
DYNAMIC RESOURCE LOCATION IN PEER-TO-PEER NETWORKS

A Thesis

by

RIPAL BABUBHAI NATHUJI

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

May 2003

Major Subject: Computer Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/4268437?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DYNAMIC RESOURCE LOCATION IN PEER-TO-PEER NETWORKS

A Thesis

by

RIPAL BABUBHAI NATHUJI

Submitted to Texas A&M University
in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

Approved as to style and content by:

Riccardo Bettati
(Chair of Committee)

Wei Zhao
(Member)

Narasimha Reddy
(Member)

Valerie Taylor
(Head of Department)

May 2003

Major Subject: Computer Engineering

iii

ABSTRACT

Dynamic Resource Location in Peer-to-Peer Networks. (May 2003)

Ripal Babhubhai Nathuji, B.S., Massachusetts Institute of Technology

Chair of Advisory Committee: Dr. Riccardo Bettati

Resource location is a necessary operation for computer applications. In large

scale peer-to-peer systems, random search is a scalable approach for locating dynamic

resources. Current peer-to-peer systems can be partitioned into those which rely upon

the Internet for message routing and those which utilize an overlay network. These

two approaches result in different connectivity topologies. This thesis analyzes the

effect of topological differences on the effectiveness of random search. After demon-

strating the benefits of an overlay network, we propose a hybrid approach for resource

location. Our proposed protocol provides deterministic searching capabilities which

can help prevent request failures for sensitive applications.

iv

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

II RELATED WORK . 4

A. Peer-to-Peer Power Law Systems 4

1. Gnutella . 4

2. Freenet . 5

3. Power-Law Distributed Topologies 6

B. Peer-to-Peer Overlay Networks 8

1. Chord and Pastry . 8

2. CAN . 9

3. Fully Connected Topologies 11

C. Peer-to-Peer Resource Discovery 11

D. Random Resource Discovery Algorithms 12

III ANALYTICAL MODELS . 14

A. Node Model . 14

B. Fully Connected Networks 16

C. Power-Law Distributed Networks 17

IV RESULTS . 21

A. Simulation Environment 21

B. Analytical and Simulation Results 22

1. Analytical Results . 22

2. Analytical Validation 26

3. Effects of Various Power-Laws 32

C. Lessons Learned . 32

V A HYBRID APPROACH . 35

A. Resource Location Design Goals for Peer-to-Peer Systems . 35

B. Deterministic Resource Location 36

C. Extending Random Scheme with Deterministic Capabilities 38

v

CHAPTER Page

VI SUMMARY AND CONCLUSIONS 40

REFERENCES . 41

VITA . 44

vi

LIST OF TABLES

TABLE Page

I Analytical Failure Rate Comparison (λ0 = 0.95) 25

II Ratio of Analytical Failure Rates (λ0 = 0.95) 25

III Fully Connected Network Failure Rate Comparison (λ0 = 0.95) . . . 32

vii

LIST OF FIGURES

FIGURE Page

1 Gnutella Membership Join Protocol 5

2 Power-Law Node Connectivity Distributions 7

3 Chord Architecture . 8

4 CAN Routing . 10

5 INS Resource Descriptor and AVTree 11

6 Node Markov Model . 15

7 Request Forwarding Streams . 16

8 Forwarding Streams for Power-Law Model 19

9 Simulation vs. Theoretical Topology Distribution 22

10 Analytical Failure Probability with TTL=10 23

11 Analytical Failure Probability with TTL=5 23

12 Analytical Failure Probability with TTL=1 24

13 Analytical Failure Rates for Power-law Networks (λ0 = 0.95) 25

14 Power-law Network Failure Probability Comparison (TTL=10) . . . 26

15 Fully Connected Network Failure Probability Comparison (TTL=10) 27

16 Power-law Network Failure Probability Comparison (TTL=5) 27

17 Fully Connected Network Failure Probability Comparison (TTL=5) . 28

18 Power-law Network Failure Probability Comparison (TTL=1) 29

19 Fully Connected Network Failure Probability Comparison (TTL=1) . 30

viii

FIGURE Page

20 Power-law Network Failure Rate Comparison(TTL=10) 30

21 Power-law Network Failure Rate Comparison(TTL=5) 31

22 Power-law Network Failure Rate Comparison(TTL=1) 31

23 Power-law Failure Probability with Varying τ (TTL=1, λ0 = 0.9)) . . 33

24 Peers in Deterministic Overlay Mesh 37

25 Peer Connectivity in Deterministic Overlay Mesh 37

1

CHAPTER I

INTRODUCTION

The Internet is a powerful infrastructure for computer applications. By establishing a

large scale network of heterogeneous nodes, it provides ample resources for computing

systems. Distributed programs and agile objects are just a few examples of the types

of applications that take advantage of such an environment.

Locating resources becomes problematic in large networks. Centralized schemes

that are effective for small networks scale poorly. When resources are dynamic in

nature, a centralized approach becomes even less plausible. Thus as systems increase

in size, it becomes clear that a peer-to-peer approach is needed in place of a centralized

architecture.

A possible alternative to a centralized architecture is the use of a random algo-

rithm. Randomized load balancing schemes are analyzed in [1]. The author presents

a model termed the supermarket model in which jobs are assigned randomly between

n servers. In particular, jobs pick d processors with a uniform probability, and are

queued to the processor which is least loaded.

This cheap approach for load balancing works well because jobs choose randomly

among all processors. Unfortunately, in peer-to-peer systems, all peers are possible

servers for a request. Thus a direct mapping of the algorithm would require nodes

to maintain a global membership list. Handling this type of state obviously does not

scale in peer-to-peer systems. It is therefore important to determine how well simple

random algorithms can actually perform when peers only have partial membership

information. The peer-to-peer systems we consider only require partial membership

The journal model is IEEE Transactions on Automatic Control.

2

state at nodes.

In a peer-to-peer architecture, random search can be performed by forwarding

requests to neighbors randomly until either the resources are found or the time-to-

live (TTL) for the request expires. By making forwarding decisions based on local

neighbor information, the algorithm can be completely distributed and scalable.

Current peer-to-peer systems subscribe to one of two mechanisms for message

routing. Some architectures use the underlying Internet topology for routing. These

systems forward messages to peers by using normal IP routing. Peer-to-peer systems

that use this approach are characterized by power-law distributions in their node

connectivity.

