

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

INSTITUTO DE MATEMÁTICA

CURSO DE BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO

INGRID QUINTANILHA PACHECO

ETL4PROFILING: extending ETL4LOD to analyze datasets completeness – A DBpedia Case
Study

RIO DE JANEIRO

2020

INGRID QUINTANILHA PACHECO

ETL4PROFILING: extending ETL4LOD to analyze datasets completeness – A DBpedia Case
Study

Trabalho de conclusão de curso de
graduação apresentado ao Departamento de
Ciência da Computação da Universidade
Federal do Rio de Janeiro como parte dos
requisitos para obtenção do grau de Bacharel
em Ciência da Computação.

Orientadora: Profa. Maria Luiza Machado
Campos

RIO DE JANEIRO

2020

INGRID QUINTANILHA PACHECO

ETL4PROFILING: extending ETL4LOD to analyze datasets completeness – A DBpedia Case
Study

Trabalho de conclusão de curso de graduação
apresentado ao Departamento de Ciência da
Computação da Universidade Federal do Rio de
Janeiro como parte dos requisitos para obtenção do
grau de Bacharel em Ciência da Computação.

Aprovado em 28 de Outubro de 2020.

BANCA EXAMINADORA:

Maria Luiza Machado Campos, Ph.D. (UFRJ)

Participação por videoconferência

João Luiz Rebelo Moreira, Ph.D. (University of Twente)\

Participação por videoconferência

Giseli Rabello Lopes, D.Sc (UFRJ)

Participação por videoconferência

Jean Gabriel Nguema Ngomo, M.Sc (UFRJ)

To my family, who always supported
me in the hardest times.

ACKNOWLEDGEMENTS

I would like to thank my astonishing advisor Maria Luiza, who helped me in the elaboration of
this project and encouraged me to proceed in my studies, even when all I had were doubts.
Moreover, would like to thank Giseli Rabello Lopes for introducing me to InformAÇÃO, where
I first had the chance to work with semantic web and felt in love for it. Thank you to Jean-
Gabriel Nguema, for sharing his knowledge and guiding my way through Pentaho and DBpedia,
becoming an excellent teacher to me. Thank you to every person who participated in this study.
Thank you to God, for giving me hope when I almost gave up for thinking I wasn’t good
enough. Lastly, I would like to thank my family, my boyfriend and my friends, who kept me in
place and cheered for me through my entire undergraduate course.

‘So, linked data -- it is huge. I've only
told you a very small number of things There

are data in every aspect of our lives, every
aspect of work and pleasure, and it is not just

about the number of places where data comes,
it is about connecting it together. And when

you connect data together, you get power in a
way that doesn't happen just with the Web,

with documents. You get this really huge
power out of it.’

Tim Berners-Lee

RESUMO

 À medida que a quantidade de dados no mundo cresce, é importante mantê-los
acessíveis e usáveis, ao mesmo tempo que corretos e confiáveis. Além disso, o princípio R1
(Reuse)1 da FAIR argumenta que é mais fácil encontrar e reusar dados se eles tiverem muitos
rótulos atrelados a eles, considerando que ter uma boa qualidade de dados é essencial para
qualquer repositório quando se trata de apoiar a sua abertura e reuso. Desta forma, o presente
estudo tem a intenção de analisar as atuais condições de diversos conjuntos de dados, com um
foco especial para a DBpedia, um projeto aberto que serve como um hub central na nuvem de
dados conectados (Linked Open Data Cloud). Apesar de possuir mais de seis milhões de dados
estruturados e seu grande uso para pesquisas e processos de aprendizado de máquina, ela
contém muitos dados incompletos e recursos classificados erroneamente, o que dificulta a sua
abertura e uso em projetos externos. A pesquisa é então baseada na extensão dos plugins
ETL4LOD para análise de diferentes versões da DBpedia através de seus templates, fazendo
uma caracterização ou perfil dos dados (Data Profiling) detalhado dos mesmos. Através dessa
análise foi possível encontrar, dentre outras informações, a completude de 58.3% dos munícios
brasileiros na DBpedia pt em comparação a 97.3% das cidades do Japão na DBpedia ja.
Resumindo, apesar da DBpedia ser importante para os dados conectados, ela ainda apresenta
dados incompletos, principalmente na versão portuguesa, que precisam ser trabalhados a fim
de ajudar o repositório a se tornar mais completo e consequentemente apoiar o seu reuso em
pesquisas e projetos futuros.

Palavras-chave: DBpedia. Dados Abertos Conectados. Data Profiling. ETL4LOD. FAIR.

1 https://www.go-fair.org/fair-principles/r1-metadata-richly-described-plurality-accurate-relevant-attributes/

ABSTRACT

As the amount of data in the world increases, it is important to keep them accessible and
usable, whereas accurate and trustworthy. Moreover, the FAIR principle R1 (Reuse) discusses
that it is much easier to find and reuse data if there are many labels attached to them, considering
that having a good data quality is essential to any repository when it comes to supporting their
openness and reuse. Therefore, the present study has the intention of analyzing the current
conditions of several datasets, with a special focus on DBpedia, an open source project that
serves as a central hub in Linked Open Data Cloud. Although it has over six million structured
data and its huge use for researches and processes of machine learning, it contains many
incomplete data and wrong classified resources, which makes it difficult to open and use in
external projects. Hence, the research is based on the extension of ETL4LOD plugins to analyze
different versions of DBpedia through their templates, making a deeper Data Profiling of the
mentioned dataset. From this analysis it was possible to find, among other information, the
completeness of 58.3% from the Brazilian counties in DBpedia pt in comparison to 97.3% from
the Japanese cities in DBpedia ja. To sum up, even though DBpedia is important to linked data,
it still has incomplete data, especially in the portuguese version, that need to be treated aiming
to help the repository to become more complete and consequently to support its reuse for future
researches and projects.

Keywords: DBpedia. Linked Open data. Data Profiling. ETL4LOD. FAIR.

LIST OF FIGURES

Figure 1 - RDF Structure. Source: https://medium.com/@atakanguney94/introduction-to-

resource-description-framework-and-sparql-rdf-101-5857f4a6a8a6 21

Figure 2 - Informal graph of the same triples. Source: https://dvcs.w3.org/hg/rdf/raw-

file/tip/rdf-primer/Overview.html .. 22

Figure 3 - Example of an RDF structure with triples. Source: https://dvcs.w3.org/hg/rdf/raw-

file/tip/rdf-primer/Overview.html .. 23

Figure 4 - Vocabulary as a simple collection of well-defined terms 23

Figure 5 - SPARQL query running on DBpedia .. 24

Figure 6 - Query's result .. 25

Figure 7 - DBpedia ontology ... 26

Figure 8 - 5-star deployment scheme for Open Data. Source:

https://www.w3.org/DesignIssues/LinkedData.html .. 27

Figure 9 - LOD Cloud updated version. Source: https://lod-cloud.net/versions/2020-07-

27/lod-cloud.png ... 29

Figure 10 - SPARQL query that searches all presidents that are catholic in the Portuguese

DBpedia. Source: http://pt.dbpedia.org/exemplos/ ... 30

Figure 11 - DBpedia extraction framework. Source: http://jens-

lehmann.org/files/2015/swj_dbpedia.pdf ... 31

Figure 12 - Algarve Wikipedia infobox. Source: https://en.wikipedia.org/wiki/Algarve32

Figure 13 - Algarve Wikipedia Source Code. Source:

https://en.wikipedia.org/w/index.php?title=Algarve&action=edit 32

Figure 14 - Example of Abstract Syntax Tree. Source:

https://www.researchgate.net/publication/263218121_Romanian2SPARQL_A_Grammat

ical_Framework_approach_for_querying_Linked_Data_in_Romanian_language 33

Figure 15 - Template mapping syntax. Source:

http://mappings.dbpedia.org/index.php/How_to_edit_DBpedia_Mappings 34

Figure 16 - Possible interconnections between Plugins .. 47

Figure 17 - Get DBpedia Data plugin .. 48

Figure 18 - SPARQL query to get resources from template ... 49

Figure 19 - Template Property Analyzer receiving previous step's outputs 50

Figure 20 - Template Resource Analyzer receiving DBpedia fields 51

Figure 21 - Resource Properties Analyzer receiving DBpedia fields 52

Figure 22 - Property Analyzer receiving DBpedia fields ... 53

Figure 23 - Template Resource Input Analyzer receiving the input file with Brazilian states

 ... 54

Figure 24 - Resource Input Analyzer receiving input file .. 55

Figure 25 - DBpedia Triplification receiving DBpedia fields 56

Figure 26 - Inner Profiling receiving previous step's fields .. 57

Figure 27 - Merge Profiling receiving datasets .. 59

Figure 28 - Get Template Properties in Kettle ... 63

Figure 29 - Group by used to group data previously found .. 63

Figure 30 - Merge join used to merge template properties and resources properties 64

Figure 31 - Template Resource Analyzer used to get resources completeness percentages

 ... 64

Figure 32 - Resources sorted in descending order by their completeness percentages .. 65

Figure 33 - Japanese resources sorted in descending order .. 66

Figure 34 - Necessary transformations to use Template Property Analyzer 67

Figure 35 - Properties sorted in descending order by their completeness percentages .. 68

Figure 36 - Sorted properties for Japanese template .. 69

Figure 37 - Kettle entire flow diagram .. 70

Figure 38 - Resource Properties Analyzer result .. 70

Figure 39 - Resource Properties Analyzer’s spreadsheet with São Mateus do Sul’ missing

properties .. 71

Figure 40 - Resource Properties Analyzer’s spreadsheet with 武雄市’ missing properties

 ... 71

Figure 41 - Resource Properties Analyzer’s spreadsheet with 能代市’ missing properties

 ... 71

Figure 42 - Property Analyzer’s spreadsheet with resources that do not have “mesorregião”

 ... 72

Figure 43 - Property Analyzer’s spreadsheet with resources where “画像” is not inside73

Figure 44 - Template Resource Input Analyzer in Kettle workflow 73

Figure 45 - Template Resource Input Analyzer’s report file with Brazilian counties

completeness percentage ... 74

Figure 46 - Template Resource Input Analyzer’s report file with not mapped Brazilian

counties that are not in DBpedia .. 75

Figure 47 - Template Resource Input Analyzer’s report file with Japanese cities that are not in

DBpedia and completeness percentage .. 76

Figure 48 - Resource Input Analyzer’s report file with Brazilian counties properties that are

missing in the input ... 78

Figure 49 - Resource Input Analyzer’s report file with Japanese cities’ properties that are

missing in the input ... 78

Figure 50 - Flow to get completeness between resources ... 79

Figure 51 - Brazilian counties triplified ... 79

Figure 52 - Japanese counties triplified ... 80

Figure 53 - Inner Profiling showing missing predicates for Brazilian template 81

Figure 54 - Inner Profiling showing missing predicates for Japanese template............. 81

Figure 55 - Kettle flow to analyze COVID-19's data ... 82

Figure 56 - Original Harvard data ... 83

Figure 57 - Transformed data .. 84

Figure 58 - Merge Profiling result ... 84

Figure 59 - Original Harvard Japan's data ... 85

Figure 60 - Merge Profiling result for Brazilian dataset considering Japanese dataset.. 86

Figure 61 - Merge Profiling result of Harvard data considering Open DataSUS 87

Figure 62 - Merge Profiling report file showing that values from both Open DataSUS and

Harvard are the same ... 87

Figure 63 - SPARQL query to get resources with specific words in the comment........ 93

Figure 64 - SPARQL query searching for a resource with the literal value found in “estado”

 ... 95

Graph 1 - Worst Brazilian cities resources .. 89

LIST OF TABLES

Table 1: 5-star deployment scheme description ... 27

Table 2: Data profiling main use cases .. 37

Table 3: Grouping plugins by ontologies they analyze .. 46

Table 4: Grouping plugins by functions .. 46

LIST OF ACRONYMS

BBC – British Broadcasting Corporation

COBOL – COmmon Business Oriented Language

CSV – Comma-separated Values

EOSC – European Open Science Cloud

ETL – Extract, Transform and Load

EU – European Union

FAIR – Findable, Accessible, Interoperable and Reusable

IBGE – Instituto Brasileiro de Geografia e Estatística

IBICT – Instituto Brasileiro de Informação em Ciência e Tecnologia

IBM – International Business Machines Corporation

ICICT – Institute of Communication and Scientific and Technological Information in Health

IFDS – Internet of FAIR Data and Services

IN – Implementation Network

IPUMS – Integrated Public Use Microdata Series

LOD – Linked Open Data

RDF – Resource Description Framework

SPARQL – SPARQL Protocol and RDF Query Language

TXT – Text

URI - Universal Resource Identifier

URL – Uniform Resource Locator

TABLE OF CONTENTS

1 INTRODUCTION ... 16

1.1 MOTIVATION ... 17

1.2 OBJECTIVE ... 18

1.3 CONTRIBUTION ... 18

1.4 STRUCTURE ... 19

2 LITERATURE REVIEW .. 20

2.1 SEMANTIC WEB AND LINKED DATA ... 20

2.1.1 Basic Concepts.. 20

2.1.2 Resource Description Framework - RDF .. 21

2.1.3 Vocabularies and ontologies .. 23

2.1.3.1 Vocabularies ... 23

2.1.3.2 Ontologies ... 23

2.1.4 SPARQL Protocol and RDF Query Language - SPARQL 24

2.1.5 Ontology Web Language - OWL ... 25

2.1.6 Linked Data .. 26

2.2 DBPEDIA STRUCTURE .. 29

2.3 FAIR DATA PRINCIPLES ... 34

2.4 DATA PROFILING .. 37

2.5 ETL4LOD ... 38

2.6 RELATED WORD ... 40

3 ETL4PROFILING ... 42

3.1 FAIR ANALYSIS ... 42

3.2 DBPEDIA ANALYSIS ... 42

3.3 ETL4PROFILING FIRST STEPS ... 43

3.4 TOOLS USED IN THE IMPLEMENTATION .. 44

3.4.1 JSoup .. 44

3.4.2 Apache Maven .. 45

3.4.3 Apache Jena ... 45

3.5 ETL4PROFILING PLUGINS ... 45

3.5.1 Get DBpedia Data .. 47

3.5.2 Template Property Analyzer ... 49

3.5.3 Template Resource Analyzer ... 50

3.5.4 Resource Properties Analyzer ... 51

3.5.5 Property Analyzer .. 52

3.5.6 Template Resource Input Analyzer ... 53

3.5.7 Resource Input Analyzer ... 54

3.5.8 DBpedia Triplification ... 56

3.5.9 Inner Profiling .. 57

3.5.10 Merge Profiling .. 58

4 APPLICATION EXAMPLES ... 61

4.1 COUNTIES .. 61

4.1.1 Overview ... 61

4.1.2 Templates data ... 62

4.1.3 Getting DBpedia completeness statistics ... 62

4.1.3.1 Get DBpedia Data ... 62

4.1.3.2 Primary transformations .. 63

4.1.3.3 Template Resource Analyzer ... 64

4.1.3.4 Template Property Analyzer .. 67

4.1.3.5 Second transformations ... 69

4.1.3.6 Resource Properties Analyzer .. 70

4.1.3.7 Property Analyzer ... 72

4.1.4 Checking the template resources ... 73

4.1.4.1 Template Resource Input Analyzer .. 74

4.1.4.2 Resource Input Analyzer ... 77

4.1.5 Completeness between resources ... 78

4.1.5.1 DBpedia Triplification .. 79

4.1.5.2 Inner Profiling ... 80

4.2 COVID-19 DATASETS .. 82

4.2.1 Comparing Brazilian values .. 83

4.2.2 Comparing different countries .. 85

4.2.3 Comparing different repositories .. 86

4.3 FINAL CONSIDERATIONS .. 87

5 CONCLUSIONS .. 89

5.1 DIFICULTIES FOUND .. 90

5.1.1 Decide the work course .. 90

5.1.2 Pentaho and its plugins documentation... 91

5.1.3 Tests .. 92

5.2 FUTURE WORK .. 93

5.2.1 Template Property Analyzer and Template Resource Analyzer 94

5.2.2 Resource Properties Analyzer ... 95

5.2.3 Property Analyzer .. 95

5.2.4 Template Resource Input Analyzer ... 95

5.2.5 Resource Input Analyzer ... 96

5.2.6 Inner Profiling and Merge Profiling ... 96

5.2.7 Maintenance ... 96

REFERENCES ... 97

APPENDIX A – WEB SCRAPER IN DBPEDIA MAPPING PAGE. 100

APPENDIX B – WEB SCRAPER IN RESOURCE PAGE. 101

16

1 INTRODUCTION

It is unquestionable that humanity is becoming more digitally influenced as time

progresses. Daily, an enormous volume of information is produced, transferred, and saved in

computers and equipments of all kinds around the world. Among the circulating data, those

motivating this work are known as Open Data.

