

USING ORDERED PARTIAL DECISION DIAGRAMS

FOR MANUFACTURE TEST GENERATION

A Thesis

by

BRADLEY DOUGLAS COBB

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

December 2003

Major Subject: Computer Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/4268384?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Approved as to style and content by:

M. Ray Mercer

(Chair of Committee)

 A. L. Narasimha Reddy

(Member)

Michael Grimaila

(Member)

 Chanan Singh

(Head of Department)

USING ORDERED PARTIAL DECISION DIAGRAMS

FOR MANUFACTURE TEST GENERATION

A Thesis

by

BRADLEY DOUGLAS COBB

Submitted to Texas A&M University
in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

December 2003

Major Subject: Computer Engineering

iii

ABSTRACT

Using Ordered Partial Decision Diagrams

for Manufacture Test Generation. (December 2003)

Bradley Douglas Cobb, B.S., Texas A&M University

Chair of Advisory Committee: Dr. M. Ray Mercer

Because of limited tester time and memory, a primary goal of digital circuit

manufacture test generation is to create compact test sets. Test generation programs that

use Ordered Binary Decision Diagrams (OBDDs) as their primary functional

representation excel at this task. Unfortunately, the use of OBDDs limits the application

of these test generation programs to small circuits. This is because the size of the OBDD

used to represent a function can be exponential in the number of the function's switching

variables. Working with these functions can cause OBDD-based programs to exceed

acceptable time and memory limits. This research proposes using Ordered Partial

Decision Diagrams (OPDDs) instead as the primary functional representation for test

generation systems. By limiting the number of vertices allowed in a single OPDD,

complex functions can be partially represented in order to save time and memory. An

OPDD-based test generation system is developed and techniques which improve its

performance are evaluated on a small benchmark circuit. The new system is then

demonstrated on larger and more complex circuits than its OBDD-based counterpart

allows.

iv

To God, my Creator

v

 ACKNOWLEDGMENTS

I would like to thank my advisor Dr. M. Ray Mercer for all of the invaluable

knowledge, support, advice, and opportunities that he has given me.

I would also like to thank the other members of my committee, Dr. A. L. N.

Reddy and Dr. M. R. Grimaila, for being excellent teachers and supportive mentors.

I would like to thank my parents for their love and support throughout my entire

life and for always encouraging me to “do your best and be your best.”

I would like to thank my wife Christina for always being there for me and

reminding me of the most important things in life.

I would like to thank Jennifer Dworak, Jimmy Wingfield, and Dr. Sooryong Lee

for teaching me by example how to be a successful student and researcher and for

listening to my ideas and problems.

I would like to thank Carolyn Warzon and Tammy Carda for their guidance and

their effort in helping me to meet all of the university’s administrative requirements.

I would like to thank the Department of Electrical Engineering at Texas A&M

University for providing me with excellent educational opportunities and financial

support.

Finally, I would like to thank God for the many blessings and opportunities that

He has provided me with, and for giving me the strength to persevere through difficult

times.

vi

 TABLE OF CONTENTS

Page

ABSTRACT ... iii

ACKNOWLEDGMENTS..v

TABLE OF CONTENTS ..vi

LIST OF FIGURES..vii

LIST OF TABLES ... viii

INTRODUCTION..1

Testing for Manufacture Defects..1
Stuck-at Fault Testing ..3
Exciting, Observing, and Detecting a Fault ...4
Multi-Detect Testing ..5
Fault Excitation, Observation, and Detection Probabilities6
Binary Decision Diagrams ...6
An OBDD Package for Manufacture-Test Generation ..8
Limitations of OBDD Test Generation Packages ..10
Ordered Partial Decision Diagrams..10
OPDD-Based Test Generation ...11

METHOD...13

Converting OBDD Graphs to OPDD Graphs...13
Removing Multiple Vertices from a BDD ...16
Calculating Observation Functions using D-Propagation ..17
Enhancements to D-Propagation ..23
Excitation Guidance ...25
Terminal Vertex Combination..28
Other Speed Improvements to sByDDer..30
Test Generation ..30

RESULTS...32

Overview ..32
Method Evaluation ...33
Test Generation for Larger Circuits ...41

CONCLUSIONS..47

REFERENCES...49

VITA ..51

vii

 LIST OF FIGURES

Page

Figure 1. Integrated circuit production flow ..1

Figure 2. AND network..3

Figure 3. AND gate with output stuck-at-zero...4

Figure 4. Exciting, observing, and detecting a fault...5

Figure 5. Example OBDD..7

Figure 6. Example OPDD ..11

Figure 7. Input combination values for example OBDD ...14

Figure 8. Vertex removal metric calculation..16

Figure 9. Boolean-difference observation function calculation18

Figure 10. Boolean-difference unguided..20

Figure 11. Boolean-difference partially guided ...21

Figure 12. Boolean-difference fully guided ...22

Figure 13. D-propagation through multi-input gates ...24

Figure 14. Excitation guidance procedure..27

Figure 15. Terminal vertex combination..29

viii

 LIST OF TABLES

Page

Table 1. Method abbreviations...33

Table 2. Unknown excitation OPDDs of non-redundant faults34

Table 3. Unknown observation OPDDs of non-redundant faults34

Table 4. Unknown detection OPDDs of non-redundant faults ..35

Table 5. Percentage of excitation minterms known ...36

Table 6. Percentage of observation minterms known ..36

Table 7. Percentage of detection minterms known ..36

Table 8. Single-excitation guidance vs. dual-excitation guidance - D-TVC....................37

Table 9. Size of single-detect stuck-at-fault test set (vectors)..38

Table 10. Faults undetected by fault simulation ..38

Table 11. Multi-input Apply ordering - D-TVC-DEG...39

Table 12. BDD-Crusher time (seconds) - D...39

Table 13. Runtime (minutes)..40

Table 14. Removing multiple vertices (Unknown detection OPDDs) - D-TVC-DEG....40

Table 15. Variations on the RMV option - D-TVC-DEG-256 ..41

Table 16. c880 - D-TVC-DEG...43

Table 17. c3540 - D-TVC-DEG...44

Table 18. c5315 - D-TVC-DEG...46

1

 INTRODUCTION

Testing for Manufacture Defects

The production of integrated circuits (IC) has exploded into a multi-billion dollar

industry whose customers consistently demand faster and more intelligent products. In

response to these demands, companies manufacture ICs that are growing increasingly

larger and more complex. As with any mass produced product, a strong quality control

system must be in place to assure that very few, if any, defective parts are sold. This is

because the cost, both in terms of profit and reputation, of repair and replacement of

shipped defective parts far exceeds the cost screening out the defective parts in the first

place. For integrated circuits, this quality control is enforced by automatic test

equipment as described by Turino in [1]. After the IC is manufactured, it is tested by the

ATE to determine whether it is free from defects. Figure 1 shows where manufacture

testing fits into the production flow of an IC.

Manufacturing Manufacture
Testing

Reject

Circuit
Design

Apply
Inputs

Verify
Outputs

1
0
1
0
1
0
1
0
1
0
1
0

1
0
0
0
1
1
1
0
0
0
1
0

Integrated
Circuit

Inputs

O
utputs

Ship to
Customer

Pass

Fail

Manufacture
Testing

Figure 1. Integrated circuit production flow

This thesis follows the style and format of IEEE Transactions on Automatic Control.

2

To test an IC, the ATE enters multiple combinations of values into the circuit's

inputs and observes the outputs to make sure they are correct. This is one of the only

possible methods of testing because the ATE does not have access to any of the interior

points in the circuit. Therefore, the goal of testing is to strategically choose the inputs to

the circuit so as to cause any interior defects in the circuit to manifest themselves as

erroneous logic values at the circuit's outputs.

One possible strategy to test for a combinational circuit's defects is to apply every

possible input combination to the circuit and verify that the output values it produces are

correct. This strategy will completely test the circuit’s static operation and was

commonly applied to small circuits in the past. Unfortunately, today's large and

complex ICs cannot be tested so easily. Applying every possible input combination

requires n2 different combinations to be applied, where n is the number of inputs and

storage elements in the circuit. Attempting to test a modern processor in this way using

the fastest ATE available today would take at least thousands of years. Functional

testing, in which test cases that exercise each of the circuit’s basic functions, is another

popular testing alternative. Although this approach verifies basic functional correctness,

it does not attempt to exercise all of the circuit’s structural elements. Clearly, a testing

method that test’s all of a circuit’s structurally elements and requires entering far fewer

than all of the possible input combinations must be used.

To fully understand the process of testing, one must have a basic knowledge of

the basic components of an integrated circuit and how they operate. An integrated

circuit can be considered a collection of interconnected building blocks called logic

gates. The inputs to these gates can only take on the values of logic zero and logic one

and can ideally only produce an output of logic zero or logic one. The specific function

implemented by the integrated circuit is determined by how the gates are interconnected.

