within a plan or a da-
tabase or elsewhere; but here we are talking about the case in which there is a method of an agent, within
which an event is posted.

54

returnValueEvent carrying proper information and sends them to TrackingAgent. Exam-

ples will be shown below.

A.1.1 Event parser

Event parser has three main tasks. First, it inserts the code referring to the Track-

ingAgent package right before entering the event class. Second, it inserts code declaring

the extra field for the event, String TrackingInfo. Third, it inserts code that initializes the

extra field in the event’s posting function.

The following is an example showing how an event is modified by the parser.

package GetPressureCap;

public event getPressPresschgEvent extends BDIGoalEvent{
 String name;
 Boolean decreasing;
 Double pressure;
 String initialDisplay;
 String returnDisplay = "#name# pressure = #pressure#,
 pressure decreasing = #decreasing#";

 #posted as getValue(String n) {
 this.name = n;
 initialDisplay = "get pressure for " + name + ", and
direction of change.";
 }
}

Code 1. An event before modification

55

package GetPressureCap;

import TrackingAgent.*;//Added by Tracking-PreProcessor

public event getPressPresschgEvent extends BDIGoalEvent{

/********Added by Tracking-PreProcessor********/
String TrackingInfo;
logical String $TrackingInfo;
/********Added by Tracking-PreProcessor********/

 String name;
 Boolean decreasing;
 Double pressure;
 String initialDisplay;
 String returnDisplay = "#name# pressure = #pressure#, pressure decreasing = #decreasin
 #posted as getValue(String t//Added by Tracking-PreProcessor
,String n) {
/********Added by Tracking-PreProcessor********/
TrackingInfo = t;
/********Added by Tracking-PreProcessor********/

this.name = n;
initialDisplay = "get pressure for " + name + ", and direction of change.";
}
...
}

Code 2. An event after modification

If the event is an automatic event, i.e., it has a “#posted when methodName(…)”

posting function, the parser will inserts the following code

/********Added by Tracking-PreProcessor********/

TrackingInfo = "" + TrackingAgent.NextNum();

/********Added by Tracking-PreProcessor********/

where NextNum() is a static method of the TrackingAgent, which will generate

sequential numbers beginning at 1. The method NextNum() will be called when an event

is posted directly within an executive agent, or an automatic event is posted, to generate

the tracking information for the event posted. NextNum() needs to be called at these

56

points because the corresponding event starts a new tracking subtree from the outermost

level; it must therefore have an index number incremented to distinguish it from other

root level events. Below is the NextNum() method defined in TrackingAgent.agent.

private static int num = 0;

 public static int NextNum(){

 return ++num;

 }

A.1.2 Agent Parser

An agent parser also has three tasks to do. First, it inserts code that refers to the

TrackingAgent package so that the tracking agent may be referenced. Second, it inserts

code that declares that the TrackingEvent and returnValueEvent are sent by the agent;

these events are used in the agent’s plans to sent information to the tracking agent, but

must be declared in the agent itself as well as the plan. Third, the agent parser inserts

code that initializes tracking information by calling TrackingAgent.NextNum() and as-

sign the tracking information to the event if any event is posted within the agent. Code 3

and Code 4 shows an agent before and after being modified by the agent parser.

57

package LeakManager;

import aos.jack.util.thread.BeliefReflection;
import aos.jack.jak.agent.Agent;
import aos.jack.jak.cursor.Cursor;
...
public agent LeakManager extends Agent{

 #global data PARTS parts("partOf.txt");
 #global data TYPES types("typeOf.txt");
 #private data DisplayLeak dl();
 #global data Who w();
 #private data MessageDialog messageDialog();
 #sends event leakIsolEvent lie;
 #posts event Leak le;
 ...
 #handles event ManageLeakAlarm mla;
 #uses plan ManageLeakAlarm_dummyPlan; //always fails; for testing
 #uses plan ManageLeakAlarmPlan;
 #has capability GetPressure getP;

 String Name;
 ...
 public void display(String p){
 postEventAndWait(DL.leaking(p));
 }
}

 Code 3. An agent before modification

58

package LeakMana
 ..
import TrackingAgent.*;//Added by Tracking-P
 public agent LeakManager extend

#sends event TrackingEvent _tracking_Event;//Added by Tracki
#sends event returnValueEvent _return_Value_Event;//Added by Trac
#global data PARTS parts("partO
#global data TYPES types("typeO
#private data DisplayLeak
#global data Who
#private data MessageDialog message
#sends event leakIsolEven
#posts event Leak
..
#handles event ManageLeakAla
#uses plan ManageLeakAlarm_dum
#uses plan ManageLeakAlar
#has capability GetPressur

 String Nam
..
 public void display(Stri

 postEventAndWait(DL.leaking("" + TrackingAgent.NextNum(),//added by Tr
 p))
 }
 }

Code 4. An agent after modification

A.1.3 Capability Parser

The capability parser works similarly to the agent parser, except that it need not

worry about initialization of tracking information.