The remaining peer-to-peer designs use overlay networks to provide theoretical

bounds for message routing overhead. In these systems messages are routed to the

destination by other peers. These overlay networks can be manipulated to provide

a fully connected topology graph for random search algorithms. This topological

difference between peer-to-peer systems that utilize overlay networks and those that

do not raises the question of the relationship between the underlying topology of

networks and the effectiveness of random search.

Though random search has been found to be effective in terms of overhead and

load balancing, it is an unattractive alternative for some applications. Since random

algorithms employ a TTL on requests to limit overhead, requests may fail even when

resources are available in the system. It would be beneficial to provide an alterna-

tive means of resource location for applications which cannot tolerate such failures.

In particular, a deterministic extension to random search would help address this

problem.

The remainder of this document describes research which relates to the problem

of dynamic resource location in peer-to-peer networks. Chapter II presents previous

3

work and background information. It is followed by the thesis work of the author.

The thesis can be divided into a two part research effort. The first segment of work is

presented in Chapters III and IV. This segment concentrates on analyzing the topo-

logical effects of candidate peer-to-peer architectures on a random search algorithm.

The analysis is conducted using analytical models which are validated with simulation

results. The analysis will show that the use of an overlay network to obtain a fully

connected topology is beneficial for random search.

The second segment of research is presented in Chapter V. It proposes a modified

protocol that supports deterministic search capabilities for critical applications. In

particular, a hybrid overlay network architecture is presented. This architecture will

allow for both random and deterministic searching capabilities. A summary and final

conclusions of the work are presented in Chapter VI.

4

CHAPTER II

RELATED WORK

Peer-to-peer networks are a growing area of research in computer science. A variety of

architectures have been designed for these networks. In this chapter, current peer-to-

peer systems are introduced. Also, existing research in peer-to-peer resource location

and power-law network topologies is presented.

As previously mentioned, peer-to-peer systems can be divided into two sub-

groups. Some peer-to-peer systems rely on the Internet for message routing, and

have a power-law distribution in their node connectivity. Examples of such systems

are Freenet [2] and Gnutella [3, 4]. These architectures are presented in section A.

The remaining peer-to-peer systems employ overlay networks for message routing.

Chord [5], Pastry [6], and CAN [7] fall into this category. In particular, these systems

use a hash based mechanism to establish and route in the overlay network. These

architectures are presented in section B.

The problem of resource discovery in peer-to-peer networks has been handled in

previous research. INS/Twine [8],[9] is a scalable architecture for resource discovery.

We present this system in section C and explain why it cannot be used for dynamic

resources. Finally, the chapter concludes by explaining the various alternatives for

random resource discovery in peer-to-peer networks.

A. Peer-to-Peer Power Law Systems

1. Gnutella

Gnutella, as with all of the peer-to-peer systems that are presented, is a protocol

that is used extensively for file sharing. Its messaging protocol supports the dynamic

5

PONG

PING

PONG

PING

PING

PONG

PONG

PING

Fig. 1. Gnutella Membership Join Protocol

environment that results in peer-to-peer networks.

Nodes join a Gnutella network using special group membership messages. New

members first contact some well known node which has already obtained membership.

This node forwards a PING message on behalf of the initiator to all of its neighbors,

while returning a PONG message with its IP address and other relevant information.

Subsequent nodes which receive the PING message also forward the request and back-

propagate their own PONG message. This process continues until all PING messages

have exceeded some TTL. The joining node then creates TCP connections with as

many neighbors as it desires. This process is displayed in Figure 1.

Searches in the Gnutella network behave similar to membership initiation. A

query initiator forwards requests to all of its known neighbors. The query is contin-

ually forwarded until some TTL is exceeded. All nodes which can respond to the

query reply back to the initiator. Thus Gnutella uses a request flooding technique to

handle queries.

2. Freenet

Freenet is another peer-to-peer system that is used for information storage and re-

trieval. Freenet uses keys to identify nodes in the system. Nodes are assigned their

6

respective keys during the joining process.

As with Gnutella, nodes join the Freenet network by cooperating with a well

known node that is already a member. In order to provide security, nodes cannot

determine their own keys. Instead, when joining the network a node includes the

hash of a random seed with an announcement message. The same hash function is

used by all nodes in the system.

When a node receives an announcement message, it creates its own random seed

and XOR’s it with the received hash value. The hash of this XOR is the commitment

value for the node. The new hash is then forwarded to some random neighbor, and

the process continues until the TTL of the request is exceeded. The last node to

receive the request only generates a random seed. Finally all nodes that participated

in the chain reveal their seeds. The XOR of the seeds is used as the key value for the

new node, and the commitment values are used to confirm that all nodes reveal their

seeds truthfully.

Information is retrieved from the Freenet system using binary file keys that are

associated with the target objects. These keys are generated using descriptive strings

for the object that is being searched for. Nodes forward the request by searching their

routing table for the neighbor which has a key value closest to that of the request. A

second-nearest, or third-nearest, and so on may be used to avoid creating forwarding

loops. The request ends when a node with the object is reached, or the TTL of the

request is exceeded. Thus Freenet employs a random-walk approach for data retrieval.

3. Power-Law Distributed Topologies

The Internet is a network which was widely believed to have random characteristics

in its topology. It has recently been shown that the topology of the Internet actually

follows a power-law distribution [10]. This distribution can be described by the gen-

7

0 100 200 300 400 500 600 700 800 900 1000
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Degree of Node

P
ro

ba
bi

lit
y

τ = 2.0
τ = 2.1
τ = 2.2

Fig. 2. Power-Law Node Connectivity Distributions

erating function in equation (2.1), [11]. In this equation k is the degree of a node,

m is the maximum degree of any node in the network, and τ is a parameter that

characterizes the power-law distribution.

G0(x) = c
m∑

k=1

k−τxk (2.1)

Figure 2 illustrates the probability distribution for various values of τ . Large net-

works usually have (2 ≤ τ ≤ 2.3) [11]. This power-law distribution in node connectiv-

ity has a simple interpretation. Most nodes in the network have low connectivity, and

a small set of “well known nodes” have high connectivity. Measurements of Freenet,

Gnutella, and other peer-to-peer topologies have revealed that node connectivity in

these networks also follow power-law distributions [2], [4],[11], [12].