A graphical representation of one specific gate, the AND gate, is shown in Figure 2

along with its outputs in response to all of the possible input combinations. Also in

Figure 2 is an example network composed entirely of AND gates. Sixty-four input

3

combinations would need to be applied to the sample AND network to completely test

all of the static defects.

C
irc

ui
t I

np
ut

s

C
ircuit O

utputs

A
B C

A B C
0
0
1
1

0
1
0
1

0
0
0
1

Figure 2. AND network

Stuck-at Fault Testing

Determining which of the input combinations, or test vectors, to use when testing

an IC depends on the chosen testing strategy. The most common approach used in

industry today is based on the single stuck-at fault model developed by R. D. Eldred in

[2]. A fault model is a simplified specification of a likely defect in an IC. The single

stuck-at fault model, often simply referred to as the stuck-at fault model, assumes that

the only defects that can occur are points in the circuit that are erroneously fixed to a

logic zero (stuck-at zero) or a logic one (stuck-at one). This can occur when two parts of

a circuit are either erroneously connected together or not properly connected at all. For

example, such a defect can force a point in the circuit to be either grounded or pulled to a

high voltage regardless of what the circuit's inputs dictate it to be. Figure 3 shows an

AND gate with a static defect that generates an erroneous output of logic zero when both

inputs are at logic one. As you can see, the output C does not assume the correct logic

value when A equals logic one and B equals logic one. The single stuck-at fault model

also assumes that only one fault will be present in the IC at a time. This simplifies the

4

model so that it does not have to deal with all of the possible multi-fault combinations

that could be present in the IC. A typical testing strategy would involve generating a set

of input vectors that tests for both types of stuck-at faults for every wire in a circuit.

A
B C

A B C
0
0
1
1

0
1
0
1

0
0
0
0

Stuck-at zero error

Figure 3. AND gate with output stuck-at-zero

Exciting, Observing, and Detecting a Fault

For a test vector to be successful at detecting a fault, it must accomplish both the

tasks of exciting and observing the fault. Exciting a fault involves setting the inputs of

the circuit to values that will cause a fault to produce erroneous values at its location, or

site, in the circuit. In the case of exciting stuck-at faults, this is a simple as configuring

the circuit to place a logic one (for stuck-at-zero faults) or a logic zero (for stuck-at-one

faults) at the desired site. For example, to excite a stuck-at-zero fault at the output of a

gate in a circuit, a test vector must be generated that will produce a logic one at the

output of that gate in the non-faulty circuit, also known as the good circuit. When that

test vector is applied to a faulty circuit with a stuck-at-zero fault at that same site, an

erroneous logic value of logic zero will appear at that site instead of the correct value of

logic one.

Observing a fault requires selecting the input vector so that it propagates the

value at the desired fault’s site to at least one of the outputs of the circuit. Extending the

above example, the chosen input vector must also be generated so that it propagates the

value at the selected site to the circuit outputs. This propagation is accomplished by

determining the connectivity paths from the fault site to the circuit outputs and setting

5

the side inputs to gates along these paths to non-controlling values. For example, if one

of the paths passes through an AND gate, the circuit must be configured to place a logic

zero at each of the other inputs to that gate. This will allow values to propagate through

the AND gate along the desired path.

Test vectors that detect a fault must be able to both excite and observe the fault at

the same time. This set of vectors can be thought of as the intersection between the set

of vectors that excite the fault and the set of vectors that observe the fault, as

demonstrated in the Venn diagram of Figure 4. The number of possible input

combinations that will detect a fault depends on the size of the excitation and

observation sets and on the overlap between them.

All possible test vectors

Test vectors
that excite

fault i

Test vectors
that detect

fault i

Test vectors
that observe

fault i

Figure 4. Exciting, observing, and detecting a fault

Multi-Detect Testing

Testing strategies that require 100% detection of all the stuck-at faults in a circuit

are successful because they require the generation of a test vector set that has the

capability of making each site in the circuit observable at the circuit outputs. The

weakness of the stuck-at fault model lies in the fact that its excitation requirements often

do not match those of real circuit defects. To overcome this limitation, Grimaila [3]

6

demonstrated that applying test sets that detect each fault in a circuit multiple times, each

with a unique input vector, detects more real manufacturing defects than the application

of single-detect test sets. By applying multiple tests for a stuck-at fault, the fault can be

excited in a different way each time. This increases the probability of matching the

excitation criteria for a real defect that might be present at that site. Recently, multi-

detect testing strategies are gaining favor in the testing community because they do not

require complicated fault modeling but still achieve impressive results.

Fault Excitation, Observation, and Detection Probabilities

The probability that a fault will be excited, given that a random input vector is

chosen, can be determined by dividing the number of vectors that excite the fault by the

total number of vectors that can be applied to the circuit. The same technique can be

used to find both the probability of observing and detecting a fault. These probabilities

have been used in [4] to explore the relationships between the difficulty of exciting,

observing, and detecting faults within a circuit. They were also used in [4] to explain

and predict the difference in test set lengths between tests that target different fault

models.

Binary Decision Diagrams

Binary Decision Diagrams (BDDs) were first proposed by Lee in [5] as a way to

represent Boolean functions in the form of directed acyclic graphs. The BDD

representation was later developed by Bryant in [6] into a more useful, canonical data

structure called a Reduced Ordered Binary Decision Diagram (ROBDD), often simply

referred to as an OBDD, which lends itself to more efficient manipulation by computers.

Figure 5 shows the OBDD for a simple logic function containing the switching

variables A through D. The OBDD is composed of two types of vertices: switching-

variable vertices and terminal vertices. The vertices at the very bottom of the graph are

the square-shaped terminal vertices, and there exists one terminal vertex for each logic

value that the function represented by the OBDD can produce. The circular-shaped

switching-variable vertices in the graph are assigned to one of the function’s inputs.

7

Each switching-variable vertex has a logic-one arc and logic-zero arc leading away from

it. These arcs connect the vertices to form a graph and are used to trace through the

OBDD when evaluating an input combination. The vertex pointed to by an arc is called

the child of vertex where the arc originated. For example, the logic zero terminal vertex

is the zero child of the D vertex, and the logic one terminal vertex is the one child of the

D vertex. The vertex at the top of the graph is called the root vertex, and the evaluation

of all input combinations must begin here.

A

B B

CC

D

10

0

0
0

0 0

0

1

1

1

1

1

1

Root

Figure 5. Example OBDD

To evaluate the function in Figure 5 when A equals one, and B equals one, C

equals zero, and D equals one, first start at the root vertex and proceed down the graph

by following the appropriate arcs. In our example, the root vertex is assigned to the

variable A, and because we want to evaluate the functions when A equals one, we follow

the arc labeled with a one away from the root vertex. This leads to the vertex assigned to

the variable B. At the B vertex we follow the arc labeled with a one, corresponding to B

equals one, to the terminal vertex logic one. Thus we have found that the function A

AND B evaluates to logic one when both A and B equal one. Often a standard

8

convention is used in place of the labels on the arcs. In these cases, the arcs that point

left are the zero arcs, and the arcs that point right are the one arcs.

All of the normal Boolean operations such as AND, OR, NOT, and XOR can be

performed quite easily on OBDDs. Boolean operations between two OBDDs are carried

out using an algorithm called the Apply operation, which was efficiently implemented

by Bryant in [6]. The Apply operation produces an OBDD with the correct function, but

often with redundancies in its structure. Therefore, a Reduce operation is called on the

resulting OBDD to eliminate the redundancies. This is generally required to convert the

OBDD into its canonical form.

One important feature of OBDDs is the fact that their vertices follow a strict

order. This means that when tracing through the graph of an OBDD, the Boolean

variables will always be encountered in the same order. This is another requirement that

makes OBDDs a canonical form. In addition, choosing the correct variable ordering for

an OBDD can, for some functions, greatly affect the number of vertices required to

represent it.

Because OBDDs are a canonical form for representing Boolean functions, they

lend themselves to easily performing common tasks such as finding input combinations

that satisfy a function, testing functions for equivalence, and combing functions with a

Boolean operation. Given these and other advantages, OBDDs have found wide

application to such CAD problems as logic synthesis [7], logic verification [8], and

manufacture-test generation [9].

An OBDD Package for Manufacture-Test Generation

In [9], a test generation package named sByDDer was developed. sByDDer uses

OBDDs as its primary data structure and the Apply operation as its primary

manipulation tool. To generate tests for stuck-at faults in a combinational circuit,

sByDDer passes through four major phases. The first phase involves calculating the sets

of all tests that excite each fault in the circuit. This is done in a single forward pass

through the circuit, by first creating the primary input OBDDs then calling the Apply

operation to calculate the output of each gate. sByDDer then proceeds to find the sets of

9

all tests that observe each fault. This is done by using a method that calculates the

Boolean-difference of each fault site with respect to the primary outputs. In the third

phase, sByDDer then determines the set of all tests that detect each fault by finding the

intersection of the excitation and observation sets for that fault. The intersection is

accomplished by computing the AND of the excitation and observation OBDDs using

the Apply operation. Finally, sByDDer selects a subset of the generated tests to be

included in the final test set. The final test set can be either a single-detect or multi-

detect test set.

