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ABSTRACT 
 
 
 

Peer-to-Peer Support for Matlab-Style Computing. (May 2004) 
 

Rajeev Agrawal, B.E., University of Pune 
 

Chair of Advisory Committee: Dr. Riccardo Bettati 
 
 
 
     Peer-to-peer technologies have shown a lot of promise in sharing the remote resources 

effectively. The resources shared by peers are information, bandwidth, storage space or 

the computing power. When used properly, they can prove to be very advantageous as 

they scale well, are dynamic, autonomous, fully distributed and can exploit the 

heterogeneity of peers effectively. They provide an efficient infrastructure for an 

application seeking to distribute numerical computation. In this thesis, we investigate the 

feasibility of using a peer-to-peer infrastructure to distribute the computational load of 

Matlab and similar applications to achieve performance benefits and scalability. We also 

develop a proof of concept application to distribute the computation of a Matlab style 

application. 
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CHAPTER 1 

INTRODUCTION 

A. Introduction 

     The technological race has made it easier for the common man to own a computer and 

connect to remote computers to access resources available on them at an affordable price. 

The types of machines vary from the desktop personal computers and supercomputers to 

wireless phones and handhelds. Not all these resources are fully utilized at all times. This 

has led to the drive to make efficient use of the unused resources for scientific purposes, 

which gave rise to parallel computing. Traditionally, the parallel computing 

infrastructures require special-purpose machines like supercomputers and they do not 

solve the problem of resources lying at different locations. Gradually, the growth in 

processing power of the computers and the increasing bandwidth has paved the way to 

distributed computing in which several interconnected computers share the computing 

task assigned to the system [1]. Most distributed computing systems have been using the 

message passing libraries like PVM and MPI, remote procedure calls (RPC), remote 

method invocation or distributed-shared memory paradigms for inter-node 

communication. The issues common to all the distributed computing infrastructures are 

heterogeneity, scalability, transparency, security and fault-tolerance. Researchers in many 

field use distributed computing infrastructures to process their data faster using some 

numerical computing application. We want to use the peer-to-peer distributed computing 

paradigm that will be used by numerical computation software to distribute the 

computation. 

B. Objectives 

     The research objectives of this thesis are to investigate the feasibility of porting 

existing large-scale numerical and mathematical software to a peer-to-peer infrastructure 

and satisfy the following three requirements:  

 
     The journal model is IEEE Transactions on Automatic Control. 
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1. The migration to the peer-to-peer platform should be scalable, manageable, easy 

to perform (i.e. an application should be easily deployable),  

2. It should be easy to migrate a large number of existing applications to the peer-to-

peer platform, and  

3. The migrated computation should make efficient use of the underlying 

computational infrastructure and give the expected performance improvements. 

     The approach in this thesis will be empirical: we will build and evaluate a proof-of-

concept that will indicate how the three requirements above can be satisfied. 

C. Large-Scale Numerical and Mathematical Software 

     Distributed computing infrastructures are used in the scientific research field where a 

huge amount of data has to be processed. People working in these fields use some 

numerical computation applications for data processing, which lets them concentrate on 

the main issues of the research. There are several numerical computation software 

available in the market to help researchers process data faster. There are commercial 

software like Matlab, Mathematica, Maple and freely available software like Octave and 

Scilab. MATLAB (by The MathWorks) is one of the most common languages for 

numerical computing in the scientific and engineering community. It provides features 

like data acquisition, data analysis and exploration, visualization and image processing, 

algorithm prototyping and development, modeling and simulation, and programming and 

application development [2]. According to The MathWorks [3], there are currently more 

than 500,000 users of MATLAB worldwide and is used by more than 2000 universities.  

     Using commercial numerical computation software comes with its own price. For 

example, as of January 2004, it costs $1900.00 for Matlab Release 13 with Service Pack 

1 CD, $500.00 for academic use and $59.00 for the student version. The high price of 

Matlab makes its use difficult on some distributed computing infrastructure where each 

node needs a local copy of the software. Also, the source code for the commercial 

numerical applications is not available, i.e., they are not open-source. To overcome these 

limitations, researchers have been looking at many open-source options to Matlab that 

offer much better cost-to-performance ratio even though they are not fully compatible 
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with Matlab m-files. Some of these Matlab like applications are Scilab, Octave, Rlab and 

Euler [4].  

     Euler is one such MATLAB clone that can handle real, complex and interval numbers, 

vectors and matrices [5]. It is available for free under the GNU general license and is 

written in C. It provides a programming language similar to Matlab. It is a good 

representative of a MATLAB-like application. 

     The limitation of many of these numerical computation applications is that they can be 

run only on a single machine. The exponential increase in the amount of data to be 

processed still exceeds the processor speed increase and so there are many fields where 

lots of time is spend on numerical computation. A rational approach to solve this problem 

is to distribute the load of one processing element to others using any of the distributed 

computing technologies. Ideally this distribution should be such that it minimizes the 

time taken to process the work and additionally allows the maximum utilization of each 

processing element. 

D. Distributed Computing Systems 

     The distributed computing systems can be divided into two classes depending upon 

the hierarchical relationship among the participating nodes [6]: 

 Client-server  

 Peer-to-peer  

E. Peer-to-Peer Distributed Systems 

     According to [6], “the term peer-to-peer refers to a class of systems and applications 

that employ distributed resources to perform a critical function in a decentralized 

manner”. The main feature, which distinguishes a peer-to-peer from the client-server 

system, is the transient nature of the participating machines. Any peer can act as a client 

of a server and can join or leave the network dynamically. Peers share resources that 

mainly are computing power, space, information and bandwidth. Peer-to-peer 

technologies can be used to make efficient use of these resources. Peer-to-peer computing 

was crowned by Fortune as one of the four technologies that will shape the future of the 

Internet [7].  
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     A peer-to-peer system can be thought of as a Very Large Virtual Machine (VLVM). 

Each individual peer is plugged into this virtual machine and forms a small component of 

this virtual machine. When the resources of all the peers are aggregated, it takes the form 

of a VLVM as shown in Figure 1. 

 

 

 
Fig. 1. A Peer-to-Peer System as a Very Large Virtual Machine (VLVM) 

F. Advantages of a Peer-to-Peer System 

     The advantages of the peer-to-peer system lie in their high scalability, high 

decentralization and high performance when resources of all the peers are aggregated [6]. 

This makes peer-to-peer systems a good candidate for being used as a platform for high 

performance numerical computation applications [8]. Also, with time, the edge devices 

(desktop computers, handhelds, cell phones) have become powerful and when 

aggregated, their resources can be very helpful. A peer-to-peer framework helps in 

increasing the involvement of these edge devices to work on bigger problems. A peer-to-

peer system provides dynamic ways to locate peers and resources. 
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G. Disadvantages of a Peer-to-Peer System 

     The disadvantages of a peer-to-peer system are that due to its dynamic nature, the 

peer-to-peer infrastructure is less reliable, as there is no control over the peers joining and 

leaving the network. But this problem can be overcome by the redundancy in the data and 

peers. For example, in a collaborative computing peer-to-peer infrastructure, instead of 

giving a part of job to a single peer, it can be given to multiple peers thus ensuring the 

higher probability of return of results. In the same way, in a data sharing peer-to-peer 

infrastructure, the data can be stored with multiple peers instead of one. Due to the lesser 

reliability of a peer being available in a peer-to-peer system, there are lesser guarantees 

about the QoS (Quality of Service). Also since the peers in a peer-to-peer system are 

more autonomous, it becomes difficult to have a central system to manage them. 