 The second decade of the 2000s was marked by the exponential growth of the digital

sector and the management of virtual information. According to the International Data

Corporation (2012), Big Data enterprises are on the rise since 2012, demonstrating the potential

and value of the mentioned sector. Moreover, whereas the digital universe held 1227 exabytes

back in 2010, it is estimated to reach 40000 exabytes by the end of the year 2020, all due to the

burst in the amount of circulating data in the world.

 A way to understand the emergence of an abundance of data is by analyzing its

definition. Regarding the concept of data, the Merriam-Webster dictionary (2019) discusses

that it is any and all information that holds any use and, in this case, that shows itself in the

digital format, capable of being processed and spread. Therefore, it is understandable that the

growth is due to the fact that never before so many digital resources have been captured and

stored. For instance, cameras, microphones, and sensors of all kinds generate and collect data,

while sites and companies create registers and files that are sent everywhere.

 Once defined what is data and its value to the contemporaneous society, the focus moves

back to open data, the specific type of data addressed in this work.

 According to the definition presented in the Portal Brasileiro de Dados Abertos2, “data

is considered open when anyone can freely access it, use it, modify it and share it for any

purpose, being subjected to the requirements that aims the preservation of provenance and

openness.”

 This way, it is comprehensible the meaningful value open data has to society. As

discussed by the Open Knowledge Portal3, it promotes transparency, a fundamental principle

to the association between citizens and the government, boosts the creation of new business, as

2 http://dados.gov.br/pagina/dados-
abertos#:~:text=dados%20s%C3%A3o%20abertos%20quando%20qualquer,sua%20proveni%C3%AAncia%20e
%20sua%20abertura.&text=Os%20dados%20abertos%20tamb%C3%A9m%20s%C3%A3o%20pautados%20pel
as%20tr%C3%AAs%20leis%20e%20oito%20princ%C3%ADpios.

3 https://okfn.org/opendata/why-open-data/

17

all kinds of business need information to support their decision processes, and, finally, foster

greater engagement between organizations and the public.

1.1 MOTIVATION

The Open Data Barometer4, a global measurement created by the World Wide Web

Foundation with the support of the Omidyar Network, stated, in a survey conducted in 2016

with 115 countries and jurisdictions, that nine out of ten government datasets were not open, a

decrease from 10 to 7% in a year in the amount of data that were fully open, and likewise a

decrease in those that were machine-readable.

Moreover, less than 31% of the published datasets discovered in the research had basic

metadata or some supportive documentation. These information help to enlighten some major

issues considering open data: they are either not open to the public, incomplete or in formats

that hamper their usage in a range of applications.

One of the cases in Brazil, for instance, is the so-called Dirty List of Slave Labor,

released by the Brazilian Government on some occasions in limited media formats that make it

difficult to process or to have information extracted from them.

 Intending to mitigate these adversities, the GO FAIR6 initiative emerged in 2017 in

Europe. It aims to implement a global internet of FAIR services and data worldwide, following

a set of principles to guarantee that data are findable, accessible, interoperable, and reusable

(WILKINSON, Mark D. et al., 2016), using metadata as their primary tool of assessment.

Furthermore, there is a supporting process to generate FAIR data and metadata called

FAIRification (JACOBSEN, Annika et al., 2020). It has been so widely recognized that many

institutions in Brazil have been discussing their strategies to evolve research data according to

FAIR principles, for instance, the GO FAIR Brazil Network and the GO FAIR Brazil Health

Network, coordinated by the Brazilian Institute of Information in Science and Technology

(IBICT) and Oswaldo Cruz Foundation (FIOCRUZ), respectively.

FAIR principles focus on openness, reuse and accessibility of data, therefore, sharing

new data with a good quality is essential, especially when it comes to research material.

 One of the groups dedicated to reverse the situation, by opening, cataloging, and

facilitating access to data is DBpedia, an open source project founded between 2006 and 2007

4 https://opendatabarometer.org/4thedition/report/#findings_recommendations
6 https://www.go-fair.org/

18

to create and provide public access to structured data, supporting queries and searches over its

properties and relationships. It serves as a central hub in the Linked Open Data Cloud, by

extracting Wikipedia data and allowing them to be related to other databases.

However, despite being an extremely important initiative due to its value for researches

and processes of machine learning, natural language processing and the semantic Web, the base

is neither stable in terms of consistency nor in terms of completeness of its published data.

Some identified problems include inconsistencies of categories, redundancies and erroneous

conceptualization of some resources.

1.2 OBJECTIVE

Since the main objective of this study is to help datasets become more reliable for

storing scientific data, it focusses on punctuating their critical points, providing a detailed report

about the findings. Moreover, it uses DBpedia as the main case study due to its tremendous

contribution to the LOD Cloud.

A data profiling process allows the user to more easily find the main spots that need

attention in a dataset and to know where to start improving its quality. It also helps the user to

provide more accurate data when submitting them to any transformation process, as, for

example, to generate and annotate linked data, checking the accuracy and completeness before

inserting them in a triple store or a repository. That way, more universities and institutions will

feel safe to use them to store their research results and make their connections richer,

encouraging the opening of data and facilitating their reuse.

To sum up, the goals this thesis aims to stand out about the datasets are:

• Point out their required improvements;

• Return statistics about their current data;

• Find correlation between different references concerning the same data;

• Compare distinct versions inside them to know what is missing in each;

1.3 CONTRIBUTION

19

The primary contribution was a framework called ETL4Profiling, based on the ETL

(Extract, Transform and Load) workflow. It was implemented on Kettle (Pentaho Data

Integration8) and had the intention of analyzing diverse datasets in terms of their completeness.

The set has 8 plugins focused on evaluating DBpedia data and other 2 considered to be

the first steps to a general evaluation of datasets. While the first gets and compares data using

the template properties and resources as references, the second uses the datasets models to

perform the comparisons.

Later, to confirm their performances two experiments were created, putting the plugins

to test in a practical approach. First, two versions of DBpedia were compared, Portuguese and

Japanese, finding their correlations. As a result, DBpedia pt was slightly worse than the

Japanese when it comes to each resource/property quality, but better regarding the template

completeness.

At last, the Harvard and Open DataSUS datasets were compared, enlightening the

missing properties from the first with reference to the second, leading to a completeness of

60%.

1.4 STRUCTURE

This introduction included basic concepts and topics about the area, such as semantic

Web, LOD, open data, DBpedia and the FAIR principles, as well as the motivation behind this

work and the implemented solution: ETL4Profiling.

In Chapter 2, a contextualization of the literature used in this project is presented, by

showing the most important concepts and explaining them in details.

Chapter 3 goes deeper into the technicalities of the proposed plugins, describing more

about the initial steps of the process and even the specifications of each.

Chapter 4 exemplifies the usage of each plugin in real applications, showing the results

obtained when applying them in DBpedia and some COVID-19 related datasets.

Finally, in Chapter 5, a conclusion is presented, including major discoveries, difficulties

found, and future work.

8 https://community.hitachivantara.com/s/article/data-integration-kettle

20

2 LITERATURE REVIEW

Because of the expansion of open data, there is a rising concern about the data quality

around the world. Some initiatives are gaining weight and investigating how to improve what

already exists and what is being created.

First of all, it is important to review and analyze some concepts and models that deal

with these issues and how they are evolving.

2.1 SEMANTIC WEB AND LINKED DATA

2.1.1 Basic Concepts

It comes as no surprise that, over time, the amount of data available on the Web has

grown enormously. Although this is positive due to the wide variety of information it provides,

it ends up becoming meaningless if some attention to their quality is not taken, considering that

the Web’s current data is designed for humans to read, not computers, as mentioned by Tim

Berners-Lee, Hendler and Lassila in the article “The Semantic Web” (2001).

The Semantic Web gives meaning for the contents on the Web, in a way that software

agents can read, understand and work on them, carrying out sophisticated tasks for users.

Moreover, it is important to mention that the Semantic Web is an extension of the Web, in

which meaning is attributed to information, allowing humans and computers to work together.

According to Ismail and Shaikh (2016), the Semantic Web tries to classify its data based

on different topics and associate meaning to them, aiming to help both in human and machine

understanding. Furthermore, as Hendler, Berners-Lee and Miller (2002) mention, it is based on

the idea of having a Web where data is available, interlinked and well-defined in a way that

they can be discovered and used by other software, reaching the World Wide Web’s universal

potential.

Besides, the World Wide Web Consortium (W3C)9 specifies that they are helping in the

development of technologies to support the “Web of data”, data that you find in databases. For

W3C, Semantic Web refers to their vision of linked data, which will be discussed in the

following part. In addition, some technologies were created aiming to enable people to create

9 https://www.w3.org/standards/semanticweb/

21

data stores on the Web and build vocabularies, such as RDF, SPARQL, and OWL (W3C,

2015?), which will also be explained in the next sections.

2.1.2 Resource Description Framework - RDF

RDF is a data interchange specification that occurs on the Web (a standard model),

created by W3C (W3C, 2014). It is used as a method for conceptual description or information

modeling but does not specify what that information means. As RDF allows data to fit in a

determined pattern (standard), it can be easily interconnected to other data, making it simple to

integrate them. Moreover, any kind of data, regardless of format, can be converted into RDF.

The first release was in 2004 by W3C and was called RDF 1.0. The newest version was

published in 2004, the RDF 1.1.

It forms a labeled graph, where the edges represent the link between two resources. This

uniform structure connects all the data through triplets (subject, predicate, and object/literal) as

shown in figure 1.

In the statement "The Mona Lisa was created by Leonardo Da Vinci" the subject is “The

Mona Lisa”. The relationship she has, that is, the predicate, is that she was created by someone,

and the object is Leonardo da Vinci, which is another subject (figure 2). Objects can be literal

values, such as birthdates, or even other subjects. This structure makes it easy to navigate

between different data and find their metadata through queries.

Figure 1 - RDF Structure. Source: https://medium.com/@atakanguney94/introduction-to-resource-description-

framework-and-sparql-rdf-101-5857f4a6a8a6

22

Figure 2 - Informal graph of the same triples. Source: https://dvcs.w3.org/hg/rdf/raw-file/tip/rdf-

primer/Overview.html

Taking a better look at each part of the triple, three types of RDF data can appear: IRIs,

literals and blank nodes (WORLD WIDE WEB CONSORTIUM et al., 2014).

IRI is short for “International Resource Identifier”, which is a generalization of URI

(Uniform Resource Identifier). It can appear in all possible positions of the triple and can be

used to identify both documents and things, for instance,

http://dbpedia.org/resource/Leonardo_da_Vinci is Leonardo da Vinci’s IRI on DBpedia.

Literals are, as the name describes, literal values. They can be either strings, dates, or

numbers, that do not have any other connection. They can only appear in the object position

and can optionally be associated with a language tag, for example, “Léonard de Vince”@fr.

Lastly, blank nodes are used to mention resources without having to use an identifier. It

can be placed in the subject or object positions and, briefly, represent something without saying

its value.

There are several different serialization formats of RDF. Some of them are Turtle, N-

triples (used to triplify DBpedia), N-Quads, JSON-LD, Notation3, RDF/XML, and RDF/JSON.

Taking into consideration the structure in figure 3 it would be possible to create a

SPARQL query to find people who are interested in paintings by Leonardo Da Vinci, which

would return Bob as the answer.

23

Figure 3 - Example of an RDF structure with triples. Source: https://dvcs.w3.org/hg/rdf/raw-file/tip/rdf-

primer/Overview.html

2.1.3 Vocabularies and ontologies

Both vocabularies and ontologies, in the Semantic Web, give meaning to resources, but

in a different context. They are correlated concepts that aggregate different connotation to their

terms.

In addition, vocabularies are computer-readable and have URIs that match terms and

descriptions, while ontologies are more than just a vocabulary, with hierarchies and relations

between concepts, representing a domain conceptualization (TAYE, Mohammad M., 2010).

This way, it is possible to find and classify data by their terms and concepts.

2.1.3.1 Vocabularies

Vocabularies are well-defined terms used in communication (figure 4). They should not

be redundant, and if so, not without explicitly declaring and identifying the redundancy.

Moreover, they are expected to have consistent meaning in all contexts. (HEBELER, John et

al., 2009, p. 99).

Figure 4 - Vocabulary as a simple collection of well-defined terms

It is important to note that RDF triples on their own do not capture the meaning of the

information and, therefore, a vocabulary describing the classes of resources consistently is

required.

2.1.3.2 Ontologies

24

Ontologies use vocabularies’ terms to define concepts and relations between them

(HEBELER, John et al., 2009, p. 100). They are usually mentioned as a well-defined model

(logic-based) for describing a knowledge domain.

In its oldest definition, Ontology comes from a branch in philosophy that studies the

nature of existence and the structure of reality (JACOB, 2003). Taking into consideration the

Semantic Web field, ontology would identify the partial conceptualization of a shared given

knowledge domain (JACOB, 2003).

Ontology, then, describes the domain, properties, and relations between concepts,

becoming fuller and more expressive than vocabularies.

On top of that, there are plenty of relevant ontologies on the Web, being DBpedia’s, one

of them. It contains more than 5 million resources just in its English version, divided into

classes, and described by different properties. This information confirms its relevance for this

research, the reason why it became its main case study.

2.1.4 SPARQL Protocol and RDF Query Language - SPARQL

In the Semantic Web, SPARQL is the language used to search and manipulate RDF data

in the Web of Data.

SPARQL queries are based on triples (figure 5). They provide some searches inside the

RDF and return all triples that match them.

Figure 5 - SPARQL query running on DBpedia

Regarding how the language works, it consists of a simple structure with two clauses:

SELECT and WHERE. SELECT identifies what is going to appear in the results and WHERE

is the pattern that should match the triples.

In the following example, the SPARQL query is running on DBpedia13, aiming to get

all resources with occupation “politician” that have Brazil as nationality and that have a

13 http://dbpedia.org

25

Portuguese label (FILTER parameter). It, then, as a result, returns both the URI and the name

of the resources found (figure 6).

Figure 6 - Query's result

2.1.5 Ontology Web Language - OWL

 The Ontology Web Language (OWL) is a Semantic Web language created to define

complex and complete ontologies (W3C, 2012). It is a language understood by computers, in a

way they can verify the consistency of the knowledge. Their documents, called ontologies, can

be referred and refer to other OWL ontologies.

 It became a W3C recommendation in 2004, after three years invested in its research and

development (HEBELER, John et al., 2009). Later, it had its second version, known as OWL

2, published in 2009, with a Second Edition in 2012.

 As OWL is based on RDF, there is no difference between the ontology and the data it

describes. They contain three main semantic building blocks: classes (a set of resources),

individuals (any resource inside a class), and properties (used to describe a resource)

(HEBELER, John et al., 2009). An example to illustrate is DBpedia ontology in figure 7.

Furthermore, they can optionally contain headers, that describe the resources. Headers usually

contain comments, labels, information about the version, and import statements.

26

Figure 7 - DBpedia ontology

Additionally, OWL’s vocabulary is defined in the namespace

http://www.w3.org/2002/07/owl, identified by the prefix owl. Concerning its newest version,

the namespace was maintained.

2.1.6 Linked Data

Despite the indisputable benefits the Web brought, it is a bit surprising that the same

principles used for its growth were not applied to data until a decade ago. (BERNERS-LEE et

al., 2009). Before that, data published on the Web were only available in raw formats, such as

CSV, XML, or even HTML tables, making it harder to read and understand its semantic and

structure.

It is important to note that as being the most concrete application of the Web of Data,

linked data refer to published data in a way they can be machine-readable, have a defined

meaning, and are linked to external datasets, even having the possibility that other datasets are

linked to them as well. As Tim Berners-Lee mentions in his TED speech in 2009:

Data is relationships. Interestingly, data is relationships. This person was born in
Berlin; Berlin is in Germany. And when it has relationships, whenever it expresses
a relationship then the other thing that it's related to is given one of those names that
starts HTTP. So, I can go ahead and look that thing up. So I look up a person -- I
can look up then the city where they were born; then I can look up the region it's in,
and the town it's in, and the population of it, and so on. So I can browse this
stuff. (BERNERS-LEE, Tim, 2009)

27

 Unlike the Web of hypertext, where relations between documents are built from

hypertext documents written in HTML, in linked data they create links between things

described by RDF. Moreover, there are four main rules data must follow to ensure their sharing

and data interconnection (BERNERS-LEE, 2009):

1. Use URIs as names (identifier);

2. Use HTTP URIs so that people can search these resources with their identifiers;

3. Provide useful information when someone looks up an URI, using RDF and

SPARQL standards;

4. Include links to other URIs, to enable the discovery of related resources.

 Unfortunately, even though some organizations have made their data available since the

publication of linked data, many of them did not have a good quality. With this mindset, in

2010, Tim Berners-Lee developed the 5-star deployment scheme for open data, shown in figure

8 and described in table 1.

