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ABSTRACT

Advance the DNA Computing. (August 2003)

Zhiquan Frank Qiu ,

B.S., University of Electronic Science and Technology of China;

M.S., Virginia Polytechnic Institute and State University

Chair of Advisory Committee: Dr. Mi Lu

It has been previously shown that DNA computing can solve those problems

currently intractable on even the fastest electronic computers. The algorithm design

for DNA computing, however, is not straightforward. A strong background in both

the DNA molecule and computer engineering are required to develop efficient DNA

computing algorithms. After Adleman solved the Hamilton Path Problem using a

combinatorial molecular method, many other hard computational problems were in-

vestigated with the proposed DNA computer. The existing models from which a few

DNA computing algorithms have been developed are not sufficiently powerful and

robust, however, to attract potential users.

This thesis has described research performed to build a new DNA computing

model based on various new algorithms developed to solve the 3-Coloring problem.

These new algorithms are presented as vehicles for demonstrating the advantages of

the new model, and they can be expanded to solve other NP-complete problems.

These new algorithms can significantly speed up computation and therefore achieve a

consistently better time performance. With the given resource, these algorithms can

also solve problems of a much greater size, especially as compared to existing DNA

computation algorithms. The error rate can also be greatly reduced by applying these
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new algorithms. Furthermore, they have the advantage of dynamic updating, so an

answer can be changed based on modifications made to the initial condition. This new

model makes use of the huge possible memory by generating a “lookup table” during

the implementation of the algorithms. If the initial condition changes, the answer

changes accordingly. In addition, the new model has the advantage of decoding all

the strands in the final pool both quickly and efficiently. The advantages provided

by the new model make DNA computing an efficient and attractive means of solving

computationally intense problems.
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CHAPTER I

INTRODUCTION

A. Motivation

Human beings began calculating somewhere around 2000 BC. Driven by necessity,

chance, and inventiveness, we advanced from using our fingers to marking on tablets,

from the abacus to the mechanical adding machine, and finally to the electronic

computer. The modern computer has had a significant impact on everyday life,

giving us the ability to compute, letting us create complex algorithms to quickly

solve problems, sometimes in a matter of milliseconds [1].

The computer’s influence on people’s lives has been well documented. Its im-

pact on the economy is also commonly known. The current trend of steady growth

and accelerating productivity rely heavily on continued improvements in computer

productivity [2]. In 1999, US companies spent over $200 billion on computers and

related items, more than they invested in any other type of capital good [3].

Nevertheless, today’s computers have their limitations. The transistors on a

silicon chip have been doubling in number roughly every 18 to 24 months. The

shrinking device size and increasing density that prompts this doubling will cause

physical problems in the coming decades, even though they currently provide increase

in speed and funcationality with a substantial drop in costs. Problems with the small

size of the devices (about 90 nanometers (nm)) that make up the electronic computer

architectures include the eventual electron leakage across a small number of atoms,

a lack of uniformity in the distribution of dopants in semiconductors, a low yield in

the number of usable chips manufactured, and heat dissipation from the high density

The journal model is IEEE Transactions on Automatic Control.
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of devices on the chip. Furthermore, as chip manufacturing becomes more and more

complex, the current $1 billion IC-manufacturing facilities will make the facbrications

no longer economically feasible. If we want to keep up the pace of computer cost and

performance improvements in the long term, researchers will have to fully explore

these issues and possibly explore alternative technologies [1].

Computing systems inspired by biological systems (biocomputation) offer one

possible alternative that is currently under investigation. DNA carries the genetic

information for life as we know it. Before its identification by Watson and Crick in

1953, the quantum physicist Schrodinger had already accurately predicted the carrier

of genetic information to be an “aperiodic crystal”: a structured medium (crystal)

capable of storing information because of variations allowed within the medium’s

structure (aperiodicity) [4].

A single strand of DNA is a string consisting of a combination of four different

base nucleotides: A(adenine), C(cytosine), G(guanine) and T(thymine). When at-

tached to deoxyribose, these base nucleotides can be strung together to generate long

sequences. Each single string can be paired up with a complementary string to form

a double helix. This pair-up only occurs under the WC(Watson-Crick) complement

rule. That is, A only pairs with T and G only pairs with C. Also the double strand

can be separated by heating. The dissociated strands separate from each other with-

out breaking the chemical bonds that hold the nucleotides together along the single

strand. Either one of these denatured single strands or both together can be used for

further operations because they perfectly complement one another. One good exam-

ple of this idea is the PCR (polymerase chain reaction) method. It is used to initialize

test tubes in many DNA computing algorithms by making numerous identical strands

through a repetition of the above procedure.

Since Watson and Crick’s discovery, many ways to manipulate DNA have been
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developed. Biological techniques include the use of enzymes for cutting and pasting,

and the polymerase chain reaction for the reproduction of DNA strands. Biotechno-

logical techniques include the selective filter, tagging and DNA sequencing. Together,

these devlopments enable us to use DNA as a modifiable storage medium-a kind of

memory. These developments also allow us to use these techniques as operations on

that memory in order to implement algorithms.

DNA was first used for computations in 1994. In his ground breaking Science

article, Leonard Adleman described his experiment that solved a seven-node instance

of the Hamiltonian path problem from graph theory. (The problem involves finding

a path containing all nodes only once, through a mathematical graph.) He devised a

code for the edges of a graph based on the encodings of their nodes.

As a result, Adleman produced sequences that corresponded to candidate so-

lution paths by randomly gluing together sequences of single nodes. By producing

enough of these sequences, all candidate solutions were constructed. This construction

was done in parallel. In other words, all strands underwent the reactions simultane-

ously.

Through a sequence of filtering steps, strands that were of the wrong length or

that did not contain all the required nodes were eliminated. Only those strands that

corresponded to actual solutions were kept. This filtering was also done concurrently

on all strands. The fact that DNA strands remained after this process indicated that

solutions to the problem existed; by sequencing the remaining DNA, a single solution

was decoded.

Since Adleman [5] and Lipton presented the idea of solving difficult combinatorial

search problems using DNA molecules, there has been some new work regarding how

DNA could be used for computations [6] [7] [8] [9] [10] [11] [12] [13]. Since one liter of

water can hold 1022 bases of DNA, these methods all take advantage of the massive
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parallelism made available by DNA computers. This capability also raises the hope

of solving those problems currently intractable for electronic computers.

However, most potential users are still watching DNA computing develop with-

out taking any action of their own. This is primarily because the completion of each

biological operation can take a substantial amount of time. The implementation of

each algorithm for a solved problem can take weeks, or even months. To make the

situation even worse, the long process of developing the algorithms must be restarted

if the initial condition changes. These obstacles must be overcome before any sub-

stantial progress in DNA computing will be accomplished. There are two primary

tasks that must be accomplished. The first is the speedup of the algorithms. The

second is finding a solution to a number of similar problems simultaneously or the

real time updating of a solution.

B. Objective

The primary objective of this research is to advance DNA computing so that it can

be made more attractive to potential users. These new methods will increase the

potential of DNA computing. They will offer ways for DNA computing technology

to be used to solve problems that currently are considered unsolvable. These new

methods will also make DNA computing more cost and time efficient.

More specifically, the first objective of this research is to speed up the algorithms

and to increase the size of the problems that can be solved. The existing algorithms

currently take a long time to finish- months or even years. The new method will par-

allelize the processes of the algorithms so that the implementation of new algorithms

can be accomplished much more quickly. The new method may even reduce the error

rate.
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The second objective of this research is to real time update a solution when

the initial condition of a problem changes. After an initial answer is generated, the

initial condition of the problem may change. This now results in a need to start

the algorithm again no matter how small the initial change is. Instead, by real time

updating the solution, new answers can be found simply by going through a few extra

operations.

The third objective of this research is to find a way to discover all possible exact

answers to a problem both quickly and efficiently. When DNA molecular strands are

used to compute, a set of strands stays in the pool to represent the final answer. This

new method can decode these strands efficiently and quickly.

C. General Assumptions and Limitations

While presenting our new algorithms (except the error resistant one), we made the

assumption that all molecular biological procedures are error free. This is not true in

reality, but there is a significant body of finished and ongoing research which attacks

the problem of error-resistant implementations [14] [15] [16] [17] [18] [19]. This work

has showed many fault tolerant techniques [20] [21] [22] and error-correction methods

[17]. Good coding methods may also minimize the possible error rate [23] [24] [25] [26].

It is reasonable to assume that errors which arise during DNA computing operations

can be dealt with through these techniques and the new techniques provided here.