H. Outline 

     This thesis report is organized as follows. In Chapter II, we outline the various issues 

related to the design of a peer-to-peer distributed computing infrastructure and distributed 

computing in general. Chapter III presents the related work done in this field. Chapter IV 

gives an introduction to how JXTA works and explains how JXTA deals with the issues 

related to our objectives. In Chapter V, we explain the implementation of our 

infrastructure. In Chapter VI, we provide the results of our implementation. Chapter VII 

presents a summary and final conclusion of our work. 
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CHAPTER II 

PEER-TO-PEER DISTRIBUTED COMPUTING 

     In the design of an efficient distributed computing infrastructure, a lot of issues have 

to be taken into consideration. In this chapter, we discuss the issues related to peer-to-

peer distributed computing. 

A. Requirements Related to the Objectives 

     According to the objectives laid out in the previous chapter, a peer-to-peer platform 

we choose for this work should satisfy the following requirements. 

     The migration to the peer-to-peer platform should be scalable, manageable and easy to 

perform. The peer-to-peer should be chosen in such a way that if the scale of the system 

changes, its performance does not deteriorate (scalability). It should be easy for a user to 

install the software without bothering about the technicalities of the software 

(manageability) and work in restrictive conditions (for example, behind the firewall). The 

migration to the peer-to-peer platform is justified only if the gain by porting the 

application to the peer-to-peer platform exceeds the effort to port the application. The 

gain can be realized in terms of increased scalability and performance, anonymity, 

decentralization etc. 

     It should be easy to migrate a large number of existing applications to the peer-to-peer 

platform. The peer-to-peer platform should be such that it is easy for most of the common 

existing numerical applications to be ported to the peer-to-peer platform. Our application 

should provide standard features and interfaces and it should be easy to add new 

functionalities. The peer-to-peer platform should make the application interoperable. 

     The migrated computation should make efficient use of the underlying computational 

infrastructure and give the expected performance improvements. The new application 

with the peer-to-peer base should be efficient and utilize all the resources of the available 

peers. It should also show some perceivable gains like the speedup and bandwidth 

utilization and should be fault tolerant. 
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B. Issues with Peer-to-Peer Distributed Computing 

     Peer-to-peer systems share most of the issues in designing a distributed computing 

system. According to [6] [9] [10], an efficient peer-to-peer system (and a distributed 

system) should address the following issues: decentralization, scalability, heterogeneity, 

anonymity, cost of ownership, dynamism, performance, security, peer management, 

fault-resilience, self-organization, resource discovery, administrative issues and 

transparency. In context with our objectives, we can group these issues according to the 

objectives they affect: 

1. The migration to the peer-to-peer platform should be scalable, manageable and easy 

to perform. 

     The issues affecting objective 1 are: 

     Scalability: A good peer-to-peer system should scale well with the number of nodes 

and increasing resources. Some resources could be in high demand. To increase the 

scalability, these heavily used resources could be replicated or cached [10]. 

     Peer management: The identity of a peer and the ability of a peer-to-peer system to 

group the peers into meaningful groups to perform specific functions are critical to the 

peer-to-peer system. The management of peers should be easy to perform. 

     Self-organization: With the increase in the number of peers and their dynamic nature, 

the chances of failure of node or communication also increase. In those cases, the 

peers should be able to adapt to new changes and not fail. 

     Resource discovery: The peers should be able to find other peers on the network and 

share resources with them easily and should not require any interference by the user. 

The overhead required in doing this should not deteriorate the performance of the 

system.  

     Transparency: According to [10], an ideal distributed system should hide the separate 

components from the user and the applications to view the system as a whole. The 

advantage of transparency is that it eases the manageability of the peer-to-peer system. 

2. It should be easy to migrate a large number of existing applications to the peer-to-peer 

platform. 
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     The following issues affect objective 2: 

     Heterogeneity: Any network aware device can act as a peer in the peer-to-peer system 

and so the peer-to-peer infrastructure should take care of the difference in network 

topologies, operating systems, hardware and programming languages [10]. 

     Cost of ownership: With the peer-to-peer system, there is no need for specialized 

machines to act as servers to all the peers as other peers also provide that service. This 

reduces the load on that particular peer without reducing the quality of service and 

driving the cost of ownership down drastically. A peer-to-peer system should be cost 

effective so that a user can be benefited from migrating to a peer-to-peer system. 

     Administrative issues: According to [9], the combined use of computers spread across 

several countries calls for an acceptable use of these resources for a good cause and 

the involved parties should agree on the common definition of “good cause”. An 

acceptable use means that if a user is logged on a machine, his interactive session 

should not suffer from heavy use by other peers. 

     Security: Since all the peers have access to all the other peers, the security in a peer-

to-peer system proves to be a real challenge as peers are more vulnerable than the 

traditional computing systems. To eliminate this problem, reliable means for 

authentication and authorization should be used. 

     Anonymity: In a peer-to-peer system, the participating nodes are not dependent upon 

some particular peer for a service since each peer is both a client and a server. This 

provides an added feature of anonymity to the peers. An ideal peer-to-peer system 

should provide good anonymity for its peers. 

3. The migrated computation should make efficient use of the underlying computational 

infrastructure and give the expected performance improvements. 

     The issues relevant to objective 3 are: 

      Performance: The use of a peer-to-peer system is advantageous only if the peers give 

an acceptable performance when collaborating in the peer-to-peer network. For 

example, if the messaging overhead in a peer-to-peer system is high, this may 
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overburden the network and increase network latency, deteriorating the performance 

of the peer-to-peer system and this is undesirable. 

      Decentralization:  Decentralization is the main feature that distinguishes a peer-to-

peer system from other traditional distributed computing architectures. A good peer-

to-peer system should be fully decentralized so that there are no centralized points in 

the system that will fail. This increases the reliability of the peer-to-peer system and 

gives better performance. 

      Dynamism: It is common for peers to dynamically join or leave the peer-to-peer 

network. A good peer-to-peer system will know about the availability or 

unavailability of the peer as soon as it happens and take measures to prevent the 

failure. 

      Fault-resilience: Fault tolerance is important to detect node and communication 

failure. It is also important if we need to provide reliability and QoS (Quality of 

Service) guarantees. A peer-to-peer system should have mechanisms to provide fault 

tolerance (providing checkpoints, replication and logging), which will increase the 

performance. 

      Prevention of free riders: Free riders use the resources provided by other peers but do 

not provide any resources or services to other peers. A peer-to-peer system should be 

able to identify free riders and discourage this behavior as it deteriorates the 

performance of the peer-to-peer system. 
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CHAPTER III 

 

RELATED WORK 

     This chapter cites the work done in this field and approaches used to parallelize 

numerical computation application. Since Matlab is the most commonly used application 

for numerical computation, most of these approaches focus on it. Approaches used to 

parallelize other Matlab like and Matlab compatible applications have also been 

discussed in this chapter. 

A.  Approaches to Parallelize Numerical Computation Applications 

     There have been many attempts to parallelize Matlab and Matlab like numerical 

computation software, both commercial and freeware. Most of them achieve the coarse-

grain “outer-loop” parallelization [11]. Some of the other Matlab like software are 

Mathematica, Maple, Scilab and Octave. Matlab proves to be a difficult candidate to 

parallelize. According to [12] [13], the various reasons for there not being a parallel 

version is:   

1. Most of the Matlab functions have fine granularity that cannot be effectively 

parallelized on the distributed architecture. 

2. Matlab’s sophisticated memory model and architecture conflicts with the small 

number of computers in the shared memory computers.  

3. Not many consumers own a parallel machine to effectively take advantage of the 

parallel Matlab functionalities.  

4. More time is spent on the Matlab parser, interpreter and the graphics routine and 

it is difficult to parallelize these functionalities. 