A.1.4 Plan Parser

The plan parser handles the toughest tasks. The plan parser inserts code that main-

tains a proper tracing information local to the plan itself and passes the tracking informa-

tion to each event posted or sent within the plan. As a reminder, two methods of

TrackingEvent help solve this problem. The method append(String trackingInfo) appends

trackingInfo by “.1”, for instance, append(“1.2”) results in “1.2.1”. The other method in-

59

crement(String trackinginfo) increments the last number (if only one number, then incre-

ments that number) by 1, for instance, increment(“2.3.5”) results in “2.3.6”. The strategy

for a plan to maintain a proper local tracking information is that each plan maintains a lo-

cal variable, called _traking_info; at the very beginning of the plan body, this variable

will be initialized to append(current_event.TrackingInfo), where current_event is the

event handled by this plan; and each time an event is initialized(created) within this plan,

_tracking_info is incremented by calling increment(_tracking_info), and the incremented

value will be passed as TrackingInfo of the event being posted.5

First, the plan parser inserts code for referencing the tracking agent, as others do,

right before entering the plan class. Second, right after entering the plan class it inserts

code declaring that it will send the two events, and code declaring the variable

_tracking_info; it also inserts code that defines the name for the TrackingAgent, which

later will be used for sending the two events to the TrackingAgent. Third, the parser in-

serts code at the beginning of the plan body to initialize _traking_info, and sends to

TrackingAgent an instance of TrackingEvent carrying proper information about current

system activity, including proper tracking information. Fourth, it inserts code at proper

places that maintains _tracking_info and passes it to the event wherever an event is

posted. Code 5 and Code 6 show an example.

5 The parser assumes that whenever an event is instantiated, it will then be posted.

60

package Isolator;
...
plan leakIsolPlan extends Plan {
 #reads data Who w;
 #uses data MessageDialog messageDialog;
 #handles event leakIsolEvent lie;
 #sends event Response re;
 #posts event getPressPresschgEvent pressPressChng;
 #posts event getPresschgEvent pressChng;
 #posts event secureEvent sec;
 ...
 #reasoning method
 descreasingOrBelowLimit(logical String what,double limit)
 {
 String sstring = lie.rcs + " Leaking----";
 getPressPresschgEvent ev = pressPressChng.getValue(sstring + what.toString()
 @subtask(ev);
 ev.isDescreasing() || ev.getPressure() < limit; // Fails method if false.
 }
 #reasoning method
 increasingAndAboveLimit(logical String what, double limit)
 {
 String sstring = lie.rcs + " Leaking----";
 getPressPresschgEvent ev = pressPressChng.getValue(sstring + what.toString()
 @subtask(ev);
 ev.isDescreasing() == false && ev.getPressure() >= limit; // Fails method
false.
 }
body() {
String leakingPart;
 @subtask(sec.secure());
 if (increasingAndAboveLimit($manf1, Limit)) {
 if (descreasingOrBelowLimit($manf2, Limit)) {
 leakingPart = $manf2.toString() ;
 }
 else {
 if (increasingAndAboveLimit($manf3, Limit)) {
 ...
 @wait_for(messageDialog.display(leakingPart));
 @reply(lie, re.response());
 }
}