D. Outline of the Dissertation

This dissertation consists of four chapters. Chapter II describes the current state

of DNA computing. It also discusses the advantages offered by the new approaches

described in this dissertation. Chapter III describes the new DNA computing model
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and how new algorithms can be designed based on it. This chapter also provides these

algorithms whose designs are based on the new model developed to improve the per-

formance of DNA computing, especially in terms of speedup, realtime updating and

quick decoding. Chapter IV summaries the contributions of this study and describes

the future research necessary to make DNA computing more attractive.
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CHAPTER II

BACKGROUND

Since Adleman’s 1994 demonstration of the possibility of solving computationally

intensive problems using DNA molecules [5], some DNA algorithms have been devel-

oped [27] [28] [29] [8] [30] [10] [31] that attack a number of DNA computing problems.

Adleman et al. have attempted to design basic DNA computing operations and have

also tried to build a DNA computer [5] [32] [33] [34] [35]. Winfree et al. have also been

building different models for DNA computing [36] [37] [38] [39] [40] [29] [41]. Some

error detection and fault tolerance methods have been found by Seeman et al. [16]

[42] [18] [43] [44]. Condon et al. [15] [24] [45] and Smith et al. [22] [21] [26] have gener-

ated efficient coding methods for DNA computing and have made significant progress

in accomplishing surface-based DNA computing. This work has accomplished much

lower error rate as compared to the solution-based approach. DNA algorithms for

simple boolean and arithmetic computing have also been developed [46] [27] [47] [48]

[49] [50] [51] [13]. All of these extensive efforts seem to indicate a bright future for

DNA computing. Nevertheless, DNA computing is still not available for use in real

applications for the following reasons: it is a fairly slow process due to slow bio-

reactions; there is significant expense due to the costliness of bio-operations; and

there are some unavoidable errors. The progress of this research toward eliminating

some of these burdens is explained next.

DNA computing uses DeoxyriboNucleic Acid (DNA) strands as the basic pro-

cessing units. A DNA computer is basically a collection of specially selected DNA

strands (and the set of biological processes to manipulate them) whose combinations

will result in the solution to some problems. Each strand of DNA encodes the state

of a processor. Each processor operates independently. Technology is currently avail-
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able both to select the initial strands and to filter the final solution. The promise of

DNA computing is the massive parallelism. One liter of water can hold 1022 bases of

DNA strands and all strands can be processed at the same time [52]. The already

developed algorithms currently take advantage of the massive processing power made

available by DNA computing [53] [54] [55]. If each strand processes one data item

through performance of bio-operations, 1022 different operations can be completed

in one bio-cycle with the help of the 1022 strands in the one liter of water. This

raises the hope of solving problems currently considered intractable on available elec-

tronic computers. The necessary operation would take a 1GHz electronic computer

106 years to complete. Much effort has been put into locating a “killer application”

which would attract the industrial world to the new DNA computers [56] [49]. Not

only could these DNA computing algorithms solve computationally intensive prob-

lems, they can also lay down a basis for fundamental arithmatic and logical operations

[9] [47] [48] [51]. However, unlike those in the electronic computers, the algorithmic

design of DNA computing is not straightforward. A strong background in both the

DNA molecule and computer engineering is required to develop efficient algorithms

for DNA computing.

Although DNA computing can solve computationally intensive problems, it still

takes longer than a desirable time to execute an algorithm. Improvement in the per-

formance of DNA computing is crucial before DNA computing can be made really

attractive for prefessional use. There has been some effort made to analize the com-

plexity of DNA computing algorithms [57], but little has been accomplished toward

improving the performance of these algorithms [58].
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A. The Status of Existing DNA Computing Models

There are several DNA computing models that have already been developed. Most

existing DNA computing algorithms have been developed for these existing models.

An analysis of these existing DNA computing models shows why these models cannot

satisfy the requirements of potential users.

1. The Self-Assembly Based Model

DNA self-assembly is a method used to construct molecular scale structures. In this

method, artificially synthesized single strand DNA self-assembles into DNA crossover

molecules, or tiles. These DNA tiles have sticky ends that preferentially match the

sticky ends of certain other DNA tiles, facilitating further assembly into tiling lattices.

Figure 1 provides an example of the grammer of this self-assembly. It uses rules of

form A → pB and A → p where A and B are non-terminal symbols and p is a string

of terminals. A language generated by regular grammar is called a regular language.

For example, consider the grammar GE = {S → 0S, S → 1T, S → 0, T → 0T,

T → 1S, T → 1} where 0 and 1 are terminals. This grammar gives rise to all bit

strings with an even number of 1’s. 110011 is a good example because S → 1T

→ 11S → 110S → 1100S →11001T → 110011. Note that during the derivation,

there is always a single nonterminal to the right of where the actions take place.

In this case, self-assembly is the spontaneous self-ordering of substructures into

superstructures driven by the annealing of Watson-Crick base-paring DNA sequences.

Computation by self-assembly entails the building up of superstructures from starting

units such that the assembly process itself performs actual computation. Adleman

made use of a simple form of this kind of computation by using self-assembly in his

original experiment [5]: instead of blindly generating all possible sequences of vertices,
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Fig. 1.: SELF ASSEMBLY TERMINALS AND PROCESSES

he instead used the oligonucleotide sequences and the logic of Watson-Crick to com-

plementarily guide the self-assembly process to generate only valid paths. Winfree

el al [37] generalized this approach for two-dimensional (2D) self-assembly processes

and has shown that computation by self-assembly is Turing-universal.

Winfree et al and Eng [37][59] proposed the self-assembly of linear, hairpin,

and branch DNA molecules in order to generate regular, bilinear, and context-free

languages, respectively. They [37],[60] all proposed the use of self-assembled DNA

nanostructures to solve NP complete combinatorial search problems.

The approach of programming the DNA self-assembly of tilings requires the

following: (i) mixing the input of oligonucleotides to form the DNA tiles, (ii) allowing
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the tiles to self-assemble into superstructures, and (iii) performing a single separation

to identify the correct output.

The problem with the self-assembly model is that the algorithms are usually slow

due to the low growth rate. When the temperature is raised to accelerate the process,

the error rate increases exponentially and goes out of control [39].

2. Sticker Based Model

The sticker based model employs two basic groups of single strand DNA molecules

in its representation of a bit string. Consider a memory strand, N bases in length,

in K non-overlapping regions, each M bases long (thus N ≥ MK). Each region is

identified by exactly one bit position (or, equivalently, one boolean variable) during

the course of the computation. K different stickerstrands, or simply sticker, are

also designed. Each sticker is M bases long and is complementary to one, and only

one of the K memory regions. If a sticker is annealed to its matching regions on a

given memory strand, then the bit corresponding to that particular region is on for

that strand. If no sticker is annealed to a region, then that region’s bit is off . Figure

2 illustrates this representation scheme [34] [35] [32].

Each memory strand, along with its annealed stickers (if any), represents one

bit string. Such partial duplexes are called memory complexes. A large set of bit

strings is represented by a large number of identical memory strands, each of which

has a sticker annealed only at the required bit positions. Such a collection of memory

complexes is called a tube.

The four principle operations include: the combination of two sets of strings

into one new set, the separation of one set of strings into two new sets, and the

setting or clearing of the kth bit of every string into a set. Figure 3 summarizes these

required DNA interactions. The corresponding interpretation in terms of the DNA
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STICKERS FOR TWO BITS ON
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representation of these operations is listed below:

The most basic operation is to combine two sets of bit strings into one. This produces

a new set containing the multi-set union of all strings from two input sets. In

DNA, this corresponds to producing a new tube containing all of the possible

memory complexes (with their annealed stickers undisturbed) from both input

tubes.

A set of strings may be separated into two new sets, one containing all of the

original strings that have a particular bit on, and the other containing all of

those with the bit off . This corresponds to isolating from the set’s tube only

those complexes with a sticker annealed to the given bit’s region. The original

input set or tube is then destroyed.

To set (turn on) a particular bit in every string in a set, the sticker for that bit is

annealed to the appropriate region on every structure in the set’s tube (or left

in place if already annealed).

To clear (turn off) a bit in every string of a set, the sticker for that bit must be

removed (if present) from every memory complex in that set’s tube.

The advantage of this model is that initialization is simple. All strands in the

initial set are exactly the same. Synthesis of the initial solution space is quick and

cheap when using the standard technology.