8

4

4

3

7

2

2

4

of 6
hash value
Object with

0

3

7

5

2

Fig. 3. Chord Architecture

B. Peer-to-Peer Overlay Networks

1. Chord and Pastry

Chord and Pastry are hash based peer-to-peer systems which use a ring based struc-

ture as an overlay network. The two architectures differ in the precise routing algo-

rithms and routing tables used. Chord requires that nodes have a routing table of

size O(log2N) in an N -node system, and routes messages using O(log2N) nodes. Pas-

try uses a routing table of size O(log2bN)(2b − 1) where b is a configured parameter.

Messages can be routed in Pastry using O(log2bN) nodes.

Since Chord and Pastry share similar architectural aspects and benefits, only the

details of the Chord system are described here. Chord uses a key system to identify

nodes and query objects. Nodes in the system generate their node IDs by hashing a

unique attribute such as their IP address. Nodes are then organized in the overlay

network using a ring structure where nodes are linked with increasing node ID values.

Every node has a pointer to its successor in the ring, as well as its predecessor. The

9

successor of the node with the largest ID is the node with the smallest ID, thus

forming the ring.

Since a hash function is used to place nodes in the Chord ring, probabilistically,

the key space is divided into equal partitions. Objects are assigned to nodes in a

simple fashion. The descriptor for the object is hashed giving a value in the ring key

space. The object is then assigned to the successor of the point in the key space that

is hashed to. For example, the object which hashes to an ID value of 6 in Figure 3

would be assigned to the node with ID 7.

Using only the predecessor and successor pointers, the Chord ring can only per-

form linear search. In order to obtain the O(log2N) performance, nodes must use a

specifically structured routing table. The routing table consists of m entries, where

the ith entry in the table at node n is the first node which succeeds the value (n+2i−1).

The value of m is the number of bits in the node identifiers. In our example of Figure

3, m = 3. The figure displays the routing tables for nodes 0 and 2.

Using these routing tables, nodes solve queries by forwarding requests to the

node with the highest ID which is less than the key of the request. This continues

until a node n receives the request such that n < key ≤ n.successor. At this point

the request is finally routed to n.successor.

2. CAN

CAN, or Content-Addressable Network, is another hash based peer-to-peer system.

As opposed to a ring based structure, CAN uses a geometric approach to organizing

nodes. Nodes are assigned positions in a d-dimensional space. This allows CAN to

conduct message routing using O(N
1
d) nodes.

In order to organize nodes and assign objects for data sharing, CAN uses d hash

functions. A node uses these hash functions to obtain d key space values for itself.

10

x (object Z)

S

B

AC D

E

Fig. 4. CAN Routing

These values correspond to a point in the d-dimensional space. Nodes cooperate with

each other to divide up the d-dimensional space given their own positions in the space.

Figure 4 illustrates an example in two-dimensional space. Again, probabilistically,

this should result in an equally partitioned space. Every node keeps 2d pointers such

that they have a successor and predecessor in every dimensions. These successors

and predecessors are defined according to the spatial partitioning. So, for example,

in Figure 4 node A has neighbors C and D in one dimension, and B and E in the

other.

In order to locate objects in the system, the descriptor for the object is hashed

with the d hash functions. Nodes then forward the request to the neighbor which is

geometrically closest to the point in space described by the resulting key values. This

continues until the request is received by the node which controls the space that the

object keys correspond to. Figure 4 illustrates this process. The request initiates as

a request for object Z at node S. The request is forwarded until it is received by node

B which has the object.

11

printer <model>SomeModel</model>
</res>

root

subject

photograph

SomeModel

man

res

model

<res> printer
 <man>PrinterCompany</man>

<subject>photograph</subject>

PrinterCompany

Fig. 5. INS Resource Descriptor and AVTree

3. Fully Connected Topologies

Peer-to-peer systems which use a hash based approach can be manipulated to provide

a fully connected topology for random search algorithms. In the Chord and Pastry

systems, hash functions distribute nodes equally across the ring overlay structure.

Similarly, the hash based approach in CAN divides the d-dimensional space into

partitions with equal volume.

By generating a random key in the ring, or a random point in the CAN key

space, a node can pick a globally random node to forward requests to. For Chord

and Pastry, this can be done by hashing a random number generated at the node.

Similarly, CAN nodes can pick a random node by hashing a random number with

the d hash functions used in the system. Thus, using these peer-to-peer overlay

networks, a random algorithm can utilize a fully connected topology without the cost

of complete topological knowledge at every node.

C. Peer-to-Peer Resource Discovery

INS/Twine is a peer-to-peer resource discovery protocol. It relies upon attribute

descriptive strings for locating resources. Thus it is capable of handling a large set of

heterogeneous resources in a scalable fashion.

12

In order to provide intentional resource discovery, INS/Twine converts resource

descriptions into attribute-value pairs (AVTree). Figure 5 displays an example of a

descriptor to AVTree conversion for a photo quality printer. In INS/Twine, a query

matches a resource if the AVTree of the request matches some sub tree of the resource

AVTree.

In order to distribute resource information, INS/Twine designates some nodes as

special resolver nodes. These nodes use a Chord ring (or some other hash based peer-

to-peer infrastructure) to coordinate. In order to advertise a resource, the AVTree

describing the resource is divided into strands. Each strand is hashed and assigned

to a resolver in the underlying Chord ring. The resolver keeps an association between

the strand and the location of the resource.

Resource location is handled in a similar fashion. The AVTree of the request is

parsed into strands, hashed, and sent to the appropriate resolvers. The results of any

matching strands are returned to the requestor. Thus many possible resource sources

may be returned from a single request.

Though INS/Twine provides a scalable peer-to-peer infrastructure for locating

resources, it is not a valid solution for dynamic resources. This is due to the fact

that resolvers in the Twine architecture contain state regarding resources. Though

this state is soft, and can handle infrequent changes to resource descriptors, it is not

designed to handle the frequent updates which result with dynamic resources.

D. Random Resource Discovery Algorithms

It is been suggested in [13] that random walks are a more efficient approach for

searching in peer-to-peer networks than request flooding. This is due to the large

amounts of traffic that can be generated by flooding techniques. Therefore we will

13

assume a random walk approach for our resource location algorithms.

In order to simplify analysis, we will assume that the resource location protocol

will make use of a single random walk. This random walk is conducted by random

forwarding at every node. The only constraint for forwarding is that the request is

forwarded to a node that is not the current node.