 Code 5. A plan before modification

61

package Isolator;
...
import TrackingAgent.*;//Added by Tracking-PreProcessor
import aos.jack.util.thread.BeliefReflection;
plan leakIsolPlan extends Plan {
#sends event TrackingEvent _tracking_Event;//Added by Tracking-PreProcessor
#sends event returnValueEvent _return_Value_Event;//Added by Tracking-
PreProcessor
static String _tracking_info;//Added by Tracking-PreProcessor
 String trackingAgent = "Tracker";//Added by Tracking-PreProcessor
 #reads data Who w;
 #uses data MessageDialog messageDialog;
 #handles event leakIsolEvent lie;
 #sends event Response re;
 #posts event getPressPresschgEvent pressPressChng;
 #posts event getPresschgEvent pressChng;
 #posts event secureEvent sec;
...
 #reasoning method descreasingOrBelowLimit(logical String what,double
limit) {
 String sstring = lie.rcs + " Leaking----";
 getPressPresschgEvent ev = pressPressChng.getValue(_tracking_info =
_tracking_Event.increment(_tracking_info),//Added by Tracking-PreProcessor
sstring + what.toString());
 @subtask(ev);
 ev.isDescreasing() || ev.getPressure() < limit;
 }
 #reasoning method increasingAndAboveLimit(logical String what, double
limit) {
 String sstring = lie.rcs + " Leaking----";
 getPressPresschgEvent ev = pressPressChng.getValue(_tracking_info =
_tracking_Event.increment(_tracking_info),//Added by Tracking-PreProcessor
 sstring + what.toString());
 @subtask(ev);
 ev.isDescreasing() == false && ev.getPressure() >= limit;
 }
 body() {
/********Added by Tracking-PreProcessor********/
String agnt = getAgent().name();//Added by Tracking-PreProcessor
@send(trackingAgent, _tracking_Event = _tracking_Event.tracking
(lie.TrackingInfo,"leakIsolEvent","leakIsolPlan",agnt,lie.initialDisplay));
 _tracking_info = _tracking_Event.append(lie.TrackingInfo);//Added by
Tracking-PreProcessor

/********Added by Tracking-PreProcessor********/
 String leakingPart;
 @subtask(sec.secure(_tracking_info = _tracking_Event.increment
(_tracking_info)//Added by Tracking-PreProcessor
));
 if (increasingAndAboveLimit($manf1, Limit)) {
 if (descreasingOrBelowLimit($manf2, Limit)) {
 leakingPart = $manf2.toString() ;
 }
 else {
 if (increasingAndAboveLimit($manf3, Limit)) {
 ...
 @wait_for(messageDialog.display(leakingPart));
 @reply(lie, re.response(_tracking_info = _tracking_Event.increment
(_tracking_info)//Added by Tracking-PreProcessor
));
}

Code 6. A plan after modification

62

A.1.5 Value Display System

In the value display system, the same TrackingAgent is used; it handles an event

called returnValueEvent, using a plan returnValuePlan. ReturnValueEvents are sent from

each of the executive plans, carrying information about current agent belief, and an extra

parameter, TrackingInfo, just as TrackingEvents do. The plan returnValuePlan will de-

code TrackingInfo to find the right nodes to associate with the information carried by re-

turnValueEvent.

To automatically insert code that deals with value display, some requirement must

be set upon the users of the preprocessor. In the events of their agent system, two extra

fields must be defined. One is called initialDisplay, which generally shows the goal of the

current event. The other, called returnDisplay, generally shows the result after the event

has been handled successfully. When these have both been defined, the value display sys-

tem is able to display the current system belief. ReturnDisplay should be defined in the

following form if any field of the event is going to appear in it.

 String returnDisplay = “ label1 = #field1# lable2= #field2#”,

where the names between the pairs of # symbols must match the declared name of a vari-

able to be displayed. Moreover, the variables may only be typed String, Integer, Long,

Float or Double. Note that these are the class types, not the primitive types.

The event parser will then translate this form into a readable form, and put it into

a method added to each event by the event parser itself, called trackValue(). This method

returns the value of returnDisplay. Code that calls trackValue() will be inserted by the

plan parser into each plan, right before the plan ends its execution (either succeeds or

63

fails), to get the value of returnDisplay. This call has to be made at the end of the plan’s

execution, since some of the event’s fields might not be initialized until then.

Since the plan parser, like its peers, works without a grammar of JACK and Java,

it is difficult for it to find the exact end of plan execution, since there are plenty of ways

in which a plan could end its execution at many different points in a plan. However, AOS

has developed new features, which solve this problem. In the current release of JACK, a

plan has two member methods, called pass() and fail(). If the plan succeeds, the former

will be executed immediately before the plan returns, the latter will be executed before

the plan returns otherwise. Both methods can be overloaded by the user to include the

code to be executed.

Code 7 and Code 8 shows an event example and a plan example.