Figure 8 - 5-star deployment scheme for Open Data. Source: https://www.w3.org/DesignIssues/LinkedData.html

Table 1: 5-star deployment scheme description

LEVEL DESCRIPTION

⭐ Available on the Web in any format under an open license

⭐⭐ Available as structured data (machine-readable)

⭐⭐⭐ Available in a non-property open format (CSV)

⭐⭐⭐⭐ Use URI to describe resources (open standards from W3C), so that people can point at them

28

⭐⭐⭐⭐⭐ All the previous + Link data to other’s people data (to give context)

Source: 5 Star Open Data website15

As seen in figure 8, the best format (5 stars) is Linked Open Data (LOD). LOD is linked

data that is published under an open license, making it possible to be reused freely.

The biggest representation of LOD is the Linked Open Data Cloud16, that shows datasets

that were published following the linked data principles. It contained, in May 2020, 1260

datasets with 16187 links. Furthermore, it stores all released versions since 2007, when it had

only 12 datasets.

In addition, the LOD Cloud maintainers allow users to contribute to the diagram by

adding a new dataset to the cloud. The users datasets must follow both the linked data and the

cloud principles:

1. They must begin with http:// or https://;

2. They must resolve, with or without content negotiation, to one of the RDF

formats;

3. They must contain at least 1000 triples;

4. They must be connected through RDF links to a dataset that is already in the

LOD Cloud, and must contain at least 50 links;

5. Their access must be viable via RDF crawling, RDF dump or SPARQL endpoint;

15 https://5stardata.info/en/
16 https://lod-cloud.net/#about

29

Figure 9 - LOD Cloud updated version. Source: https://lod-cloud.net/versions/2020-07-27/lod-cloud.png

 In the newest version of the LOD Cloud (figure 9) it is clear the abundance of datasets

and links. Plenty of them are linked in tangled connections, but there is one repository that

stands out, the main hub, DBpedia.

2.2 DBPEDIA STRUCTURE

DBpedia began as a project by researchers from Mannheim and Leipzig universities18.

They already had the idea of a free, open, and reliable data repository. Thus, they planned to

extract structured data from Wikipedia, since it does not only contain free text but also

structured data in infoboxes, with tables, lists, and others.

18 https://wiki.dbpedia.org/about/dbpedia-community

30

In July 202019, Wikipedia was the 14th most popular website according to alexa.com,

known worldwide and a big example of collaborative content. It has more than 200 editions in

different languages that range in size from hundreds to millions of articles, as the English

version, its widest version (MORSEY, Mohamed et al., 2012).

Although the amount of data is huge, its search engine is not extremely developed and

finding an article, or a specific page may be difficult. As it only has textual search, it is hard to

find more structured or complex data, for instance, the list of countries that have more than 100

million inhabitants.

DBpedia, otherwise, provides a way to find this, structuring the data extracted from

Wikipedia, and, hence, being able to answer more expressive queries, such as the list of catholic

presidents (figure 10).

Figure 10 - SPARQL query that searches all presidents that are catholic in the Portuguese DBpedia. Source:

http://pt.dbpedia.org/exemplos/

It was released to the public in 2007, allowing users to query linkages between various

Wikipedia pages. DBpedia would soon become one of the most famous and biggest parts of the

decentralized linked data effort, as mentioned by Tim Berners Lee in a TED Talk in 2009.

So he wrote a program to take the data, extract it from Wikipedia, and put it
into a blob of linked data on the Web, which he called DBpedia. DBpedia is
represented by the blue blob in the middle of this slide and if you actually go
and look up Berlin, you'll find that there are other blobs of data which also
have stuff about Berlin, and they are linked together. So if you pull the data
from DBpedia about Berlin, you'll end up pulling up these other things as well.
And the exciting thing is it is starting to grow. This is just the grassroots stuff
again, OK? (BERNERS-LEE, Tim, 2009)

The development of DBpedia began years before 2007. At that time, the developers

were trying to create links between different datasets and isolated data throughout the internet.

This project, born from a collaboration between the two universities previously mentioned, was

able to extract the important information from Wikipedia and turn it into a linked data

repository, making this data accessible and usable on the internet.

19 https://www.alexa.com/topsites

31

Later, it made possible querying and linking data extracted from Wikipedia, changing

the way they were provided. Their main goal was not only to get this not originally accessible

(usable) data, but to provide them openly to the world so that they could be used in researches

and other projects as well.

To understand its context, an analysis of the data available on the internet at the time is

crucial. In 2007, the year DBpedia was released, Wikipedia, as well as other repositories, was

fairly young. By the time, little attention was taken about how data were provided or if they had

associations with others. Therefore, DBpedia emerged at the most appropriate time, with the

fast expansion of the Internet in the middle of the years 2000 and the increasing interest in Big

Data in 2005.

Nowadays, with its growth, not only large Semantic Web research communities use it

but also big companies such as BBC and New York Times, to organize their content.

DBpedia volume of data and quality increased so remarkably that it became the linking

hub in the Web of linked data, setting RDF links to a great extent of external data sources.

To reach this number, DBpedia extracted data directly from Wikipedia, through an

extraction framework structured in four parts. It extracts Wikipedia structured information and

transforms them into a knowledge base as shown in figure 11.

Figure 11 - DBpedia extraction framework. Source: http://jens-lehmann.org/files/2015/swj_dbpedia.pdf

 First, the Wikipedia pages, more specifically the infoboxes (figure 12), are read from an

external source. They can either be read from a Wikipedia dump or fetched from the MediaWiki

API (figure 13) (LEHMANN, Jens et al., 2015).

32

Figure 12 - Algarve Wikipedia infobox. Source: https://en.wikipedia.org/wiki/Algarve

Figure 13 - Algarve Wikipedia Source Code. Source:

https://en.wikipedia.org/w/index.php?title=Algarve&action=edit

Then, they are parsed by the wiki parser, that transforms their source codes into an

Abstract Syntax Tree, which is a tree representation of the abstract syntactic of the source code

(figure 14).

33

Figure 14 - Example of Abstract Syntax Tree. Source:

https://www.researchgate.net/publication/263218121_Romanian2SPARQL_A_Grammatical_Framework_appro
ach_for_querying_Linked_Data_in_Romanian_language

Later, in the extraction phase, this tree is forwarded to one of the DBpedia extractors.

They consume the AST and return a set of RDF statements. The final step is the output, where

RDF statements are written and become a DBpedia page.

There are 19 extractors that can be divided into four categories (LEHMANN, Jens et al.,

2015):

• Mapping-Based Infobox Extraction: Manually written mappings relating

Wikipedia to DBpedia ontology.

• Raw Infobox Extraction: Provides a direct mapping from Wikipedia’s infoboxes

to RDF.

• Feature Extraction: Uses extractors specialized in extracting a single feature from

an article, for example, a label.

• Statistical Extraction: Aggregate data from all Wikipedia pages to find statistical

measures of page links or word counts.

There are several infobox templates all over Wikipedia. They are defined by users and

organized by categories, such as People, Singer and City. Each of these templates has properties

that should belong to its resources (articles that belong to a specific template).

There are two possible ways a resource can inherit its template properties. The first is

simpler, by substitution. In this method, the template content is copied to the resource only

once, during its creation, and it never changes (figure 15).

34

Figure 15 - Template mapping syntax. Source:

http://mappings.dbpedia.org/index.php/How_to_edit_DBpedia_Mappings

Following, the second method is more complex, the transclusion. In this, the wiki text

refers to the template, which means that every time the template changes, the properties inside

the resources change too.

 All the mappings supplied by the knowledge base are provided by the DBpedia user

community, that creates and maps them from Wikipedia structures. They use the Resource

Description Framework (RDF) as a flexible way to represent the extracted information and

open it on the Web.

 When it comes to DBpedia ontology, it is based on OWL and defines the structure for

DBpedia. It describes its classes and properties and can be found in its mapping page26.

 According to Jean Nguema (2020), in a query he ran in 26/03/2020, there were 760

distinct classes inside DBpedia ontology, with 2727 distinct properties. Moreover, in the

highest node of the ontology there is the class “owl: Thing”, from which other classes inherit.

As the quantity of data on the Web increases, it is important to keep quality and

consistency, which is a challenge to such a big dataset as DBpedia. Intending to help this

repository to remain in its current position, as a central hub, this study analyzes its main issues,

aiming to discover potential improvement points to be fixed, making it more complete and

accurate for future studies and uses.

2.3 FAIR DATA PRINCIPLES

The European Open Science Cloud (EOSC)27 was launched by the European

Commission, the executive of the European Union that promotes its general interest, in 2016.

However, it had the official launch event on November 23th, 2018, when they presented the

EOSC portal and its governance structure.

26 http://mappings.dbpedia.org
27 https://ec.europa.eu/research/openscience/index.cfm?pg=open-science-cloud

35

The EOSC was shaped in 2015 and was meant to both help Europe get a lead position

in scientific data infrastructure and assure that European scientists were getting the full benefits

of data-driven science, supporting open science and open innovation.

Open science is one of the goals Europe has set for its research and innovation policies.

It refers to sharing all knowledge available using digital and collaborative technology. Its main

focus is to change the way scientific publications occur nowadays, so instead of posting the

result only at the end of the research, this would be done gradually throughout the entire process.

Another important objective is open innovation, focused on allowing open knowledge

to circulate freely. Instead of focusing on the scientific process, this refers to opening up the

innovation process to people with experience in other fields than academia and science, letting

it be used in the development of new products and services.

For the EU to adopt defense and foreign policies, all Member States must agree

unanimously. Aiming an ideal that could unite them, GO FAIR arises as a practical

implementation of the EOSC28 (COLLINS, Sandra et al., 2018), easily aligning their policies

and investments in the area. Therefore, a new concept arises, the FAIR Data.

Despite all new technologies that have been created in recent years, there is still a lack

of specifications, because, according to the seminal Royal Society report of 201229

(BOULTON, Geoffrey et al., 2012), research data being open is not sufficient. They need to be

accessible, assessable, interoperable and usable. This way, artificial intelligence will be capable

of identifying patterns and correlating data, leading them to be discovered, understood and used

by other people.

FAIR relies on Findable, Accessible, Interoperable, and Reusable, the four main

principles for scientific data management published in Scientific Data in 2016. As it was

mentioned by Mark D. Wilkinson in the same article:

There is an urgent need to improve the infrastructure supporting the reuse of
scholarly data. A diverse set of stakeholders—representing academia,
industry, funding agencies, and scholarly publishers—have come together to
design and jointly endorse a concise and measurable set of principles that we
refer to as the FAIR Data Principles. The intent is that these may act as a
guideline for those wishing to enhance the reusability of their data holdings.
Distinct from peer initiatives that focus on the human scholar, the FAIR
Principles put specific emphasis on enhancing the ability of machines to
automatically find and use the data, in addition to supporting its reuse by
individuals. (WILKINSON, Mark D. et al, 2016, p.1)

28 https://www.go-fair.org/2017/02/25/go-fair-european-open-science-cloud/
29 https://royalsociety.org/~/media/Royal_Society_Content/policy/projects/sape/2012-06-20-SAOE.pdf

36

FAIR data is not meant to be open to anyone, it means that it is accessible to appropriate

people, at an appropriate time and way (HODSON, S., et al, 2018). It depends on how this data

are being used and their purpose, as if they are experimental or governmental.

Although FAIR principles30 are not only for open data, it is important to understand

their concepts in the context of EOSC and global drive towards science, so that a comparison

between how open data in Brazil are and how they should be is inevitable.

The first pillar, Findable, means that data can be easily found, for both humans and

computers. As the goal in the future is to cross different datasets, a way to find them

automatically is crucial, and an essential part of the FAIRification process31 (turning data into

FAIR data). Furthermore, some steps are necessary to achieve this, being one of them, that data

and metadata need to be assigned globally by unique and persistent identifiers.

Another principle is Accessible, which means that even though data can be found, they

need to have appropriate authorization and a well-defined and universally implemented

protocol. Accessibility in FAIR means that any human or machine should be able to access at

least the metadata and use it across the internet.

Interoperable data means that it communicates with other similar data and, at the same

time, interoperates with applications and workflows for storage, analysis, and processing.

Data need to be described using a vocabulary that contains the concepts they are

representing, a community recognized specification. Technically, it means that the associated

details are encoded using the same standard, that can be read by application systems.

Finally, there is the Reusable principle, that focuses on the reuse of data. It consists of

well-described metadata that provide information about their provenance and steps to transform

data into a more usable and understandable entity, allowing humans and machines to reuse it.

Although there are still many changes in the way, there is a more precise division of the

GO FAIR structure that pays attention to every detail of the GO FAIR Implementation Network.

The Implementation Network (IN)32 is a consortium dedicated to defining and creating

materials and tools to reach the Internet of FAIR Data and Services (IFDS). It is self-governed

and depends on people from all around the world to engage with it, ranging from individuals to

whole organizations. (GO FAIR, 2017).

INs aim to implement the elements of a FAIR internet based on three pillars:

30 https://www.go-fair.org/fair-principles/
31 https://www.go-fair.org/fair-principles/fairification-process/

32 https://www.go-fair.org/implementation-networks/

37

• GO Build: focused on creating FAIR technology that would allow a global

infrastructure for seamless integration of data, tools and computing capacity

• GO Change: engaging around the cultural aspect of changing the current

paradigm and establishing a new FAIR academic culture

• GO Train: aim to create a framework to rapidly train an abundance of competent,

certified data scientists.

Finally, this all adds up to a common objective of disseminating FAIR concepts, in a

way that more people can adhere to the culture and improve their data for a better global

interconnection between them.

2.4 DATA PROFILING

As Garret Alley describes in his article written in 2019:
Data profiling is a process of examining data from an existing source and

summarizing information about that data. You profile data to determine the

accuracy, completeness, and validity of your data. (ALLEY, Garrett, 2019)

 Data profiling is important in projects and researches, as it is a usual task most people

must have done in life, at least by eye-balling spreadsheets in order to find relevant information.

 To start with, it incorporates several methods of data analysis and result generation,

from finding the number of null values to the detection of approximate or conditional properties

(NAUMANN, Felix, 2014).

 There are some main use cases for data profiling, shown in table 2:

Table 2: Data profiling main use cases

USE CASE DESCRIPTION

Query Optimization Returns statistics about tables and columns (used to estimate the selectivity of operators)

Data cleansing Used to prepare a data cleansing process (reveals inconsistent formatting, missing values
or outliers)

Data integration Used to explore the dataset before an integration (its size, data types, and semantics)

Scientific data
management

Analyzes raw data to understand their structures and then devise an adequate schema

Data analytics Analyzes data to help understand their current situations and appropriately configure
tools

Source: Naumann (2014)

38

 As in this research the main objective is to understand the current problems of diverse

datasets, it was guided by data cleansing, in order to provide better data, to understand how the

datasets are nowadays and how can they have some of their quality characteristics enhanced.

 It is important to note that there are plenty of challenges when it comes to data profiling

(NAUMANN, Felix, 2014). First, it can be useful to reveal which data are being used and which

are not, leading to a better understanding of characteristics that may be causing it. Second, many

existing profiling methods do not handle non-traditional data types, such as non-relational (e.g.,

LOD), non-structured (e.g., tweets), and heterogeneous (e.g., open government data), making

room for the creation of new methods to support data profiling.

 To sum up, data profiling is complex but extremely helpful when dealing with datasets

with a huge amount of data, as DBpedia.

2.5 ETL4LOD

Combining heterogeneous data sources has always been a challenge, especially years

ago, where there were no tools for dealing with this issue. In the 1980s, though, computer

scientists started to investigate and develop software to make this possible.

The first one, driven by structured metadata, was designed by the University of

Minnesota, in 1991. It was created for the Integrated Public Use Microdata Series (IPUMS),

the world largest individual-level population database. It uses the so called ETL process, which

means that it extracts, transforms, and loads data from different sources into one single store,

making them compatible.

 ETL stands for Extract, Transform and Load, the three functions that set an ETL

workflow. Extraction means that the software will be doing data extraction from a source. Then,

it will transform the data acquired following specified rules, altering their structure, and

cleaning them. Finally, Load means that the software can deliver all data to another database,

or even create a readable file for later use.