The problem with this sticker based model is that those stickers that annealed

to the long strand may fall off during the process. The most difficult problem with

this model is the clear operation. It requires removing the stickers for only that

bit from every structure in the tube. Simple heating will obviously not work since

all stickers from all bit regions would come off. Roweis et al. has recommend the
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A T G C A

A T G C A

T A C G T

C G A A T

C G A A T

G C T T A

A T G C AA T G C A

A T G C A

A T G C A

T A C G T

C G A A T

G C T T A

C G A A T

G C T T A
T A C G T

A T G C AA T G C A

A T G C A

A T G C A

T A C G T

C G A A T

C G A A T

G C T T A

A T G C AA T G C A

A T G C A

A T G C A

T A C G T

C G A A T

G C T T A

C G A A T

G C T T A
T A C G T

A T G C AA T G C A

A T G C A

A T G C A

T A C G T

C G A A T

C G A A T

G C T T A

A T G C AA T G C A

A T G C A

Set Bit 1

Clear Bit 1

T A C G T

T A C G T

A T G C A
C G A A T

G C T T A

C G A A T

G C T T A
T A C G T

A T G C AA T G C A

A T G C A

A T G C A
C G A A T

C G A A T

G C T T A

A T G C AA T G C A

A T G C A

Fig. 3.: DNA MANIPULATIONS REQUIRED FOR THE FOUR OPERATIONS

OF THE STICKER MODEL
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possibility of designating certain bit regions as weak regions. These regions have weak

stickers which dissociate more easily from the memory strand than regular stickers.

By heating to some intermediate temperature, the weak stickers could be made to

simultaneously dissociate, keeping all of the regular stickers in place [34]. This idea

has increased the flexibility of DNA computing considerably.

3. Surface Based Model

The surface based model was first introduced by Liu et al. [22]. This surface based

DNA computing methodology immobilizes the DNA strands on a particular surface

(glass, silicon, gold, or beads). The strands are then subjected to operations such

as hybridization from a solution or exonuclease degradation in order to extract the

desired solution. This method greatly reduces the loss of DNA molecules during the

purification steps. It is well known that surface based chemistries have become the

standard for complex chemical syntheses such as solid-phase DNA synthesis, solid-

phase protein sequence analysis, and many other chemistries [22].

After the initial solution space is defined as the set S of binary strings of length

n, the following operations may be performed on S.

mark(i, b) : this marks all strings of S in which the ith bit has the value b.

mark(i1, b1), (i2, b2), . . . , (ik, bk) : this is an extension of marking (i, b) in which a

string is marked based on the values of many bits.

destroy-marked : this removes all marked strings from the set S.

destroy-unmarked : this removes all unmarked strings from the set S.

unmark : this unmarks all marked strings in S.
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test-if-empty : this operation determines whether the set S is empty or not. It is

only executed at the end of a computation.

The main difference between this model and that of Adleman is in the manipu-

lation of those DNA strands that are first immobilized on the surface. This approach

greatly reduces the loss of DNA molecules during the purification steps [15] [61] [21]

[26]. It also has the advantage of easy initial solution generation. The solution space

(such as 0, 1n) can be synthesized both quickly and cheaply.

The major limitation of this model is that the scale of computation is severely

restricted by the 2-dimensional nature of the surface based computation. To increase

the scale, one must either a)increase the surface density, b)increase the surface area, or

c) build linkage chemistry to extend out into solution from which the oligonucleotides

can be attached, in order to make a local three-dimensional network on the surface.

B. Summary

This chapter has given a detailed explanation of why it is necessary to introduce a new

DNA computing model. This new model should be fast, robust and error resistant.

An analysis of the existing DNA computing models that are presented in this chapter

has shown why these models cannot satisfy those requirements necessary to attract

potential users.
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CHAPTER III

THE ADVANCED DNA COMPUTING MODEL AND ALGORITHMS

The previous chapter described the reason existing DNA computing models cannot

satisfy the requirements necessary for DNA computing’s development. It has been

consistently clear why it is necessary to have a new DNA computing model, and what

the properties of that model should be. In this chapter, a new DNA computing model

will be introduced on which new algorithms are developed. These new algorithms are

presented as vehicles for demonstrating the advantages of the new model, and they

can be expanded to solve many NP-complete problems. Those new algorithms can

significantly speed up computation and therefore achieve a better time performance

for DNA computing. With the given resources, these algorithms can solve problems of

a much larger size than those possible with existing DNA computing algorithms. Error

rates can be greatly reduced by applying these new algorithms [62]. Furthermore, the

new algorithms have the advantage of dynamic updating, so an answer can be changed

based on modifications to the initial condition [63]. In addition, these algorithms

have the advantage of decoding all of the strands in the final pool both quickly and

efficiently [64]. All the advantages provided by the new model make DNA computing

very efficient and attractive in solving computationally intense problems.

A. Our New Model

Our new model adopts only mature DNA biological operations [5]. The following basic

principle operations: synthesis, ligation, separation, combination and detection are

selected for building the new model.

synthesis I(P, π) To generate a pool of coded strands, P , following criteria π. Strands
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are coded differently for different applications by using the four base nucleotides:

A, G, T and C. A set is defined as a group of strands, and the container holding

a set of strands is called a pool. If the criteria are the colors of a node in a

graph, then a pool of strands coding all of those possible colors for that node is

expected after synthesis. In the graph coloring problem, the strand is encoded

for the colors of a set number of nodes. Here, a few consecutive nucleotides on

the strand coded for the color of one node form a region. For example, in Figure

4, one strand consists of three regions such that s = {RBR} where (CCAAG),

(AATTC) and (CCAAG) represent the colors for those three corresponding

nodes as R(Red), B(Blue) and R(Red), respectively.

A T G G G C C A A G
G A A T C A A T T C

G G C C T C C A A G

Node #2 colored as Blue Node #3 colored as RedNode #1 colored as Red

Fig. 4.: AN EXAMPLE OF THREE NODES IN A GRAPH THAT ARE COLORED

BY R(RED), B(BLUE) AND R(RED)

ligation L(P3, P1, P2) To bind strands in pool P1 with strands in pool P2. Each code

s1i
in P1 is ligated to every other code s2j

in P2. If the strands in P1 represent the

codes {s1i
|i = 1, 2, · · · , c, where s1i

∈ P1} and those in P2 represent the codes

{s2j
|j = 1, 2, · · · , d, where s2j

∈ P2}, after the ligation, the ligated strands are

stored in P3. They represent the codes {sk|k = 1, 2, · · · , c×d}, where sk = s1i
s2j

for k = i + (j − 1) × c.

separation S(P, Pt, Pf , θ) Separation is used to partition strands in pool P , and to
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store those strands in two new pools: Pt and Pf based on criteria θ. After each

separation operation, the strands that meet the criteria will be stored in one

pool, Pt, while all strands that do not meet the criteria will be stored in the

other pool, Pf . In order to perform the separation operation, many identical

short strands defined as probes are attached to magnetic beads. These probes

are then put into the pool containing the strands to be separated. Each probe

can be paired up with a complementary strand in order to form a double helix.

Such pair-ups only occur under the WC(Watson-Crick) complement rule: A only

pairs with T and G only pairs with C. For example, in Figure 4, if the strands

containing the region for node 1 which are colored ‘R’ need to be separated,

the DNA short strands TACCCGGTTC should be used as a probe because

TACCCGGTTC complements ATGGGCCAAG. Also, the double helix can

be separated by heating in order to make paired strands part from each other

without breaking the chemical bonds that hold the nucleotides of a single strand

together. The strands in the pool which contain a region that complements the

probes will be hybridized to and captured by the probes, while all those without

the region will remain in the pool [34].

A gel-based separation technique for DNA computing [33] has been developed

which uses gel-layer probes instead of beads to capture strands. The capture

layer only retains the strand with a region that complements the probe when

it is cooled down, and lets all strands pass when the layer is heated. The

advantage gel-based probes has over bead-based probes is that the gel-based

method is more accurate for capturing DNA molecules. Figure 5 illustrates

the gel-based separation; a set of strands runs from the left side buffer to the

right. At each capture layer, the temperature is kept cold in order to capture
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Fig. 5.: SEPARATION OPERATION BASED ON GEL LAYERS

the desired strands. All unwanted strands are then passed through into a single

pool. The temperature is then raised to let all desired strands in the layer pass

into another pool. The strands from the left buffer are separated and stored in

two different pools.

combination B(P, P1, P2) To pour two pools, P1 and P2, together to form a new

pool, P .

detection D(P ) To check if there is any strand left in the pool, P . If the answer is

“yes”, the strands in the pool should be decoded.



21

B. The New Algorithms

The new algorithms for the 3-Coloring problem that were developed based on our new

DNA computing model are used to demonstrate the advantages of this new model.

The basic algorithm that significantly reduces computation time is introduced in this

section. In the next section, the algorithm will be advanced to solve larger-sized

problems, to dynamically update the answer, to lower the error rate, and to decode

the final answers quickly and efficiently.