Given the peer-to-peer architectures that we’ve discusses, there are two types of

forwarding that we need to consider. The first is based on peer-to-peer networks which

have a power-law distributed topology. For these systems nodes forward requests to

a neighbor in their local routing table. The second approach is for systems which

use a hash based overlay architecture. In these systems, nodes forward requests to

a globally random node by hashing a random number. Thus, given a particular

topology, we have an appropriate random location algorithm.

14

CHAPTER III

ANALYTICAL MODELS

In order to analyze the effect of topology on random resource location, we develop

analytical models. This chapter describes the analytical model for the two types of

topologies that we consider. Section A describes the analytical node models that are

used. Section B presents the model and solution for random resource location in fully

connected networks. The chapter concludes with the model for power-law distributed

networks in section C.

A. Node Model

In order to develop our analytical models, we must first identify the parameters of

the problem at hand. As discussed at the end of Chapter II, we assume a random

walk approach for random resource location. For the random walk, we assume that

a request can be forwarded a maximum of K times (TTL=K).

We are concerned with the effect of topology on random resource location. In

order to concentrate on this aspect of the problem, we do not want to have to consider

the particular distribution of available resources in the system, or the distribution of

the types of resource requests that are generated. Therefore, we make some simplify-

ing assumptions. In particular, we assume that a node can only serve a single request

at a time. Subsequent requests are queued up at the node. In our model, nodes have

a queue of length M where the request at the front of the queue is the current active

request at the node.

Requests have service times which are modeled as exponential distributions with

mean 1
µ
. Arriving requests at nodes are modeled as Poisson processes with rates λ0.

We will show that with our model forwarded requests that are received at a node

15

M

λ λ

. . .
λ λ λ

µ µ µ µ µ

0 1 M−2 M−1

Fig. 6. Node Markov Model

are also Poisson processes. Assigning rates λ1, λ2, . . . , λK for forwarded requests, the

total rate λ for incoming requests is given by equation (3.1). The resulting node

Markov chain used for our model is the M/M/1 queue shown in Figure 6.

λ =
K∑

i=0

λi (3.1)

Let pj be the probability that a request arrives when the node is in state j. We

are particularly interested in pM , since requests that arrive from the Poisson streams

λ0, λ1, . . . λK−1 are forwarded with this probability. Moreover, requests that arrive

from the Poisson stream λK are dropped with probability pM . These dropped requests

are considered failures for our analysis. Asymptotically, pj = (λ
µ
)pj−1. Therefore

pM = (λ
µ
)Mp0. The closed form for pM as a function of λ is given by equation (3.2).

pM = F (λ) =
(λ

µ
)M

∑M
k=0(

λ
µ
)k

(3.2)

Poisson processes can be decomposed into individual Poisson streams. Given the

probability pM , the stream of new requests λ0 can be decomposed into two streams of

rate λ0(1 − pM) and λ0pM . The first of the decomposed streams is a Poisson process

of requests that are served or queued at the node, and the latter stream is a Poisson

process of requests that are forwarded for the first time. This analysis can be repeated

for the streams λ1, λ2, . . . , λK−1 to show that forwarded requests can be modeled as

Poisson processes. Figure 7 illustrates the incoming and forwarded Poisson streams

16

Node

 0

...

F(λ)λ 0

F(λ)λ 1...
F(λ)λ

λ 1

 K λ K−1

λ

Fig. 7. Request Forwarding Streams

at a node.

B. Fully Connected Networks

In order to analyze random resource location in fully connected networks, we analyze

a more general model. In particular, we begin by assuming that all nodes have the

same degree. Fully connected networks are a special case of this model where all

nodes have degree (N − 1).

When all nodes have the same degree, they have the same rate of incoming

requests λ0, λ1, . . . , λK . Figure 7 shows that every node will have request forwarding

streams λ0F (λ), λ1F (λ), . . . , λK−1F (λ). Since all nodes have the same degree D,

with random forwarding the stream λiF (λ)
D

, 1 ≤ i ≤ (K − 1), is received from each

neighbor of a node. Subsequently, each node has a total incoming forwarding stream

of D(λiF (λ)
D

) = λiF (λ). This analysis gives us the system of nonlinear equations given

in equation (3.3).

F (λ)λj−1 = λj, 1 ≤ j ≤ K (3.3)

The system of equations which describe the model can be solved using a recursive

method. Starting with λ0 and λ1 = λ2 = . . . = λK = 0, F (λ) is calculated. The

values for λ1, λ2, . . . , λK are then recalculated using equation (3.3). This process is

17

repeated until equation (3.4) is minimized beyond some threshold. The values of

λ1, λ2, . . . , λK thereby completely characterize the fully connected network model.

FFullMin(λ0, λ1, . . . , λK) =
K∑

j=1

(F (λ)λj−1 − λj)
2 (3.4)

The performance criteria that will be used for our models are the probability of

request failure, and the rate of request failures. The probability of failure and the

failure rate for fully connected networks is given by equation (3.5).

P (FullRequestFailure) =
λKF (λ)

λ0

=
λFullRequestFailureRate

λ0

(3.5)

C. Power-Law Distributed Networks

In power-law distributed networks, a node has degree D such that degreemin ≤ D ≤
degreemax. For our analysis, we assume degreemin = 1 and degreemax = m. The

generating function for the connectivity distribution is therefore given by equation

(2.1).

Given a random link in the power-law distributed network, we can obtain the

probability distribution for the degree of the node on the other side of the link. This

distribution is described by the generating function in equation (3.6) obtained from

[11].

G1(x) =

∑m
k=1 ck−τ+1xk∑m

k=1 ck−τ+1
(3.6)

Let A be the event that node N1 has degree K1. Given this information, we would

like to know the probability distribution for degree D of N1’s neighbors. Equation

(3.7) can be obtained using conditional probability. Without assuming some structure

for the conditional probabilities P (D|A),P (A|D), we must assume that the events A

and D are independent giving the result in equation (3.8). Therefore, the probability

18

distribution for the degree of N1’s neighbors at each outgoing link is given by (3.6).