5. To parallelize the easy for loops, a basic change in the Matlab architecture will be 

required which is not feasible. 

    The approaches to parallelize numerical computation can be divided into several 

categories that are as follows. 
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     Based on the communication paradigm, the approaches to parallelize the numerical 

computation software can be divided into three categories: 

1. Using message passing routines  

This approach to parallelize numerical computation applications uses message-passing 

libraries like MPI (Message Passing Interface) and PVM (Parallel Virtual Machine) to 

talk to more than one instance of the numerical computation software. A few of the 

implementations that try to parallelize Matlab in this way are MultiMATLAB, 

MPITB (MPI Toolbox), PVMTB (PVM Toolbar) and MatlabMPI. This approach 

requires an overhead of first setting up and installing the message passing libraries. 

The use of message passing libraries create some additional overhead but for 

situations where numerical computation time exceeds the communication time by a 

few order of magnitudes (coarse granularity), these overheads can be neglected. In 

case of Matlab, the interface between Matlab and the message passing libraries can be 

through MEX files. These files contain sub-routines written in C or Fortran. They are 

compiled using the Matlab compiles and the subroutines can be called as built-in 

functions form Matlab.  

2. Using distributed shared memory (DSM) model 

This approach is used by MatMARKS to provide a higher level (shared memory) 

abstraction between numerical computing applications and message passing [14]. The 

application behaves as if it is executing on a shared memory multiprocessor and 

accessing shared data and the responsibility of passing messages to other processes is 

left to the distributed shared memory system [15]. This allows the programmer to use 

the SPMD (single program multiple data) programming model. MatMARKS is based 

on the TreadMarks DSM. The communication overhead in this case is little more than 

the message passing libraries.  

3. Others communication paradigms 

These approaches use inter-node communication using remote procedure calls (RPC) 

and pipes. Pipe is used by Matlab Parallelization ToolkIt 1.20 [16] and is based on the 

Master/slave paradigm. The master can start remote Matlab sessions on local/remote 
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slaves and they communicate with each other using TCP/IP pipes. This paradigm is 

suitable where low inter-process communication is expected.  The inter-node 

communication in MATLAB*P is using RPC. 

     Depending upon the type of software used by the remote servers, these attempts can 

be divided into: 

1. Use of the standalone numerical applications. 

In this setup, the remote servers to which tasks are sent use the same numerical 

computational application as the local server for working on a task. This approach is 

used by MultiMATLAB, MPITB/PVMTB, MATmarks, MatlabMPI, Cornell 

MultiTask Toolbox [17] and DistributePP [18] to parallelize Matlab. One of the 

methods to distribute computation used by Scilab is to invoke instances of Scilab 

processes on the remote machines and communicate through message passing 

libraries [19]. In case of commercial applications, this could prove to be expensive as 

many of the commercial applications require a per machine license fee. The service 

requestor has the capability to spawn the instances of the numerical computational 

application on the remote machine.  

2. Use of parallel numerical libraries.  

This approach requires a single instance of the numerical computation application and 

uses parallel libraries like ScaLAPACK on remote servers to provide a parallel 

backend. This approach is used in Matpar, Paramat and MATLAB*P. This approach 

additionally requires the availability of parallel libraries. This approach is limited to 

the availability of parallel libraries for the specific platform but is cost effective as it 

requires only a single instance of the numerical computation application. 

3. Use of network computational servers.  

In this setup, the remote servers are standalone Internet servers that provide some 

type of computational service. Scilab uses this approach to submit the tasks to the 

NetSolve network solver. NetSolve consists of 3 types of machines: clients, agents 

and the servers. The clients submit jobs to the agents. The agents have information 

about the available servers and they dispatch jobs based on the available resources. 
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Netsolve has a built-in load-balancing scheme and uses the greedy MCT (Minimum 

Completion Time) algorithm [20]. This approach is also used by MATLAB*P. 

     According to [17], other approaches to parallelize the numerical computing 

applications can be grouped under the following categories: 

1. Provide routines to split up scripts among multiple Matlab sessions.  

This approach takes advantage of the for loop and other simple repetitive blocks in the 

MATLAB routines, splits them and distributes it to multiple instances of Matlab 

running either on the same computer or different computer. Examples of this 

implementation are MULTI Toolbox, Paralize, PLab, Parmatlab. This approach also 

requires setting up the message passing libraries to pass the work units between 

different machines and keeping track of the work units. Again the cost of ownership is 

high because a user with a single use Matlab license cannot use these systems.  

2. Translate and compile Matlab scripts into parallel code. 

This approach works by translating Matlab scripts into native languages like C and 

FORTRAN and then compiling that native language code and linking it with parallel 

libraries.  This approach also uses one instance of Matlab and is implemented in Otter, 

FALCON, and CONLAB. This approach is not interoperable as the code has to be 

compiled for each platform and might require the user to have a sound technical 

knowledge of using (compiling and linking) parallel libraries.  

B.  Advantages and Limitations of the Related Work 

     The following work discusses how the above-mentioned approaches deal with the 

issues related to distributed computing, their advantages and their limitations. 

     According to our categorization of these issues in the previous chapter, we can again 

list these issues according to the objectives as follows: 

1. The migration to the peer-to-peer platform should be scalable, manageable and easy to 

perform. 

     Scalability: Since most of the approaches are client-server based, they do not scale 

very well. This is because the bandwidth proves to be a limitation. Too much 
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bandwidth is required at the server end as the number of clients increase. Hence they 

do not satisfy the first requirement of our objectives. 

     Resource discovery: In most of the approaches, the client has prior knowledge of the 

servers available. In some cases, a master spawns new processes on remote slaves and 

in this case too, the master should have prior knowledge about the slaves. 

2. It should be easy to migrate a large number of existing applications to the peer-to-peer 

platform. 

     Cost of ownership: The cost of ownership in the client-server based architecture 

(where each node required a local copy of the application) is high, as specialized 

machines are needed to act as servers. 

     Security: Using the message passing libraries like PVM and MPI may make the 

system less secure depending upon how a machine communicates with the remote 

machines (rsh, ssh). But schemes have been proposed to provide authentication, data 

integrity and privacy support in PVM [21]. 

     Anonymity: The machines involved in task computation are not anonymous, as the 

master (or client) needs prior information about the slaves (or servers). 

     Firewall friendliness: None of the approaches are firewall friendly. They are not 

designed with these advanced issues in mind. 

3. The migrated computation should make efficient use of the underlying computational 

infrastructure and give the expected performance improvements. 

     Decentralization: Most of these systems are client-server (master-slave) based which 

is a hierarchical computing paradigm and so these approaches are not decentralized. 

They are vulnerable to a single point of failure at the master node. 

     Performance: The communication overhead in these approaches is less. In the 

message passing approaches, the user decides when the tasks should communicate and 

hence the design can be very optimal. 

     Fault-tolerance: Schemes are proposed to guarantee consistent checkpoints and 

message logging for the message passing libraries ([22] [23]). This increases the fault 
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tolerance of these applications and help in task migration in case of some failure on 

the host machine.  

     In the next chapter, we show how the peer-to-peer networks solve some of these issues 

efficiently to make heterogeneous distributed computing more scalable and decentralized.  
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CHAPTER IV 
 

PEER-TO-PEER COMPUTING AND JXTA 

 

A.  Introduction to JXTA 

     As we saw in the previous discussions, the approaches to parallelize numerical 

computation applications do not scale very well and do not use dynamic resource 

discovery schemes. This is because the traditional distributed computing models 

(client/server) do not scale well, are more prone to failure because of dependence on 

some specific nodes (server, master) and have the bandwidth limitations. To avoid these 

problems, we turn to other ways to decentralize and scalable computation. For this reason 

we used a peer-to-peer development framework called JXTA [24]. 