64

package GetPressureCap;
import TrackingAgent.*;//Added by Tracking-PreProcessor
public event getPressPresschgEvent extends BDIGoalEvent{

/********Added by Tracking-PreProcessor********/
String TrackingInfo;
logical String $TrackingInfo;
/********Added by Tracking-PreProcessor********/

String name;
 Boolean decreasing;
 Double pressure;
 String initialDisplay;

 String returnDisplay = "#name# pressure = #pressure#,
 pressure decreasing = #decreasing#";

 #posted as getValue(String t//Added by PreProcessor
,String n) {
/********Added by Tracking-PreProcessor********/
TrackingInfo = t;
/********Added by Tracking-PreProcessor********/

this.name = n;
initialDisplay = "get pressure for " + name + ",
 and direction of change.";

 }

 ...
 /********Added by Tracking-PreProcessor********/
public String trackValue(){
 return ""+name.toString()+" pressure =
 "+pressure.toString()+",
 pressure decreasing = "+decreasing.toString()+"";
}
}

Code 7. An Event After Modification

65

package Isolator;
...
import TrackingAgent.*;//Added by PreProcessor
import aos.jack.util.thread.BeliefReflection;
plan leakIsolPlan extends Plan {
#sends event TrackingEvent _tracking_Event;//by PreProcessor
#sends event returnValueEvent _return_Value_Event;// by PreProcessor
static String _tracking_info;//Added by PreProcessor
 String trackingAgent = "Tracker";//Added by PreProcessor
...
 #reasoning method increasingAndAboveLimit(logical String what,double
limit){
 String sstring = lie.rcs + " Leaking----";
 getPressPresschgEvent ev = pressPressChng.getValue(
_tracking_info=_tracking_Event.increment(_tracking_info)//by PrePro
 sstring + what.toString());
 @subtask(ev);
 ev.isDescreasing() == false && ev.getPressure() >= limit;
 }
 body() {
/********Added by Tracking-PreProcessor********/
String agnt = getAgent().name();//Added by Tracking-PreProcessor
@send(trackingAgent,_tracking_Event=_tracking_Event.tracking(
lie.TrackingInfo,"leakIsolEvent","leakIsolPlan",
agnt,lie.initialDisplay));
_tracking_info = _tracking_Event.append(lie.TrackingInfo);
/********Added by Tracking-PreProcessor********/
 String leakingPart;
 @subtask(sec.secure(
_tracking_info=_tracking_Event.increment(_tracking_info)//by PrePro
));
 if (increasingAndAboveLimit($manf1, Limit)) {
 if (descreasingOrBelowLimit($manf2, Limit)) {
 leakingPart = $manf2.toString() ;
 }
 else {
 if (increasingAndAboveLimit($manf3, Limit)) {
 ...
 @wait_for(messageDialog.display(leakingPart));
 @reply(lie, re.response(
_tracking_info=_tracking_Event.increment(_tracking_info)//by PrePro
));
}
/********Added by Tracking-PreProcessor********/
#reasoning method pass(){
 @send(trackingAgent, _return_Value_Event.returned
 (lie.TrackingInfo,lie.trackValue()));
}
#reasoning method fail (){
 @send(trackingAgent, _return_Value_Event.returned
 (lie.TrackingInfo,"a plan failed."));
}
/********Added by Tracking-PreProcessor********/
}

Code 8. A plan after modification

66

A.2 The Two base Interfaces for Events and Plans to implement

//All events need implement this interface in order to be tracked by the

//aspect-based tracking mechanism

public interface ajcBaseEventInt {

 public String getTrackingInfo();

 public void setTrackingInfo(String s);

 public String getResult();

 public String getGoal();

}

67

//All plans need implement this interface in order to be tracked by the

//aspect-based tracking mechanism

public interface ajcBasePlanInt {

 public String getTracking();

 public void setTracking(String s);

 public boolean isFirst();

 public void setFirst(boolean b);

 public ajcBaseEventInt getEvent();

 public void setEvent(ajcBaseEventInt e);

}

68

A.3 The Aspect with Pointcuts for Aystem Activity Tracking

The following is an aspect that contains the pointcuts which construct the

system activity tracking mechanism, including capture related join points, construct-

ing tracking window and tracking tree.

import aos.jack.jak.event.Event;

import aos.jack.jak.task.Task;

import aos.jack.jak.plan.Plan;

import aos.jack.jak.agent.Agent;

import aos.jack.jak.plan.PlanFSM;

import aos.jack.jak.fsm.FSM;

import aos.jack.jak.fsm.MaintainFSM;

import java.util.StringTokenizer;

aspect EventTracking_display {

 /*** for display ****/

 TrackDisplayer track;

 pointcut main(): execution(public static void main(..));