Functionally-based OBDD test generation packages such as sByDDer are useful

for many reasons. Recent work by Dworak [4] utilized sByDDer’s facilities to produce

the exact fault excitation, observation, and detection probabilities of various benchmark

circuits. This information was used to explain and predict the difference in test-set

lengths between test sets that target stuck-at faults verses transition faults. S. Lee used

the sByDDer package in [10] to generate truly random manufacture tests for each fault

in a circuit. These random test sets were then used as an approximation of current

industry practice in test generation and served as benchmarks for evaluating the

effectiveness of newly proposed test generation strategies.

OBDD-based test generation packages also excel in creating compact test sets

and multi-detect test sets. Traditional, structurally-based test generators produce only

one test at a time and must be run iteratively to obtain multiple tests for each fault.

Because OBDD-based test generators work on the functional level, they automatically

produce all possible tests for each fault. Having a large set of candidate tests for each

fault is a great benefit for test-set compaction techniques, allowing them to more easily

find the smallest number of tests that will detect all of the faults in a circuit. This

advantage was explored by Wingfield in [9] where sByDDer was used to successfully

generate compact test sets near the theoretical minimum length presented in [11]. The

functional representation used by OBDD-based test generators also lends itself to the

creation of multi-detect test sets. In [9], the author showed that the multi-detect test sets

10

generated by sByDDer were vastly smaller in size than those generated by a more

traditional tool.

Limitations of OBDD Test Generation Packages

Although OBDDs provide many benefits in the area of CAD and manufacture

testing, their use can be costly in terms of both memory and computational time.

Because the memory requirements of OBDDs can be determined by the variable

ordering chosen to represent them with, much research has been done in the area of

optimal variable order selection. Unfortunately, it has been shown in [6] that regardless

of the chosen variable ordering, some functions exist which require an exponential

amount of memory resources when represented as OBDDs. Because of these

limitations, most of the work done using OBDDs, as in [4] and [9], has been limited to

the smallest benchmark circuits that have OBDDs of tractable size. When larger circuits

are attempted by a package such as sByDDer, one of two things occurs. Either the

required memory exceeds the available RAM on the machine, resulting in memory

thrashing, or the large OBDDs cause the Apply operations to take an excessive amount

of time to complete. Under both circumstances, the test generation process cannot be

completed within a practical time limit.

Ordered Partial Decision Diagrams

In order to overcome the limitation of OBDD-based applications, a solution was

needed to make OBDDs more widely applicable to larger, more complex functions.

Towards this end, a variation on the OBDD called an Ordered Partial Decision Diagram

(OPDD) was introduced in [12]. OPDDs contain a subset of the functional information

contained in OBDDs, but at a lower cost in terms of memory and manipulation time.

Figure 6 shows an example of a partially specified function represented as an OPDD. It

represents the same function as the OBDD in Figure 5, but with only partial information.

As you can see, a third terminal vertex named X has been introduced into the structure in

place of one of the vertices containing the variable C. Now when evaluating the

function for a specific input combination, the evaluation path taken through the OPDD

11

has the possibility of ending at the X terminal instead of the logic zero or logic one

terminal. For these input combinations, the value of the function is unknown.

Converting an OBDD to an OPDD by replacing some of its vertices with the X terminal

generally reduces the total number of vertices in the graph, but at the loss of functional

knowledge. Therefore, a primary goal when working with OPDDs is to find the optimal

tradeoff between graph size and functional knowledge.

A

B B

CC

10 X

Figure 6. Example OPDD

One of the first and most widespread applications of OPDDs, researched by [13],

[14], and [15], was in the area of determining the optimal variable ordering for OBDDs.

OPDDs have also been used for logic verification [16] and OBDD partitioning [17]. In

these and other applications, OPDDs have allowed many of the techniques developed

using OBDDs to be extended to circuits of much greater size and complexity than ever

before achieved.

OPDD-Based Test Generation

Based on the results mentioned above, an OPDD test generation package has

been created. Building on the sByDDer engine by incorporating OPDDs into the

package, it is able to handle larger and more functionally complex circuits. Using

OPDDs as the primary data structure reduces the memory and time requirements that

12

previously limited sByDDer’s application to larger circuits. This has been accomplished

by limiting the maximum size of a BDD produced as the result of an Apply operation.

Of course, not all of the advantages of an OBDD test generation package can be retained

with the introduction of OPDDs. Although OPDDs require less memory and time to

process, by definition they do not contain as much functional information as their OBDD

counterparts. Therefore, a large effort is required to maximize the useful information

content of the OPDDs used to represent fault excitation, observation and detection

functions. For the same reason, the test selection process will be less optimal when

working with OPDD, limiting the possibilities of test compaction techniques.

13

 METHOD

Converting OBDD Graphs to OPDD Graphs

When an Apply operation is performed on two BDDs, the resulting BDD will

often contain more vertices than either of the original BDDs. In fact, this is one of the

only operations used in sByDDer that creates larger BDDs than previously exist.

Because the goal of this research is to limit the size of the BDDs operated on during

sByDDer’s test generation process, in turn reducing the memory and time requirements

of the application, a limit is placed on the size of the resulting BDD from an Apply

operation. This limit is enforced by eliminating vertices from the BDD until it reaches

the predefined user specified limit. For example, if the maximum number of vertices is

limited to fifty vertices and the Apply operation produces a BDD with fifty-five vertices,

at least five vertices are removed from the BDD before sByDDer is allowed to continue.

A vertex is removed from a BDD by replacing it with the X terminal. The

represented function is then unknown for the input combinations who’s paths originally

passed through the removed vertex. Therefore, the goal when removing vertices is to

retain the most information possible about the function represented by the BDD. Take

for example the situation where only one vertex must be removed from the BDD in order

for it to satisfy the limit on the maximum number of vertices. Also, assume that the

BDD is an OBDD and therefore does not contain an X terminal. One option for

determining which vertex to remove would be to try removing each vertex in the BDD

one at a time and observe how many entries in the truth table of the resulting function

evaluate to X. The vertex that affects the fewest truth table entries can then be removed.

A more practical way of approaching the problem is to pass information down

the BDD, starting at the root vertex, about the number of input combinations that pass

through each vertex. For example, all input combinations pass through the root vertex at

the top of the BDD. Therefore, a value of 2n, where n is the number of variables in the

function, is associated with the root vertex. Moving down the BDD, half of the input

combinations flow through each of the two arcs leaving the root vertex and pass through

14

the vertices at the second level of the graph. A value of 2n/2 will then be associated with

those two vertices on the second level. This pattern continues as each vertex passes half

of its value down each of its two arcs to the vertex below it. After these values have

trickled down the BDD, each vertex has a value associated with it that corresponds to the

number of truth-table entries which will become unknown if the vertex is removed. The

optimal vertex to remove is the therefore the vertex with the smallest value associated

with it. Figure 7 shows what the actual values would be for our example function. As

you can see, the vertex representing the variable D has the smallest value. Therefore, the

removal of vertex D would cause the smallest reduction in functional knowledge.

A

B B

CC

D

10

16

8 8

8 4

2

Figure 7. Input combination values for example OBDD

The previous version of sByDDer has the functionally to calculate the input

combination values mentioned above, but in an inefficient way. It passes these values

down the BDD in a depth-first manner using a recursive algorithm. For example, at the

root vertex, the value is first passed down to it zero child, and then the zero child

proceeds to pass a value to its zero child. This pattern continues until a terminal vertex

is reached. At that point, the algorithm backtracks up to the previous vertex and passes a

15

value down to its one child. The drawback to this algorithm is that it has the possibility

of visiting a single vertex in the BDD many times. Vertices that have multiple arcs

pointing to them will be visited one time for each arc. The new version of sByDDer

contains a modified algorithm that passes the values down the BDD in a breadth-first

manner. A vertex is only processed when all of the vertices upstream from it have been

processed. This guarantees that each vertex in the BDD will only be visited once.

Therefore, the breadth-first algorithm always requires linear time with respect to vertex

count as opposed to the possibly exponential time requirements of the depth-first

algorithm. In our example function, the far left vertex containing the variable C would

be visited only once by the breadth first algorithm, but twice by the depth first algorithm.

The vertex removal procedure previously described requires a modification if the

oversized BDD already contains an X terminal. In short, the vertex whose removal will

convert the fewest additional truth-table entries to unknown should be chosen. This

information can be obtained by making an additional pass through the BDD, starting at

the terminal vertices and passing information up the graph. The information that should

be passed up the graph is the percentage of input combinations that pass through the

vertex and end at the known vertices of zero or one. These percentage-known values

can be efficiently calculated as follows. Starting with the terminal vertices, a value of

zero percent is associated with the X terminal and a value of 100 percent is associated

with the zero and one terminals. Next, the percentage-known values associated with the

parents of the terminal vertices are calculated. The percentage-known value for a vertex

is obtained by simply summing its children’s percentage values and dividing by two.