 There are several ways to publish linked data. However, for this research, an ETL

approach was the chosen alternative. The main reason is that ETL already comprises many

necessary steps for publishing and managing LOD, such as the extraction of useful data from

different sources, removal of data inconsistencies, and converting data from one format to

another (CORDEIRO et al., 2011).

 For the decision of an ETL strategy, ETL4LOD was a natural candidate, a framework

from the LinkedDataBR project (CORDEIRO et al., 2011). This framework consists of a series

39

of extensions built on Pentaho Data Integration (PDI)34, as plugins to ETL and the data

integration tool.

 Besides the plugins originally built in the LinkedDataBR project, there were some other

extensions developed afterwards, as ETL4LOD+ and ETL4DBpedia, aiming for the increase

and improvement of the project functionalities.

 At first, these were the primary plugins created by the GRECO group (Grupo de

Engenharia do Conhecimento) in 2011 (CORDEIRO et al., 2011):

• Any23 Converter: converts data in formats accepted by LOD – N-triples,

RDF/XML, and Turtle;

• Sparql Endpoint: allows SPARQL queries to run in specific endpoints;

• Sparql Update Insert: allows the manipulation of data inside an endpoint;

• Data Property Mapping: supports the data annotation using an ontology as

reference;

• Object Property Mapping: supports the annotation of relations between data using

an ontology as reference.

 In 2018, ETL4LOD was upgraded to the last version of PDI, named as ETL4LOD+35,

on which the existing plugins were improved and others were created. Curcio (2018) created

the following plugins:

• Owl Input: searches and selects ontology terms;

• Link Discovery Tool: supports linking data sources.

Finally, in 2020, Ngomo (2020) created a group of plugins that complemented DBpedia

current data extraction from Wikipedia, the ETL4DBpedia36. His work focused on supporting

the upload of data from public organizations or other collaborators to DBpedia in a

semiautomatic way. The implemented plugins were:

• Domain Data Transformer: extracts, clean and transforms a set of domain data;

• Templates Maintainer: gets the template names that match the string inputted by

the user;

• DBpedia Mappings Maintainer: returns a list of templates and a field indicating

whether they were persisted or not;

34 https://www.hitachivantara.com/en-us/products/data-management-analytics/pentaho-platform/pentaho-data-
integration.html
35 https://github.com/johncurcio/ETL4LODPlus
36 https://github.com/JeanGabrielNguemaN/ETL4DBpedia

40

• Template Selector: gets the classes that are more connected to the concepts chosen

by the user;

• Template Mapper: allows the user to choose a template and line up its properties,

to be used in the creation of an infobox;

• Article Checker: checks if the potential article already exists in Wikipedia;

• Article Content Builder: generates the potential article content with data received

from the Template Mapper step;

• Article Publisher: joins the data in a wiki text format and publishes them on

Wikipedia.

Moreover, as the major focus of his research was to load data directly into DBpedia, his

plugins were built aiming to support this objective, by helping the user in the necessary steps

to build a new article. Nonetheless, it also has some plugins that either check whether there is

a template that matches the prefix written by the user or that maps a domain field to a property

in the infobox.

Therefore, despite the fact that there are some plugins in this project that deal with more

primitive parts of DBpedia extraction process, such as templates, they do not actually assess

them, as they focus on finding matches or their mappings.

Complementarily, ETL4Profiling gives a deeper look into templates and their

properties, not only searching their mappings but also trying to find inconsistencies in DBpedia

current data, giving a better prospective of the most common problems, that can later be used

by projects as ETL4DBpedia, as explained minutely in chapter 5.

With all being said, ETL4LOD is extremely complete nowadays, what has led to its use

as a basis for both this research and the plugins implementation.

2.6 RELATED WORD

As mentioned previously, ETL4DBpedia works in a complementary way to

ETL4Profiling, as the first analyze the completeness of new data while the second, of the

current data. However, this is not the only related work this project has.

In the DBpedia mapping page, there is a part containing the statistics for each DBpedia37

edition and their templates38. Conversely, it was discovered that this page consists of

37 http://mappings.dbpedia.org/server/statistics/pt/
38 http://mappings.dbpedia.org/server/templatestatistics/pt/?template=Info/Munic%C3%ADpio_do_Brasil

41

percentages about how much of Wikipedia properties are mapped on DBpedia, instead of

evaluating its present data.

In some kind of manner, the statistics provided by DBpedia and the ones that could be

found by this work could complement each other, because while one analyzes the first

transformation step, from Wikipedia to DBpedia, the other studies the next step, the

completeness of these mapped properties that were inherited by the template resources.

42

3 ETL4PROFILING

Originally, the main purpose of this work was focused on FAIR principles, finding a

way to improve DBpedia data quality to retrieve trustworthy and correct data that could be open

and reused by researches and other projects.

3.1 FAIR ANALYSIS

 As the study began, problems also started to appear. Among FAIR principles, one that

stood out was the Reuse (R1). It focuses not only on the potential data has to be found, but also

on the ability the user has to decide if they are useful in a particular context. Moreover, it also

describes that metadata authors should be as generous as possible when providing metadata,

because it is easier to find and reuse data when there are plenty of labels attached to them.

When analyzing the retrieved data, FAIR discusses openness, sharing and reuse of data.

Nevertheless, assessing them through another perspective, the data quality, can also provide

startling information to assist them in FAIR specifications, by informing major attention spots

that can be fixed, in order to provide fuller metadata and, as a consequence, more easily found

and reused data.

3.2 DBPEDIA ANALYSIS

 DBpedia has a great quantity of problems with its data as previously introduced, such

as wrong classification of entities and missing properties. However, the biggest obstacle is not

only ignorance of the main flaws, but not having their real extent.

The resource Baldim, for instance, a Brazilian county of Minas Gerais, possesses a huge

amount of properties that belong to its template, "Info/Município do Brasil". Conversely, it also

has some missing properties, such as “Padroeiro” and "região_metropolitana". Furthermore,

some of the resource properties are not even mapped on the template.

 Although it is effortless to compare the properties from one resource to the template, in

a broader spectrum it turns out arduous, given the fact that a single template can have more than

a thousand associated resources.

 In addition, it is widely known that DBpedia has several issues, but due to its huge

number of templates, it is a challenge to identify its true extension, since manually evaluating

every and each resource inside a template is virtually impossible.

43

Consequently, it encouraged the implementation of ETL4Profiling, a functionality that

automated the investigative process and brought to light statistics about templates, as well as

resources and properties, allowing a better recognition of the issues and the required work to

fix them.

3.3 ETL4PROFILING FIRST STEPS

The first step in the development was to discover what was already available on the Web

and what was missing.

As described on the subchapter 2.6, there are already two projects related to DBpedia

data quality, which are its own mapping statistics and ETL4DBpedia. While the first focusses

on generating data about how much of Wikipedia is mapped on DBpedia, the second supports

the insertion of new complete and correct data into the dataset, aiming to increase the repository

data quality.

Meanwhile, it was sought, but not found, a framework that performed an analysis in its

current data regarding their completeness, instead of mapping. Therefore, taking into account

the importance of assessing what is already there, an evaluation of DBpedia existent data was

essential.

After discovering the right data to evaluate, it was time to decide which kind of

framework should be developed.

The initial idea was to make a website that would retrieve all DBpedia templates with

their respective resources and completeness, ranked from the most complete to the least.

However, with this approach all the information would be locked in a single place, contrary to

the intended openness principle. Soon this was discarded another possibility was raised, to

extend ETL4LOD plugins to analyze datasets.

 As before, the idea of creating Pentaho plugins suited the proposal of the project. New

data are being created every day, and it is indispensable to make them as complete and correct

as possible, especially if they are going to be stored in such a dominant repository as DBpedia.

 Considering this, the logical choice was to implement the plugins following the ETL

(Extract, Transform, Load) workflow, mostly ETL4LOD, because of its positive ratings in

previous uses.

 Whereas ETL4LOD contains plugins that run SPARQL queries in certain endpoints,

convert data, search ontology terms and even support data annotation, none of them are focused

on data profiling, especially on DBpedia.

44

Furthermore, ETL4Profiling is meant to extend ETL4LOD, contributing with profiling

tools to help in the analysis of DBpedia and other datasets. After this definition, it was necessary

to decide which statistics would be calculated.

 Starting from a specific part and then generalizing it is easier than the opposite, therefore

the plan was to create DBpedia plugins at first glance and later generalize them by creating

steps that would work with any dataset.

Because the major problems found previously, during a Scientific Initiation research,

occurred with missing predicates/properties it was fair to start with them. Moreover, DBpedia

properties come from a defined source, the template that specifies them.

 DBpedia has a mapping page that has all its templates and their properties, the ones their

resources should have, setting it as the starting point.

3.4 TOOLS USED IN THE IMPLEMENTATION

For this implementation, some external tools were used. They were meant to support the

creation of plugins and facilitate their development.

The preferred IDE used was Eclipse IDE for Enterprise Java Developers in version

2019-12 (4.14.0), because of the facilities brought when working with Maven for dependencies

management. The equipment used was a Macbook Pro 2019, with macOS Catalina (Version

10.15.2), Intel Core i5 Quad-Core (2,4GHz) processor and a RAM memory of 8GB.

3.4.1 JSoup39

Jsoup API is a Java library that works by fetching a chosen URL and delivering the

extracted data, making it possible to also manipulate them, giving the user the opportunity to

take a deeper look in the page elements. It uses HTML5 DOM methods and CSS selectors, also

implementing the WHATWG HTML5 specifications.

The library usage is extremely simple, as a documentation is available in its website

with the correct directions to its usage in a project.

First, it works with a huge variety of functionalities. It has methods to parse an HTML

from a string, a file, or even connect to a URL. It also provides functions to extract elements

39 https://jsoup.org/

45

from the parsed HTML, with selectors or DOM methods. Moreover, it allows their

manipulation, by setting attributes or indeed an HTML.

With the main goal of finding DBpedia templates and resources properties, JSoup API

was used parsing DBpedia mapping page and the resources URIs, getting the necessary

information while the plugins were still running.

3.4.2 Apache Maven40

Apache Maven is a Java software for project management based on the project object

model (POM). It is a built automation tool that describes the project with its dependencies,

external components, compilation order, directories and required plugins.

To make it simpler for the user, Maven downloads Java libraries and its plugins

dynamically from one of their repositories, storing them in a local cache, as they are packaged

in jar files (Java Archive).

As the plugins required some external libraries and seeking their easier usage, Maven

was chosen as the dependency manager, with the responsibility of compiling and installing the

components inside Kettle.

3.4.3 Apache Jena41

Apache Jena is a Semantic Web framework built for Java. It provides a complete

environment with tools to run SPARQL queries in datasets, to deal with RDF, and even an API

for extracting data and writing it to RDF graphs.

In this study ARQ was the most used tool, a SPARQL processor for Jena. It was used

to run queries and get the resources from a template. With Jena, it was possible to set the URL

where it should run (DBpedia SPARQL endpoint), the query, its parameters and receive the

expected results, making the search for data much simpler.

3.5 ETL4PROFILING PLUGINS

Plugin can be defined as a program that is written to be added to a bigger program

(STERNE, Jonathan, 2019), also known as extension module. They serve to add new

40 https://maven.apache.org/what-is-maven.html
41 https://jena.apache.org/

46

functionalities to the program that hosts them and provide, in general, a special or highly

specific feature. Usually, they tend to be small and light, only used on-demand.

 In the scenario of this study, the plugins were created with the sole goal of calculating

statistics about the templates, resources and properties, related to their completeness, being

added to improve ETL tools.

 The main attention points were about subject predicates. When it comes to DBpedia,

they were its templates, their resources, and properties. The plugins did not focus only on its

Portuguese version but had a wider view providing analysis about other available versions as

well, making a better comparison possible.

 The plugins can be grouped by their functions (table 4) or ontologies (table 3) they

analyze.

Table 3: Grouping plugins by ontologies they analyze

ONTOLOGY PLUGINS

Template (DBpedia) Template Property Analyzer, Template Resource Input Analyzer, Template
Resource Analyzer

Resource (DBpedia) Resource Properties Analyzer, Resource Input Analyzer, DBpedia Triplification
(triplifies resources), Get DBpedia Data (retrieves resources)

Property (DBpedia) Property Analyzer, Get DBpedia Data (retrieves properties)
Subject (any dataset) Inner Profiling, Merge Profiling

Source: The author

Table 4: Grouping plugins by functions

FUNCTION PLUGINS

Analyzes
DBpedia
completeness

Template Property Analyzer, Template Resource Analyzer, Resource Properties
Analyzer, Property Analyzer

Analyzes input
completeness Template Resource Input Analyzer, Resource Input Analyzer
Analyzes dataset
completeness Merge Profiling, Inner Profiling

Triplifies
DBpedia DBpedia Triplification

Gets resources
and properties
from DBpedia

Get DBpedia data

Source: The author

The five functions the plugins can be grouped by were chosen because of their

relevance.

As DBpedia is the main case study for this research and is based on a specific ontology,

it was necessary to build plugins specially for its analysis. Moreover, it is relevant to check the

completeness of a resource and realize how it affects the entire template percentage, for

47

instance, how the missing properties in “Tocantins” may affect the percentage of

“Info/Município do Brasil”.

On the other hand, it is also important to compare different sources to DBpedia data,

and even more, to any other dataset. For example, it is both possible to check if all Brazilian

counties are inside DBpedia, and if the data in a newer version of “Dirty List of Slave Labor”

have some missing predicates.

For this reason, some plugins need an input to compare data, as Template Resource

Input Analyzer, while others analyze the chosen option automatically, already having all the

information needed (figure 16).

Figure 16 - Possible interconnections between Plugins

Another relevant observation is the opportunity of using DBpedia data in a different

context, for future analysis, being that the motivation behind the creation of Get DBpedia Data

and DBpedia Triplification, granting the user the possibility to use them even with an external

plugin.

With that mentioned, it is now time to closely understand each plugin.

3.5.1 Get DBpedia Data

48

Get DBpedia Data (figure 17) is certainly one of the most powerful plugins of the

project. It was created aiming the usage of DBpedia data in contexts other than only the profiling

meant for this study.

For the sake of this research, it was used mainly for extracting and managing DBpedia

data, to find the profiling of its structure. However, it can also be used in different ways, for

instance, as the input for another plugin or even in transformations outside PDI.

The plugin receives the DBpedia version, the template and the resource field, if the user

decides to get the resource data. Moreover, it was designed to deliver four kinds of information:

a) Template properties: delivers the template properties, with DBpedia version,

template and property as fields;

b) Template resources: delivers the template resources (names), with DBpedia

version, template and resource as fields;

c) Template resources properties: delivers all template resources with their

respective properties. It has the DBpedia version, template, resource, property

name, property value and property type as fields;

d) Resource properties: delivers an individual template resource with its properties.

It has the DBpedia version, template, resource, property, property value and

property type as fields.

Figure 17 - Get DBpedia Data plugin

When the user chooses the version they want to study, a Web scraper is done in the

DBpedia mapping page42 (Appendix A), loading all template choices of the selected DBpedia.

As soon as the options are loaded, they appear in the Template field and the user can decide

which template they want to analyze.

42 http://mappings.dbpedia.org/index.php/Main_Page

49

Following, if the information chosen is Template resources, the program tries to run a

SPARQL query getting all the resources from the template (figure 18).

Figure 18 - SPARQL query to get resources from template

Meanwhile, for the Template properties, it fetches the DBpedia mapping page to get the

template properties.

In addition, for the Template resources properties, besides getting the resources and

template properties, it runs another Web scrapping, this time hitting the URI of each resource

found and getting their properties with values and types (Appendix B).

Finally, for the Resource properties, it does the same processing mentioned before, but

only for a specific resource.

It is extremely tiring the fact that these information are not in the same place and so

many processes have to be executed to get them, but it was a necessary procedure, to perform

the most complete analysis.

After all data are discovered, the plugin writes them in a CSV file and outputs them in

the PDI field. This usage was thought in a way of complementing the inputs for other plugins

in this project.

3.5.2 Template Property Analyzer

Template Property Analyzer verifies if the template properties are being used by their

resources, bringing the completeness of each property and, consequently, the template

completeness. With this it is possible to identify which properties are least used by the

resources, leading to an easier identification of the points to take action upon, fixing them and

making the resources more complete.

The plugin has two possible options for input. The first is by getting the previous plugin

output (figure 19), receiving the fields where the template properties, resources and the resource

properties are. The second is by DBpedia fields, where the user selects the template they want

to evaluate.

50

Figure 19 - Template Property Analyzer receiving previous step's outputs

Finally, with all the essential data, it analyzes them and gets the statistics.