69

 before() : main(){

 track = new TrackDisplayer();

 }

 pointcut handled_event(Event e, Plan p): execution(public Plan createPlan(Event,

Task)) && args(e, ..) && target(p);

 /****** this pointcut initiates current plan's tracking to

TrackingInfo of the event it handles

 when a plan is created but before the plan really exe-

cutes *****/

 after(Event e, Plan p) returning(Plan pa): handled_event(e, p){

 if(p instanceof ajcBasePlanInt && e instanceof

ajcBaseEventInt){

 ajcBasePlanInt pai = (ajcBasePlanInt)pa;

 pai.setEvent ((ajcBaseEventInt)e);

 }

 }

 /****this pointcut captures the points when a plan enters its body, i.e., begin its

execution.

 Nodes for events/plans/agents are added to the tracking treee at this point.

************/

70

 before(ajcBasePlanInt pai): execution(PlanFSM body()) && target(pai){

 Plan pa = (Plan)pai;

 // System.out.println("=====Enter body()============");

 System.out.println("======" + "Event " + pa.handledEvent() + "====" +

pai.getEvent().getTrackingInfo() + "=======");

 pai.setTracking (Tracker.append(pai.getEvent().getTrackingInfo()));

 String planName = pa.toString();

 String agentName = pa.getAgent().name() ;

 StringTokenizer st = new StringTokenizer(planName);

 track.addNodes(pai.getEvent().getTrackingInfo(), "Event " +

pa.handledEvent(),

 "Agent " + agentName, "Plan " + st.nextToken(), pai.getEvent().getGoal());

 // System.out.println("the event handled by current plan is " +

pai.getEvent().getTrackingInfo());

 }

 /***** this pointcut captures the points when an event is posted 1)within an

agent by the agent member method postEvent();

 2)automatic posting ; 3) posting within beliefSets

**/

 /***** the TrackingInfo of the event being posted is set

**/

71

 before(ajcBaseEventInt ev) : call(public * Agent.postEvent(..)) &&

args(ev,..)&& !this(PlanFSM){//this one is working --11/25/02

 ev.setTrackingInfo(Tracker.NextNum() + "");

 //System.out.println("the tracking information of current event " + ev.toString()

+ " is " + ev.getTrackingInfo());

 }

 /******** this pointcut captures the points when an event is posted within an

agent by postEventAndWait() ******/

 /***** the TrackingInfo of the event being posted is set

**/

 before(ajcBaseEventInt ev) : call(public * Agent.postEventAndWait(..)) &&

args(ev,..)&& this(Agent){//this one is working --11/25/02

 ev.setTrackingInfo(Tracker.NextNum() + "");

 // System.out.println("the tracking information of current event------ " +

ev.toString() + " is " + ev.getTrackingInfo());

 }

 /******** this pointcut captures the points when an event is posted within a

plan by @post() *************/

72

 /***** the TrackingInfo of the event being posted is set

**/

 after(ajcBaseEventInt ev, PlanFSM fsm) returning(): call(public *

Agent.postEvent(..)) && args(ev,..) && this(fsm) { //this one is working --12/03/02

 ajcBasePlanInt pa = (ajcBasePlanInt)fsm.getPlan();

 if(pa.isFirst()){

 ev.setTrackingInfo(pa.getTracking());

 pa.setFirst(false);

 }

 else {

 pa.setTracking(Tracker.increment(pa.getTracking()));

 ev.setTrackingInfo(pa.getTracking());

 }

 // System.out.println("the tracking information of current event " + ev.toString()

+ " is " + ev.getTrackingInfo());

 }

 /******* this pointut captures the points when an event is posted within a plan

by @send() ********/

 /***** the TrackingInfo of the event being posted is set

**/

 before(ajcBaseEventInt ev, PlanFSM fsm): call(public * Agent.send(..)) &&

args(.., ev) && this(fsm) {

73

 ajcBasePlanInt pa = (ajcBasePlanInt)fsm.getPlan();

 if(pa.isFirst()){

 ev.setTrackingInfo(pa.getTracking());

 pa.setFirst(false);

 //System.out.println("--------First: tracking information of the Message

Event" + ev.toString() + " is " + ev.getTrackingInfo());

 }

 else {

 pa.setTracking(Tracker.increment(pa.getTracking()));

 ev.setTrackingInfo(pa.getTracking());