Once all of the percentage-known values have been calculated, the percentage-known

value for each vertex should be multiplied by the number of input combinations that pass

through that vertex. The resulting value is called the removal metric. As before, the

vertex with the smallest value for this metric should be removed. Figure 8 shows an

example of how these metrics are computed. The leftmost OPDD show the number of

input combinations that pass through each vertex. The center OPDD shows the

percentage-known values for each vertex, and the rightmost OPDD shows the removal

16

metric for each vertex. The metrics indicate that the rightmost C vertex is the optimal

choice for removal.

A

B B

CC

10 X

8

4 4

24

A

B B

CC

10 X

87.5%

75% 100%

50%100%

A

B B

CC

10 X

7

3 4

14

Input Combination Values Percentage Known Values Vertex Removal Metrics

Figure 8. Vertex removal metric calculation

As a final step after the removal of a vertex, the Reduce operation should be

called on the resulting OPDD to eliminate any redundancies introduced by the

conversion of that vertex to an X terminal. This can further reduce the number of

vertices in the OPDD without losing any functional information. For example,

converting a vertex to an X terminal might result in two identical sub-trees inside the

BDD, one of which can be removed for a substantial savings. The arcs previously

pointing to the root of the removed sub-tree are then redirected to the root of the retained

sub-tree.

Removing Multiple Vertices from a BDD

So far we have only considered the case where only one vertex must be removed

to bring the BDD down to an acceptable size. The vertex removal process is not as

straightforward for the cases where multiple vertices must be removed. Converting only

one vertex to an X terminal and calling the Reduce operation as described above will

sometimes remove a sufficient number of vertices. This will generally work when the

number of excess vertices is small, but the probability that calling the Reduce operation

17

will be sufficient diminishes as the number of excess vertices increases. One simple

solution to this problem is to repeat the steps of converting a vertex to an X terminal and

calling the Reduce operation iteratively until the OPDD reaches an acceptable number of

vertices. While not optimal, this method avoids considering the effects that all possible

combinations for removing multiple vertices at one time will have on the number of

known truth-table entries. It also avoids having to consider which combinations of

vertices will result in the greatest reductions when the Reduce operation is called.

One of the major negative aspects of the iterative single-vertex removal

algorithm is its time requirements. As an example, consider an Apply operation between

two BDDs with 500 vertices each. In the worst case, the resulting BDD can be 250,000

vertices. All but 500 of these vertices must be removed, which means that the iterative

removal algorithm could have to be called 249,500 times for one Apply operation. For

each iteration the removal metrics must be recalculated, the desired vertex must be found

and removed, and the Reduce operation called. The repetition of these steps can require

a considerable amount of time.

One solution to speed up the algorithm involves calculating the removal metrics

only once, removing all of the excess vertices at once, and calling the Reduce operation

only once at the end. Although this method is less optimal, the time saved when dealing

with large BDDs justifies its use in many cases. As a compromise between speed and

quality, another variation can be used which involves determining the number of vertices

to be removed based on the number of vertices still in excess of the vertex limit. For

example, one-half of the excess vertices might be removed, Reduce called, and the

removal procedure then called again to remove one-half of the remaining excess

vertices. This loop can be iterated until the number of vertices has been reduced to the

maximum limit.

Calculating Observation Functions using D-Propagation

The observation function for a site describes all of the possible input

combinations that will make the logic value at that site visible at one or more of the

circuit outputs. Calculating the observation functions for a circuit site is more

18

complicated than simply calculating the function itself at a site. sByDDer calculates the

observation functions via a direct application of the Boolean difference. Figure 9

illustrates this process.

The Boolean difference of each output with respect the site-under-test if

calculated, and the union of all the results is produced as the observation function. To

calculate the Boolean difference for a site, two passes through the circuit are required,

starting from the site-under-test and ending at the outputs. First, the function logic zero

is inserted at the site-under-test and is propagated to the outputs, performing the Apply

operation at each gate along the way. These are called the f0 residues for the site.

Second, the function logic one is inserted at the same site and propagated to the outputs

in the same fashion. These functions are called the f1 residues for the site. An XOR

operation is then performed between the f0 and f1 residues at each output to create the

Boolean difference functions. Finally, the union of the Boolean difference functions is

created by performing an OR operation between them.

2
0f

1
0f

1
1f

2
1f

ObsfC
irc

ui
t I

np
ut

s

Site-Under-Test

Figure 9. Boolean-difference observation function calculation

There are two major drawbacks to calculating the observation functions in the

manner described above, especially when working with OPDDs. The first drawback is

the number and kind of operations required by the algorithm. Calculating each

observation function requires visiting each gate between the site-under-test and the

19

outputs two times, resulting in twice as many calls to the Apply operation. In addition,

the XOR operations performed at the end of the algorithm can be quite time consuming.

The f0 and f1 residues at each output are most likely represented by OPDDs of the

maximum allowable size. Therefore, the Apply operation will probably take a large time

to complete and the number of vertices to remove afterwards will be quite large.

The second major drawback centers on the separate calculation of the f0 and f1

residue functions. Because and XOR operations will be performed on these functions,

any input combinations that are unknown for one of the residues will also be unknown in

the resulting function. If the parts of the truth table that are known for each residue have

very little overlap, then the observation function calculated from them will contain little

functional information. On the other hand, if the known parts of the truth table greatly

overlap, the observation function will contain more functional information.

Unfortunately, the parts of the truth table that are known for each residue depend on the

way vertices were removed by the all of the Apply operations that occurred along the

propagation paths through the circuit. Additionally, only the minterms of the resulting

function are input combinations that observe the site. The input combinations in the f0

and f1 residues must evaluate to opposite logic values to create a minterm in the function

computed by the following XOR operation. Therefore, even if the known parts of the

truth table greatly overlap between the f0 and f1 residue functions, little useful

information about the resulting observation OPDD could be generated.

Consider the Venn diagram in Figure 10. The region inside the largest rectangle

represents all of the possible input combinations to the circuit. The large region is

divided horizontally to separate the input combinations into two sets. The top region

contains the input combinations that observe the site at one of the circuit outputs, and the

bottom region contains those input combinations that do not. After the first pass of the

observation calculation algorithm, only a subset of the f0 function will be represented by

the resulting OPDD. This region is represented by the dashed circle labeled f0, Partial.

After the second pass, a subset of the f1 function will be represented by the resulting

OPDD. This region is represented by the dashed circle labeled f1, Partial. The intersection

20

of f0, Partial and f1, Partial is the maximum size of the region that can be represented by the

OPDD that results from the following XOR operation. The part of this intersection lies

in the upper rectangle is the set of known input combinations that will observe the site.

The part in the lower rectangle is the set of input combinations that will be known not to

observe the site. In order to maximize the number minterms in the final observation

BDD, two tasks need to be accomplished. The f0 and f1 OPDDs must be known for the

same input combinations and must evaluate to different logical values for as many of

these input combinations as possible.

Partialf ,0 Partialf ,1

0,1,0 =⊕ FullFull ff

1,1,0 =⊕ FullFull ff
1,1,0 =⊕ PartialPartial ff

0,1,0 =⊕ PartialPartial ff

Figure 10. Boolean-difference unguided

One possible solution is to use the functional information known from one pass

to guide the removal of vertices during the second pass. For example, Figure 11 shows

one possibility of what might happen if the choice of vertices removed in the f1 residue

was guided by the f0 residue to preserve input combinations in f1 that are known in the f0

residue. As shown in the figure, more input combinations will be included in the

intersection set as a result of this technique. Therefore, this kind of guidance would most

probably increase the amount of known functional information represented by the

observation functions. But as you can see from the figure, one major drawback still

21

remains. Although the f0, Partial and f1, Partial greatly overlap, many of the overlapping

input combinations do not evaluate to different logical values in the residue functions.

The vertices in the residue OPDDs that represent the input combination in the lower

rectangle of the figure would have better been used to describe more of each residue

function that lies in the upper rectangle. Ideally, both the creation of the f0 and f1

residues should be guided into the upper rectangle region as shown in Figure 12. This

would be quite difficult to do without a priori knowledge about the complete residue

functions.

0,1,0 =⊕ FullFull ff

1,1,0 =⊕ FullFull ff

Partialf ,0 Partialf ,1

1,1,0 =⊕ PartialPartial ff

0,1,0 =⊕ PartialPartial ff

Figure 11. Boolean-difference partially guided

22

Partialf ,0 Partialf ,1

0,1,0 =⊕ FullFull ff

1,1,0 =⊕ FullFull ff

1,1,0 =⊕ PartialPartial ff

0,1,0 =⊕ PartialPartial ff

Figure 12. Boolean-difference fully guided

As an alternative to calculating the observation functions by direct application of

the Boolean-difference equation, a method called D-Propagation can be used. D-

Propagation is a technique which inserts a new Boolean variable, D, at the site-under-test

and attempts to propagate that D to the outputs by setting the side inputs of the gates

along the propagation path to non-controlling values. The logic value D acts much like

any other logic variable. When the logic value D is the input to an inverter, the logic

value DBAR is produced at the output. As another example, when a logic value of D is

on one of the inputs to an AND gate, the other inputs must have a value of logic one or

D for a D to be produced at the output. An input pattern that successfully propagates a D

to one or more of the outputs is therefore a minterm of the observation function for the

site at which the D was inserted.