1. 3-Coloring Problem

The 3-Coloring problem, a special case of the k-Coloring problem where k=3, is a well

known representative of the NP-complete problems class. A new algorithm for solving

the 3-Coloring problem will be introduced here, and this introduction will simplify the

following explanation of our new DNA computing model. The algorithms developed

here can now be expanded to solve the k-Coloring problem and be generalized to

solve other NP-complete problems.

k-Coloring Problem: A k-Coloring problem considers how to color an undi-

rected graph G = (V,E) in such a way that no two adjacent vertices share the same

color [65]. Two nodes connected by an edge are referred to as adjacent vertices. The

solution is the function c : V → 1, 2, · · ·, k such that c(u) �= c(v) for every edge

(u, v) ∈ E. In other words, the numbers 1, 2, · · ·, k represent k colors, and the adja-

cent vertices must have different colors. The k-Coloring problem determines whether

k colors are adequate to color a given graph [66].

A simple example graph with ten nodes and ten edges, G(10,10), is given in

Figure 6. It is clearly shown there that the graph can be colored if k ≥ 3.

Some existing DNA computing algorithms for solving the 3-Coloring problem can
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B

G R

B

G

BG

R R

G

Fig. 6.: AN EXAMPLE GRAPH G{10,10} THAT CAN BE COLORED BY 3 COL-

ORS: R(RED), G(GREEN) AND B(BLUE)

be found in [67]. Basically, all of these algorithms first generate a pool of encoded DNA

strands that represent all possible color patterns for the n-node graph where each

color pattern is an assignment of colors to nodes. For example, for nodes n1n2n3n4,

“BBRG” is one pattern which assigns Blue to n1, Blue to n2, Red to n3 and Green

to n4, while “RGBB” is another pattern which colors n1n2n3n4 as Red, Green, Blue

and Blue, respectively. After the strands are generated and stored in a pool, those

strands representing color patterns with no color conflict need to be separated. Any

two nodes along an edge are defined as having a color conflict when they share the

same color. In any color patterns with some color conflict that exist along some edges

of the graph, the corresponding strands should be filtered out from the pool.

Our new algorithm is introduced next. Following that, different variations of the
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algorithm and advantages to the new algorithm will be described.

2. The New Algorithm

Since here a given graph G = (V,E), with V = {vi|i = 1, 2, · · · , n} a set of nodes and

E = {ej|j = 1, 2, · · · ,m} a set of edges, we took the divide and conquer approach

to solving the 3-Coloring problem. We first partitioned graph G into two subgraphs:

G1 = (V1, E1) and G2 = (V2, E2) such that V1 ∪ V2 = V , V1 ∩ V2 = φ and | V1 |≈| V2 |
by eliminating all edges (u, v) such that u ∈ V1 and v ∈ V2. From this point forward,

we will refer to this set of edges as the cut-set of G, C [65] [68]. The partition process

was performed recursively. That is, subgraph Gi was partitioned into G2i+1 and G2i+2,

until each subgraph contained only one vertex and n subgraphs existed in total (See

Figure 7).

When partitioning the graph G into n subgraphs, the algorithm will start to

merge every two subgraphs both recursively and in parallel. Before they merge, every

subgraph should be colored with 3 colors. During the merge, the color patterns of

the two subgraphs can be combined together if no new color conflict is caused. Note

that to merge two subgraphs, the edges in the cut-set eliminated previously in the

partition of the two subgraphs will need to be added back and each addition of such

an edge will introduce a color conflict if the nodes it links to are of the same color.

Hence, the color patterns that work for the subgraphs may not necessarily work for

the merged graph after they are combined, and the combined color patterns might be

eliminated. The merging operation should continue until graph G is re-established

and those color patterns legitimate for it are found.

Our new algorithm for solving the 3-Coloring problem on a sparse graph is pre-

sented in Figure 8. The first for loop is used to generate n pools of strands to

represent all possible color patterns for n subgraphs while each subgraph initially
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Fig. 7.: DIVIDE THE GRAPH, G1, WITH n = 2b NODES UNTIL EACH SUB-

GRAPH ONLY CONTAINS ONE NODE
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Algorithm 1.

for i=1 to n do

In Parallel( I(Pi, color of node i))

end

f = n

while f �= 1 do

In Parallel(Make multiple copies of strands in all pools)

for All odd i do

In Parallel( L(Pi, Pi, Pi+1) )

In Parallel( relabel all pools 1 to f
2
)

for i =1 to f
2

do

In Parallel(

for j = 1 to Ei, Ei is the number of edges in Ci do

In Sequential { S(Pi, Pit , Pif , θij) },
θij is the color conflicts along ej, ∀ej ∈ Ci

end

)

end
end

f = f
2

end

Check if the pool is empty to conclude “yes” or “no” accordingly.

Fig. 8.: THE NEW DNA COMPUTING ALGORITHM FOR SOLVING THE 3-

COLORING PROBLEM FOR SPARSE GRAPHS
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only contains one node.

The function of the while loop is first to merge the pairs of two subgraphs. The

bio-operation needed to merge the two subgraphs is ligation, which ligates strands

in two pools to form longer strands. Let the color patterns for subgraph G1 be si

and those for G2 be sj. For any given si, all sj’s should be ligated with it, and such

operations should be performed over all si’s. That is, the strand for one color pattern

of a subgraph is replicated and each duplicated copy is ligated with one of those

strands representing the color patterns in the other subgraph. After they merge, all

color patterns in the merged graph will be represented by ligated long strands.

After the merge, some ligated strands might encode color patterns with those

color conflicts that were introduced by the edges in the cut-set eliminated in the

partition step. Our task is to investigate every edge in the cut-set and detect all

the color conflicts caused. This investigation is accomplished through the separation

operation, i.e., in all the ligated strands, in order to filter out those strands that

might contain any color conflicts from the pool. For any edge under investigation,

two nodes, i and j, are connected. We must first separate the pool into three pools

that contain the strands having node i colored R, G and B. In these three pools, the

strands having node j colored R, G and B are respectively filtered out through the

separation operation.

In the outer for loop, multiple copies of all strands in all pools need to be

prepared for the following round of ligation. This duplication is accomplished through

the PCR (Polymerase Chain Reaction) process [69].

If any strand is left in the final pool, then the 3-Coloring problem’s answer is

“yes”. Otherwise, the graph cannot be colored only by three colors, and the answer

is “no”.
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C. Advantages of the New Model and Extensions of the Fast Algorithm

1. Speeding Up The Process

A planar graph is a graph where no two edges cross one another and that is drawable

on a plane. The size of the cut-set is O(
√

n) in such a graph. Our new algorithm can

solve the 3-Coloring problem of the planar graphs within O(log(n) +
√

n) time. The

first term, O(log(n)), is the time needed to merge the subgraphs recursively in order

to form the original graph G. The second term, O(
√

n), is the time needed to separate

the strands representing the legitimate color patterns of the graph from the pool. It

has been shown already that in this type of case, our DNA computing algorithm has

a shorter time performance than the existing algorithm. In what follows, we will

present an advanced algorithm based on Algorithm 1 which speeds up the process

and improves the time performance even further. Given a dense graph, the number

of edges can be the number of vertices, squared. That means that the computation

complexity of the existing DNA computing algorithms, O(m + n), becomes O(m) =

O(n2). Algorithm 2, the advanced DNA computing algorithm we propose, is shown

in Figure 9. It is different from Algorithm 1 in that the color conflict is checked node

by node, rather than edge by edge. All strands that represent color patterns with

color conflicts between the node under investigation and all other nodes are isolated

from the pool in a single step.

The implementation of this step can be accomplished by using the device shown in

Figure 5, where probes in the capture layer represent the colors of all nodes connected

to the node under investigation. All such nodes are checked simultaneously for color

conflicts. The probes are different from what has been introduced previously, which

then represented only the color of one node. For a graph with n nodes, n− 1 devices

as given in Figure 5 are necessary for the n − 1 separation operations. As shown
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in Algorithm 2, the time complexity of our new algorithm to solve the 3-Coloring

problem on a dense graph of n nodes is O(log(n) + n)=O(n), where the first term

represents the complexity of combining the subgraphs necessary to regenerate the

original graph, as well as the color patterns which are represented by the merged

strands. The second term, O(n), is the total complexity of checking all the n nodes

for color conflicts, one node at a time. As compared to the O(n2) time complexity of

the existing DNA computing algorithms, the time performance of our new algorithm

offers a significant improvement.