 //System.out.println("--------Increment: tracking information of the Mes-

sage Event" + ev.toString() + " is " + ev.getTrackingInfo());

 }

 }

/******** this pointcut captures the points when an event is posted within a plan

by @subtask() **********/

/***** the TrackingInfo of the event being posted is set

**/

pointcut pushCall(): call(public * Task.push(FSM)) ;

74

after(ajcBaseEventInt ev, PlanFSM fsm) returning(): pushCall() && args(ev) &&

this(fsm) {

 ajcBasePlanInt pa = (ajcBasePlanInt)fsm.getPlan();

 if(ev.getTrackingInfo() == null){

 if(pa.isFirst()){

 ev.setTrackingInfo(pa.getTracking());

 pa.setFirst(false) ;

 }

 else {

 pa.setTracking(Tracker.increment(pa.getTracking()));

 ev.setTrackingInfo(pa.getTracking());

 }

 }

 System.out.println("?????????the tracking information of current event " +

ev.toString() + " is " + ev.getTrackingInfo());

 }

 /******** this pointcut captures the points when an event is posted within a

plan by @insist() or achieve() ********/

 /***** the TrackingInfo of the event being posted is set

**/

75

 after(PlanFSM fsm) returning(FSM f): execution(public FSM genFSM(int)) &&

target(fsm) { //working as Feb. 24, 2003

 // System.out.println("!!!!!!!!!TestEvent has been caught in genFSM!!!!!!!!");

 ajcBasePlanInt pa = (ajcBasePlanInt)fsm.getPlan();

 ajcBaseEventInt ev = (ajcBaseEventInt)f;

 if(pa.isFirst()){

 ev.setTrackingInfo(pa.getTracking());

 pa.setFirst(false) ;

 }

 else{

 pa.setTracking(Tracker.increment(pa.getTracking()));

 ev.setTrackingInfo(pa.getTracking());

 }

 //System.out.println("!!!!!!!!!!!!!!!!!!!!the tracking information of current

event " + ev.toString() + " is " + ev.getTrackingInfo());

 }

 /***** this pointcut captures the points when a plan successfully complete its

execution and returns ********/

 /***** the result of the plan's execution is to be displayed

**/

76

 before(ajcBasePlanInt pa): call(* pass()) && target(pa){

 System.out.println("call pass()...");

 track.returnValueDisplay(pa.getEvent().getTrackingInfo(),

pa.getEvent().getResult());

 }

 /***** this pointcut captures the points when a plan fails and returns

********/

 /***** the fact that the plan fails is to be displayed

************************/

 before(ajcBasePlanInt pa): call(* fail()) && target(pa){

 String planName = pa.toString();

 StringTokenizer st = new StringTokenizer(planName);

 System.out.println("call fail()... in Plan " + st.nextToken());

 track.returnValueDisplay(pa.getEvent().getTrackingInfo(), "--failed. try an-

other plan :(");

 }

}

77

VITA

Feilong Chen

2155 Cram Place Apt. 26, Ann Arbor, MI 48105

EDUCATION

 M.S. in computer engineering, Texas A&M University, College Station, TX

08/03

 B.S. in biochemistry, China Agricultural University, Beijing, China 07/09

EXPERIENCE

Research Assistant Department of Computer Science, Texas A&M University 08/01-

08/03 Worked on projects funded by United Space Alliance

Session Co-chair, the Seventh World Multi-Conference on Systemics, Cybernetics, and

Informatics (SCI 2003). Orlando, FL, 2003.

PUBLICATIONS

F. Chen and R. Volz (2002), “Intelligent assistant for space shuttle diagnostics” in pro-
ceedings of Mission Systems 2002: The Annual Conference for Technology in Space
Operations, Houston, TX, May 2002.

F. Chen, and R. Volz (2003), “Tracking and understanding automated space shuttle fault
detection, isolation and recovery”, in proceedings of International Conference on Artifi-
cial Intelligence (IC-AI’03). Las Vegas, NV June 2003.

Feilong Chen and Richard Volz (2003), “Tracking automated shuttle fault isolation
through use of aspects”, in proceedings of the Seventh World Multi-Conference on Sys-
temics, Cybernetics, and Informatics (SCI 2003). Orlando, FL, 2003.

	REFERENCES
	APPENDIX
	
	EDUCATION

	EXPERIENCE
	PUBLICATIONS