To calculate the observation function at a site, a BDD that consists of a singe D

terminal is inserted at that site and propagated to the outputs. By simply calling the

Apply operation again at each gate along the propagation path, all possible input

combinations that observe that site can be found. If a vertex limit is imposed, some

subset of entire set of possible input combinations can be found. Once the D value has

been propagated to the outputs, the resulting BDDs are converted into traditional

23

observation BDDs. All of the D and DBAR terminals are changed to logic one

terminals, and all of the logic one terminals are changed to logic zero terminals. Finally,

an OR operation is performed among all of the BDDs at the outputs.

The D-propagation method of observation function calculation overcomes the

aforementioned drawbacks to the direct Boolean-difference method. Only one pass is

required through the circuit, which cuts the number of Apply operations in half. Also,

there is no need for time consuming XOR operations between the residues at each

output. Most importantly, there is no need to worry about guiding separate residues

towards the same useful functional space, because the f0 and f1 residues are not used.

This allows more functional information to be contained in the final observation BDDs.

Enhancements to D-Propagation

To ensure that the most important information is retained when propagating the

D and DBAR values to the circuit outputs, the vertex removal scheme needs to be

slightly modified. When calculating the excitation BDDs for the circuit, the vertices that

have the most paths through them to the known logic zero and logic one terminals are

preserved. A different criterion is employed during D-propagation. The vertices that

have the most paths through them the D and DBAR terminals are retained instead. This

method preserves the most information about the observation criteria during each vertex

removal phase, but does not guarantee to be optimal overall.

Additional steps are also taken to propagate the D and DBAR truth table entries

through multiple-input gates. Because the Apply operation is binary, it must be called

multiple times to compute the output BDD at a multi-input gate. Experiments show that

the order in which the input BDDs re processed makes a difference in the resulting

percentage of D and DBAR terms in the function of the output BDD. Figure 13 shows a

three input gate for which only one of the input BDDs contains a D or DBAR terminal.

Assume that the Apply operation is first called on the two BDDs that do not contain the

D and DBAR terminals.

24

A

10 D0

A

100

A

100

Figure 13. D-propagation through multi-input gates

After the Apply operation, the vertex removal procedure will remove vertices

which will in turn make some of the input combinations in the function change to a

value of X. The Apply operation is then called between the resulting BDD and the third

BDD which contains the D terminal. If a D or DBAR term in one function corresponds

to an X term in the other function, then the corresponding term in the resulting function

will be an X. The vertex removal procedure has no knowledge of where the D or DBAR

terms exist in future operands, so it will often remove vertices after the first Apply

operation which will create the situation described above. Alternatively, if the BDD

with the D or DBAR terminals is part of the first Apply operation at the gate, the vertex

removal procedure will attempt to preserve the maximum number of D and DBAR terms

before the second Apply operation is called. This eliminates the need for the removal

procedure to know information about the location of D and DBAR terms in the

remaining input BDDs at the gate.

This observation motivated a modification to the order in which the Apply

function is called on the inputs of multiple-input gates. When a multi-input gate is

reached, the BDDs at the gate’s inputs are scanned and the first BDD to contain either a

D or DBAR terminal is scheduled for the first Apply operation. The remaining BDDs

are scheduled in a random order. An improvement on this method was envisioned in

which the BDDs are ordered by the percentage of terms in their function which have a

25

value of D or DBAR. This idea was not implemented for time saving reasons. Also, an

experiment was conducted in which the vertex limit was not imposed after the

intermediate Apply operations at a gate. Therefore, no vertices were removed from the

BDDs until after the last Apply operation. This method is considered to be even more

effective at preserving D and DBAR terms than any optimal ordering technique which

enforces a vertex limit after each Apply operation. The results from this experiment

showed that the method which only schedules one of the Apply operations obtained

results near that of the optimal method.

Excitation Guidance

A technique called excitation guidance can be employed when exact fault

observation statistics are not required. Excitation guidance involves using the excitation

BDD for a fault to guide the creation of the corresponding observation BDD in order to

achieve greater functional overlap. The greater the functional overlap between the

excitation and observation BDDs, the more fault detection information retained. This is

because the detection function for a fault is simply the intersection of the excitation and

observation functions. Therefore, if a term is unknown in the excitation function for a

fault, it is not useful to retain information about that term in the observation function.

This can be accomplished by modifying the Apply operation.

The modified Apply operation takes an addition operand known as the

excitation-known BDD. This BDD is created by taking the excitation BDD for the fault

currently being considered and changing its terminals. The X terminals are changed to

logic zero terminals and the logic zero terminals are changed to logic one terminals.

Now the minterms of the function represents the known parts of the excitation BDD.

After the standard Apply operation completes, and before any vertices are removed, the

excitation known BDD is used to prune vertices in the resulting BDD that will not

contribute useful information in the detection calculation phase.

The vertices to be pruned are found by running a mock Apply operation between

the result BDD and the excitation known BDD. It is referred to as a mock Apply

operation because a new BDD is not created. Instead, the vertices that are not reached

26

during the mock Apply operation are marked for removal. For example, some vertices

will not be reached because the Apply operation encounters a logic-zero terminal in the

excitation known BDD and stops proceeding down the corresponding branch in the

result BDD. These marked vertices could simply be converted to X terminals like in the

normal vertex removal procedure, but an alternative technique can be employed that

preserves more useful vertices.

This technique involves redirecting the arcs that point to the marked vertices to

instead point to their sibling’s vertex. This removes the marked vertices from the graph.

Additionally, when the Reduce operation is subsequently called, it will remove all of the

vertices that pointed to a marked vertex because it’s two arcs now point to the same

vertex. Figure 14 demonstrates the guidance procedure. The guidance OPDD indicates

that the excitation function is unknown for all input combinations in which A equals one.

This means that the rightmost B vertex in the BDD being guided could be change to an

X terminal without affecting the information content of the detection BDD that will be

created later. Setting that vertex to X would eliminate one vertex from the BDD being

guided, because both X terminals would be represented by the same vertex in memory.

In other words, the one arc of the A vertex would be redirected to point to the previously

existing X terminal. Alternatively, if the one arc of the A vertex is instead redirected to

point to its other child, the leftmost B vertex, a greater savings in vertex count can be

achieved. The bottom two BDDs in Figure 14 shows the results of calling the Reduce

operation after the arc is redirected. The Reduce operation removes the redundant A

vertex, eliminating two vertices in total from the BDD. The resulting BDD is not

incorrect for some inputs combinations such as A equals logic one, B equals logic one,

and C equals logic zero. The original OPDD evaluates to logic one for these inputs, but

the new OPDD evaluated to logic zero. Fortunately these inaccuracies will not be

carried over into the detection OPDD.

27

A

B

CC

10 X

A

B

0 1

X

B

CC

10 X

A

B B

CC

10 X

OPDD to be guidedGuidance OPDD

OPDD after node redirection OPDD after Reduce

Figure 14. Excitation guidance procedure

This technique eliminates having to define terms in the observation BDD as

unknown which would later be ANDed with an excitation BDD for which the same

terms are also unknown. Regardless of what these terms evaluate to in the observation

BDD, they will evaluate to unknown in the detection BDD. The extra vertices removed

by this technique allow more vertices to be used to represent the useful part of the

28

function. Therefore, an inaccurate, yet more compact and useful BDD can be used to

store the observation function without affecting the accuracy of the subsequently

calculated detection function.

An even more effective form of excitation guidance, called dual excitation

guidance, can be employed when two observation BDDs are used for each site. One is

the observation BDD for the stuck-at-one fault and the other is the observation BDD for

the stuck-at-zero fault. Two passes through the circuit are thus required to compute the

separate observation BDDs for a site. The only difference between the two passes is the

excitation-known BDD that is passed to the Apply operation.

When computing the observation BDD for a fault, the excitation-known BDD is

created by changing the X terminal to a logic-zero terminal. Therefore, the observation

BDD for the fault will be guided only into the functional region in which the excitation

function is a logic one. Thus no vertices are wasted in describing the functional region

in which the excitation function is a logic zero. These vertices were needed in the single

excitation guidance scheme, however, because only one observation BDD is created for

the stuck-at-one/stuck-at-zero pair for a site.

Terminal Vertex Combination

As mentioned in the previous section, there are some BDDs in which you only

need to know the input combinations that lead to one of the known terminals, logic zero

or logic one. The OPDDs that represent the fault excitations do not need to distinguish

between input combinations that evaluate to logic zero and those that are unknown.

Only the input combinations that evaluate to a logic one will be used to compute the

detection OPDD for that fault. Also, only the input combinations in the detection

functions who’s value is logic one can be selected as test for a fault. If the value of a

term is unknown in the detection function, it cannot with certainty be considered a valid

test for a fault by the test generation process. Terms with a value of logic zero are also

by definition not valid test for a fault. Therefore, there is no need to distinguish between

logic zero terms and unknown terms in the detection functions for test generation

purposes.