     JXTA is a collaborative research initiative by Sun Microsystems to develop a freely 

available infrastructure to help develop industry strength peer-to-peer services easily. It is 

a set of open protocols that allow any connected device on the network to communicate 

and collaborate in a P2P manner [25]. The connected devices could be any device 

ranging from cell phones and wireless PDAs to PCs and servers. The JXTA protocols are 

independent of the programming language. Currently, full implementation of JXTA 

protocols exist in Java and work is going on to implement it in J2ME, C, Python, Perl and 

Ruby. 

     The main components of the JXTA network are peers, peer groups, advertisements, 

resources, services and pipes (communication mechanism). An identifier string that is 

guaranteed to be unique over time identifies all these components. 

B.  JXTA Components 

     The JXTA infrastructure consists of the following main components: 

1. Peers: Any device connected to the JXTA network is called a peer and it can 

either provide or consume a service.  
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2. Peer groups: Peers providing similar services/resources and be logically divided 

into groups that share common interests.  

3. Advertisements: Advertisements are used by peers and peer groups to make their 

services known to other peers. Advertisements are XML based documents 

describing the details of the service.  

4. Resource: Resource could be anything from storage space, information, 

bandwidth or the computing power.  

5. Services: Any functionality that a peer makes available to other peers is called a 

service. Service can either be offered by a peer to any remote peer (peer services) 

or by a peer group to the members of the group (peer group services).  

6. Pipes: A pipe is a communication mechanism between peers irrespective of the 

underlying infrastructure and network topology where information is put in at one 

end of the pipe and received at the other end [26]. The endpoint indicates the 

input and output points of communication and channels are the connection 

between the endpoints. The JXTA specification has three pipe types: 

Unicast: Used for one-way, unreliable and insecure communication. 

Unicast secure: Used for one-way, unreliable and secure communication. 

Propagating: Used for one-to-many insecure, and unreliable communication. 

C.  JXTA Model 

     The JXTA model works in the following way: 

1. Peers join the JXTA network and advertise its resources or services to other peers. 

2. The peer sends a query to the JXTA network if it wants to search for some 

resource/service.  

3. If the resource is available, the response is sent back to this peer letting it know 

how it can access the resource.  

4. The peer then contacts the resource/service and uses it. 
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     Each resource in the JXTA network is assigned an ID, which is guaranteed to be 

unique for any resource in the JXTA network. 

D.  JXTA Architecture 

     The JXTA architecture can be divided into three layers [27] as shown in Figure 2. 
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Fig. 2. JXTA Layered Architecture [28] 

          The three layers are as follows: 

1. The core layer 

The core layer provides functionalities that are fundamental to any peer-to-peer 

infrastructure. These include peers, peer naming, peer groups, protocols for 

communicating, communication endpoints (pipes) and security.  
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2. The Services layer 

This layer provides the higher-level functionalities that are advantageous for a 

peer-to-peer infrastructure but not essential. It uses the core layer to provide these 

functionalities. A few examples are sharing resources with a peer, discovering 

other peers etc.  

3. The Applications layer 

This layer is built on top of the service layer and helps the developers in providing 

the functionalities needed by a particular peer-to-peer application. For example, a 

peer-to-peer application to instant message other peers can be built on this layer.  

E.  Core JXTA Protocols 

     JXTA provides a set of 6 core protocols [25] as shown in Figure 3.  

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. JXTA Protocol Hierarchy [26] 

     These 6 protocols are described as follows: 

1. Peer Discovery Protocol: Used for discovering peers, peer groups, and any other 

advertisements. A peer sends a Discovery Query message to discover an 

advertisement and gets a Discovery Response message in return. This protocol 

helps in the dynamic discovery of peers and resources and makes the 

infrastructure more scalable and decentralized. 
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2. Peer Resolver Protocol: Enables a peer to send and receive generic queries to find 

or search for peers, peer groups, pipes, and other information. A Resolver Query 

message is sent to the remote peer and this peers gets back a Resolver Response 

message. This protocol also helps in the dynamic resource discovery and provides 

a common platform for peers to share information. 

3. Peer Information Protocol: Allows a peer to learn about other peers’ capabilities 

and can obtain status information (one can send a ping message to see if a peer is 

alive). 

4. Rendezvous Protocol: Allows a peer to form and administer (apply for 

membership, authentication) peer groups and propagate a message within the 

scope of a peer-group. This protocol helps in making the peers and the whole 

peer-to-peer infrastructure more manageable. Peers can be organized into groups 

to work collectively on some common interest. 

5. Pipe Binding Protocol: Allows a peer to bind a pipe advertisement to a pipe 

endpoint, thus indicating where messages actually go over the pipe. This is 

independent of the transport mechanism. This makes it more manageable and easy 

to deploy, as the user does not have to worry about the network specific issues. 

6. Endpoint Routing Protocol: Allows a peer to ask (Route Query message) a peer 

router for available routes for sending a message to a destination peer. The router 

peer responds with a Route answer message. 

F.  JXTA and High-Performance Distributed Computing 

     The main advantages of using JXTA are that it is very generic and addresses most of 

the issues related to the design of a peer-to-peer system. Any peer using JXTA protocols 

can talk to any other peer using the same protocols be it a workstation, a server, a cell-

phone, a PDA or a laptop. In chapter two, we mentioned the issues related to peer-to-peer 

distributed computing. JXTA addresses the issues related to the design of a peer-to-peer 

system in the following ways. 

1. Decentralization:  Decentralization is one of the most important features of peer-

to-peer networks. JXTA uses several schemes to achieve decentralization. The 
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first is to use broadcasting as a means to know about all the peers in the local 

network. JXTA also uses the concept of rendezvous and router peers. A 

rendezvous peer is a regular peer with an additional feature that it caches the 

services advertised by other peers. A router peer stores the route information 

between the peers. Even in the worst case, JXTA allows every peer to be 

configured to act as a rendezvous and the relay peer, which eliminates the 

dependency of peers on other peers for some specific functionality and single 

points of failure. This increases the manageability and ease of deployment in 

accordance with our objectives. 

2. Scalability: JXTA has good scalability, which can be concluded from the fact that 

there are no central servers to provide specific functionalities, and each JXTA 

peer can handle the essential role of discovering peers and resources if a need may 

arise. This fulfills our first objective (scalability). 

3. Resource discovery: JXTA provides the basic infrastructure so that peers can 

discover resources and services dynamically. This is very different from the 

client/server mechanism where the client has to have the prior information about 

server’s presence. The peers in a JXTA network can discover other peers on the 

local area network using broadcasting. There are rendezvous peers who cache the 

resources advertised by other peers and router peers who cache the route to other 

peers.  

4. Heterogeneity: This is achieved because JXTA protocols can be implemented in 

any language that a particular peer supports. Moreover, JXTA protocols are 

network, hardware, operating system and programming language independent. 

Thus, the user need not worry about the ease of migration and other network and 

operating system specific issues and results in an increase in manageability.  

5. Anonymity: JXTA takes care of peer’s anonymity because a unique string 

identifier identifies the peers and network endpoints. The real world peer identity 

cannot be resolved from this identifier. 

6. Cost of ownership: The cost of ownership is definitely low with JXTA as it 

eliminates any need for a specialized machine to act as a server. Also the load on 
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a peer is less as there are other peers providing the same service, which decreases 

the bandwidth requirement at the server end. 