As the goal of this plugin is to get the percentage of the template, based on its properties,

the program gets the template properties and compares them to each resource property, finding

the exact number of times a property appeared.

It does the calculation by comparing the resources they were in it to the number of times

they should have appeared, following the expression: 100 * (resources the property was in) /

quantity of resources.

The results found are sorted according to the order chosen and saved in a CSV file,

containing the properties, the number of times they appeared in resources, the times they should

have appeared and the completeness. Furthermore, a short report containing slightly more

verbalized information is also written to a TXT file, besides the output in the PDI field.

3.5.3 Template Resource Analyzer

Template Resource Analyzer verifies the completeness of every template resource using

their properties as the comparison tool.

The plugin describes how many template properties belong to each resource as well as

the resource properties that are not mapped on the template and, accordingly, do not belong to

it.

Observing that a template can have numerous resources (more than 1000), the plugin

works to identify which of them are more incomplete and need to receive attention faster.

51

Besides, it is possible to identify how much the template can become more complete by the

number of not mapped properties on it.

As well as the last plugin, it receives either the DBpedia fields (figure 20) the user wants

to evaluate or the fields from the previous step.

Figure 20 - Template Resource Analyzer receiving DBpedia fields

It gets both the template properties and the template resources, comparing the first to

the properties found on each resource. As the intention is to find the resources completeness, it

first finds their missing properties (template properties that are not in the resource) and not

mapped properties (resource properties that are not in the template), and then calculates the

completeness based on the expression: 100 * (resources properties – not mapped properties) /

(template properties).

 Lastly, it sorts the resources using their percentages.

 The results are then saved in a CSV and in a TXT files, containing the resource, the

number of template properties found on it, the properties that are missing, the ones that are not

mapped and their completeness, besides the output in the PDI field.

3.5.4 Resource Properties Analyzer

Resource Properties Analyzer aims to find the completeness of an individual resource,

using its properties and the template properties to accomplish it, comparing them, and indicating

which are missing or not mapped.

This is meant to identify if the template properties are inside the resource and if the

resource properties are mapped on the template and thus if they are not exclusivities of the

resource.

52

The plugin receives the usual inputs, but also the specific resource the user would like

to evaluate (figure 21).

Figure 21 - Resource Properties Analyzer receiving DBpedia fields

 In this plugin, another ontology analysis is done, this time not focusing on the template

itself, but in one of its resources.

 With all the inputs selected, the program gets the resource properties and compares them

to the template properties, returning which are missing in the resource, not mapped on the

template, or even in both of them.

 To calculate the completeness, it compares the two lists and makes the following

calculation: 100 * (resource properties – not mapped properties) / (template properties).

It provides the user the option of choosing which properties they want, with four

possibilities: the ones that are on both the template and resource, only on the resource, only on

the template or all properties.

The result is saved in a CSV and TXT files, besides the PDI field, with the properties,

if they are mapped on the template, if they are on the resource, and finally the completeness of

the resource, based on the properties it has and the quantity it should.

3.5.5 Property Analyzer

Property Analyzer studies another relevant peace of DBpedia, the properties.

It is going to study the presence of the property in every template resource, showing the

user, depending on their choice, the resources that have or do not have that property. Besides,

53

it also returns its completeness based on how many resources it is present compared to the

amount of template resources.

To calculate the completeness, it makes the following calculation: 100 * (resources the

property is inside) / (template resources).

This plugin receives, besides the usual inputs, the property chosen from DBpedia (figure

22).

Figure 22 - Property Analyzer receiving DBpedia fields

Differently from the other plugins, it gives a deeper view inside the properties, instead

of only using them as an evaluation parameter.

The main analysis it provides is the completeness of the property, but in a fuller view,

taking into consideration that it is possible to find exactly the resources that are lacking this

property, it also helps to encounter the resources that could evolve by receiving a value in it.

As a result, the plugin returns the option chosen by the user, retrieving the names of the

resources, and whether they have the property or not. Lastly, with the exact number of times

the property was found and the quantity of resources, it returns its completeness, that is saved

in the PDI field, and in a CSV and TXT files.

3.5.6 Template Resource Input Analyzer

Template Resource Input Analyzer aims a different goal than the other plugins

previously presented. It is going to compare the resources that it receives with the resources

found on a DBpedia template.

It is significant because it allows the user to do a fuller analysis on the resources the

template should have, for instance, the counties that should be inside “Info/Município do

54

Brasil”. It returns, depending on the user’s choice, the resources that are available on both (the

CSV and DBpedia), or only in one of them.

The plugin receives the DBpedia version it has to evaluate, the template and the CSV

file containing the resources that should belong to it (figure 23).

Figure 23 - Template Resource Input Analyzer receiving the input file with Brazilian states

This plugin is different, so as its function. The ones presented before had the function

of analyzing DBpedia data and find some completeness. Although this one also delivers the

percentage, it was created for the sake of comparison.

The user inputs a file containing the resources that should be inside the selected

template. This time, the reference comes from an outside source, instead of being totally

calculated based on DBpedia.

It compares all the resources from the file and returns both the ones that are not and the

ones that are on DBpedia. Moreover, it gives the completeness based on the data the file

consists, following the expression: 100 * (resources on DBpedia – resources that are not on the

file) / resources on the file.

This way, it is possible to check if a template has all the resources it should have, and

in case there are any missing, enables their possible creation in the future.

3.5.7 Resource Input Analyzer

Resource Input Analyzer compares the properties received as input with the ones on the

chosen template, showing which are missing, bringing to light the input’s actual level of

completeness.

55

The plugin is meant to simulate the input of a new resource in the selected template,

elucidating which properties would be missing considering the template properties.

It receives as input the DBpedia version it has to evaluate, the template, and the input

file containing the properties for comparison (figure 24).

Figure 24 - Resource Input Analyzer receiving input file

As a matter of fact, it is one of the most fascinating plugins as it has the function to

compare and give the completeness of a resource considering possible properties, to check how

complete it is.

If plenty of resources are lacking properties and are incomplete, there should be a

willingness to fix them and make them more correct, for the sake of open data. As it is not

possible yet to change all the oldest data, an initiative to assist in the creation of new data would

be helpful, as is meant to happen with Resource Input Analyzer.

In regard to how the plugin works, it receives the selected template and the properties.

Later, it gets the templates properties and one by one checks whether they are mapped or not

on the input, calculating the completeness using: 100 * (properties on the file – properties not

mapped on the template) / (template properties) .

 After getting all the required information by checking the properties, it knows which of

them are not inside the input and returns the properties that are missing.

With this, there is a big possibility the new data will be more complete and correct when

stored on DBpedia, increasing the completeness of the dataset.

56

3.5.8 DBpedia Triplification

After the conclusion that a deeper profiling on DBpedia was possible, the project got

vaster and a generic profiling was sought. Moreover, aiming the usage of DBpedia resources

with other datasets, a triplification of its data was fundamental.

DBpedia Triplification (figure 25) triplifies either all the resources from a template or

an individual one, depending on the user’s choice. It was developed focusing on using DBpedia

resources as an input for future comparisons.

Figure 25 - DBpedia Triplification receiving DBpedia fields

It receives the DBpedia version the user wants to assess, with template and resource.

Then, the plugin gets the DBpedia data and processes them in one of the following paths:

a) If a resource was chosen it gets all its properties along with their values and create

a triplification using the resource URI, the property and the value.

b) If a template was chosen, the plugin triplifies all of its resources. First, it gets the

resources, and for each of them does the proceeding mentioned above, getting their

properties and values and creating a triplification for them.

 Moreover, in both cases, it has to provide the correct type for the values, and therefore,

it analyzes if they are a literal, number or another resource, to complement with proper

information. The treatment is the following for each of these types:

a) Literal: If the value is a literal it is added between quotation marks and followed by the

DBpedia version. For example, “Minas Gerais” would become “Minas Gerais”@pt .

b) Number: Being a number, the modification would be the insertion of the value’s type

at the end of the line, whether it is an integer or double. For instance, the double number

4.4 would turn into “4.4”^^<http://www.w3.org/2001/XMLSchema#double> .

c) Object: The last possibility is when a value is an object, and its URI has to be addressed

in the transformation. As the value has the information that it is a resource, the only

57

modification is the addition of “http://pt.dbpedia.org” in the begging of it. For example,

if the value is another resource named “São_Paulo”, it would have to be converted into

“<http://pt.dbpedia.org/resource/São_Paulo>”.

Lastly, the N-triples created are saved in a CSV and TXT files, besides the PDI field.

3.5.9 Inner Profiling

As the first plugin focused on doing generic profiling of diverse datasets, the Inner

Profiling (figure 26) has the objective of, as the name describes, doing a more profound

investigation inside the dataset given.

Essentially, the plugin will receive the dataset in one out of the two available formats,

either in N-Triples or subject/predicate fields. Additionally, it also gives the user the

opportunity to upload their dataset in a CSV file, granting more flexibility in the use of the tool.

Figure 26 - Inner Profiling receiving previous step's fields

The comparison done is based on the predicates each subject has, comparing them to an

array with all the predicates found in the dataset.

To calculate the completeness, it follows the expression: 100 * (subject predicates) /

(total of predicates).

Moreover, the array formed by all the predicates is constructed partially with every

row’s information. If a new predicate appears, independently of the subject, and it is not inside

the array yet, it is included, aiming to become the main source of comparability to the subjects,

allowing the discovery of their completeness.

58

As the processes for this plugin are more complex than the others, a deeper explanation

is necessary.

The steps for the complete comparison are:

a) The predicate in the row is added in the array of predicates of the subject.

b) Later, it does an assessment to validate if the actual predicate was in the list of

missing predicates of the subject. This may happen because while the rows are

being processed, the list of missing predicates for each subject is being updated

with each row’s information. If the predicate is inside the list of missing

predicates it is removed.

c) Then, it checks the array containing all the predicates found till the moment and

verifies the ones that are not in the array of predicates of the subject, which

means that they are missing. If it happens, they are added in the missing predicate

list of the subject.

d) The predicate is added in the HashSet incorporating all the predicates.

e) Lastly, another round of comparison is done, but this time to check missing

predicates for the other subjects of the input. Sometimes a missing predicate can

appear after all the occurrences of one resource are done, and in some manner,

this predicate has to be added in the list of missing predicates of the subject,

giving reason for a second round of evaluations.

Finally, the results are delivered in a CSV and TXT file, besides the PDI field, pointing

out the missing predicates for each subject.

3.5.10 Merge Profiling

The final plugin is also one of the most fascinating, because of its value for data research.

Merge Profiling (figure 27) intends to compare distinct datasets, clarifying their missing

predicates or different values and indicating what each subject has lost and gained correlated to

another version.

The first target was to enable the study of the same dataset in differing renditions,

explaining the modifications they suffered.

The plugin was then accommodated to be used also in situations where it is desirable to

compare distinctive datasets with the same subjects, for instance, different COVID-19 datasets

identified by a county, to check the missing information that could be integrated.

59

Primarily, it obtains the first and second datasets, which can either be in CSV or fields

achieved by past plugins. Moreover, when it comes to the second dataset, it is also necessary to

specify if it is triplified (N-triples) or in subject/predicate/value format.

Figure 27 - Merge Profiling receiving datasets

Regarding its execution, it goes through every subject inside the datasets creating a

dictionary, once again, correlating each subject with their predicates.

First, it saves all the predicates from the second dataset in an array related to the subjects

they are in. Then, is does the same procedure for the first dataset, storing the subjects names in

an array for future comparison.

 The comparison is later done by checking which predicates from the first dataset are

missing in each subject of the second, and the opposite situation too.

The calculation involves the following expression: 100 * (predicates from the first

dataset – predicates that are not in the second dataset) / (predicates from the second dataset).

Moreover, another step it can provide, if the user decides to, is the value’s comparison.

For each subject that has the same predicate in both datasets the values can be compared,

considering they are numbers, and the plugin returns the main difference between them with

the percentage of loss or gain, considering the expression: 100 * (value from the second dataset)

/ (value from the first dataset).

60

Conclusively, it returns in both a CSV and TXT file the results found, besides the PDI

field, making it possible to discover if the same dataset lost any information in a newer version

or even if a subject is more incomplete than another from the same source.

61

4 APPLICATION EXAMPLES

To test the ETL4Profiling plugins presented above, two main use cases were chosen.

First it was decided to get analytics from the same kind of template (counties) in different

versions of DBpedia, the Portuguese and Japanese. Then, to test the plugins for general datasets,

some open COVID-19 datasets were used.

In the first part of this Chapter, a deeper analysis was done in all the selected data.

Moreover, a verification of the results was also done, enlightening more information about the

findings. Later, a comparison with the selected datasets returned missing properties and

different values inside them. Lastly, some additional comments were exposed.

4.1 COUNTIES

Firstly, in this application, the Brazilian counties from the template “Info/Município do

Brasil” and the Japanese cities from the template “日本の市” were used as examples, leading

to a better discovery of strengths and weaknesses from each.

In the beginning, one of the plausible versions for evaluation was DBpedia en, mainly

because of its importance to companies as BBC and The New York Times. However, due to

the lack of connection between the template and the resources properties, the mentioned version

was rejected and replaced by the Japanese version, which seamed complete and had its

templates localizable.

Moreover, these were great examples because of the ease in finding the official lists

containing the resources they should have. In Brazil this data is available on IBGE43 whereas

the Japanese counties are available in the English version of Wikipedia44.

4.1.1 Overview

To do a proper comparison between these two versions, some steps were required

previously. First, it was essential to understand how the plugins would be connected and which

entries they would have to receive. Then, these entries would have to go though some

43 https://cidades.ibge.gov.br/
44 https://en.wikipedia.org/wiki/List_of_cities_in_Japan

62

transformations to adapt to the plugin’s inputs, and, finally, the selected plugins would run,

returning the expected results.

4.1.2 Templates data

Before the analysis, it is appropriate to discuss the data from the chosen templates.

DBpedia pt has a substantial number of triples, likewise its template “Info/Município

do Brasil”, with 41 properties and a total of 5562 resources. Meanwhile, the Japanese version

is slighter, with 8 properties in the determined template and 790 resources.

These differences will be meaningful later, with the calculated results. Even though the

percentage takes into consideration the quantity out of the total, having a smaller amount may

imply in a superior data quality and, therefore, a better template completeness.

4.1.3 Getting DBpedia completeness statistics

The first analysis done was to check the completeness of the templates (considering its

properties and resources).

Whereas future paths could differ depending on the final destination, the beginning in

all cases was the same, get data from DBpedia. Get DBpedia Data, therefore, was the first plugin

that had to be called in order to provide the required data for the following steps. Despite

working in all situations, it receives different parameters depending on its usage.

4.1.3.1 Get DBpedia Data

The expected inputs to get the completeness of the template resources were the template

properties and resources with respective properties. Hence, the plugin should be called twice

(figure 28), each call returning one of the desired entries, with the template properties being the

first and the resources properties the second.

63

Figure 28 - Get Template Properties in Kettle

The last situation in which it was used was to get a single resource properties, to be used

as entry for Resource Properties Analyzer. Therefore, the main distinction this time was that

the user had to specify the resource they wanted to evaluate.

4.1.3.2 Primary transformations

 Afterwards, the required data had to undergo through some crucial transformations to

fit the input standards for the profiling plugins, such as assortment, in case they were not

already, and concatenation of fields.

The Get DBpedia Data plugin already sorts the properties before returning them, thereby

an assortment was not needed, and this step could be skipped. However, the plugins Property

Analyzer and “Resource Property Analyzer” have to receive the template properties as an array

of values instead of multiple rows, so a transformation in the returned value was the ensued

process.

In order to concatenate a large amount of lines in one the step “Group by” was called

(figure 29). It is innate to Kettle and, therefore, no extra installation was required. The plugin

receives as input the fields it has to use as keys, the ones to group, and how this grouping should

be done.

Figure 29 - Group by used to group data previously found

64

When used with template properties, it groups them by DBpedia version and template

name, making it ready to be used as input by other plugins.

On the other hand, when used both with all the resources properties and an individual

resource properties, it groups them by resource name, in order to concatenate in one line the

properties of each of them.

Later, to merge the two separate fields (template properties and resources properties)

into one, the step “Merge join” was called (figure 30), which is also innate to Kettle. It receives

the key fields from both tables and the type of join it has to perform, which can either be “Inner

join”, “Full outer”, “Left outer” or “Right outer”.

Figure 30 - Merge join used to merge template properties and resources properties

For the first merge join, the chosen type was “Full Outer” and the parameters were the

DBpedia version and the template name. The result was a single table with each resource in one

line along with their properties and the template properties.

Finally, two profiling plugins were called to get the completeness from both the

resources and properties.