29

For the detection BDDs mentioned above, terms with a value of X can be

changed to have a value of logic zero, and vice versa, without affecting the test

generation process. This fact can be exploited by converting all of the X terminals into

logic zero terminals during the detection Apply operation. If this is done before the

Reduce operation is called, the Reduce operation will have a higher probability of

detecting redundancies in the BDD structure. Removal of these redundancies eliminates

vertices from the detection BDD that are not useful in the test generation process and

allows the available vertices to be better allocated to preserve useful information. Figure

15 illustrates how this procedure can eliminate two vertices from an OPDD.

A

B B

CC

10 X

A

B B

CC

1X X

A

B B

C

1X
Figure 15. Terminal vertex combination

This technique of combining known terminals and X terminals in the detection

BDDs can be carried even farther by using it during the last phase of the observation

calculations. It can be used with the same benefits mentioned above when performing

the Apply operations that compute the OR of the circuit outputs. This preserves more

useful functional information earlier in the algorithm. Because the test generation

process only cares about the logic one terms in the detection function, vertices do not

have to be wasted distinguishing between logic zero and X terms.

This technique can be extended to the creation of the excitation functions during

the initial pass through the circuit. During all of the Apply operations at a gate, one of

the known terminal vertices can be combined with the X vertex to preserve only the

30

useful functional information. Instead of storing only one BDD for each site in the

circuit, three BDDs can be stored: a function BDD, a stuck-at-zero excitation BDD, and

a stuck-at-one excitation BDD. The terminal-vertex-combination technique can be used

at each gate when calculating the stuck-at BDDs, and both known terminals can be

preserved for the function BDD. The function BDD will be the one used for propagation

to the next gate in the circuit, therefore it would be unclear which known terminal should

be combined with the X terminal to optimize future computations.

Other Speed Improvements to sByDDer

Some improvements were made to the sByDDer test generation engine to

improve the speed of various components. The first of these improvements was the

elimination of what is called the BDD crusher. The BDD crusher is a multi-rooted BDD

that represents all of the excitation, observation, and detection functions. The functions

share vertices with each other so that less total memory is required to store them. After

the creation of each excitation, observation, and detection BDD, the BDD is compacted

into the BDD crusher, reusing the maximum number of vertices that already exist in the

structure. Unfortunately, the time spent finding the optimal placement of the BDD into

the BDD crusher can become prohibitive for larger vertex limits. Although using the

BDD crusher requires less memory than storing the BDDs individually, the space

savings is not substantial enough to outweigh extra time required to compact the BDD

into the BDD crusher.

The Apply operation in sByDDer was also improved to include early termination

based on controlling values as described in [6]. When the Apply algorithm is applied

between two vertices, one of which is a terminal vertex with a controlling value, the

evaluation can be stopped and a terminal vertex with the controlling value created. This

increases the speed of the Apply operation considerably.

Test Generation

After the detection BDDs have been computed, a test pattern set must be

generated. The test pattern set will be applied to the real circuit after it has been

31

manufactured to screen out defective chips. Because tester memory and tester time are

in short supply, the test pattern set should be as small as possible while still ensuring a

low defective part level. The current version of sByDDer has multiple built-in test

generation procedures. One of the test generation procedures is random in nature. It

produces tests for each fault by randomly selecting a test for the least detected fault and

is not concerned with compact test sets. Another one of the built-in test generation

procedures focuses on producing very compact tests. For the small benchmark circuits it

operates on, the test pattern lengths produced by this second method are near the

theoretical minimum size.

The chosen test-set generation procedure consists of successive AND operations

to the detection BDDs. For the generation of each test, the detection BDDs are sorted by

the number of times they have already been detected by the previously generated tests.

Once sorted, an AND operation is performed between the detection BDDs for the two

least detected faults. This resulting BDD describes the set of tests that will detect both

of the two least detected faults. Next, an AND operation is performed again between the

resulting BDD and the third least detected fault. This process continues until the

resulting BDD has only one minterm or all of the undetected faults have been cycled

through. If, along the way, one of the resulting BDDs is the logic zero function, that

BDD is discarded and the process continues to the next fault. Also, if more than one

minterm remains in the final BDD, a random minterm is chosen from the final BDD and

added to the test set.

The results in this paper on test set length and quality are all produced using the

procedure that generates compact test sets. The test generation procedure has remained

unchanged in order to compare the results to those generated by the current version of

sByDDer.

32

 RESULTS

Overview

The new OPDD test generation package was run on a subset of the ISCAS85

combinational benchmark circuits published by F. Brglez and H. Fujiwara [18]. Fault

information was collected and test sets were generated for each of the chosen circuits.

One of the smaller circuits in the set named c432 was chosen to evaluate the

performance of the various methods presented in this paper. Because c432 is small, the

OBDD version of sByDDer was able to collect complete information about the faults

and generate a compact single-detect stuck-at-fault test set. The fault information and

test sets generated by the OBDD version of sByDDer are the limit to the performance of

the OPDD package. Therefore, they will serve as the performance benchmark in

evaluating the new methods. Following the performance evaluation of the new methods,

results from three of the larger ISCAS85 circuits is presented. They are circuits which

the OBDD version of sByDDer is not able to process because of either time or memory

constraints.

Table 1 provides the key for translating the abbreviations used the following

tables for the method options. The method used to collect a specific result is described

below by a string of the different method option abbreviations. For example, a result

collected using D-propagation option and Terminal Vertex Combination option would

be described by the string D-TVC. If all of the entries in a table use a common set of

method options, those options will be placed in the table’s title.

33

Table 1. Method abbreviations
Abbreviation Method Description

BD Direct Boolean-difference observation calculations
D D-propagation observation calculations

TVC Terminal Vertex Combination
EG Single Excitation Guidance

DEG Dual Excitation Guidance
RMVX Removed 1/X of the excess vertices at a time

MID Ordering of Multi-input Applies in D-propagation
Crusher BDD-crusher used to store BDDs

Method Evaluation

Table 2, Table 3, and Table 4 describe how many faults have completely

unknown excitation, observation, and detection OPDDs, respectively, when basic

method combinations are used at a variety of vertex limits ranging from 16 to 512. If

either the excitation or observation OPDD is unknown for a fault, then the detection

OPDD will also be unknown. On the other hand, the fact that the detection OPDD is

unknown for a fault does not imply that either the excitation or observation OPDD for

that fault must also be unknown. It could be the case that the excitation and observation

OPDDs are each partially known, yet their known parts do not overlap. This is why the

values from Table 2 and Table 3 cannot be simply added together obtain the vales in

Table 4. Also, if the detection OPDD for a fault is entirely unknown, then no tests can

be deterministically generated for that fault. Therefore, a value of zero in Table 4 means

that at least one test can be deterministically generated for every non-redundant fault in

the circuit.

Terminal Vertex Combination is the only basic method option that effects the

excitation OPDDs, therefore only two rows are shown in Table 2. The data shows that

TVC greatly reduces the number of unknown excitation OPDDs, especially at lower

vertex limits. This option has a compounding effect in that better excitation OPDDs

create better observation OPDDs, and better observation OPDDs create even better

34

detection OPDDs. This can be seen by comparing the D method to the D-TVC method

in Table 3 and Table 4.

It is also interesting to note that when excitation guidance is used, the number of

unknown observation OPDDs is generally greater, yet the number of unknown detection

OPDDs is generally smaller. This is because the excitation guidance methods have

either partially or completely pruned many of the observation BDDs depending on the

characteristics of its corresponding excitation OPDD. Therefore, only the observation

OPDDs that are useful for detection are kept, and the remaining observation OPDDs

contain more useful information.

Table 2. Unknown excitation OPDDs of non-redundant faults
 16 32 64 128 256 512

No-TVC 105 25 1 0 0 0
TVC 66 13 0 0 0 0

Table 3. Unknown observation OPDDs of non-redundant faults
 16 32 64 128 256 512

BD 722 522 206 19 1 0
D 193 39 8 1 0 0

D-TVC 177 29 8 1 0 0
D-TVC-EG 208 34 10 1 0 0

D-TVC-DEG 300 97 33 3 0 0

35

Table 4. Unknown detection OPDDs of non-redundant faults
 16 32 64 128 256 512

BD 789 675 417 169 94 6
D 653 453 212 88 8 0

D-TVC 339 155 51 8 0 0
D-TVC-EG 342 143 50 9 0 0

D-TVC-DEG 320 97 33 3 0 0

These results offer a high-level view of the performance of each method

combination. However, these results do not give detailed information about the quality

of the excitation, observation, and detection OPDDs. Table 5, Table 6, and Table 7 give

more details about the quality of the OPDDs produced by the various methods. They

show the average percentage of the total excitation, observation, and detection minterms

that are known for a fault when the basic method combinations are used at the various

vertex limits. These results offer a finer granularity than those presented in Table 4. For

example, just comparing the number of unknown detection OPDDs will not show any

difference between the D and the D-TVC-DEG methods using 512 vertices. Both detect

all of the non-redundant faults in the circuit. However, Table 7 shows that there is a

significant difference in the average number of known detection minterms between those

two methods. Methods will higher percentage values produce more accurate fault

information and will generally yield more compact test sets.