7. Dynamism: Dynamism is achieved in JXTA by the means of advertisements. A 

peer advertises about its resources to other peers. Every advertisement has an 

expiration time. A peer continuously sends new advertisements to override the 

expired advertisements. The peers that receives an advertisement first checks for 

the advertisement expiry. If the advertisement has expired, the peer drops the 

advertisement. This expiration time can be set depending upon frequency with 

which peers join/leave the network. If peers leave and join the network frequently, 

the expiration period can be short. 

8. Performance: The JXTA performance depends upon the advertisement overhead 

and network latency. If all the peers use broadcasting as a means to discover each 

other, there will be too much network latency because of increased traffic. 

Choosing an efficient policy will lead to good performance.  

9. Security: Though peer-to-peer networks are less secure, using JXTA protocols, a 

peer can have strict group membership rules so that only the trusted peers can join 

a group. JXTA also provides secure pipes as a secure means to communicate with 

other peers. JXTA supports Transport Layer Security (TLS) that is capable of 

providing reliable private connections between peers [28]. JXTA also provides 

password based logins.  

10. Peer management: A unique identifier string identifies each peer in a JXTA 

network. The peers can easily join or leave a group. If a peer starts a group, it can 

set group membership rules, which have to be followed by any peer interested in 

joining the group. If a peer doesn’t join a particular group, it joins a default group.  

11. Fault-resilience: If there are very few rendezvous and the relay peers in a JXTA 

network, other peers can be drastically affected by their failure. But in the worst 

case, all the peers can be made a rendezvous peer but this might increase the 

network latency. The system can be made more resilient through resource and 

service replication. 
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12. Interoperability: JXTA defines only a set of protocols. These protocols and be 

implemented in any programming language. As long as a peer or a device talks in 

this protocol (no matter what programming language the protocols are written in), 

that device can talk to the other JXTA peers.  

13. Self-organization: In a JXTA network, peers can easily organize themselves into 

groups. Also if there are network failures, the router peers can learn about new 

routes to reach a peer.   

14. Firewall friendliness: It is possible for the peers who are behind the firewall and 

NAT to connect to peers outside the internal network using the relay peers. The 

relay peers collect the advertisements for the peers behind the firewall and make 

this information available to the other peers. The peers that are behind the firewall 

initiate the communication and collect messages for them by contacting the relay 

peers. This satisfies out first requirement (easy deployment).  

G.  Why Euler and Peer-to-Peer Using JXTA 

     As mentioned in our objective, we want to investigate the feasibility of porting 

existing large-scale numerical and mathematical software to a peer-to-peer infrastructure. 

We chose an open-source numerical computation software called Euler [5] because of the 

availability of source code and its cost-effectiveness.  

     The reason we choose Euler is that Euler is a true representation of a typical numerical 

computation application and it provides some of the features (it can handle real, complex 

and interval numbers, vectors and matrices as mentioned earlier) of a large-scale 

computational application. According to [29], the main characteristics of the applications 

that can be deployed over a P2P implementation are where: 

1. Centralization is not possible or desired 

2. Massive scalability is desired 

3. Relationships are transient or ad-hoc 

4. Resources are highly distributed 

5. Resilience is desired 
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     For parallelizing numerical computation, we want the system to be decentralized (to 

avoid single point of failure), scalable (as specified in our objectives), dynamic (the 

joining and leaving of peers should not deteriorate the performance), fault tolerant with a 

short response time. Since the above-mentioned factors meet our requirements and also 

the numerous benefits of peer-to-peer system, we chose to use JXTA for our work. JXTA 

provides us with a robust framework that meets most of our requirements (scalability, 

ease of deployment, easy migration, manageability).  
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CHAPTER V 

 

PEER-TO-PEER EULER (P2PEULER) IMPLEMENTATION 

     In the previous chapter, we discussed the advantages of using JXTA as the peer-to-

peer infrastructure and about its suitability for parallelizing numerical computation. In 

this chapter, we explain our implementation of the parallelizing process. We name this 

implementation the P2PEuler system  

A.  Peer-to-Peer Euler Architecture 

     The P2PEuler consists of the JXTA peers and the services they provide. To provide 

different numerical computation services, we split up Euler into its user interface (UI) 

and the computation engine (CE).  

     Our P2PEuler architecture consists of two kinds of peers as shown in Figure 4: 

P2PEuler service consumers (PSC) and P2PEuler service providers (PSP).  

     P2PEuler service consumer (PSC): The PSC is a peer that has the Euler user interface 

(UI) and the Euler computational Engine (CE). Through this kind of peer, a user can 

submit jobs to other JXTA peers or compute the task locally (for trivial tasks). 

     P2PEuler service provider (PSP): The PSP is a peer that accepts tasks from PSPs and 

either directly executes them or sends it to other PSPs and sends the results back to the 

origination peer. It has got only the Euler CE.  

 

 

 

 

 

 

 

    Fig. 4. Peer-to-Peer Euler Service Consumer and Peer-to-Peer Euler Service Provider 

     In the simplest terms, a PSPs boot up and waits for the tasks to arrive. A user on a 

PSC submits a task to a PSP. The PSP either executes the task or partitions it amongst 

Euler UI + CE 

JXTA Interface 

Euler CE 

JXTA Interface 



 26

other PSPs. It then combines the sub-results and sends the final result back to the 

originating PSC. 

     In both types of peers, the communication between the Euler component (UI or CE) 

and the JXTA Interface component is done via Java Native Interface (JNI). A machine 

can have both the PSC and the PSP running. It can even run multiple instances of PSCs 

or PSPs running at the same time. 

B.  Terminology 

Task 

     A task is a complete unit of work but not necessarily atomic. Throughout this thesis, 

we use the term “task” and “job” interchangeably. The following are the characteristics of 

a task: 

1. They can be decomposed into small units (subtasks). 

2. They have no priority.  

3. They have no deadline associated with them. 

Subtask 

     When a PSP partitions a task into smaller units to be distributed amongst the available 

peers, each of those units is called a subtask. The task from which the subtasks were 

made is the parent and the subtasks are the children. They have all the characteristics of a 

task. A subtask is complete when PSPs CE has finished computing the subtask. After a 

subtask is computed, it produces a sub-result. 

Task/Subtask Execution 

     Execution is the state when a PSP is working on a task/subtask. It has 3 states: 

1. Computation: In this state, the CE computes the task/subtask and a result/sub-

result is produced. 

2. Partition: In this state, the PSP divides a task into subtasks. 

3. Merger: In this state, the PSP combines the sub-results into a result.  

Result 
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     The final output of an executed task is called the result. This is the value returned by a 

PSP to a PSC. When a PSPs CE combines all the sub-results of  the subtasks of a task, it 

produces a result of that task. 

Task submission 

     A task submission happens when a user submits a task through the PSCs User 

Interface (UI).  

Task completion 

     We define task completion as the event when a PSPs CE combines all the sub-results 

of a task successfully. 

P2PEuler Service 

     We define P2PEuler service as the ability of a PSP to accept Euler tasks or subtasks, 

work on it (task execution, task assignment or sub-results merging), send subtasks to 

other peers and return the final results. Each PSP advertises this service to other PSP/PSc 

when it boots up. 

Communication cost 

     The sum of the time required by a peer to send the data to another and the time 

required by the results to come back from that peer. 

C.  Decision Making Algorithms 

     The following are the decision-making algorithms in P2PEuler: 

1. How a PSC chooses a PSP to dispatch a task to from all the available PSPs? 

2. How do we achieve load balancing and decide if a task has to be executed locally 

or remotely? 

3. How is task partitioned and scheduled and into how many parts? 

4. Where is the task partitioning done? 

5. How are sub-results combined? 

6. How is peer’s metrics calculated? 
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D.  Algorithm Details 

     Algorithm 1: How a PSC chooses a PSP to dispatch a task to from all the available 

PSPs?  