A solution for the 3-Coloring problems of some graphs, may be more quickly

reached when a pool becomes empty in the middle of the process. This means that if

three colors are not sufficient to color even a subgraph of a graph, they are certainly

not capable of coloring the entire graph, obviously leading then to the final answer

of “no”. The last step of the algorithm can be easily performed by the detection

operation listed in the previous section.
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Algorithm 2.

for i=1 to n do

In Parallel( I(Pi, color of node i))

end

f = n

while f �= 1 do

In Parallel(Make multiple copies of strands in all pools)

for All odd i do

In Parallel( L(Pi, Pi, Pi+1) )

In Parallel( relabel all pools 1 to f
2
)

for i =1 to f
2

do

In Parallel( for j = 1 to Ni, Ni= # of nodes in subgraph i do

In Parallel( S(Pi, Pit , Pif , ωij)), ωij is the color conflicts along all

edges with endpoint j ∀nj ∈ Vi

end

)

end
end

In Parallel(Make multiple copies of strands in all pools)

f = f
2

end

Check if the pool is empty to conclude the “yes” or “no” accordingly

Fig. 9.: THE NEW DNA COMPUTING ALGORITHM FOR SOLVING THE 3-

COLORING PROBLEM FOR DENSE GRAPHS
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2. Solving Larger Problems

The existing DNA computing algorithms for the 3-Coloring problems introduced have

a solution space of 3n, the total number of color patterns for n nodes with 3 colors, and

a solution would require O((n + m)) operations [67]. The size of the largest problem

solvable by these existing algorithms is greatly restricted by the solution space. In the

previously published results of [67], the largest graph that can be correctly solved for

the 3-Coloring problem using the existing DNA computing technique has 46 vertices,

because the total number of color patterns must be smaller than the number of strands

used to represent them within a liter of water. That is

3n < 1022

n ≤ �log3(1022)� = 46

With our newly developed algorithm, this restriction is greatly loosened and conse-

quently much larger problems can be solved. The size of the largest problem that can

now be solved by our new algorithm is analyzed next.

The graph that can be colored with any number of colors is a graph with n nodes

and no edges. An example of such a graph with no edges is shown in Figure 10. All

other graphs with n nodes can be generated by adding edges to this disconnected

graph.

Let r be the proportion of strands retained in the pool after each separation,

based on any color conflicts introduced by adding one edge. After two sub-graphs

are merged together, the edges in the cut set need to be added back. Every time

an edge is added, some color patterns of the new graph may need to be dropped

due to any color conflicts induced by the newly added edges. In other words, color

patterns that work for the sub-graphs without the edge may contain color patterns
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Fig. 10.: A DISCONNECTED GRAPH WITH NO EDGE

that have two nodes along an edge colored the same. Any color patterns that color

two nodes with the same color will not work for the graph with the newly added

edges. When the percentage of the strands being dropped from any of the sub-graph

is 1-r, it results in 1-r out of the 3n total combination of color patterns (for n nodes

graph) being dropped with some of these color combinations never being generated.

Based on a graph of n nodes with no edge, in order to reach a graph with m edges, m

edges must be added. The edges in the cut-sets are added back when sub-graphs are

merged to form larger graphs. The color patterns of the new graph are represented by

longer strands. Out of the these strands (1-rv) are dropped and rv are retained after

v edges are added in. This corresponds to (1-rv) out of the 3n total color patterns

are dropped and rv are retained. Among the strands that represent all possible color

patterns of the graph, rm can be kept in the final pool after m separation operations

are performed for m newly added edges. This proportion of strands must be smaller

than the total number of strands involved in the computation, e.g., 1022 in one liter

of water. This is true for both the final pool and all the intermediate pools starting

from n pools with strands in each representing the possible color patterns of each

node. After the size of the strands grows when two sub-graphs are merged together,

it decreases when edges are added in and some color patterns are dropped. In order
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to keep the size of the strands representing the color patterns smaller than the total

number of strand involved in the computation, the following restrictions apply. When

u ≤ 45, 3u < 1022, there is no requirement for the number of edges; when u > 45,

3u × rv < 1022, the number of edges must be large enough to make this equation

stand. For the final pool it is:

1022 > 3n ∗ rm.

i j i
j i j

k
a b k

(a)
(b)

(c)

Fig. 11.: CONNECTIVITY OF i & j AND PROCESSED NODES

The implementation must check for color conflict one edge at a time. Without

losing generality, we can assume that all adjacent edges sharing the same endpoint,

node 1, are processed first. Those edges with endpoint 2 and so forth are processed

one by one. Suppose that the edge connected to node i is under investigation and the

other end is connected to node j, where 1 ≤ i ≤ n − 1 and j > i. To color one node,

let the sample space be S : {s1, s2, · · · , sk} for k colors. The probability P (S) = 1 and
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that gives P (si) = P (s2) = · · · = P (sk) = 1
k
P (S) = 1

k
. For the 3-Coloring problem

in which k = 3 and S : {R,G,B}, we can say that, P (R) = P (G) = P (B) = 1
3
. To

color multiple nodes, let cj be the color of node j, and P (cj = si) be the probability

that any node j is colored as si. The average proportion r can be calculated based

on the following independent cases that cover all possibilities.

Case 1: Nodes i and j are connected to no other previously processed nodes.

This means that no node k connects to either i or j, where k < i. The probability of

the strands that then need to be kept is

P (ci �= cj) = P{[(ci = R)(cj �= R)]
⋃

[(ci = G)(cj �= G)]
⋃

[(ci = B)(cj �= B)]}

=
1

3
× 2

3
+

1

3
× 2

3
+

1

3
× 2

3
=

2

3
(3.1)

Under this condition, color patterns {n1n2 · · ·ni · · ·nj · · ·nn} = {XX · · · ci · · · cj · · ·X},
where ci ∈ {R,G,B}, cj ∈ {R,G,B} and X ∈ {R,G,B}, with (ci, cj) ∈ {(R,R),

(G,G), (B,B)} should be eliminated and those with (ci, cj) ∈ {(R,G), (R,B), (G,R),

(G,B), (B,R), (B,G)} should be kept. The proportion of those strands that need to

be separated under this condition is 1
3
, and that to be kept is 2

3
.

Case 2: Either i or j is connected to at least one of the previously processed nodes

k where k < i, as in the example in Figure 11(a). The color patterns {n1n2 · · ·nk · · ·ni

· · ·nj · · ·nn} ={XX · · · ck · · · ci · · · cj · · ·X} with ci = cj should then be eliminated.

At this point, those strands that represent color patterns where ck = ci have already

been separated due to the connecting edge e(k, i). Because color patterns where

ci �= cj, given that ci �= ck, are kept and those with ck �= ci = cj are separated, the

probability that those strands will be kept is

P [(ci �= cj)|(ci �= ck)] =
P [(ci �= cj)(ci �= ck)]

P (ci �= ck)
(3.2)
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Since P (cj �= ck) = 1 − P (cj = ck) = 1 − 1
3

= 2
3

and the event (ci �= cj) is

independent from event (ci �= ck),

P [(ci �= cj)
⋂

(ci �= ck)] = P (ci �= cj)P (ci �= ck) =
2

3
× 2

3
,

and the value of (3.2) is

(2
3
× 2

3
)

2
3

=
2

3

The strands coding (ck, ci, cj) ∈ {(R,G,R), (R,G,B), (R,B,G), (R,B,R), (G,R,G),

(G,R,B), (G,B,R), (G,B,G), (B,R,G), (B,R,B), (B,G,R), (B,G,B) are kept and

those coding (ci, cj, ck) ∈ {(R,R,G), (R,R,B), (G,G,B), (B,B,G)} are separated,

which indicates that the proportion r for this case is 2
3
.