Again, Table 5 only contains two rows of data because TCV is the only basic

method option that effects the excitation BDDs. Also, Table 6 does not contain data for

the methods which use excitation guidance. As mentioned earlier, this is because the

observation OPDDs generated by those methods are only accurate for the functional

space in which the excitation OPDDs are known.

36

Table 5. Percentage of excitation minterms known
 16 32 64 128 256 512

No-TVC 73.83 83.91 90.50 94.02 99.07 99.99
TVC 75.87 85.36 91.74 95.33 99.26 99.99

Table 6. Percentage of observation minterms known
 16 32 64 128 256 512

BD 4.19 7.69 15.21 35.09 43.03 87.83
D 7.29 24.05 39.30 49.58 67.54 85.28

D-TVC 7.39 27.00 43.15 60.69 82.59 96.41

Table 7. Percentage of detection minterms known
 16 32 64 128 256 512

BD 0.99 3.33 10.74 27.58 36.59 87.83
D 1.52 14.31 31.49 42.42 61.96 85.28

D-TVC 3.26 21.87 39.99 58.37 81.10 96.41
D-TCV-EG 3.28 22.13 39.95 58.66 81.15 96.41

D-TVC-DEG 3.38 24.55 42.39 61.11 83.93 97.23

It can be see from Table 4 and Table 7 that dual-excitation guidance is much

more effective than single-excitation guidance. On average, the results are about the

same, and sometimes worse, when single-excitation guidance is used. With dual-

excitation guidance though, the results are often substantially better. This can most

probably be attributed to the fact that DEG prunes more useless vertices from the OPDD

before sending it to the vertex removal function. Table 8 compares the number of

vertices pruned by the two guidance methods. As the vertex limit increases, it can be

seen that the disparity between the total number of vertices pruned by each method

increases dramatically.

EG uses a combined stuck-at-one and stuck-at-zero guidance OPDD. As the

vertex limit increases, causing a larger percentage of the excitation OPDDs to be known,

37

the guidance OPDDs will have decreasingly fewer maxterms. Because the maxterms of

the guidance OPDDs are what accomplish the pruning, less pruning will occur with EG

at higher vertex limits. Alternatively, DEG uses separate stuck-at-one and stuck-at-zero

guidance OPDDs. Assuming that, on average, a given site has a fifty-percent chance of

being a logic one, half of the terms in the DEG guidance OPDDs will on average be

logic zero. This allows for much greater pruning, which eliminates vertices that will not

contribute any useful information when creating the detection OPDDs.

Table 8. Single-excitation guidance vs. dual-excitation guidance - D-TVC

Number of
Pruned
OPDDs

Avg. Number
of Vertices

Pruned

Total Number
of Vertices

Pruned
EG-16 1479 3.79 5610

DEG-16 5131 5.54 28407
EG-64 571 14.71 8399

DEG-64 7777 20.27 157669
EG-256 151 6.85 1035

DEG-256 10890 56.80 618531

Table 9 contains the single stuck-at-fault test-set lengths generated by the OPDD

application. The same method and vertex limit combinations presented above are used

for comparison. From Table 4 we know that the only test sets that deterministically

reached 100% stuck-at fault coverage are the ones that were generated by a method that

produced zero unknown detection OPDDs. The other test sets deterministically

generated tests for only a subset of the total faults. When the OBDD version of

sByDDer is run on c432, working with OBDDs that range up to 4834 vertices, it is

capable of producing a 31-vector test set with 100% stuck-at fault coverage. Table 9

shows that the OPDD version of sByDDer obtains a very close result of 33 vectors when

limited to a maximum of 512 vertices per OPDD.

38

Table 9. Size of single-detect stuck-at-fault test set (vectors)
 16 32 64 128 256 512

BD 10 40 63 63 71 38
D 43 51 62 66 62 38

D-TCV 79 69 68 57 40 33
D-TCV-EG 78 71 67 56 40 33

D-TCV-DEG 81 73 64 52 39 33

Although a test set generated by the OPDD version of sByDDer only

deterministically detects those faults for which the detection OPDD is at least partially

known, it has the chance of fortuitously detecting more faults. Table 10 shows the

results of running the test sets through a structurally-based fault simulator. As you can

see, nine of the test sets actually yield 100% stuck-at-fault coverage and most of the

other test sets actually detect more faults than Table 4 indicates. It can also been seen

that the number of fortuitously detected faults decreases as more information is known

about faults, either by using a higher vertex limit or more advanced method.

Table 10. Faults undetected by fault simulation
 16 32 64 128 256 512

BD 484 231 120 47 12 3
D 193 77 23 9 2 0

D-TCV 80 33 1 2 0 0
D-TCV-EG 80 31 2 2 0 0

D-TCV-DEG 20 0 2 0 0 0

Experiments were also run to study the effect of multi-input D-propagation.

MID involves ordering the Apply operations at a multi-input gate in order to preserve

the most D and DBAR terms at the gate output. Table 11 shows the number of faults

with unknown detection OPDDs when MID is used and not used. For larger vertex

39

limits, incorporating MID can achieve substantial gains. Consequently, MID has been

used to obtain all of the previous results that used the D-propagation method option.

Table 11. Multi-input Apply ordering - D-TVC-DEG

Faults with Unknown
Detection OPDDs

No-MID-64 56
MID-64 43

No-MID-256 36
MID-256 10

Another modification to the existing version of sByDDer involved removing the

BDD-crusher. Table 12 shows the total runtime of sByDDer, with and without using the

BDD-crusher, at various vertex limits. As the vertex limit increases, the time required to

compact the OPDDs into the BDD-crusher increases and begins to dominate everything

else. For this reason, the BDD-crusher was removed from sByDDer for all experiments

except the ones used to collect the data for Table 12.

Table 12. BDD-Crusher time (seconds) - D
 Time

Crusher-64 77
No-Crusher-64 54

Crusher-128 170
No-Crusher-128 113

Crusher-256 350
No-Crusher-256 206

Crusher-512 504
No-Crusher-512 158

40

Running the OPDD version of sByDDer takes differing amounts of time

depending on the method options chosen. Table 13 shows the runtime for different

methods at varying vertex limits. Both the BD and DEG options require making two

passes through the circuit when calculating the observation functions; therefore they take

the longest time to run. However, the BD option scales much worse with increasing

vertex limits, making DEG a more timely choice in most cases. The last row of the table

contains the results obtained when the excess vertices are removed from an OPDD all at

once, with a Reduce operation called at the end. This option greatly speeds up the

application, especially at higher vertex limits. Table 14 demonstrates the loss in quality

that occurs when for the RMV option is invoked. Because the number of unknown

detection OPDDs is not affected too greatly by adding the RMV option, it can be a

useful way to speed up the application without losing much in the way of quality.

Table 13. Runtime (minutes)
 16 32 64 128 256 512

BD 0.27 0.72 1.93 5.05 13.30 5.60
D 0.18 0.40 1.07 2.71 6.98 13.30

D-TCV 0.22 0.33 0.72 1.62 3.82 6.98
D-TCV-EG 0.27 0.38 0.80 1.73 4.03 7.37

D-TCV-DEG 0.58 0.70 1.52 3.28 7.28 17.05
D-TCV-DEG-RMV 0.35 0.53 0.90 1.55 2.42 4.50

Table 14. Removing multiple vertices (Unknown detection OPDDs) - D-TVC-DEG
 16 32 64 128 256 512

No-RMV 320 97 33 3 0 0
RMV 358 123 41 7 5 0

One of the reasons that the RMV option sacrifices quality is that it ends up

removing more vertices than necessary. This is demonstrated by the data presented in

41

Table 15. With the RMV option disabled, the average number of vertices in the OPDD

after the vertex removal procedure finishes is quite close to the specified maximum

limit. For the D-TVC-DEG method with a vertex limit of 256, the procedure removed

only slightly over 2 vertices more than necessary on average. With the RMV option

enabled, the vertex removal procedure removed over 18 vertices more than necessary on

average. The number of unknown detection OPDDs rose by 5 because the OPDDs did

not utilize the 256 vertices that they were allowed to contain.

Calling the Reduce operation after the prescribed number of vertices has already

been removed presents the possibility that a large number of additional vertices will be

removed when redundancies are found in the OPDD. By removing fewer vertices than

necessary during the vertex removal procedure, this problem can be avoided. Table 15

contains the results obtained when one-half (method option RMV2) and one-fourth

(method option RMV4) of the excess vertices are iteratively removed from the OPDDs,

calling the Reduce operation in between. These methods virtually eliminate the problem

of over-removal caused by the standard RMV method. In addition, they retain much of

the speed benefits of the standard RMV method while achieving a quality level closer to

the single-vertex removal method.