Purpose: The main purpose of this algorithm is to choose the best PSP to dispatch a task 

to. This is done to increase the efficiency of the system (Requirement #3). The first 

criteria to decide a suitable PSP is the cost of communication and the second criteria is 

the performance of the PSP.  The cost of communication is decided as the first criteria 

because in JXTA, the cost of communication is high and so we would like to minimize 

this cost. 

     This algorithm is run when a PSC has a list of available PSPs and wants to choose one 

of them to submit the job to. If there are PSPs available, it picks up a single PSP who is 

sent the whole task. This PSP could be either running locally or remotely. But to a PSC, 

they are all the same. 

     Time taken to open an input pipe strictly depends upon the network distance [30]. If 

there is a local PSP, there are very good chances that it will know about the good 

performance peer (since this and local PSP are on the same subnet and might be using the 

same rendezvous peer). If the good performance peer is available, there are good chances 

that the local PSP will dispatch the job to him too. Because of this reason, we first decide 

to send the task to the local PSP so that the cost to open input pipe is minimized.  

     The algorithm calculates the cost to reach each PSP from this PSC. The cost is 

calculated as shown in Figure 5: 
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for all available PSP 

{   

   if (local_IP ==  PSP_IP) 

   {  

        cost=0 

    local_found = true 

    return; 

    } 

    else { 

        cost =1 

        local_found = false; 

    } 

} 

if(local_found) 

  send_job_to_local_PSP() 

else 

  send_job_to_highest_metrics_PSP() 

 

Fig. 5. Algorithm Used by PSP to Calculate the Cost to a PSC 

     The algorithm works as follows: 

     If a local PSP is found, the whole task is sent to him. If no local PSP is found, we use 

a greedy algorithm in which we choose a PSP with the highest metrics and send the task 

to him. In the case where more than one local PSP are available, it picks up the one with 

the highest metrics.  

     We give first preference to the local PSP because we assume that the cost to reach a 

local PSP will be considerably less than the cost of reaching any other remote PSP. It is 

also assumed that all the available peers will have roughly the same number of peers. The 

downside of this algorithm is that if a remote PSP is really superior and knows a lot of 

other superior peers, the efficiency of our peer-to-peer framework will suffer as we lose a 

chance to minimize the execution time of a task.  
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Advantages: 

1. This scheme gives highest priority to a locally available PSP to minimize the 

communication cost.  

2. This scheme picks the best peer (the one with the highest metrics) to ensure that 

the task execution time is the least, giving us higher efficiency (requirement #3). 

Disadvantages: 

1. This comes at the cost of anonymity of peers because we know the IP address of 

every peer. We assume that anonymity is not a major concern for the PSPs. 

2. In case the PSP to which we have assigned the task fails, this PSC will be waiting 

forever because the user interface (UI) will wait till a result is returned by PSP 

and the user cannot use the interactivity of the UI.  

     Algorithm 2: How do we achieve load balancing and decide if a task has to be 

executed locally or remotely?  

Purpose: According to the requirement #3, we want to make efficient use of all the 

resources so that some peer’s resources are not wasted (idling). In an unbalanced system, 

the peers with high load might become unavailable either due to insufficient processing 

power or bandwidth (in the scenario where there is fine granularity). Such a system may 

become unstable and fail. A balanced system will be more scalable (requirement #1) 

because the availability of peers will increase. The algorithm used for load balancing 

should itself be scalable. If there are n available peers (processing elements), then the 

algorithm’s complexity should be O(n).  

     Our load-balancing algorithm is run when a PSP receives a task and wants to achieve 

load balancing. Every time a peer boots up or communicates with another peer, it sends 

its queue size, which gets updated at recipient’s end. This information is used by PSPs for 

load balancing. One of the goals of the load balancing policy is to minimize the time 

taken to complete the execution of all the tasks globally. Our load balancing policy is 

dynamic and decentralized. At the time of arrival of a task, each PSP decides whom to 

assign the task depending upon the information available with it. 

     The 3 basic policies of our load-balancing algorithm (as suggested in [31]) are: 
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Information policy: This policy specifies what constitutes the load information. 

     According to [32], in a general purpose distributed system, the best single workload 

descriptor is the number of tasks in the run queue of the operation system scheduler and 

that major improvements can hardly be expected when more complex (more than one 

workload descriptions) workload descriptions are used.  

     In our case, we assume that if the major part of a peer’s load is due to that peer being a 

PSP then the PSP run queue will be proportional to the OS run queue.  

Transfer policy: This policy determines the condition under which the job transfer should 

be made.  

     Ideally, this policy should consider the current load of the system and the task size. In 

keeping with the above information policy, we do not consider the task size in deciding 

whether to execute the task locally or remotely. To decide this, the PSP first checks its 

job queue. If the job queue is less than or equal to a threshold, we execute the task locally 

otherwise we execute it remotely. 

Placement policy: This policy specifies the peer(s) to which the task should be 

transferred. 

     Using the greedy algorithm, we choose the best peers among the available peers and 

assign the task to them. We assume that the communication cost is independent of the 

task size and is constant.  

     We chose a dynamic scheme because of its flexibility, adaptability and high scalability 

(requirement #3). Also, in a peer-to-peer system, we cannot depend upon some 

centralized point as a source of information and hence a dynamic is more suitable. 

     Algorithm 3: How is task partitioned and scheduled and into how many parts?  

Purpose: The peers in a peer-to-peer network can have diverse capabilities ranging from 

cell-phones to supercomputers. According to requirement #3, for the efficient use of the 

peer-to-peer resources, each peer should be assigned an optimal load specific to its 

capabilities. No peer should be overloaded as it will make that peer unavailable for other 

purposes and affect the efficiency and scalability of the peer-to-peer system. This 

algorithm helps us achieve this goal by assigning optimal load to a peer. 
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     This algorithm is run when a PSP, after deciding to run the job remotely, wants to 

partition and schedule task execution among the available PSPs. When deciding a 

partitioning and scheduling scheme, we have to take into consideration the varying 

capabilities (metrics) of peers. The peer distributing tasks to other peers should be able to 

exploit this heterogeneity to make effective use of all the resources. This plays as key role 

in determining the efficiency of a peer-to-peer network. Also, the overhead of splitting a 

task into more number of subtasks than desired (and other overheads like communication 

cost) may overweigh the gain achieved by including more peers for that task computation 

[31] and this can deteriorate the performance of the system. 

     We assume that all the communication times are constant (except the one in which 

PSC communicated with a local PSP) and are independent of the task size and peer 

location. Each peer is assigned a task proportional to the metrics it advertises. For 

example, in a matrix multiplication task of two nxn matrices, the first matrix was divided 

in proportion to the metrics of the available peers. So for example, if there are 3 peers 

available and their peer metrics are m1, m2, m3, then the sum of their metrics is  

M = (m1+m2+m3) 

     So the three subtasks in the matrix multiplication example will each have   

m1xn/M, m2xn/M, m3xn/M rows of the first matrix and the whole of second 

matrix.  

     This is a very simple minded algorithm to achieve fair task partitioning and we believe 

that this algorithm will make efficient use of the available peers, if not the best. Since we 

have assumed earlier that the tasks are independent, the tasks are dispatched to the 

available PSPs in the order in which they occur in the available peer vector of a PSP. This 

approach is reasonable considering that each subtask is dispatched in a new thread. Also, 

for each task type, there is an upper bound on the number of subtasks in which it can be 

divided (depending upon its size) so that their distribution can be justified.  

     Algorithm 4: Where is the task partitioning done? 