4.1.3.3 Template Resource Analyzer

The first statistics generated were from Template Resource Analyzer (figure 31), that

gets the resources completeness from a certain template, showing which are most and least

complete.

Figure 31 - Template Resource Analyzer used to get resources completeness percentages

65

As it received as input a table containing the necessary fields, the only need was to relate

each of them to the expected entry, for instance, the property list to the input that expects to

obtain an array with the template properties, and so on.

When the program ran, it got the resources that belonged to the template

“Info/Município do Brasil” with their respective properties and compared them to the template

properties, to find the completeness of each and, hence, of the entire template. They were then

sorted in descending order (figure 32).

Figure 32 - Resources sorted in descending order by their completeness percentages

Even though some resources had a bigger quantity of properties, it does not mean their

completeness should be better, considering they may contain plenty of not mapped properties.

Looking at the numbers above is easy to realize that there is a divergence in the quantity

of properties each resource has, going from 88% to 20%.

The resource “São Mateus do Sul” had the lowest completeness with almost 20%, and

by checking its DBpedia page45 is visible its incompleteness, with only 10 properties from the

template.

The most surprising find was “Naviraí”, a Brazilian county in the state of Mato Grosso

do Sul, as being the most complete resource. When looking at its DBpedia page46 is easy to

understand the reason for the highest place. It appears extremely complete, with only 4 template

properties missing.

45 http://pt.dbpedia.org/resource/S%C3%A3o_Mateus_do_Sul
46 http://pt.dbpedia.org/resource/Navira%C3%AD

66

Following, the second analysis was done with the template “日本の市” (Japanese

counties), from the Japanese DBpedia.

After finding the resources with their respective percentages, the returned data were

sorted (figure 33) and evaluated.

Figure 33 - Japanese resources sorted in descending order

One of the resources that had the highest percentage was “あきる野市”47, Akiruno, a

Japanese city. It had all the template properties and, hence, a completeness of 100%, an

impressive value. Actually, the result shows that plenty of other resources had the same

percentage, indicating how complete the dataset may be.

On the other hand, the resource with the lowest percentage was “能代市”48, Noshiro. It

had, however, a completeness of 75%, high above the average.

The report stated that even though some resources did not have all the template

properties, they were still very complete, keeping the template percentage high.

While the Japanese version had an abundance of resources with 100% as completeness

percentage, in DBpedia pt the highest had almost 88%, a difference of 12% between the highest

scores from each version.

The biggest disparity, nonetheless, was with the lowest resources. The worst

completeness in the Brazilian version was almost 20%, against 75% in the Japanese. Although

there were fewer properties in the Japanese template, it could indicate the attention they give to

47 http://ja.dbpedia.org/page/%E3%81%82%E3%81%8D%E3%82%8B%E9%87%8E%E5%B8%82
48 http://ja.dbpedia.org/page/%E8%83%BD%E4%BB%A3%E5%B8%82

67

their data before including them into the database, leading to a completeness of 97.3% for the

Japanese template whereas it is only 58.3% in the Brazilian.

4.1.3.4 Template Property Analyzer

The next statistics were generated by Template Property Analyzer, that gets the

properties completeness considering their frequency inside the resources, showing which are

most and least complete.

To allow its usage, some previous transformations (figure 34) were necessary, in order

to provide the correct input for this plugin. First, the plugin Get DBpedia Data got the resources

from the chosen template, followed by “Group by”, that concentrated all of them in a single

row, aiming their usage as an array in the future. Next, the resources properties delivered by

Get DBpedia Data were sorted by the properties names using “Sort rows”, and grouped by

them, returning for each property a single row with the resources that had them concatenated

by a comma.

Figure 34 - Necessary transformations to use Template Property Analyzer

 Later, the list was merged with the template properties, even the ones that did not belong

to any resource, and then merged again with the result of the first “Group by” called. This way,

there would be possible to have in the same line the name of the property, the list of resources

the property belonged and the complete set of template resources, making the comparison

easier.

68

Basically, to initialize the transformation the user had to select the fields they received

as input and place them in their respective places.

The program got the properties from both the resources and the template, to compare

them. Later, it returned the properties completeness and sorted them (figure 35).

Figure 35 - Properties sorted in descending order by their completeness percentages

The most relevant information it discovered was how the properties were being used in

the template, because while some were present in almost all the resources, others were only in

2 out of more than 5000. It gave the template a big disparity in its properties percentages,

summing up to a total of 46% as the template completeness.

 As shown in figure 85, the best property (mesorregião) was in 5556 out of 5562

resources. It joined the podium with only one more property, microrregião. They were followed

by three other properties that did not appear in 9 resources, and lastly, there was the property

that only appeared in 2 resources, fotoLeg.

When it comes to the Japanese version, the plugin had to be filled with information

taken from the Japanese cities template.

The program did its natural routine, getting the resources and checking the existence of

the template properties in each of them. The results were returned and, later, sorted, as shown

in figure 36.

69

Figure 36 - Sorted properties for Japanese template

The best property was inside 790 out of the 790 resources found on DBpedia, leading

to a completeness of 100%. It was the same for 5 other properties. The “worst”, however, had

a percentage of 80%, adding up to a total completeness of 97% for the template.

The two tests mentioned before had extremely different results when it comes to the

highest and lowest completeness, besides the template percentage in general.

While the Japanese template had a perfect percentage in 6 out of 8 properties,

representing 75% of the dataset, the Brazilian was missing in 6 resources in its two highest

properties. Nevertheless, there were not only 2 properties with a good percentage in DBpedia

pt, but, actually, there were 13 properties above 90%, representing 31% of the dataset.

Moreover, the lowest property was also bigger in DBpedia ja, with its 80% against

0.03% in the Portuguese version.

To sum up, even though the quantity of properties in the Japanese version was

significantly lower compared to the Portuguese version, the points raised previously led to a

better completeness of the Japanese template against the Brazilian.

4.1.3.5 Second transformations

After the first set of analysis was done, it was time to keep looking for more information,

using the plugins Property Analyzer and Resource Properties Analyzer. However, to use them

properly, some other transformations were necessary.

 Firstly, it was decided that these plugins would be called with the highest values found

on the previous steps. In addition, intending to get the best property/resource, the plugin

“Sample rows” was used, getting only the first line of the streams.

Then, two separate ways were created (figure 37):

70

1. In the Property Analyzer branch, the value returned by the previous step (property with

highest completeness) was merged with the resources properties (delivered by the step

“Group by”).

2. In the Resource Properties Analyzer branch, the process was heavier. The past result

(resource with highest percentage) was first merged with empty generated rows (to

increase the number of available rows) and then it was used to get the resource

properties (delivered by Get DBpedia Data). Following, these properties were grouped

by the resource name and merged with the template properties, resulting in a row with

the resource name, its properties and the template properties.

Finally, the plugins Resource Properties Analyzer and Property Analyzer had the chance

to run with their respective entries.

Figure 37 - Kettle entire flow diagram

4.1.3.6 Resource Properties Analyzer

The Resource Properties Analyzer was called with the best resource. This plugin is

valuable because it can provide the necessary information to potentially make a resource

complete.

For the Brazilian template, the county evaluated was “Naviraí”, the most complete

resource.

When the program ran, it got the resource properties and compared them to the template

properties, making it possible to know which of them were only on the template (figure 38).

Figure 38 - Resource Properties Analyzer result

71

On top of that, a good contrast to illustrate the huge difference between a complete and

an almost empty resource would be to show the results of the same plugin for the county “São

Mateus do Sul” (figure 39).

Figure 39 - Resource Properties Analyzer’s spreadsheet with São Mateus do Sul’ missing properties

 The county used in the first example only had 4 missing properties, while the second

had over 30. For the sake of researches, the first example would allow a better insight and would

help scientists to find better relations navigating through linked data.

 Therefore, an impressive use of this plugin would be to improve the resources found, as

now their missing properties are visible, making them as complete as possible.

Later, for the Japanese cities, the tested resource was Akiruno, once again, the most

complete.

After the entries were inputted, the program did its traditional processing, calculating

the percentage based on the comparison between the properties from the resource and the

template. The results, later, proved how complete the resource was, with no template property

having been left out, hence, a completeness of 100% (figure 40).

Figure 40 - Resource Properties Analyzer’s spreadsheet with 武雄市’ missing properties

Furthermore, the worst resource of this template, Noshiro, had only 2 missing properties

(figure 41), leading to a percentage of 75%.

Figure 41 - Resource Properties Analyzer’s spreadsheet with 能代市’ missing properties

72

With these results, it was clear to notice that the difference between the quantity of

missing properties from the most complete to the most incomplete was only 2, putting the

Japanese DBpedia in a high standard of completeness level.

Finally, although the quantity of missing properties of DBpedia ja was fewer, the

template itself was too, as described in the section 4.1.2 and, therefore, it was easier for a

resource to be fuller.

4.1.3.7 Property Analyzer

The Property Analyzer plugin has the intention of giving the information of which

template resources (do not) have the chosen property. This is interesting when used along with

Template Properties Analyzer because it gives the user the chance of, after perceiving the best

properties, analyze which resources do not have them, aiming to fix it in the future. For instance,

if there is a property not used by 2 resources it is easier to know them and fix more immediately.

For this test the property “mesorregião” was used, as it is one of the best properties and

would be great to find the resources that do not have it.

 As the program started to run, it got all the template resources with their properties and

checked if the chosen was among them, returning the ones on which it was missing (figure 42).

Figure 42 - Property Analyzer’s spreadsheet with resources that do not have “mesorregião”

The result matched the information found in Template Property Analyzer, returning the

same number in both of them. Furthermore, it is unquestionable that the property had an

excellent completeness, considering it was only missing in 6 out of more than 5000 resources.

Similarly, another relevant discovery was the property “コード” (area code), the best

in this template.

 The program ran the same way as explained before, returning the resources that did not

have the wanted property. Moreover, as it was expected, the property had a completeness

percentage of 100%, which means that all the resources had it and, therefore, none of them were

73

outputted in the result. However, when it comes to the worst property, 画像 (foaf:img), the

result was different (figure 43).

Figure 43 - Property Analyzer’s spreadsheet with resources where “画像” is not inside

Although the property was in an abundance of resources, it was also missing in more

than 100, leading to the worst collocation among the template properties.

As seen before, the Japanese template had less properties, but better percentages in each

of them. On the other hand, the Brazilian version had plenty of properties, but could not keep

them fully complete.

When comparing them side by side, while the worst property of the Portuguese template

was only in less than 1% of the resources, the Japanese was in more than 80% of the dataset,

corroborating to the points mentioned before.

4.1.4 Checking the template resources

Another analysis done using DBpedia countries was to find the template completeness,

by checking the resources it should have and has.

To provide this statistic the plugin Template Resource Input Analyzer was used along

with Get DBpedia Data (figure 44).

Figure 44 - Template Resource Input Analyzer in Kettle workflow

74

To begin with, the Get DBpedia Data plugin was called aiming to get the template

resources (counties from Brazil and Japan). With the expected return, it was then ensued by the

plugin Template Resource Input Analyzer, that got the missing resources compared to the lists

provided by the governments.

4.1.4.1 Template Resource Input Analyzer

Initially, to start the analysis with the Brazilian counties, it was needed to get the official

data from the IBGE website49, since the intention was to find the most accurate information of

which resources were missing.

 Next, it compared them to the ones from the template, returning which were missing on

DBpedia (figure 45). Moreover, as usual, the plugin returned the results in a CSV and a report.

In this case, opposite to the other examples, the report will be shown, considering it shows not

only the resources that are missing but also the template completeness.

Figure 45 - Template Resource Input Analyzer’s report file with Brazilian counties completeness percentage

However, some issues appeared while the program was running, which will be

explained shortly.

Although there were 90 resources missing, it only represents a low number considering

there are more than 5000 counties in Brazil. Besides, there was a huge amount of resources that

appeared in the list as missing but were in DBpedia.

When analyzing the list of resources that theoretically were not in DBpedia and typing

their names in the domain50, it was possible to realize that plenty of them were not missing

indeed.

There were several reasons for this error:

1. The resources names were misspelled. In this kind of error, the resource had a different

spelling in DBpedia and in the official CSV, for instance, Açu. In the IBGE list it was

written “Açu”, while in DBpedia it was “Assu”. This problem did not occur only with

this word, but, as a matter of fact, it happened a lot in the dataset. It had some variations

49 https://cidades.ibge.gov.br/
50 http://pt.dbpedia.org/resource/

75

too, because sometimes, although the name was written in the same way, it had a

grammatical accent in one of them that was not in the other, or even a punctuation

mark.

2. Resources that were not mapped in the template but exists in the dataset. There were

resources that existed in DBpedia but were not mapped in the template, making it

difficult to find them in the repository.

To solve this issue, a possible alternative would be to fetch the name in a query.

However, it would be complicated to check if the resource was referring to the one in

the CSV or another with a similar name.

To try to soften these problems, especially because some resources in DBpedia have the

state along with their names, for example, “Coimbra (Minas Gerais)”, the software does a

validation and removes everything that comes after the parenthesis, besides putting everything

in lower case, removing spaces, accents and punctuation that could complicate the comparison,

making checking the names as truthful as possible.

Later, a new test was done considering all those grammatical corrections and also looking

for resources that belonged to the template but were not mapped there.

Figure 46 - Template Resource Input Analyzer’s report file with not mapped Brazilian counties that are not in

DBpedia

76

With the results (figure 46) it was possible to realize that the changes mentioned helped to

identify more resources, with now only 27 resources missing out of more than 5000.

Nevertheless, there were some resources that still couldn’t be found, mostly because of wrong

letters, or because neither they were mapped in the template nor they were in its list.

For the Japanese comparison, the list of cities from Japan was taken from the English

Wikipedia51. They were cautiously copied into a CSV file and used by the plugin as input.

It is also important to mention that an official data was searched meticulously, but neither

they were in a good format to use nor they were all in the same page. Then, it was concluded

that Wikipedia’s data was the most complete and of easy access, hence, becoming the main

source of comparison for this test.

The program got all the Japanese cities mapped in the template and compare to the ones

extracted from Wikipedia, to find the template completeness.

The data went through the same process as mentioned before (removing parenthesis and

putting everything in lower case), and the plugin finally returned the missing resources (figure

47).

Figure 47 - Template Resource Input Analyzer’s report file with Japanese cities that are not in DBpedia and

completeness percentage

51 https://en.wikipedia.org/wiki/List_of_cities_in_Japan

77

There were 29 resources missing in DBpedia from a total of 816, in which plenty of

them were actually there but were not mapped in the template. This problem could also be

solved by trying to fetch the resources directly, but, once again, it would not ensure they were

the real data the user was looking for.

Although in the last results the Japanese version was having a better ranking than the

Brazilian, DBpedia pt took an advantage this time, raising its completeness to 98% against 96%

of DBpedia ja.

However, it is also a possibility that both of them have all the resources in their datasets,

but either they were not mapped in the template (which can be considered a mapping problem)

or were misspelled.

4.1.4.2 Resource Input Analyzer

As an extra step, Resource Input Analyzer comes with the intention of verifying missing

properties in a CSV input in comparison to a template in DBpedia. As it was mentioned in

chapter 3, it may be simple but at the same time really helpful as it was created aiming to assist

in the insertion of fuller resources into the repository. Therefore, it analyzes all the properties

inputted and returns the template properties that are missing.

Although this plugin has 3 outputs, the one chosen to represent these executions was the

report, as it shows the quantity of properties inside the file, besides which are missing.

To test this plugin a mock file52 was created with some of the template properties.

Moreover, the properties were discovered by the Web scraper and used as input.

The program compared the properties in the CSV file with the ones found inside the

template and returned which were missing (figure 48). This way, the user could input the

properties from a resource they are creating and check if they are complete.

52
https://github.com/ingridpacheco/ETL4Profiling/blob/master/usage/COUNTIES/Brazilian_counties_properties.x
lsx

78

Figure 48 - Resource Input Analyzer’s report file with Brazilian counties properties that are missing in the input

To test the Japanese cities another mock file53 was created, but this time using some

properties from the respective template. Two of them were missing, the ones with lowest and

highest completeness.

When the program ran (figure 49), it fetched the template properties and compared them

to the ones from the CSV file. It, then, alerted which properties were missing, as expected.

Figure 49 - Resource Input Analyzer’s report file with Japanese cities’ properties that are missing in the input

In this plugin there is not much to compare, because it only returns the missing

properties as it was meant to. Moreover, it was designed to be used in the creation of a new

resource, instead of the assessment of old ones.