P (D|A) =
P (D ∩ A)

P (A)
=

P (A|D)P (D)

P (A)
(3.7)

P (D|A) =
P (D ∩ A)

P (A)
=

P (D)P (A)

P (A)
= P (D) (3.8)

Since nodes may have different degrees in power-law distributed networks, they

may have different rates of incoming requests. For fully connected networks λj de-

noted the incoming rate of requests which have been forwarded j times. In our

power-law model, we have λj,k as the rate of requests which have been forwarded j

times and are being forwarded by a node with degree k. This leads us to a per link

distribution for the rate of incoming requests which have been forwarded j times on

each link. The generating function for this distribution is given by equation (3.9).

Note that the rate λj,k is divided by k since the forwarded requests are distributed

randomly among k links.

G2(x) =

∑m
k=1 ck−τ+1x

λj,k
k∑m

k=1 ck−τ+1
(3.9)

We can now derive the distribution for the total rate of incoming requests at a

node of degree d. The generating function for the arrival of requests which have been

forwarded j times is given by equation (3.10).

G3(x) =

(∑m
k=1 ck−τ+1x

λj,k
k∑m

k=1 ck−τ+1

)d

(3.10)

To calculate values for our performance criteria, we need to use the expected

value of incoming requests for nodes. Let f(j, d) denote the expected value for the

rate of requests which have been forwarded j times that arrive at a node of degree d.

This expected value is simply G′
3(1) for the appropriate value of j and d. Equation

19

f(K−1,d)

.. ...

λ dF()

λ dF()

λ dF()

λ 0λ 0

Node

f(1,d)

f(K,d)

f(1,d).

Fig. 8. Forwarding Streams for Power-Law Model

(3.11) defines f(j, d).

f(j, d) =
(d)

∑m
k=1 k−τλj,k∑m

k=1 k−τ+1
(3.11)

Using the definition of f(j, d), we can redefine the total incoming request rate λ

for our power-law distributed model. In this model, λ depends on the degree of the

node. Therefore, we denote λd as the total rate of incoming requests at a node of

degree d. This rate is defined in equation (3.12).

λd = λ0 +
K∑

j=1

f(j, d) (3.12)

Similar to the model for fully connected topologies, we define F (λd) as the prob-

ability that a request arrives at a node whose queue is full. Figure 8 displays the

altered forwarding request streams for the power-law topology model. This result

gives us the set of nonlinear equations to model the system. The system of equations

is given in equations (3.13a)-(3.13b).

F (λd)λ0 = λ1,d, 1 ≤ d ≤ m (3.13a)

F (λd)f(j − 1, d) = λj,d, 2 ≤ j ≤ K, 1 ≤ d ≤ m (3.13b)

This system of equations can be solved by mapping it to a minimization problem

as was done for the fully connected topology model. The minimization function is

20

given by equations (3.14a)-(3.14c). Using recursion, the values λj,d, (1 ≤ j ≤ K), (1 ≤
d ≤ m) can be obtained from the minimization function.

m∑
d=1

(
F (λd)λ0 − λ1,d

)2

(3.14a)

m∑
d=1

K∑
j=2

(
F (λd)f(j − 1, d) − λj,d

)2

(3.14b)

FPowerMin = (3.14a) + (3.14b) (3.14c)

In order to complete our model for random resource location in power-law dis-

tributed networks, we must define the formulas for our performance criteria. The

formula for overall request failure probability is given by equation (3.15), where c is

the normalization constant for equation (2.1). Request failure rates are analyzed per

each class of node degree. Equation (3.16) defines the failure rate as a function of

node degree.

P (PowerRequestFailure) =

∑m
d=1 cd−τf(K, d)F (λd)

λ0

(3.15)

λPowerRequestFailureRate(d) = f(K, d)F (λd) (3.16)

21

CHAPTER IV

RESULTS

This chapter presents the results of our analytical models. Simulation data is also

presented in order to validate our theoretical results. Section A describes the simula-

tion environment and parameters used. Section B provides results and explanations

of our findings. Conclusions regarding the results are discussed in section C.

A. Simulation Environment

In order to simulate resource location in peer-to-peer networks, the simulation package

JavaSim was used [14]. For the power-law distributed peer-to-peer network simula-

tions, the Inet topology generator was used [15]. Simulations used 5000 nodes, a

queue size of 10, a mean service time of 1, and a maximum degree of 1025. The

maximum degree for our nodes was constrained by the topology generator.

Simulations for the fully connected network allowed nodes to forward requests

randomly to any node except for themselves. In the power-law topology network

requests were forwarded randomly to some neighbor. When generating the topologies,

a value of 2.1 was used for τ . Though this value of τ closely models the topology of the

Internet, it may not model all peer-to-peer networks as accurately. Our results will

show that our conclusions are independent of the exact value of τ which models a given

peer-to-peer network. Figure 9 compares the power-law connectivity characteristics

of a simulation topology to the theoretical distribution where τ = 2.1 and the network

has 5000 nodes.

22

10
0

10
1

10
2

10
3

10
4

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Degree of Node

P
ro

ba
bi

lit
y

Analytical Topology
Simulation Topology

Fig. 9. Simulation vs. Theoretical Topology Distribution

B. Analytical and Simulation Results

1. Analytical Results

Our analytical models were solved for various values of λ0

µ
. In order to verify that

the model expressed expected trends, we obtained results for networks with TTL set

to 10, 5, and 1. The remaining model parameters were configured as discussed in

section A.

Figure 10 displays results for nodes with a request TTL of 10. In the fully

connected network, there are no failures until the network reaches near one hundred

percent utilization. The power-law network, on the other hand, exhibits significant

request failures compared to the fully connected network scenario.

Figures 11 and 12 give the analytical results when requests have time-to-live

values of 5 and one respectively. They support the same relationship for request

23

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
0

0.002

0.004

0.006

0.008

0.01

0.012

λ
0
/υ

P
ro

ba
bi

lit
y

of
 R

eq
ue

st
 F

ai
lu

re

Power−law Topology
Fully Connected Topology

Fig. 10. Analytical Failure Probability with TTL=10

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.005

0.01

0.015

0.02

0.025

λ
0
/µ

P
ro

ba
bi

lit
y

of
 R

eq
ue

st
 F

ai
lu

re

Power−law Topology
Fully Connected Topology

Fig. 11. Analytical Failure Probability with TTL=5

24

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

λ
0
/µ

P
ro

ba
bi

lit
y

of
 R

eq
ue

st
 F

ai
lu

re

Power−law Topology
Fully Connected Topology

Fig. 12. Analytical Failure Probability with TTL=1

failure probabilities between power-law networks and fully connected networks found

in the case of request TTL set to 10. Moreover, as expected, the overall failure

probabilities increase in both networks as the request TTL is reduced.