Purpose: The main idea behind this algorithm is to make the infrastructure more efficient, 

easy to manage and reusable.  
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     Only the ECE of PSP has the ability to find what kind of computation has to be 

performed on the task. And the JTXA interface has the information about the peer’s 

metrics. The task partitioning can be done at two places: 

1. JXTA interface: This component has both the task and the information about the 

available peer’s metrics but does not have the parsing capability to divide the 

tasks into subtasks. If the task were to be partitioned here, the whole parsing 

algorithm (which is already present in the ECE) has to be duplicated.  

2. ECE: The ECE has the parsing capability but no information about the peer’s 

metrics. But according to [12], a considerable amount of time is spent in parsing 

the data. If the task is partitioned here, only the peer metrics information has to be 

passed.  

     In accordance with the requirement #1 and #3 (efficiency, manageable, easy to 

migrate), we perform the task partitioning at the ECE. Parsing at ECE (which is written 

in C) will be more efficient then parsing at JXTA interface (written in Java). The JXTA 

interface passes the peer metrics information to the ECE, which then divides a job 

roughly in proportion to the available peers metrics. This also frees the JXTA interface 

from knowing about the Euler language and makes the code more reusable. 

     Algorithm 5: How and where are the sub-results combined? 

Purpose: This algorithm is run when all the sub-results of a task have arrived at a PSP 

and the sub-results need to be combined to obtain the final result. 

     When a task is partitioned by the ECE and returned to the JXTA interface, additional 

information is passed about how to combine the sub-results. This information is a list of 

function calls (in the ECE) to perform the sub-results merging. This information is kept 

with the JXTA interface. When all the sub-results have arrived, the sub-results along with 

the list of function calls are passed back to the ECE. The ECE performs the merger and 

sends the results back to the JXTA interface that sends it back to the originating PSC. 

     The advantage of this approach is that the JXTA interface only does what its 

functionality is (to perform task management and information passing) and does not need 

to know about the intricacies of the data it is passing (how to perform merger). And the 
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ECE handles all the task manipulation functionalities. This keeps the code modular (more 

manageable) and provides clean interfaces.  

     Algorithm 6: How is peers metrics calculated? 

Purpose: To make efficient use (requirement #3) of each peer’s capabilities, a peer’s 

capabilities should be known to other peers so that they can be assigned task in that 

proportion. One way to do this is to run a benchmark. Since the capabilities of a peer will 

not change over time in a single join-leave session, the benchmark is run only when a 

PSP joins the JXTA network. [33] uses SPECmarks benchmark to assign tasks to 

machines. 

     We use SciMark 2.0 to calculate a peer’s metrics. SciMark is a benchmark tool 

developed by NIST and is based on 5 numerical kernels to measure the performance of 

numerical codes occurring in scientific and engineering applications [34]. It calculates a 

composite score based on 5 numerical kernels which are: FFT, Gauss-Seidel relaxation, 

Sparse matrix-multiply, Monte Carlo integration, and dense LU factorization. SciMark is 

chosen because it provides a true measure of the performance of a machine undergoing 

scientific and engineering computation. 

E.  The Peer-to-Peer Euler Process 

     The whole process from job submission to result display can be divided into the 

following steps: 

1. A PSP boots up and waits for the tasks to arrive 

2. The PSC boots up 

3. User submits a job 

4. Job is sent to the jxta network 

5. Job received by PSP 

6. Job execution decision: local/remote 

7. Job partitioning and assignment 

8. Job execution 



 35

9. Sub-results Merging 

10. Result retrieval 

11. Job complete 

F.  Peer-to-Peer Euler Process Explained 

1. A PSP boots up and waits for the tasks to arrive   

     The first thing that a PSP does after it starts is to run the benchmark (metrics) as 

shown in Figure 6. The benchmark we chose was SciMark 2.0. It joins the default peer 

group and initializes its discovery and pipe service. It then starts the local and remote 

discovery to search for advertisements. This is an asynchronous process.  

     After this, it prepares an advertisement (doAdvertise) and adds the following 

information to it: 

• The peer’s metrics 

• The current queue length 

• The service it provides.  

• Input pipes ID 

     For this setup, the only service a PSP provides is the P2PEuler service. It sends the 

advertisement so that it is available to other peers and creates an input pipe based on the 

advertisement. It starts the service (startService) and waits for the tasks to arrive 

(using waitForMessage method). This blocks indefinitely till a message arrives.  
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Fig. 6. Peer-to-Peer Euler Service Provider 

2. The PSC boots up 

Join the network 

Get service information  

Run benchmark  

Send advertisement to the peers 

Wait for a job to arrive 

Check for Queue overflow 

Send the results 

Compute divided job 

Add to the job queue 

Remove job from the job queue 

Process new job 
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Fig. 7. Peer-to-Peer Euler Service Consumer 

     The user starts a PSC process as shown in Figure 7. This is similar to how he would 

start the Euler process but this time he runs a script:  

./p2peulersc 

     This causes the PSC to run the JXTA initialization functions (jxta_init). This 

function creates a EulerClient and a WorkManager object and initializes it (by calling its 

constructor). The EulerClient object is an interface between the Euler C code and the 

Java WorkManager. The WorkManager constructor calls the function (startJxta) to 

Wait for user to submit the task 

Choose a PSP 

Send the task  

Add to job queue 

Wait for results 

Update the UI 

Join the network 

Search for advertisement 

Remove job from the job queue 
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join the worldpeergroup (which is a default peer group joined by any peer which boots up 

in the JXTA network) and initializes the discovery and the pipe service for this PSC. The 

constructor then starts the local and remote advertisement discovery process (to search 

for services/resources advertised by other peers) that is asynchronous. It then gets a 

handle on the other WorkManager object fields and methods necessary to submit and 

obtain the results and returns the control to PSC User Interface (UI). The P2PEuler UI 

shows up along with the graphics window. Now the user is ready to submit the job.  

3. User submits a job 

     He types in his task.  At this point, a user has two options: 

1. He can compute the result locally, or 

2. He can submit the task to be computed by other JXTA service providers (JSP).  

     This type of approach has the advantage that the user had control over the task 

submission, as he is the one who knows best what kind of tasks he is submitting. If the 

task is really simple (like adding some quantities), he has the option to do the 

computation locally. If the task requires lots of computation, he can submit the task so 

that it is computed remotely. This also keeps the Euler session more interactive. This also 

allows the PSC to compute a task locally in case there are no available peers.  

     If the user wants to submit a job to be computed remotely, he precedes the statement 

with  

submit_to_p2pEuler: 

     Consider an example when a user wanted to multiply two matrices, he types the 

following to submit the job to remote JSP: 

a=[...] 

b=[...] 

submit_to_p2pEuler:a.b 

     We call this event “Task Submission”. This is a blocking call that waits till the user 

gets the result back from the jxta network.. This causes the p2peuler to invoke the 
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submitToWorkManager function of the EulerClient object. The control then transfers 

to the WorkManager’s processJob. 

4. Job is sent to the jxta network 

     The WorkManager’s processJob function accesses the list of available peers 

(through the asynchronous advertisement discovery process discussed above). If no PSP 

is available, the function returns with an error and the control transfer back to the Euler 

part that then processes the job locally using its own CE.  

     If there are PSPs available, it picks up a single PSP who is sent the whole task. It uses 

algorithm 1 to select a PSP. After a PSP is selected, the PSC adds the following 

information to the task (Message) being sent to the PSP: 

1. Input pipes ID:  This information is for the PSP to send the final result back. 

2. Task ID:   A string identifying this job (a random number) 

3. Task Status:   Job is new (JOB_NEW) 

4. Task String:  The whole task 

     It then sends the message to the PSP. It is the responsibility of the PSP (to whom the 

job was sent) to return the final result back to the requestor.  