Case 3: Nodes i and j are both connected to previously processed nodes of differ-

ent colors (if the two processed nodes are of the same color, see case 4), and no node k

connects to both of them, where k < i. Assuming that node i is connected to node a

and node j is connected to node b, where {a, b} < i < j and ca �= cb, a �= b, as in the ex-

ample shown in Figure 11(b), the color patterns {n1n2 · · ·na · · ·nb · · ·ni · · ·nj · · ·nn}
= {XX · · · ca · · · cb · · · ci · · · cj · · ·X} with ci = cj should be separated and those

with ci �= cj should be kept. At this point, those color patterns containing only those

nodes where ca �= ci and cb �= cj because those with ca = ci or cb = cj are eliminated

due to presence of edges e(a, i) and e(b, j). The probability for those strands to be

kept is

P [(ci �= cj)|(ci �= ca)(cj �= cb)]

=
P [(ci �= cj)(ci �= ca)(cj �= cb)]

P [(ci �= ca)(cj �= cb)]
(3.3)

There are, in total, (3
1)×(3

1)×(3
1)×(3

1) possibilities of {ci, cj, ca, cb} where each node can

choose a color from {R,G,B}. In order to meet the criteria (ci �= cj)(ci �= ca)(cj �= cb),
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the color for any node a will be picked first from (3
1) different possibilities. Then (2

1)

different color options are left for node i, due to ca �= ci. (2
1) color selections are left

for node j where ci �= cj, and (2
1) for node b to satisfy cj �= cb. Therefore,

P [(ci �= cj)(ci �= ca)(cj �= cb)]

=
(3
1) × (2

1) × (2
1) × (2

1)

(3
1) × (3

1) × (3
1) × (3

1)

=
8

27

where the numerator is the number of possibilities of {ci, cj, ca, cb} that could meet

the criteria (ci �= cj)(ci �= ca)(cj �= cb), and the denominator is the total possibilities

of {ci, cj, ca, cb}.

P [(ci �= ca)(cj �= cb)]

= P [(ci �= ca)]P [(cj �= cb)]

=
2

3
× 2

3
=

4

9
.

Thus, the value of (3.3) is
8
27
4
9

=
2

3
,

and the proportion of strands that should be kept is 2
3
.

Case 4: The last case is where there is at least one node k where k < i, and

it connects to both nodes i and j, as shown in Figure 11(c). The color patterns

{n1n2 · · ·nk · · ·ni · · ·nj · · ·nn} ={XX · · · ck · · · ci · · · cj · · ·X} where ci = cj should be

separated. At this point, these strands representing color patterns where ck = ci and

ck = cj have already been separated due to the presence of edges e(k, i) and e(k, j).

Because those color patterns {n1n2 · · ·nk · · ·ni · · ·nj · · ·nn} ={XX · · · ck · · · ci · · · cj

· · ·X} where (ci, cj, ck) ∈ {(R,G,B), (R,B,G), (G,R,B), (G,B,R), (B,R,G),

(B,G,R)} should be kept, and those with (ci, cj, ck) ∈ {(R,R,G), (R,R,B), (G,G,R),
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(G,G,B), (B,B,R), (B,B,G)} should be separated, the proportion r is

P{(ci �= cj)|[(ci �= ck)(cj �= ck)]}

=
P [(ci �= cj)(ci �= ck)(cj �= ck)]

P [(ci �= ck)(cj �= ck)]
. (3.4)

because

P [(ci �= cj)(ci �= ck)(cj �= ck)] + P [(ci = cj)(ci �= ck)(cj �= ck)]

= P [(ci �= ck)(cj �= ck)]

= P [(ci �= ck)]P [(cj �= ck)]

=
2

3
× 2

3
,

and

P [(ci �= cj)(ci �= ck)(cj �= ck)] = P [(ci = cj)(ci �= ck)(cj �= ck)],

The obvious conclusion is

P [(ci �= cj)(ci �= ck)(cj �= ck)] =
2

9
.

Hence, the value of (3.4) is

2
9

2
3
× 2

3

=
1

2
(3.5)

where nodes i and j are connected to one common node k, and k < i.

A tight boundary can be defined for keeping the strands in the pool at the time

an edge is under consideration. After each edge is considered, at least one third of

the strands should be separated from the current pool. At most, two thirds of the

strands would then be retained in the pool to represent those color patterns in the

graph that have no color conflicts.
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For example, for a planar graph with 256 vertices, in order to generate an answer

to the 3-Coloring problem with 1022 strands, the number of edges must be greater

than 569. This is because

1022 > 3256 ∗ rm =⇒

m > 569

Because 569
256

≈ 2, 2 is the average minimum number of degrees required for each

node in order to allow the 3-Coloring problem to be solved by one liter of strands.

Meanwhile, 256 vertices are significantly greater than the number of vertices in a graph

that is solvable by the existing 3-Coloring DNA computing algorithms, within the

same given solution space. If an electronic computer that can perform 106 operations

per second is used, then 1019 years is necessary to solve the 3-Coloring problem for

a graph with 256 vertices, even if the fast Biegel and Eppstein algorithm [67] is

used. By introducing our new model, it will take approximately 2 days to finish the

implementation of the new algorithm, assuming that the average DNA operation takes

20 minutes [67]. Our new algorithm can be used to solve the 3-Coloring problems

for graphs containing a significantly higher number of vertices and, as compared to

the existing DNA computing algorithms or the algorithms designed for electronic

computers, our algorithm is also significantly faster.

3. Error Resistance

At the time that DNA computing was introduced, a question was raised about how

errors might affect the computing results. Although mature biological operations

usually have a very low error rate, errors might still accumulate over time and thus

might be responsible for incorrect answers. An introduction to our new algorithm

with its error resistance based on new DNA computing model, follows.
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Most of the errors in DNA computing occur during the separation operation.

During the separation operation, one pool is separated into two pools. Let the pool

containing all of those strands code color patterns possible for coloring the graph to be

defined as the positive pool, Pt. The pool containing all of those strands that represent

color patterns with color conflicts between a pair of nodes under investigation to be

called the negative pool, Pf . These two pools may not be perfectly divided and, due

to errors, might contain strands that should be included in the other pool. There

are two kinds of errors: false positives and false negatives. False positive errors

occur when strands containing color conflicts are selected to be placed in the positive

pool. False negative errors occur when strands with no color conflicts are left in the

negative pool. False positive errors are easy to handle because in the graph coloring

problem, at the time the final pool is generated, strands will be decoded from the

pool. Unwanted color patterns will be quickly dropped after they are checked using

electronic computers for whether they work in the graph. On the other hand, false

negative errors are more difficult to detect and they are usually more expensive to

correct.

Presented below is our new DNA computing algorithm for solving the 3-Coloring

problem that reduces the false negative error to a minute rate, ε. Assume that each

separation operation has an average false negative rate of q. That is,

q =
α

α + β

where α is the number of strands representing those color patterns with no color con-

flict that have been left in the negative pool, and β the number of strands representing

those color patterns with no color conflict left in the positive pool. The proportion

of strands representing color patterns with no color conflict kept successfully in the
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positive pool is p, and

p =
β

α + β

where

p + q = 1.

The most straightforward method of reducing the false negative error rate is to repeat

the same process a number of times. Suppose that the process is repeated d times and

the false negative error rate that results is E, when E = qd. To assure that E ≤ ε,

we have qd ≤ ε and d = �logqε�. That is, after repeating the separation operation

�logqε� times, the false negative error rate should be smaller than ε. However, this

method is not only inefficient but might also increase the false positive rate, thus,

leading to strands with color conflicts being left in the positive pool.

Our previously described new algorithm can be advanced in order to reduce the

false negative error rate. As we have previously discussed, the negative pool, Pf ,

might contain some strands that represent color patterns without color conflicts.
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Instead of discarding these strands, the Pf pool should be further processed in

the next operation, in order to retain those strands that might represent a final answer

to the problem. After the second separation operation, Pf should be divided into

the positive pool, Pft , and the negative pool, Pff
. Pool Pt should then be separated

into the positive pool, Ptt , and the negative pool, Ptf , where Ptt contains all strands

currently representing color patterns with no color conflict. Ptf would then contain

those strands representing color patterns that have color conflicts along the new edge

under consideration. Pools Ptf and Pft should then be combined and labeled as Pf1 .

Ptt is then relabeled as Pt, and Pff
is labeled as Pf2 . After subsequent separation

operations at different levels, the corresponding processes are listed in Figure 12. Pool

Pf1 contains all those strands representing color patterns with color conflict along at

least one edge, while pool Pf2 contains those strands with conflicts along at least two

different edges. Pt contains strands that represent those color patterns capable of

coloring the graph. The possibility that pool Pf1 has strands that should be in Pt is

q where q is the false negative rate defined above. The possibility that pool Pf2 has

strands that should be in Pt is q2. The same operations should continue until d + 1

different pools, which are Pf1 , Pf2 , . . . , Pfd
and Pt, are generated where qd ≤ ε. The

false negative rate for those strands left in pool Pfd
that represent color patterns with

no color conflict is now smaller than ε. The extra expense required to achieve this

lower error rate from our new algorithm is very small. With a 1% false negative error

rate [70] in a single separation operation, it is very easy to reduce the overall false

negative rate to 0.0001%, with d being as small as 3.
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4. Dynamically Updating Algorithms

Once a solution to the 3-Coloring problem of the graph is obtained, it is significant to

have a method that can quickly update the solution without restarting the algorithm

and completely recalculating if minor changes in the initial conditions are necessary.