Figure 13 displays the request failure rates that occur in the power-law analytical

model with λ0 = 0.95. The results show that failure rates increase with increasing

node degree. Table I compares the failure rates of nodes in the fully connected network

model to single degree nodes in the power-law model. The table shows that nodes in

the fully connected network experience lower failure rates than single degree nodes in

the power-law network with TTLs of 5 or 10, but a higher rate with a TTL of 1.

Table II provides the ratio of failure rates given in Table I. It is apparent that

the ratio of failure rates grows quickly with increasing TTL. In a power-law network

with τ = 2.1, 64% of nodes have a degree of one. In spite of this, when the request

TTL is one, poorly connected nodes have a smaller failure rate than nodes in the

25

0 200 400 600 800 1000 1200
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

Node Degree

R
eq

ue
st

 F
ai

lu
re

 R
at

e

10 Retransmissions
5 Retransmissions
1 Retransmission

Fig. 13. Analytical Failure Rates for Power-law Networks (λ0 = 0.95)

Table I. Analytical Failure Rate Comparison (λ0 = 0.95)

Request TTL Power-law Network (Degree=1) Fully Connected Network

10 0.0000277 0.000000000672

5 0.000388 0.00000969

1 0.0023 0.0144

Table II. Ratio of Analytical Failure Rates (λ0 = 0.95)

Request TTL Failure Ratio (Power-law/Fully Connected)

10 41220.24

5 40.04

1 0.16

26

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
0

0.002

0.004

0.006

0.008

0.01

0.012

λ
0
/µ

P
ro

ba
bi

lit
y

of
 R

eq
ue

st
 F

ai
lu

re

Analytical Results
Simulation Results

Fig. 14. Power-law Network Failure Probability Comparison (TTL=10)

fully connected network, while the overall failure probability is higher in the power-

law network. This shows that highly connected nodes are extremely overwhelmed in

this scenario.

2. Analytical Validation

The simulation results which were obtained validate the theoretical model. Figures

14 and 15 compare the theoretical and simulation results for the case of request TTL

set to 10. The simulation results match the values obtained by the analytical model.

Figures 16 and 17 show that the simulation results with a TTL of 5 matches the

theoretical results as well. The results with a request TTL of 1 is given in Figures 18

and 19. The simulation data for the fully connected network validate the theoretical

results. The data for the power-law network depicts a higher failure probability in

27

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
0

2

4

6
x 10

−4

λ
0
/µ

P
ro

ba
bi

lit
y

of
 R

eq
ue

st
 F

ai
lu

re

Analytical Results
Simulation Results

Fig. 15. Fully Connected Network Failure Probability Comparison (TTL=10)

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
0

0.005

0.01

0.015

0.02

0.025

λ
0
/µ

P
ro

ba
bi

lit
y

of
 R

eq
ue

st
 F

ai
lu

re

Analytical Results
Simulation Results

Fig. 16. Power-law Network Failure Probability Comparison (TTL=5)

28

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3

λ
0
/µ

P
ro

ba
bi

lit
y

of
 R

eq
ue

st
 F

ai
lu

re

Analytical Results
Simulation Results

Fig. 17. Fully Connected Network Failure Probability Comparison (TTL=5)

the simulation results than in the analytical results. This result can be explained by

recalling the fact that we assumed that the degree of neighboring nodes is independent

in equation (3.6).

The assumption was made due to the unavailability of universal correlation statis-

tics for this relationship. But, our simulation topology inherently contains some cor-

relations, including the fact that a node of degree one cannot be the neighbor of

another single degree node. When a request can only be forwarded a single time,

the majority of forwarded requests will affect highly connected nodes. This effect is

magnified when no two single degree nodes can be neighbors. The fact that our the-

oretical model can allow this situation to occur causes the overall failure probability

to decrease since forwarded requests can be spread across more nodes. This accounts

for the discrepancy between simulation and analytical results when the request TTL

29

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

λ
0
/µ

P
ro

ba
bi

lit
y

of
 R

eq
ue

st
 F

ai
lu

re

Analytical Results
Simulation Results

Fig. 18. Power-law Network Failure Probability Comparison (TTL=1)

is one.

Figures 20, 21, and 22 display the failure rate comparisons for the power-law

network simulations. Since failure rates increase quickly with decreasing TTL, the

fact that the simulation results are on the same order of magnitude as our analytical

results validates our failure rate results. It should be noted that in the case of request

TTL set to 1, highly connected nodes have a higher failure rate in the simulation

results than in the analytical results as expected by our previous arguments.

Table III compares the failure rates observed in the fully connected network

scenarios. Once again, the simulation results successfully validate the theoretical

results.

Overall, the simulation results that we obtained validate our theoretical model.The

relatively small differences that occurred at the boundary case of request TTL set to

1 were identified and explained.

30

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

λ
0
/µ

P
ro

ba
bi

lit
y

of
 R

eq
ue

st
 F

ai
lu

re

Analytical Results
Simulation Results

Fig. 19. Fully Connected Network Failure Probability Comparison (TTL=1)

0 200 400 600 800 1000 1200
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Node Degree

R
eq

ue
st

 F
ai

lu
re

 R
at

e

Analytical Results
Simulation Results

Fig. 20. Power-law Network Failure Rate Comparison(TTL=10)

31

0 200 400 600 800 1000 1200
10

−4

10
−3

10
−2

10
−1

10
0

10
1

Node Degree

R
eq

ue
st

 F
ai

lu
re

 R
at

e

Analytical Results
Simulation Results

Fig. 21. Power-law Network Failure Rate Comparison(TTL=5)

0 200 400 600 800 1000 1200
10

−3

10
−2

10
−1

10
0

10
1

10
2

Node Degree

R
eq

ue
st

 F
ai

lu
re

 R
at

e

Analytical Results
Simulation Results

Fig. 22. Power-law Network Failure Rate Comparison(TTL=1)

32

Table III. Fully Connected Network Failure Rate Comparison (λ0 = 0.95)

Request TTL Analytical Result Simulation Result

10 0.00000000067 0.0

5 0.00000097 0.000011

1 0.0144 0.0141

3. Effects of Various Power-Laws

For our simulation topologies, the power-law exponent τ was chosen to be 2.1. Though

the research that has been cited shows that peer-to-peer systems such as Freenet and

Gnutella have power-law distributions in their node connectivity, there is no precise τ

that characterizes all of these networks. Figure 23 shows how the failure probability

varies with τ when requests can only be forwarded once, and λ0 is 0.9.