5. Job received by PSP 

     The PSP is waiting for a task to arrive (waitForMessage). This process blocks till 

a message arrives at the input pipe. When a task arrives at a PSP (in the form of a JXTA 

Message object), it extracts the Message from it. It checks if its job queue is full. If 

the job queue is not full, the task is added to the job queue otherwise a reply is sent to the 

PSC indicating that this job was rejected because the job queue is full. The JSC makes a 

note of the full job queue. After this, the PSP checks the job status. If the job status is 

new (JOB_NEW), the function processNewJob is called otherwise if the job status is a 

divided job (JOB_DIVIDED), it knows that it has to compute this job and so calls the 

computeDividedJob function.  

6. Job execution decision: local/remote 
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     When a new task arrives, the PSP makes a decision to either execute the task locally 

or remotely according to the algorithm 2. If executing locally, it computes the task. If 

running remotely, it partitions the task. 

7. Job partitioning and scheduling 

     After the PSP decided to run the task remotely, it partitions the task into subtasks and 

dispatches each of them one after the other according to algorithm 3. A new thread is 

created to dispatch each subtasks.  

8. Job execution 

     If the task (or subtask) that arrived is the one this PSP has to compute, it passes the 

task to the CE. A task is the one sent by a PSC to execute and this PSP decides to 

compute locally. A subtask is the one sent by another PSP to this peer to compute. The 

CE computes the task (or the subtask) and outputs the result (or sub-result). The result is 

sent to the requesting PSC and the sub-result is sent to requesting PSP. 

9. Sub-results Merging 

     After all the sub-results of the particular task have arrived, the sub-results are 

combined using algorithm #5. The task is complete now and the results are sent back to 

the originating PSC. 

10. Result retrieval 

     The PSC is listening (pipeMsgEvent) through the input pipe for the results. When 

a message arrives at this pipe, the results are extracted from it and passed on to the UI. 

11. Job complete 

     The UI displays the result to the user and the job is complete now. 
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CHAPTER VI 
 

EXPERIMENTAL SETUP 
 

A. Experimental Setup 

     Experiments were conducted to test the P2Peuler application on a LAN. The task was 

to calculate the prime numbers from 1 to 1000000 with the lower boundary of 1.  The 

prime numbers were calculated with the following upper boundary: 10, 100, 1000, 10000, 

100000, 200000, 600000, 800000, 1000000. The number of peers in the experiments 

varied from 1 to 6 for each set. Figure 8 shows the experimental setup of peers.  

 

  

 

 

 

 

 

 

Fig. 8. Experimental Setup 

     In the experimental setup, there was one PSC and more than one PSPs. PSC chooses 

one PSP, submits the task to it and waits for the result. The chosen PSP takes care of task 

partitioning and gives the final result back to the PSC. Table 1 shows our experimental 

results.  
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Table I. Time Taken (in Milliseconds) by Peers to Compute Prime Numbers 

 

Number of Peers Prime number 

Upper 

boundary 

1 2 3 4 6 

10 2459.8000  4315.5000  5120.2500  7531.0000  9795.1667 

100 1822.2000  3556.7500  4734.2500  5808.5000  7913.7500 

1000 1922.8000  3323.5000  4974.7500  5846.7500  7644.2500 

10000 2090.8000  3264.2500  4454.5000  6002.4000  7828.5000 

100000 7261.1667  4712.2500  4963.7500  6263.5000  8010.5000 

200000 19271.6667  8468.5000  7443.7500  7209.7500  8859.7500 

400000 61396.5000  16722.2500 13900.6000 12586.5000  14068.4000 

600000 149193.2000 29109.7500 22579.7500 19887.5000  16661.7500 

800000 288622.6000 48426.5000 34196.5000 29519.8000  20163.2500 

1000000 457166.4000 74676.0000 48867.0000 43745.0000  26500.0000 

 

     The experiment was repeated to compute the prime numbers locally.  

B. Experiments with Computing Prime Numbers 

     The following graphs summarize the results.  

     Figure 9 shows a graph between the time taken to complete the task and the number of 

peers available for prime numbers calculated from 1 to 1000000. 
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Fig. 9. Time Taken (in Milliseconds) vs. Number of Peers (for Prime Numbers up to 

1000000) 

     We can conclude from the graph that the benefits for this application are more visible 

for bigger task sizes. This behavior is to be expected as the ratio to computation time and 

communication time is higher for the bigger tasks. 

     Figure 10 shows the time taken by peers for prime numbers less than 200000. The 

purpose of this figure is to show the behavior not visible in the graph above. In this 

graph, we see that for smaller tasks (<100000), the completion time increases as the 

number of peers increase. This behavior can be attributed to the fact that for smaller 

tasks, the communication overhead is more than the computation time and it would be 

beneficial not to split the tasks into parts.   
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Fig. 10. Time Taken (in Milliseconds) vs. Number of Peers (for Prime Numbers < 

200000) 

     Speedup: Speedup was measured as the ratio of time taken to compute the task locally 

and remotely.  
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Fig. 11. Speedup vs. Number of Peers 

     It is evident from Figure 11 that for smaller tasks (<100000), the speedup is not 

significant. But as the task size increases, the speedup increases.  

C. Experiments with Different Task Partitioning Algorithms 

     Experiments were conducted to calculate the prime numbers between 1 and 1000000 

using three different algorithms to partition a task submitted by a PSC among the 

available peers. The algorithms used are as follows: 

1. Random task partitioning: The tasks were randomly partitioned and assigned 

randomly among the available peers.  

2. Equal task partitioning: The tasks were partitioned equally among all the available 

peers.  

3. Proportional task partitioning: The tasks were partitioned using algorithm three 

described earlier.  

     The results of this experiment are summarized in the Table II.  
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Table II. Experiments with Three Different Task Partitioning Algorithms 

 

Task Partitioning Algorithm Average Time taken (in millisecond) 

Random Task Partitioning 180665 

Equal Task Partitioning 131369 

Proportional Task Partitioning 112795 

 

     The results of this experiments show that the proportional task partitioning algorithm 

gives us the best results. This is to be expected because in the proportional task 

partitioning scheme, we assign tasks proportional to a peer’s capability which minimizes 

the task completion time makes the most efficient use of a peers resources among the 

three algorithms tested.  
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CHAPTER VII 
 

CONCLUSION 

     In accordance with our objective, we have successfully developed a numerical 

computation software (P2PEuler) that uses a peer-to-peer framework to distribute its 

computation. The application is at the development stages and runs on Linux and is 

compatible with Solaris. We have met the objectives set out for this thesis in the 

following ways: 

1. The experiments conducted show that the numerical computational software 

developed is scalable to a modest degree and is easy to manage and deploy. 

2. The developed software is compatible for Matlab-style computation and is very 

cost effective.  

3. The results of our experiments showed that the developed software makes 

efficient use of the peer resources (using an efficient task partitioning scheme) 

and gives us acceptable performance improvements in terms of speedups.  

     As of this writing, the P2PEuler system is still under development. The system can be 

improved in various ways. First, the algorithms used to load balance, partition the task 

and schedule it can be improved to add complex features. For example, in order to be 

able to use this infrastructure for complex problems, the task-partitioning algorithm can 

analyze the dependencies. A better estimate of communication cost to a peer can be made 

by pinging and peers with lower communication cost will be given preference (in case 

their metrics are same). Second, when partitioning the task, script level parallelism can be 

implemented to achieve outer-loop coarse grain parallelism. Third, when deciding to 

execute a task locally or remotely, the task size can be taken into account. Four, peers can 

advertise multiple metrics. Some tasks might be IO bound where as others might be CPU 

bound. For each type of the task, the metrics best suited for that particular task can be 

used.  
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