4.1.5 Completeness between resources

Lastly, another analysis done was a general check of DBpedia resources considering the

completeness of its properties. While the Template Resource Analyzer evaluates resources

comparing them to the template properties, this analysis was focused on the fuller context of

resource properties. Each resource has an impressive amount of properties, which can be either

inside the template or only in their scope. This test checked the resource completeness

considering all the properties that exist in the dataset, even only inside others.

53
https://github.com/ingridpacheco/ETL4Profiling/blob/master/usage/COUNTIES/Japanese_cities_properties.xlsx

79

Even though some properties did not belong to the template, they could increase the

data quality and, therefore, could be considered important for every resource.

This analysis happened in two steps. First, the DBpedia data was fetched and triplified

using DBpedia Triplification. After, the plugin Inner Profiling was called (figure 50), to

evaluate the missing properties for each resource.

Figure 50 - Flow to get completeness between resources

4.1.5.1 DBpedia Triplification

The DBpedia Triplification was done due to the need of using DBpedia data in future

comparisons with other datasets or even for an inner profiling. It fetches the template chosen

and triplifies the information found, with subject (resource), predicate (properties) and value,

following the rules presented in chapter 3.

As another comparison between counties was intended, it was set with both the Brazilian

(figure 51) and Japanese (figure 52) templates.

Figure 51 - Brazilian counties triplified

80

Figure 52 - Japanese counties triplified

Firstly, the plugin got all the template resources by running a query. Later, it searched,

through a Web scrapping, its properties/values and did peculiar alterations, returning the correct

triplification.

 Lastly, after all the processes were done, it provided the triples in both a CSV file and

Pentaho’s fields, allowing it to be used as input in future plugins. When it comes to Pentaho’s

spreadsheet, it returned the resources with their respective properties, values and types in a

single field named “N-Triples”, which was later used by Inner Profiling.

4.1.5.2 Inner Profiling

The Inner Profiling plugin makes comparisons inside any dataset provided by the user.

It has the objective of knowing which subjects are more complete than others, and which

predicates are missing in each of them.

Using the triplified data from the last plugin a comparison was done indicating which

counties had bigger/lower percentages.

 It returned the results (figure 53) containing the missing predicates for all the subjects

and their respective completeness, calculated based on the total number of predicates found in

the dataset.

81

Figure 53 - Inner Profiling showing missing predicates for Brazilian template

With the output it was noticeable that the completeness considering all possible

properties was very low. This happened because the resources had plenty of properties that

were not mapped in the template, as seen previously in some plugins.

The highest percentage was 23% in 3 resources (Dourados, Campina Grande and Juiz

de Fora), against 1% as the lowest in 1 resource, São Mateus do Sul.

Following, to calculate the Japanese counties completeness, the resources from the

template were fetched, triplified and used as input for this plugin (figure 54).

Figure 54 - Inner Profiling showing missing predicates for Japanese template

The highest completeness found was 31% for the resource “佐賀市” (Saga). The lowest

percentage, however, was the same as in the Brazilian, 1% for the resource 行橋市

(Yukuhashi).

Although both templates kept their percentages below the average, the Japanese was

slightly better. Besides having a higher completeness in one resource, when comparing the

quantity of resources that had 23% (the highest percentage in the Brazilian counties) the amount

in the Japanese version was 5, against 3 in DBpedia pt.

82

To sum up, although these datasets were not well qualified in this plugin, their

percentages are understandable and even acceptable, because their resources may contain

exclusive properties, which led to a low final completeness.

4.2 COVID-19 DATASETS

Taking into consideration the urgent need for information in a time where COVID-19

is the main topic for bringing such terrible amount of deaths, a study focusing on some official

datasets containing its data was essential.

The two datasets used in this analysis were Open DataSUS54, an official dataset provided

by the Brazilian government, and Harvard Dataset55, a repository built by Harvard University

to store, among others, COVID-19’s data from all around the world.

For a better approach concerning COVID-19 datasets, three tests were created (figure

55) in order to provide meaningful results on the data used.

Figure 55 - Kettle flow to analyze COVID-19's data

 First, all datasets had to go through some transformations before their usage in the

Merge Profiling plugin, mostly because they had to be either in the Subject/predicate/value or

N-triple format, to be used as input.

To achieve this, a simple Python program56 got the CSV fields and one-by-one

transformed them into predicate and object, using the “state” as subject.

54 https://opendatasus.saude.gov.br/dataset
55 https://dataverse.harvard.edu/
56 https://github.com/ingridpacheco/NormalizeDataset

83

4.2.1 Comparing Brazilian values

 The first analysis was done inside the Brazilian dataset provided by Harvard57 in two

different days. To get a better overview of how the number of deaths and confirmed cases

increased over time, the first data was taken from the beginning of COVID-19 in Brazil, on

April 6th, while the second was more recent, taken from August 2.

 They were downloaded having the properties “state”, “hasc” (the state’s acronyms),

“confirmed” (total cases confirmed till the moment), “death” (total amount of deaths) and

“recovered” (figure 56).

 It is important to mention that while the field “recovered” was null inside the Brazilian

states, it was a valid field with a reasonable number in plenty of other datasets.

Figure 56 - Original Harvard data

 After the transformation all headers, besides “state”, became a predicate with their

values in the object field. Therefore, each state got 4 predicates: “hasc”, “confirmed”, “death”

and “recovered” (figure 57).

57 https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/YB2S7D

84

Figure 57 - Transformed data

Next, the “CSV file input” was called to get the CSV fields and use them as input for

Merge Profiling. Then, the last received as input both the previous fields returned from the other

plugin and the new CSV input with the data from the Brazilian states on April 6th.

 The plugin got the subjects with their predicates and values and compared them to the

ones found on the other input. Moreover, it is valuable to inform that the meta-model used for

comparison in this test was Harvard’s, meaning that is was expected for every dataset to contain

valid values in all four predicates.

 In addition, this specific test was focused on finding a correlation between different

values in the same predicate, to understand how they increased/decreased over time (figure 58)

following the mathematical expression: (100*newValue)/firstValue.

Figure 58 - Merge Profiling result

 With the results, it was clear that the amount of deaths and quantity of confirmed cases

increased absurdly within 4 months, from April to August. The state that had the highest

increase in the amount of deaths was Pará, with an impressive percentage of 190.933%, when

compared to the first quantity. Actually, it is totally understandable because when COVID-19

started there were only 3 deaths there, against 5728 now.

 On the other hand, the state with the highest increase in confirmed cases was Rondônia,

with 278.514,28%. On April it had 14 confirmed cases, while now it has 38992.

85

 Lastly, besides Harvard dataset having a mistype in Para’s acronym, writing PB instead

of PA, it did not affect the result considering it was based on the state’s full name, and not the

acronym.

4.2.2 Comparing different countries

After the first test, it was time to move forward and analyze distinct datasets from the

same repository, in this case, the Brazilian and Japanese58 (figure 59) data from June 6th, both

from the Harvard dataset.

Figure 59 - Original Harvard Japan's data

The Japanese dataset was chosen to continue the set of comparisons between Japanese

and Portuguese/Brazilian versions.

It started just as the last time, transforming the CSV file and, later, calling the plugin

Merge Profiling, aiming to compare these two datasets and find missing predicates.

Before even using the mentioned plugin, it was easy to realize that the Japanese version

had a predicate that was not in the Brazilian, the recovered data. The most valuable lesson taken

from this is that the Brazilian government (entity from which these data are coming) may not

be releasing full access to open data, delivering them in pieces, while the Japanese government

is providing them fully for future uses.

After the inputs were set, it ran and returned the expected data, showing that the

predicate “recovered” was missing in the Brazilian version, or, at least, its value, leading to a

75% completeness for all states (figure 60).

58 https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/24EXUH

86

Figure 60 - Merge Profiling result for Brazilian dataset considering Japanese dataset

 As the subjects were not the same (each was a different state), it did not compare values

and only delivered the missing predicates and the states percentages.

4.2.3 Comparing different repositories

The final test was bolder and went out of the box, because Harvard’s repository is not

the only place where COVID-19 data can be found. Therefore, Open DataSUS, an open data

repository provided by the Brazilian government, was used to allow this comparison.

When this use case was thought and executed, daily data related to COVID-19 cases

were still available to download, while now only weekly data is on their website59. It is

definitely worrying, as these data supported researches and are no longer available.

On the government’s website, there is still a good amount of open data to download.

However, the mentioned contained the deaths, confirmed cases and more information till that

chosen day, while the accumulative data joins them by weeks.

Moreover, the Open DataSUS website is a little tricky when it comes to trying to find

the correct dataset to download. It currently has 4 labels to COVID-19, and none of them refer

to confirmed cases. This is only available on COVID-19’s website, that shows graphs and

statistics about these data, once again, accumulatively.

 With the previously downloaded data61 from June 6th, and also Harvard’s data, it was

time to transform them.

 The government dataset suffered some modifications in its predicates names to match

the predicates in Harvard’s data, as they meant the same thing with different names.

Furthermore, there were also some fields and rows that were deleted because they were not

meaningful for this analysis.

59 https://covid.saude.gov.br/
61 https://github.com/ingridpacheco/ETL4Profiling/blob/master/usage/COVID-
19/hoje_painel_covidbr_06jun2020.csv

87

 Finally, with the modified data, the CSVs were used as input for Merge Profiling and

the result showed the missing predicates in Harvard’s data (figure 61).

Figure 61 - Merge Profiling result of Harvard data considering Open DataSUS

 This time the meta-model used as reference was the Open DataSUS dataset, as it was

more complete and could point out improvement fields for Harvard’s.

As the government data had more predicates, the completeness for Harvard’s subjects

was slightly above the average (60%), with two missing predicates that were only on Open

DataSUS (populacaoTCU2019 and data).

 Moreover, it shows that besides Harvard’s data having a good quality, it could be better

by receiving important fields that would help to get other statistics, for example, the percentage

of deaths considering the population from that area.

Figure 62 - Merge Profiling report file showing that values from both Open DataSUS and Harvard are the same

 Another useful observation is that the datasets presented the same value when it comes

to the same predicates, demonstrated by the 100% in the comparison (figure 62), which

indicates that besides not being fully complete, Harvard’s data are correct and correspond to

official data released by the government, proving their legitimacy.

4.3 FINAL CONSIDERATIONS

Throughout the entire experiment plenty of information came out, which helped in the

creation of a profile for each searched template and dataset. It was also possible to understand

how metadata were mapped inside the resources and how complete they were.

88

Furthermore, much was discovered about the templates, such as their completeness in

relation to both their properties and resources, and their particularities in terms of accuracy,

helping to fully comprehend the result.

Even though the first tests were only focused in two templates, each in a different

version, it was a good start for a deeper analysis. There is an abundance of other templates and

DBpedia versions that were not explored yet but that have fascinating information waiting to

be found, so as the COVID-19 datasets used in the final tests.

This is just the top of the iceberg, as much still remains to be discovered.

89

5 CONCLUSIONS

The main goal of this study was to give the initial step in dataset profiling, aiming to

improve the semantic web universe, first taking DBpedia as a case study and then generalizing

it.

Even though there are some tools that clean and transform data, as Open Refine and

CEDAR, they focus on receiving massive datasets/metadata and processing/improving them,

instead of evaluating completeness directly from DBpedia using its templates as meta-model.

Therefore, this project was extremely helpful for the reuse of the repository, as now is easier to

perceive its major issues to work on.

Despite the fact that it has an acceptable percentage, it still has some incomplete

resources and templates that have to be fixed, which also served as motivation for this project.

For example, according to Graph 1 it is possible to see that some resources have their

percentages below the average, leading the template to a completeness of 58.3%.

Graph 1 - Worst Brazilian cities resources

Source: The author

As FAIR principles are based on mechanisms to facilitate openness, interlinking and

reuse of data, a good completeness and accuracy help with this objective. Moreover, as it is

written in the R1 (Reuse) page70, it will be easier to find/reuse data if there are plenty of

70 https://www.go-fair.org/fair-principles/r1-metadata-richly-described-plurality-accurate-relevant-attributes/

19,51
24,39 26,82 29,26 31,7

0

10

20

30

40

50

60

70

80

90

100

São Mateus do Sul Lagoa Bonita
(Cordisburgo)

Cajamar Mojuí Serra Nova Dourada

Completeness Percentage

90

metadata attached to them, even if they are insignificant. Hence, it was easy to realize that the

project should focus on data quality, evaluating DBpedia completeness in terms of their

metadata.

An enormous part of this work was focused on how to analyze and generate a data

profiling for any dataset, but especially DBpedia. The template properties enlightened a path to

study, making it possible to create more coherent comparisons according to the chosen plugin.

For the most generic plugins the assessment was also about the subjects’ predicates,

both inside the same and different datasets. First, the intention was to find inconsistences inside

them, for instance, a predicate that is missing in a subject but is present in another. Then, it was

to compare values in different versions, to verify if they increased or decreased.

To finish, another important observation is that although the plugins were able to

identify some major problems that already existed in DBpedia, they also needed to look for

possible ways to contribute with newer data, leading to the creation of Resource Input Analyzer,

that checks if the properties from a possible resource are complete considering the template it

is going to belong, aiming to increase the dataset completeness.

To sum up, with ETL4Profiling the user can identify the attention points and correct

them, while inserting correct and complete data into the database, ensuring their modifications

will not decrease the current completeness and accuracy of the dataset. Besides, it also helps to

bring more accurate relations between data, in order to benefit future projects that will use it.

5.1 DIFICULTIES FOUND

5.1.1 Decide the work course

The first difficulty found was deciding the right software to develop. As discussed in

chapter 3, the original intention was to find DBpedia maturity level based on FAIR aspects71,

but it became complicated because the majority of the evaluation was qualitative, which means

that what it asked to assess was based on a person’s opinion, for example, to indicate which of

four statements was most applicable to the dataset.

The idea, however, of helping DBpedia to reach FAIR standards was not entirely

discarded. The second attempt was to create a query automator that would find all the resources

71https://docs.google.com/spreadsheets/d/1gvMfbw46oV1idztsr586aG6-

teSn2cPWe_RJZG0U4Hg/edit#gid=2080819087

91

from a class, however, again, this did not work. It was meant to automatically create a query

starting from something the person wrote, but it had to match perfectly a template or class,

becoming a nonviable idea in that moment.

While there was still the intention of understanding how the resources were connected

to classes and templates, an opportunity came up and brought clarity to the project. In short, it

was to check if all Brazilian counties were described in DBpedia, and, for this, a SPARQL

query was required.

To start, the initial idea was to find parameters that could be used to find counties, and

so resources that had the type City and the word “município” in their descriptions were

searched. Nevertheless, there were counties that did not have it, therefore changing the route of

the investigation.

 Through an analysis with the official list provided by IBGE, it was possible to realize

that their resources on DBpedia had a pattern, the property “dbp:wikiPageUsesTemplate”. That

is when DBpedia mapping page72 appeared.

When the program ran it found some of the Brazilian resources and compared them to

the ones from IBGE. As a result it appeared as some of them supposedly were not on DBpedia,

but after a manual check trying to find them by their names it was proved that they were only

mistyped. Hence, the real problem appeared, resources had missing properties and typos that

needed to be fixed.

Finally, the idea of doing a data profiling on DBpedia brought back the memory of

increasing the amount of metadata to help with the repository’s reuse. The improvement to any

other dataset was just a progressive advance, and the plugins came into sight fitting perfectly

the project proposal.

5.1.2 Pentaho and its plugins documentation

Soon after deciding what should be implemented, the technology also had to be chosen,

and that is when Pentaho plugins emerged as a clarification.

Among other possibilities, plugins were the best decision because of their reuse in the

ETL4LOD context. They could be implemented as a Python library, but that would not allow

their usage along with other tools such as ETL4LOD+ and ETL4DBpedia, which is something

desired, as described in the future works section.

72 http://mappings.dbpedia.org/index.php/Mapping_pt

92

Therefore, with the decision of creating plugins, some time had to be taken in order to

study their creation and understand how Pentaho works.

The biggest problem in all this process was to learn the required steps to implement

them. While there is a paucity of documentation in the Pentaho website about the creation of

new plugins73, the ones available are very simple and only teach the basic steps. If a more

complex design and implementation is expected, the specifications are not enough, which is the

case of ETL4Profiling.

In the above-mentioned tutorial, they explain the definitions of the plugins’ most used

functions, but they do not explain how to use them properly. Moreover, the example they give

only writes the same word in plenty of rows, not supporting any other process. Finally, they do

not explain how to manipulate data inside the necessary files and neither how to input them in

the application.

All this knowledge was received from other students that are and were working with the

same software, creating plugins, and through attempts and failures, trying to find the best way

to make plugins perform what they were intended to.