The following is an effort toward making such a dynamically updating solution both

realistic and efficient by using the new DNA computing model.

In 3-Coloring problems, four possible changes may occur in the initial condition:

both nodes or edges could be either inserted or removed. Different strategies need to

be considered to update the answer based on the originally generated “yes” or “no”

answer.

(a) (b)

Fig. 13.: ADDING ONE NODE TO THE GRAPH

Let us begin with the easiest updating strategies. If the original answer is “yes”

and an edge or node is removed from the original graph, the answer will remain “yes.”

If the original answer is “no”, it will remain “no” when nodes or edges are added

in.



43

(a) (b)

Fig. 14.: REMOVING ONE NODE FROM THE GRAPH

If the original answer is “yes,” it may be changed to “no” after a node is inserted

into the graph. An example is shown in Figure 13. In this figure, the answer to the

3-Coloring problem of the graph given in Figure 13(a) is “yes,” but it changes to “no”

once a node is inserted to form the graph shown in Figure 13(b).

If the original answer is “no,” it may be changed to “yes” after a node is removed

from the graph. Figure 14 illustrates an example of this. Figure 14(a) contains a graph

with the answer “no” to the 3-Coloring problem. The answer changes to “yes” after

one node is removed from the graph, as shown in Figure 14(b).

Inserting or removing an edge can be similarly dealt with because at least one

edge must be eliminated if a node is removed, and at least one edge must be added

if a node is inserted.

The following illustrates how to dynamically update a solution when a node or

edge is inserted into the graph, following an original answer of “yes”. The strands

in the final set, Pt, are checked for possible new answers. The final set is the only

set that can be used because it is the only set that contains strands that represent

all possible coloring solutions that do not have any color conflicts among all nodes,
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except the newly added one. Based on these sets, only those color conflicts that occur

between the newly added node and the nodes connected with it need to be checked.

In other words, only the newly added edges need to be checked for color conflicts.

The most difficult case occurs when a node or edge is removed from a graph

with an original answer of “no”. The answer to the new graph could be either “yes”

or “no”. Removing a node includes removing both the node itself and all edges

connecting that node to the graph. The dynamically updating algorithm for this case

is as follows: the DNA computing result that reflects an original answer of “no” is

represented by an empty Pt set with no strand. All other sets then represent the

coloring patterns of the original graph with the color conflicts. After removing nodes

or edges, some coloring patterns may no longer have conflicts. The task, then, is to

identify those patterns represented by the DNA strands. Note that the strand sets to

be examined are limited in number. Only those strands representing color patterns

with color conflicts involving the pair of nodes connected by the removed edges need

to be checked. Finding that particular strand sets takes O(α) steps, where α is the

number of edges being removed. If α is not large this process is far less expensive

than re-computing the updated graph from the very beginning.

The detailed algorithm needed to find the answer to the new graph with the

removed edges, based on the original “no” answer, is illustrated in Figure 15.

When only one edge is removed from the original graph, pool Pf1 should be

checked. This is because Pf1 contains all of those strands that represent the color

combinations of the graph that have no color conflicts along all edges except one.

Assuming that the two nodes along the removed edge are n1 and n2, the strands

that need to be separated from the pool are those that have the two nodes colored

as {RR}, {BB} and {GG}. This means that only those strands with two identically

colored nodes must be extracted to a new pool, Pnew. If Pnew is not empty, the answer
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Algorithm 3.

for i=1 to α do

In Parallel(S(Pfi
, Pnewi

, Pfi
, θi), θi is the color conflicts along i exact # of

edges)

end

B(Pnew, φ, φ)

for i=1 to α do

In Parallel(B(Pnew, Pnew, Pnewi
))

end

B(Pnew, Pt, Pnew)

for j=1 to β do

S(Pnew, Pnew, Pnewf
, ωi), ωj is the color conflicts based on edge ej

end

Check if pool Pnew is empty to return a “yes” or “no” answer accordingly

Fig. 15.: THE DYNAMICALLY UPDATING ALGORITHM FOR THE 3-

COLORING PROBLEM WHEN α EDGES ARE REMOVED AND β EDGES ARE

ADDED

to the 3-Coloring problem for the new graph will be “yes”, which is different from

the original graph. Otherwise, the “no” answer remains.

When two edges are removed from the graph, both Pf1 and Pf2 need to be

checked. This is because Pf2 may contain strands that represent color combinations

with color conflicts along both removed edges. Pf1 may contain strands that represent

those color combinations of the graph with a color conflict along only one of the two

removed edges. Suppose the two removed edges are e1 and e2. Then those strands

that need to be extracted from pool Pf2 using the separation operation must represent

the color combinations of the graph that have color conflicts along both edges. The
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strands that should be extracted from Pf1 are those that represent color combinations

with color conflicts along either e1 or e2. The extracted strands are then stored in

a new pool, Pnew. If Pnew is not empty, the answer to the 3-Coloring problem for the

new graph will be “yes”, which is different from the original graph. Otherwise, the

answer for the 3-Coloring problem to the new graph remains “no”.

When α different edges are removed from the original graph, α different pools

should be checked. These pools are Pf1 , Pf2 , . . . , Pfα . For different pools, different

operations need to be conducted. For pool Pf1 , all strands should be left, due to

the color conflict along one edge. If the edge that causes the conflict is removed, the

answer will change to “yes”. Because of this, all strands in this pool representing

those color combinations with color conflicts along one of the removed α edges should

represent answers to the 3-Coloring problem of the new graph. For pool Pf2 , all

strands representing color combinations that have color conflicts along two, and only

two of the removed edges represent answers to the 3-Coloring problem of the new

graph. For pool Pft where t ≤ α, all strands representing color combinations with

color conflicts along exactly t different removed edges will generate answers to the

3-Coloring problem of the new graph. All strands extracted from these sets will be

stored in a new pool, Pnew. If Pnew is not empty, the answer of the 3-Coloring problem

for the new graph is “yes”, and thus different from the original graph. The answer is

“no” if Pnew is empty.

When the graph is changed by both removing and adding edges, multiple process-

ing steps need to be considered. Assuming that the number of edges being removed

is α and the number of edges added is β, those strands with color conflicts along

the removed edges should be found first. This will put the strands that are to be

considered for the following operations into one pool, Pnew, instead of involving sev-

eral pools. Those α edges should first be examined by using the method introduced
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above to go through α different pools. Then, Pt is combined with Pnew and relabeled

Pnew. This is due to the fact that those strands that may generate the “yes” answer

are distributed in α + 1 different pools. Collecting the strands in one pool will save

time and further operations, as compared to working on each pool, one at a time. If

no strands are left in pool Pnew, then the answer to the new graph is “no”. If there

are strands in pool Pnew after α edges have been removed, the color conflicts along β

edges must be checked. This operation can be accomplished in a manner similar to

what has been described above for adding edges.

Compared to the existing algorithms, our new method can dynamically update

the solution if the initial condition changes for the 3-Coloring problem of a graph.

It can also solve the 3-Coloring problem for many similar graphs. The complexity

of the existing algorithms is O((m + n)), where n is the number of vertices and m

is the number of edges [67]. If our updating process is not used, any change in the

initial condition must result in a restarting of the process. With our new algorithm,

the number of extra processes that need to be conducted depends upon the the

significance of the changes. The complexity of our updating process is O(α + β),

where α is the number of edges being removed, and β the number of edges being

added.

When this method is used to solve the 3-Coloring problem for multiple similar

graphs, the time complexity is O(ξ) after the solution for one graph is generated,

where ξ is the difference between the number of edges of the two graphs.

In order to implement this process, it is necessary to check the extra space and

effort necessary for making dynamic updating available. First, m additional contain-

ers are needed to keep m extra sets of strands. Second, the extra DNA material

necessary for generating these sets needs to be contained. Because strands are gener-

ated to represent all color combinations for the graph before the separation process



48

takes place, no extra material is necessary (as compared to the existing algorithms)

until the answer is generated for the original graph. Extra material is only necessary

if new solutions need to be formed for the modified graph if edges and/or nodes are

added.

When the procedure for approaching a 3-Coloring problem of a given graph is

finished and a new graph is provided, one must then determine whether to start

again from the beginning or to use the dynamic updating method to generate the

new answer?