Though the value of τ may not be 2.1 for peer-to-peer systems, it cannot vary

much from it. As the figure shows, if τ is slightly smaller, failure probabilities actually

increase. If τ is slightly increased, though the failure probability does decrease, it is

still much greater than that of the equivalent fully connected network. In fact, τ would

have to be very large in order to approach the result for the fully connected network.

But if τ is large, there are virtually no highly connected nodes, which measurements

have shown is not the case in peer-to-peer networks. Therefore, our conclusions hold

for any value of τ which characterizes a particular peer-to-peer network.

C. Lessons Learned

The results that were obtained from our analytical models and simulation data lead

us to some important conclusions regarding random algorithms for dynamic resource

33

1.8 1.9 2 2.1 2.2 2.3 2.4 2.5
0.005

0.01

0.015

0.02

0.025

0.03

0.035

τ

P
ro

ba
bi

lit
y

of
 R

eq
ue

st
 F

ai
lu

re

Power−law Topology
Fully Connected Topology

Fig. 23. Power-law Failure Probability with Varying τ (TTL=1, λ0 = 0.9))

location in peer-to-peer networks. Our data shows that a fully connected topology

provides an improved request failure probability over the power-law distribution which

dominates many peer-to-peer systems.

Our results also show that with a fully connected topology, all nodes will expe-

rience the same low failure rate. In power-law networks, though, highly connected

nodes experience much higher failure rates than poorly connected nodes. Moreover,

in most cases all nodes in a power-law distributed network experience a higher failure

rate than nodes in a fully connected topology. Thus the use of a hash based overlay

network helps provide load balancing for random resource location.

These performance results support the conclusion that the overhead of an overlay

network to mimic a fully connected network is worthwhile for random resource loca-

tion in peer-to-peer networks. Hash based peer-to-peer overlay networks can provide

the effect of a fully connected topology with only distributed peer knowledge. There-

34

fore, these systems should be used as the message routing architecture for random

peer-to-peer resource location.

35

CHAPTER V

A HYBRID APPROACH

In Chapter IV it was concluded that an overlay network is highly beneficial for random

resource location in peer-to-peer networks. An overlay network can provide reduced

request failure probabilities, as well as improved load balancing when compared to

power-law based peer-to-peer systems. The problem with random resource location,

though, is that requests may fail even when resources are available in the system. For

critical, time sensitive applications, this may not be tolerable.

In this Chapter, we introduce a protocol that can be used along with the peer-

to-peer overlay network. It provides some deterministic search capabilities that may

be beneficial for sensitive applications. Since our proposed algorithm is designed as

a deterministic extension to the random location scheme, our approach is a hybrid

system.

A. Resource Location Design Goals for Peer-to-Peer Systems

Grid environments, like peer-to-peer systems, are large scale distributed systems. In

[16], the authors present design characteristics for a Grid scale peer-to-peer resource

discovery system. One of these is lack of centralized control. The random protocol

that we have developed is completely distributed. In order to meet this design con-

straint, any mechanism introduced to provide determinism must also be distributed.

A second important characteristic for a large scale resource location scheme is

to be able to handle resource heterogeneity with respect to requests and to resources

offered by nodes. Random resource location does not handle this issue directly. Our

proposed extension should therefore address this issue.

A final design consideration is that with the numerous types of resources that

36

may be available in a large scale system, a global naming scheme may not be viable.

Our approach will allow peers which support similar resources to negotiate a naming

scheme which will represent the dynamic characteristics of their resources.

B. Deterministic Resource Location

One way to provide deterministic resource location is to have peers aware of the

resource availability at other peers. In large systems, this can only be accomplished

if subgroups of nodes use this cooperative approach. The benefit of these subgroups

is that heterogeneity can be handled easily. Nodes which provide similar resources

can join the same cooperative group.

In order to improve the scalability for these subgroups, we remove the restriction

that all nodes in a subgroup must be updated when resource availability changes

at a single node. This is done by utilizing a peer-to-peer approach inspired by the

CAN system. Like CAN, a d-dimensional space is used to organize nodes. In this

circumstance, though, the dimensions represent the types of resources that the nodes

are cooperating to provide. Instead of being placed randomly in the hyper space,

nodes are placed according to the amount of resources available. For example, in the

case of two resources, a node is at the point (rA, rB), where rA and rB are the amount

of resource A and B, respectively, that the node has available.

Similar to CAN, this infrastructure requires that nodes keep 2d neighbors. These

pointers are assigned two per dimension so that nodes are organized with increasing

availability in each dimension. Any ties in resource availability amounts are broken

by some deterministic tie breaker. Figures 24 and 25 illustrate an example in a two

dimensional mesh. This infrastructure can be used to deterministically locate resource

tuples in the cooperative group.

37

5

1

2

3

4

Fig. 24. Peers in Deterministic Overlay Mesh

4

1

2

3

5

Fig. 25. Peer Connectivity in Deterministic Overlay Mesh

38

Resource requests can be solved in the d-dimensional space using a simple algo-

rithm. The constraining resource for a given request is the resource which is quan-

titatively the greatest of the resources that cannot be served by the initial node.

Therefore, when the request is being forwarded in the mesh, it should always move

towards an increasing value in this dimension. A node can thus forward the request

to any neighbor as long as the neighbor has a higher availability of the constraining

resource for that request. In this way the request will not encounter a loop, and if

the resource tuple is available in the cooperative group, it will be found.

A complication that arises by coordinating nodes according to resource availabil-

ity is that when availability attributes change at a node, it must migrate in space.

This migration can be handled by making a special migration request which locates

the new neighbors for the migrating node. A migration request locates new neigh-

bors for a node a dimension at a time. The request is marked for a dimension, and is

routed as though that dimension were its constraining resource. The request thereby

finds the new neighbors in a dimension. As it is passed along, the request also keeps

track of encountered peers which are closest to the migrating node’s current resource

availability. This information can be used by the migrating node to locate neighbors

in other dimensions more quickly.