Another project that assisted in the development of the plugins was ETL4LOD+. It was

created some time ago by João Curcio, aiming to evolve ETL4LOD tools to work with Linked

Open Data. As it is an open project, all its code is available on GitHub75, and served as

inspiration to understand how to write new plugins and incorporate them on Pentaho.

5.1.3 Tests

The third and last difficulty of this project was testing the plugins.

First of all, to really test the plugin it was necessary to build a new version every time a

change was done, and then run Spoon (Kettle interface) to see if any errors appeared, what was

usual considering the lack of documentation the software has. It can be acceptable to occur

once, but in a continuous timeline this ends up becoming a trammel, making it difficult to code

in a flow.

Another point to be noticed is the extended time of these tests. Some of them, because

of their long processing, took a prolonged time to return a result. In order to assuage this

situation, CSV files identified by their templates were created storing resources with their

73 https://help.pentaho.com/Documentation/8.2/Developer_Center/PDI/Extend/000
75 https://github.com/johncurcio/ETL4LODPlus

93

respective properties and values. Therefore, whenever a plugin requested data from DBpedia it

tried first to fetch the file and then the SPARQL endpoint, decreasing the processing duration.

Obviously, all the plugins have some improvements on the way, which will be discussed

in the next section, however, for what they were supposed to deliver, the tests worked fine.

5.2 FUTURE WORK

Each plugin has its own independence and functionality. Although they are fulfilling

their purposes, there are some additional changes that would make them perform better and

deliver more interesting data.

As a general change, it would be fascinating to broaden the focus of the study to analyze

not only DBpedia templates but also its classes. Even though they are more generic in terms of

classification of entities, for example, Brazilian cities and France cities are classified as “City”,

they tend to describe accurately the resources, and, consequently, would be a great query

parameter.

Besides, it would also be flashy to create the query automator. The idea for this program

would be how to find the exact data the user inputs, even considering typos.

The plugin would give the user the opportunity to decide whether they want an option

loaded automatically or to put their own words, aiming to find resources/templates/properties

that could match them.

It would open numerous possibilities for the plugins, such as the creation of a SPARQL

query (figure 63) that would search the inputted word in the comment section of a resource or

a Web scraper in the DBpedia mapping page that would find a template with the word in a

substring of the template name.

Figure 63 - SPARQL query to get resources with specific words in the comment

Certainly, the openness of the text input could bring a lot of syntax problems and typos,

that would make it harder to find the exact correspondence in DBpedia. For this, a string

comparison could contribute to increase the accuracy percentage. For instance, above 80% the

94

template name could be considered an option, letting the user decide among some of them the

one they want to use.

In addition, there is another set of plugins, ETL4DBpedia, that could work

complementarily with ETL4Profiling. As the plugins in this project were focused on finding

the main flaws that already existed in diverse datasets, they could be used as an entry point for

ETL4DBpedia, a project that inserts complete and accurate data in DBpedia PT. Finding the

weaknesses that exist in the repository could guide the entrances they should receive.

Accordingly, a helpful work would be their integration into a single consolidated data insertion

project, that finds the biggest gaps and fixes them by inserting the desired data.

Later, it would be phenomenal to start analyzing datasets through other goals besides

the ones explored in this study, such as to find subjects that do not have a specific predicate or

with a value greater than a selected number.

Moreover, the expansion of comparisons would also be outstanding, for instance,

comparing either different templates inside the same version or even all versions DBpedia has.

These extensions could be easily implemented using the plugins as reference, taking into

consideration the main core would be the same for them.

Lastly, ETL4Profiling was first projected focusing on completeness, one of the possible

evaluations inside data quality. However, there are other assessments inside this field, as

accuracy and consistency, that should be developed to improve the project and give its name a

real meaning, providing a full data profiling for datasets.

The suggestions mentioned above are a more general belief of what could be

incremented in the entire project, but each plugins also have its own enhancements.

5.2.1 Template Property Analyzer and Template Resource Analyzer

All the properties have a type their values should correspond, and sometimes when

resources instantiate them, they end up with the wrong type, for instance, “aniversário”, that

should be a date but, in the resource “Minas Gerais”, is an integer. A good aspect to investigate

would be how many properties have this issue so that an assessment of its accuracy could be

possible.

Another viable change could be the output of the plugin. Instead of only writing CSV

and TXT files, it could output a graph comparing the results for different entries, as illustrated

at the beginning of this chapter. A graph, sometimes, is the best way to analyze an outcome, so

it would be satisfying to return it as a result.

95

5.2.2 Resource Properties Analyzer

Some properties have literal values, like birthdate or nickname, but others could have

resources related to them, for example, State. They currently have two possible values, a literal

(object) or a resource (subject). If the value is a literal, the program could run a SPARQL query

(figure 64) to verify if it has a related resource (the resource exists but in the property it is a

literal instead of another subject). If it does, the program gives the user the chance to switch the

value of the property to the resource URI.

Figure 64 - SPARQL query searching for a resource with the literal value found in “estado”

5.2.3 Property Analyzer

When it comes to the Property Analyzer, a possible improvement could be besides the

delivery of the current information, the opportunity to create a value for each property if they

do not exist in a certain resource.

While it is not easy to change a resource property value, mostly because it comes straight

from Wikipedia, it is changing due to ETL4DBpedia. Now, adding data to DBpedia is becoming

possible through direct publication on Wikipedia (NGOMO, Jean Gabriel N., 2020), which will

certainly assist to fix missing properties.

5.2.4 Template Resource Input Analyzer

The Template Resource Input Analyzer is one of the most important plugins created,

mainly because of the possibility to find missing resources in a template.

A valuable enhancement that could be implemented is the string comparison mentioned

before. As the input is a CSV file, some level of accuracy has to be accepted, considering the

high probability of containing incorrect data or typos.

 Lastly, another improvement could be with the output. It would be a great adjustment

if, instead of only returning the missing resources, it also created a file or RDF graph for each

96

of them, along with the template properties and a default value, that then could be used as input

either for Resource Input Analyzer or ETL4DBpedia.

5.2.5 Resource Input Analyzer

First, it would be interesting to add the missing properties with a default value in the

selected resource, instead of only warning about them. It could also give the user the chance to

change their values to make them more correct.

Another potential adjustment would be the insertion of the input into the respective

template it belongs. While now the plugin does not have a direct access to DBpedia, which

means that it cannot insert or modify its data, it could change in the future, uploading complete

resources into the repository.

5.2.6 Inner Profiling and Merge Profiling

Finally, the Inner Profiling and Merge Profiling plugins are receiving the datasets

considering they are already triplified or in the subject/predicate/object format. An

improvement could be the specification of the CSV fields, because currently they consider the

first column (if N-triple) or the first three columns (subject/predicate/object) as being the ones

they should evaluate, not taking into consideration that maybe there are more fields in this CSV.

This change would contribute enormously to the assessment of the dataset.

5.2.7 Maintenance

As the software is the initial state for dataset profiling, some upgrades will be necessary

as time goes by, either to fix some bugs, update the documentation, improve the performance

or to refactor plugins as DBpedia changes come. For this reason, as it is an extensive job, the

software is open source and is available on GitHub77, with documentation to help people that

may want to work on it.

77 https://github.com/ingridpacheco/ETL4Profiling

97

REFERENCES

AUER, Sören et al. Dbpedia: A nucleus for a Web of open data. In: The semantic Web.
Springer, Berlin, Heidelberg, 2007. p. 722-735.

BERNERS-LEE, T.; HENDLER, J. e LASSILA, O. The Semantic Web. Scientific American,
v.284, n.5, p. 29-37. 2001.

BERNERS-LEE, T. Linked Data. 2009. Available from:
<https://www.w3.org/DesignIssues/LinkedData.html>. Retrieved: Feb. 23, 2020.

BIZER, Christian; HEATH, Tom; BERNERS-LEE, Tim. Linked data: The story so far.
In: Semantic services, interoperability and Web applications: emerging concepts. IGI
Global, 2011. p. 205-227.

BOULTON, Geoffrey et al. The Royal Society. Science as an open enterprise. London, 2012.

BRANDUSESCU, Ana; IGLESIAS, Carlos. World Wide Web Foundation. Open Data
Barometer - Leaders Edition, Washington DC: World Wide Web Foundation, 2018.
Available from:<https://opendatabarometer.org/doc/leadersEdition/ODB-leadersEdition-
Report.pdf>. Retrieved: Sep. 17, 2019.

CASTERS, Matt; BOUMAN, Roland; VAN DONGEN, Jos. Pentaho Kettle solutions:
building open source ETL solutions with Pentaho Data Integration. John Wiley & Sons,
2010.

COLLINS, Sandra et al. Turning FAIR into reality: Final report and action plan from the
European Commission expert group on FAIR data. 2018.

CORDEIRO, et al. An approach for managing and semantically enriching the publication
of Linked Open Governmental Data. In: Workshop de Computação Aplicada em
Governo Eletrônico (WCGE), 2011, Florianópolis. Workshop de Computação Aplicada em
Governo Eletrônico (WCGE), 2011. v. 1.

DOAN, AnHai; HALEVY, Alon; IVES, Zachary. Principles of data integration. Elsevier,
2012.

FÄRBER, Michael et al. A comparative survey of dbpedia, freebase, opencyc, wikidata, and
yago. Semantic Web Journal, v. 1, n. 1, p. 1-5, 2015.

FASTER, Data Sources. Pentaho Data Integration. 2014.

ALLEY, Garrett. What is Data Profiling?. 2019. Available from:<
https://www.alooma.com/blog/what-is-data-profiling> Retrieved: Oct. 17, 2019.

GO FAIR. What is an Implementation Network?. Leiden, 2017. Available from:
<https://www.go-fair.org/implementation-networks/> Retrieved: March 11, 2020.

HEBELER, John et al. Semantic Web Programming. Oreilly & Associates Inc. 2009.

98

HENDLER, James; BRNERS-LEE, T.; MILLER, Eric. Integrating applications on the
semantic web. JOURNAL-INSTITUTE OF ELECTRICAL ENGINEERS OF JAPAN, v. 122,
n. 10, p. 676-680, 2002.

HODSON, S., et al. Turning FAIR Data into Reality. Interim report of the European
Commission Expert Group on FAIR data. 2018

INOUE, Hiroyuki; AMAGASA, Toshiyuki; KITAGAWA, Hiroyuki. An ETL framework for
online analytical processing of linked open data. In: International Conference on Web-Age
Information Management. Springer, Berlin, Heidelberg, 2013. p. 111-117.

ISMAIL, Salih; SHAIKH, Talal. ALiterature REVIEW ON SEMANTIC WEB–
UNDERSTANDING THE PIONEERS’PERSPECTIVE. In: The Sixth International
Conference on Computer Science, Engineering and Applications. 2016. p. 15-28.

JACOB, Elin K. Ontologies and the semantic web. Bulletin of the American Society for
Information Science and Technology, v. 29, n. 4, p. 19-19, 2003.

JACOBSEN, Annika et al. A generic workflow for the data FAIRification process. Data
Intelligence, v. 2, n. 1-2, p. 56-65, 2020.

LEHMANN, Jens et al. DBpedia–a large-scale, multilingual knowledge base extracted from
Wikipedia. Semantic Web, v. 6, n. 2, p. 167-195, 2015.

MENDES, Pablo N.; JAKOB, Max; BIZER, Christian. DBpedia: A Multilingual Cross-
domain Knowledge Base. In: LREC. 2012. p. 1813-1817.

MORSEY, Mohamed et al. Dbpedia and the live extraction of structured data from
wikipedia. Program, 2012.

NAUMANN, Felix. Data profiling revisited. ACM SIGMOD Record, v. 42, n. 4, p. 40-49,
2014.

NGOMO, Jean Gabriel N. UMA ABORDAGEM PARA MELHORIA DA QUALIDADE
DA DBPEDIA PT COMO HUB DE DADOS DE PESQUISA. 2020.

ROLDÁN, María Carina. Pentaho 3.2 Data Integration: Beginner's Guide. Packt Publishing
Ltd, 2010.

SILVA, João Felipe Curcio da. ETL4LOD+: evolução do suporte ao ciclo de publicação de
dados conectados. 2018.

STEFANI, Giovani. Pentaho, Tutoriais. Pentaho Data Integration Step by Step – parte 01,
2018. Available from:< https://www.infointelligence.com.br/2018/09/25/pentaho-data-
integration-step-by-step-parte-01/
>. Retrieved: Nov. 23, 2019.
STERNE, Jonathan. Plug-in. 2019. Available
from:<https://www.britannica.com/technology/plug-in>. Retrieved: Dec. 7, 2019.

99

TAYE, Mohammad Mustafa. Understanding semantic web and ontologies: Theory and
applications. arXiv preprint arXiv:1006.4567, 2010.

VAZ, José Carlos; RIBEIRO, Manuella Maia; MATHEUS, Ricardo. Dados governamentais
abertos e seus impactos sobre os conceitos e práticas de transparência no Brasil. Cadernos
ppg-au/ufba, v. 9, n. 1, 2010.

W3C. OWL. 2012. Available from:<https://www.w3.org/OWL/>. Retrieved: Nov. 23, 2019.

W3C. RDF. 2014. Available from:<https://www.w3.org/RDF/>. Retrieved: Dec. 12, 2019.

W3C. Semantic Web – W3C. [2015?]. Available
from:<https://www.w3.org/standards/semanticweb/>. Retrieved: Nov. 9, 2019.

WILKINSON, M.; DUMONTIER, M.; AALBERSBERG, I. et al. The FAIR Guiding
Principles for scientific data management and stewardship. Sci Data 3, 160018, 2016.
Available from:< https://www.nature.com/articles/sdata201618#citeas
>. Retrieved: Sep. 21, 2019.

WORLD WIDE WEB CONSORTIUM et al. RDF 1.1 concepts and abstract syntax. 2014.

______. FAIR Principles. Available from:<https://www.go-fair.org/fair-principles/>.
Retrieved: Oct. 7, 2019.

______. Fiocruz e IBICT marcam presença na Rede Internacional de Implementação do
GO FAIR, 2019. Available from:< https://www.icict.fiocruz.br/content/fiocruz-e-ibict-
marcam-presen%C3%A7a-na-rede-internacional-de-implementa%C3%A7%C3%A3o-do-go-
fair>. Retrieved: Oct. 23, 2019.

100

APPENDIX A – WEB SCRAPER IN DBPEDIA MAPPING PAGE

public String[] getTemplateValues(String DBpedia){
 try {
 String url = String.format("http://mappings.dbpedia.org/index.php/Mapping_%s", DBpedia.toLowerCase());
 Document doc = Jsoup.connect(url).get();
 Elements mappings = doc.select(String.format("a[href^=\"/index.php/Mapping_%s:\"]", DBpedia.toLowerCase()));

 TemplateValues = new String[mappings.size()];
 for (int i = 0; i < mappings.size(); i++) {
 String templateMapping = mappings.get(i).text();
 TemplateValues[i] = templateMapping.split(":")[1];
 }

 return TemplateValues;
 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 TemplateValues = new String[1];
 TemplateValues[0] = "";
 return TemplateValues;
 }
}

101

APPENDIX B – WEB SCRAPER IN RESOURCE PAGE.

public void getResourceProperties(String resource) {
 String DBpedia = meta.getDBpedia();
 String regexpValue = getMapValues(DBpedia);
 Set<String> resourcesProperties = new HashSet<String>();
 Integer counter = 0;

 try {
 String url = this.urls.getResourceUrl(resource.replace(" ", "_"));
 Document doc = Jsoup.connect(url).get();
 Elements properties = doc.select(String.format("a[href^=\"http://%s.dbpedia.org/property\"]", DBpedia));
 Elements values = doc.select(regexpValue);

 for (int i = 0; i < properties.size(); i++) {
 String resourceProperty;
 if (DBpedia.equals("ja") && values.get(i).toString().matches("^(a).*$")) {
 String actualProperty = values.get(i).attributes().get("rel").split("prop-ja:")[1];
 if (resourcesProperties.contains(actualProperty)) {
 resourceProperty = actualProperty;
 }
 else {
 resourceProperty = properties.get(counter).text().split(":")[1];
 resourcesProperties.add(resourceProperty);
 counter += 1;
 }
 }
 else {
 resourceProperty = properties.get(counter).text().split(":")[1];
 resourcesProperties.add(resourceProperty);
 counter += 1;
 }
 if (!data.resourceProperties.contains(resourceProperty)) {
 String propertyValue = values.get(i).text();
 getFormatedValue(resource, resourceProperty, propertyValue);
 if (meta.getOption() == "Template resources properties")
 cacheProperty(resourceProperty);
 }
 }
 } catch (IOException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
}