In order to make this decision, one must assume that the implementation of the

algorithms introduced above for the 3-Coloring problem of the graph with n nodes

and m edges has been finished, and the 3-Coloring problem of a new graph needs

to be solved. This new graph must have N nodes and M edges. This graph can

be converted from the existing graph by first removing δ nodes and α edges, and

then adding γ nodes and β edges. The new graph can be generated by changing the

original graph, or it can be treated as a totally new graph. In order to solve the

problem for the new graph, N ligation and M separation operations are necessary if

the algorithm is being restarted from the beginning. The total time necessary would

then be:

T1 = N × l + M × s

where l is the time for each ligation operation and s is the time necessary for each

separation operation. Here, combination operations are ignored due to their sim-

plicity because the time needed for these operations is very short, especially when

compared to the other operations used in DNA computing. When the answer is pro-

duced based on the pools already generated using this new, dynamically updating
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strategy, the time necessary for reaching the answer is:

T2 = (α + β) × s + γ × l

In order to take advantage of the new method, the time needed must be shorter than

the time it would take to restart the algorithm from the beginning.

T2 ≤ T1

(α + β) × s + γ × l ≤ N × l + M × s

(α + β) × s + γ × l ≤ (n + γ − δ) × l + (m + β − α) × s

because N = n + γ − δ and M = m + β − α. It is easy to get

(m − α) × s + (n − δ) × l ≥ α × s,

as n − δ is always greater than 0. The above condition can be tightly restrained as

follows:

(m − α) × s > α × s

so that α < m
2
. The algorithm needs to be restarted from the beginning only when

the change is significant – in other words, when more than half the edges need to be

removed in order to generate a new graph from the original.

Given the above conclusion, it becomes evident that there is no need to retain

all m sets. At least half of the pools can be destroyed in order to save storage space.

This saves the expense once required for storing m sets of strands, and the material

needed to work on them.
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5. The Efficient Decoding Algorithm

After the final set containing all solutions to the 3-Coloring problem for the graph is

generated, it is time to decode the strands in order to discover those color patterns

that can correctly color the graph. Each strand in the pool has one answer encoded

in it, and some strands in the pool may encode the same answer.

The new method introduced here can decode all color patterns represented by

the DNA strands in pool Pg without using the electron microscope to “read” the

strands one by one. It is much more cost and time efficient when compared to the

method of decoding the strands one at a time by using an electron microscope. The

flow diagram for this new method is illustrated in Figure 16. The function of each

box in this figure is to represent a filter based on the gel-based separation. The

detailed structure of each box is shown in Figure 17, and the filter function is given

below: before the input buffer can be filled, the capture layer must be filled with

small segments of DNA strands. Each filter is named Fkc, where k ∈ {1, 2, · · · ,m}
and c ∈ {R,G,B}. The capture layers contains those DNA strand segments that rep-

resent the complement of color c for node k. The temperature must first be reduced.

The input buffer can then let the input pool flow into the capture layer, and valve

A be opened. All strands that contain the segment representing color c for node k

should be captured in the layer. The rest of the strands in the input pool will pass the

layer and go through valve A. When this process is finished, valve B must be opened

and the temperature of the container increased. All strands containing the segment

that represents node k being colored with color c is separated from the rest of the

pool. The order of the operations are indicated in Figure 16. At the time ti, all valves

labeled i must be opened and the temperature of the corresponding container either

cooled down or warmed up. Eventually, x, y and z will provide some output sets. At
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time tm+1, x should output a set. This set should only have strands representing color

combination of NnNn−1 · · ·N1 = RR · · ·R for n nodes. For the following time tm+2,

tm+3, · · ·, tm+3m−2, other sets containing strands representing the color combinations

NnNn−1 · · ·N1 = {RR · · ·RG,RR · · ·RB,RR · · ·GR,RR · · ·GG, · · · , RB · · ·BB} will

be outputted from x. The color combinations represented by strands will be outputted

from y and z in the following order:

NnNn−1 · · ·N1 = {GR · · ·RR,GR · · ·RG,GR · · ·RB,GR · · ·GR,GR · · ·GG, · · · , GB

· · · BB} and NnNn−1 · · ·N1 = {BR · · ·RR,BR · · ·RG,BR · · ·RB,BR · · ·GR,

BR · · ·GG, · · · , BB · · · BB}.
The decoding process has been simplified by using the separate and detect oper-

ations. At the time a set is outputted from x, y or z, the detect operation will check

to see if it is empty. If not, the corresponding color combination is good for coloring

the graph, and will have no color conflicts along any edge. Otherwise, if the set is

empty, the corresponding color combinations cannot be used to color the graph.

The extra space and effort necessary to efficiently decode the strands in the

final set are also greatly reduced. At the beginning, it seems that 3m different fil-

ters are needed. When the algorithm for generating the final set is implemented, it

demonstrates that all of the necessary filters have already been generated in order to

separate the initial pool containing those strands representing all color combinations.

The extra effort is needed only to reorder these filters. After these filters are connected

together, the valves and temperature of the containers can be automatically controled

by an electronic microcontroller. This automation greatly reduces the involvement of

human beings and it makes the DNA computing more error resistant. In addition,

all of the filters in the far right column (as shwon in Figure 16) are not necessary

because those strands coming into these strands will pass through the filter together.

Hence, there is no filter function needed here. Storage buffers can be used to replace



54

these filters for temporarily storage in order to simplify the system. The other area

in which effort is needed is the detect operation. This step can be accomplished very

effectively and quickly.

D. Summary

This chapter has presented a new DNA computing model from which many DNA

computing algorithms have been developed. The properties of this new model on

which the new algorithms’ development have been based include fast implementation

time, the ability to solve larger problems, error resistance, dynamic updating and

fast and efficient decoding capabilities. All of these advantages should make DNA

computing more efficient and will attract new users seeking to solve computationally

intense problems.
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CHAPTER IV

CONCLUSION

This dissertation has presented a new model for DNA computing. Based on this new

model, new algorithms for the 3-Coloring problems have been presented. This new

algorithms represent a significant speed improvement over all existing algorithms.

Our algorithms were obtained by parallelizing the separation operation on mul-

tiple edges, and also by parallelizing other DNA computing processes. This provides

the opportunity to solve very large problems which currently cannot be solved by

electronic computers in any reasonable amount of time. The solution space of 1022

strands in a one liter pool can now efficiently be used. With the given solution

space, problems of a large size that currently cannot be solved using existing DNA

computing techniques are now solvable. The introduction of these new algorithms

makes DNA computing a more attractive option to potential users who want to solve

computational intense problems that are currently considered unsolvable.

Our new algorithm for error resistance has also been presented. DNA computing

techniques have here been greatly improved by reducing the error rate to a consid-

erably small percentage. This improvement will make DNA computing significantly

more reliable.

In addition, these new algorithms have the advantage over existing algorithms of

utilizing dynamic updating. These new algorithms represent a huge improvement over

the existing algorithms. Instead of re-starting the DNA computing algorithm from

the beginning every time the initial condition changes, this new method generates a

new solution through only a few extra DNA operations, based on the existing answer.

It can also quickly solve problems similar to those that have already been solved.

No extra material is needed to prepare for the dynamic updating process. The
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only expense necessary is for extra containers in which the additional pools of DNA

strands can be stored. As compared to the existing DNA computing algorithms, this

new method can achieve a solution much more quickly after the answer for the first

problem is generated. Finally, it is financially much more efficient.

These new algorithms decode all answers to the problem represented by DNA

strands. This is a significant advantage over those methods that can locate only a

few answers within the whole set. The decoding process of the newly introduced

algorithm is very fast and efficient when compared to the existing method which uses

electron microscopy to decode the strands. Instead of only providing a “yes” or “no”

answer to the problem, the new model can provide exact answers. Regrading the

separation operation, this new method can decode all strands in a set with very little

extra cost. Therefore, these new algorithms represent a significant improvement over

the naive search employed by existing algorithms.

Based on this new model, other algorithms can also be developed to solve different

NP-complete problems, as well as those problems that are computationally intense.

All of these algorithms that can be developed based on our new model will have the

same advantages as described above. This new model, then, is able to expedite the

development of important new DNA computing techniques. Consequently, this will

make DNA computing more attractive to potential users who want to solve problems

currently considered unsolvable.

A. Future Work

Special bio-operations need to be designed and/or identified in the near future in

order to implement a divide-and-conquer approach in DNA computing (which will

significantly reduce the time required by many DNA algorithms and improve their

performance). Developing more efficient and accurate laboratory techniques will not
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only benefit researchers in DNA computation, but will also yield positive benifits

for molecular biologists. Second, simplifying the DNA computing algorithm design

process so that both computer engineers and biological scientists can design efficient

DNA computing algorithms with little training will also greatly improve this field.

Third, automating the DNA computing algorithm implementation so that the DNA

computing models and techniques can be integrated into a general purpose computer

will surely yield significant advances in DNA computing, thus producing faster and

more financially efficient solutions to computationally intense problems.
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