C. Extending Random Scheme with Deterministic Capabilities

The deterministic approach described in the previous section can be effective when

combined with the random resource location scheme. In fact, the random location

infrastructure is used by a node to locate nodes for its deterministic subgroup.

Whenever requests are forwarded randomly, a node can send along information

regarding its shared resources. Receiving nodes can compare this information to their

39

own, and make a decision as to whether the candidate node is an appropriate match.

Thus subgroup peers can be found in a globally random fashion.

In order to use the two schemes effectively, a simple layered hybrid protocol can

be used. As before, requests have some TTL for forwarding. Whenever the request is

received by a node which has the correct type of resources, but not enough available,

the request can traverse the deterministic layer for that node to attempt to find

the required resources. At any point nodes can switch back to the random search

mechanism. As before, requests fail when their TTL expires.

The deterministic extension does require added overhead due to the extra peer

information and updates that are required. This overhead is not substantial compared

to the existing overhead necessary for the overlay network used for random resource

location. Also, since peers can choose whether or not to participate in deterministic

subgroup(s), they can individually decide whether or not to accept the overhead. The

benefit of the extension is that requests can attempt to use the deterministic protocol

when system utilization is high. This hybrid approach also increases the ability of

nodes to locate rare resource tuples.

40

CHAPTER VI

SUMMARY AND CONCLUSIONS

Peer-to-peer networks are a plausible infrastructure for large scale systems. Their

lack of centralized control and limited state per node make them extremely scal-

able. Dynamic resource location is an important operation in any computing system.

Therefore, it is important to find an effective approach for resource location in large

scale peer-to-peer schemes.

Peer-to-peer systems rely on a variety of topologies for message routing. In order

to provide an efficient resource location scheme, this characteristic must be taken

into account. The research presented in this thesis analyzes the effect of topology

on random resource location. In particular, we concentrate on the fully connected

topologies obtained by using a hash based overlay network, and power-law distributed

topologies which occur in existing peer-to-peer systems. The results of our analysis

show that a fully connected topology provides improved request failure probabilities

as well as load balancing when compared to power-law distributed systems. The

benefits of the overlay network therefore outweigh the overhead of a hash based overlay

network.

After reaching and defending our conclusion, we take advantage of the necessary

overlay network to provide a deterministic extension to the random resource location

infrastructure. This extension uses the fact that random peers will talk to each

other during random resource location in order to build cooperative groups which

can deterministically locate resource tuples.

41

REFERENCES

[1] M. Mitzenmacher, “On the analysis of randomized load balancing schemes,”

in Proceedings of ACM Symposium on Parallel Algorithms and Architectures,

Newport, RI, June 1997, pp. 292–301.

[2] I. Clarke, O. Sandberg, B. Wiley, and T.W. Hong, “Freenet: A distributed

anonymous information storage and retrieval system,” in ICSI Workshop on

Design Issues in Anonymity, Berkeley, CA, July 2001, pp. 46–66.

[3] Clip2.com, “The Gnutella protocol specification v0.4,” 2000,

http://www9.limewire.com/developer/gnutella protocol 0.4.pdf

(accessed February 13, 2003).

[4] M. Ripeanu, “Peer-to-peer architecture case study: Gnutella network,” in

Proceedings of International Conference on Peer-to-Peer Computing, Linkoping,

Sweden, August 2001, pp. 99–100.

[5] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrishnan, “Chord:

A scalable peer-to-peer lookup service for internet applications,” in Proceedings

of ACM SIGCOMM, San Diego, CA, August 2001, pp. 149–160.

[6] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object loca-

tion and routing for large-scale peer-to-peer systems,” in Proceedings of the

IFIP/ACM International Conference on Distributed Systems Platforms, Heidel-

berg, Germany, November 2001, pp. 329–350.

[7] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A scalable

content-addressable network,” in Proceedings of ACM SIGCOMM, San Diego,

CA, August 2001, pp. 161–172.

42

[8] M. Balazinska, H. Balakrishnan, and D. Karger, “Ins/Twine: A scalable peer-to-

peer architecture for intentional resource discovery,” in International Conference

on Pervasive Computing, Zurich, Switzerland, August 2002, pp. 195–210.

[9] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley, “The design and

implementation of an intentional naming system,” in Symposium on Operating

Systems Principles, Charleston, SC, December 1999, pp. 186–201.

[10] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law relationships of

the internet topology,” in Proceedings of ACM SIGCOMM, Cambridge, MA,

August 1999, pp. 251–262.

[11] L. Adamic, R. Lukose, A. Puniyani, and B. Huberman, “Search in power-law

networks,” Physical Review E, vol. 64, pp. 46135–46143, October 2001.

[12] S. Sen and J. Wang, “Analyzing peer-to-peer traffic across large networks,” in

Internet Measurement Workshop, Marseille, France, November 2002, pp. 137–

150.

[13] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and replication in

unstructured peer-to-peer networks,” 2001,

http://citeseer.nj.nec.com/lv02search.html (accessed February 11, 2003).

[14] University of Newcastle Upon Tyne, “Javasim: User’s guide,”

http://javasim.ncl.ac.uk/manual/javasim.pdf (accessed February 17, 2003).

[15] J. Winick and S. Jamin, “Inet-3.0: Internet topology generator,”

http://topology.eecs.umich.edu/inet/inet-3.0.pdf (accessed February 17, 2003).

[16] A. Iamnitchi, I. Foster, and D. Nurmi, “A peer-to-peer approach to resource

discovery in grid environments,” in IEEE International Symposium on High

43

Performance Distributed Computing, Edinburgh, Scotland, July 2002, p. 419.

Supplemental Sources Consulted

D. Bertsekas and R. Gallager, Data Networks, 2nd edition, Upper Saddle River, NJ:

Prentice Hall, 1992.

D. Tang, K. Chang, C.and Tanaka, and M. Baker, “Resource discovery in ad hoc

networks,” Tech. Rep. CSL-TR-98-769, Stanford University, Stanford, CA, August

1998.

K. Trivedi, Probability and Statistics with Reliability , Queuing and Computer

Science Applications, 2nd edition, New York, NY: Wiley-Interscience, 2002.

44

VITA

Ripal Babubhai Nathuji currently resides at 6503 Pecan Acres Drive in Leon

Valley, TX 78240. He received his B.S. in electrical engineering and computer science

from the Massachusetts Insitute of Technology in May, 2001.

The typist for this thesis was Ripal Babubhai Nathuji.