Table 15. Variations on the RMV option - D-TVC-DEG-256

Number of Vertices After

Removal Procedure
Time
(sec)

Unknown
detection OPDDs

No-RMV 253.88 445 10
RMV 237.57 143 15

RMV2 253.19 157 10
RMV4 253.77 174 11

Test Generation for Larger Circuits

The purpose of integrating OPDDs into the sByDDer test generation engine is to

allow for processing of larger, more complex circuits. To test this premise, the new

42

OPDD version sByDDer was run on three larger circuits that the original version of

sByDDer was unable to process. Fault information and test sets were generated for each

circuit and are reported in Table 16, Table 17, and Table 18. Results from the previous

section demonstrate that the D, TCV, and DEG method options produces the best results,

and that the RMV options allow for a major improvement in speed at the cost of an

modest loss in quality. Therefore, all of the results in this section were collected by

using the D-TCV-DEG method and varying the RMV option.

The results for the smallest of the three circuits, c880, are presented in Table 16.

Whereas the OBDD version of sByDDer was unable to produce detection BDDs and

complete test sets for c880, the OPDD version was able to deterministically generate a

test for every fault in under three minutes with a vertex limit of 64. It is likely that only

a few of the faults in c880 require large OBDDs in order to compute their complete

excitation and observation functions. Therefore, the original version of sByDDer most

probably stalled out when processing these few difficult faults and was unable to

complete its execution. Using OPDDs, however, prevented the new version of sByDDer

from spending an excessive amount of time trying to compute the exact entire functions

for those few difficult faults, but still retained enough information to create a partially

known detection OPDD for those faults.

As the vertex limit was without invoking the RMV option, the detection OPDDs

contained more information and the generated test sets became more compact.

Unfortunately, using 512 vertices took over six hours of processing time, most of which

was spent reducing the OPDD after the removal of each vertex. Turing on the RMV

option solved this problem and allowed the vertex limit to be increased to 4096 while

reducing the processing time by a multiple of four. In addition, increasing the vertex

limit to 4096 reduced the test set to about three-fourths of the size of the set produced

without RMV. For a slight increase in the number of clock cycles used, the RMV2

option further reduced the test set size when 4096 vertices were used. Increasing the

vertex limit even further reduced the test size even more, but the advantage that the

43

RMV2 option had over the RMV option diminished. The best test set generated

contained only 24 tests, twice as many as the theoretical lower bound presented in [11]

Table 16. c880 - D-TVC-DEG
 U

nk
no

w
n

E
xc

ita
tio

n
O

PD
D

s

U
nk

no
w

n
D

et
ec

tio
n

O
PD

D
s

E
xc

ita
tio

n
M

in
te

rm
s

K
no

w
n

(%
)

Ti
m

e
(m

in
)

M
ac

hi
ne

 S
pe

ed

(G
H

z)

N
um

be
r

of
 T

es
ts

G

en
er

at
ed

32 0 10 93.60 1.85 1.8 92
64 0 0 96.38 2.55 1.8 69

128 0 0 97.97 8.83 1.8 62
256 0 0 98.93 54.5 1.8 52
512 0 0 99.37 241.2 1.8 42

RMV-4096 0 0 99.91 75.72 1.8 33
RMV-8192 0 0 99.94 104.6 1.8 31

RMV-16384 0 0 99.97 298.8 3.2 24
RMV2-4096 0 0 99.92 47.9 3.2 29
RMV2-8192 0 0 99.95 126.6 3.2 27

RMV2-16384 0 0 99.98 344.4 3.2 24

Table 17 contains the results from the second of the three large circuits, c3540.

This circuit, which contains 7080 stuck-at faults, is considerably larger and more

complex than either c432 or c880. Just to obtain excitation functional information at the

90% level required using at least 256 vertices. Comparatively, 99.26% of the excitation

minterms were known when 256 vertices were used for c432. Because the observation

functions are generated by manipulating the excitation functions, having less information

known about the excitation functions greatly limits the amount of information that can

be known about the observation and detection functions. With a vertex limit of 256, 333

44

of the faults contained unknown detection OPDDs after the six-hour runtime.

Fortunately, fortuitous detections allowed the resulting test set to detect 63 more faults

than expected at this vertex limit.

Table 17. c3540 - D-TVC-DEG

 U
nk

no
w

n
E

xc
ita

tio
n

O
PD

D
s

U
nk

no
w

n
D

et
ec

tio
n

O
PD

D
s

E
xc

ita
tio

n
M

in
te

rm
s

K
no

w
n

(%
)

T
im

e

M
ac

hi
ne

 S
pe

ed
 (G

H
z)

N
um

be
r

of
 T

es
ts

G

en
er

at
ed

N
um

be
r

of
 fa

ul
ts

de

te
ct

ed

Fo
rt

ui
to

us
 D

et
ec

tio
ns

16 484 2859 74.45 8.2 1.8 333 6819 2598
32 114 1377 81.51 19.7 1.8 235 6677 974

128 15 390 89.22 79.15 1.8 198 6793 103
256 9 333 91.08 361.2 3.2 169 6810 63

RMV-16 824 3540 73.07 6.4 1.8 200 6200 2660
RMV-32 165 1500 80.06 9.1 1.8 253 6687 1107
RMV-64 77 879 85.47 13.5 1.8 254 6738 537

RMV-128 45 523 88.21 23.3 1.8 208 6792 235
RMV-256 15 361 90.00 43.3 1.8 167 6770 51
RMV-512 1 311 92.34 88.3 1.8 154 6816 47

RMV-1024 1 267 93.94 119.2 3.2 127 6820 7
RMV-2048 1 256 95.54 306.0 3.2 112 6824 0
RMV2-256 9 350 90.89 57.4 1.8 164 6816 86
RMV2-512 7 283 93.20 132.0 1.8 139 6812 15
RMV2-768 7 272 94.14 229.8 1.8 122 6819 11

RMV2-1024 7 272 94.81 344.4 1.8 119 6819 11

When the RMV option was invoked, the vertex limit was raised to 2048 while

still achieving a shorter runtime. The resulting test set detected ten more faults with

forty-two fewer tests. While the RMV2 option produces slightly better results than the

RMV option, the addition time required for this option made it impractical to use with

45

2048 vertices. Therefore, the best test set resulted from the RNS-2048 option and

contained 112 test and detected 6824 of the faults. This is 1.4 times greater than the

theoretical length required to detect all of the faults as presented in [11]. At the 2048

vertex limit, the vertex removal procedure and the Apply operations that calculated the

observation OPDDs roughly equally dominated the application runtime. Because the

times taken for these aspects of the application both scale exponentially with the vertex

limit, using a higher vertex limit becomes impractical.

The data collected from the final and largest circuit, c5315, is presented in Table

18. Because of the large and complex nature of this circuit, the runtime when using a

vertex limit as small as 128 is nearly nine hours when the RMV option is no used. The

RMV2 option appears to be much more helpful on c5315 than for any of the previously

considered circuits. In about three hours, the RMV2 options used with a vertex limit of

256 produced dramatically fewer unknown observation OPDDs than any of there other

methods which took up to three times longer. Using these options, 201 tests were

generated which detected 10508 out of the total 10630 total faults with the help of

fortuitous detection. This test set is about five times larger than the theoretical minimum

test set size of 37. Using the RMV2 option with a vertex limit of 512 would most

probably produce even better results, but the computational time would be excessive.

Using 512 vertices with the RMV option, 88.9% of the computational time is devoted to

performing the Apply operations during the observation calculation phase. Again,

because the time required by the Apply operation can scale exponentially with the vertex

limit, attempting to use a vertex limit greater than 512 becomes impractical.

46

Table 18. c5315 - D-TVC-DEG

 U
nk

no
w

n
E

xc
ita

tio
n

O
PD

D
s

U
nk

no
w

n
D

et
ec

tio
n

O
PD

D
s

T
im

e
(m

in
)

M
ac

hi
ne

 S
pe

ed
 (G

H
z)

N
um

be
r

of
 T

es
ts

G

en
er

at
ed

N
um

be
r

of
 fa

ul
ts

de

te
ct

ed

Fo
rt

ui
to

us
 D

et
ec

tio
ns

16 784 5563 22.9 1.8 522 9262 4195
32 332 3524 24.3 1.8 381 10226 3120
64 118 2295 52.6 1.8 245 10477 2142

128 62 1692 537.0 3.2 206 10489 1551
RMV-128 400 3756 26.8 3.2 136 10382 3508
RMV-256 199 3331 34.7 3.2 132 10425 3126
RMV-512 191 2314 402.0 3.2 112 10424 2108

RMV2-128 127 2059 23.0 3.2 176 10576 1905
RMV2-256 63 1315 189.6 1.8 201 10508 1193

47

 CONCLUSIONS

This research explored the use of Ordered Partial Decision Diagrams in the

manufacture-test generation process. To this end, an existing OBDD-based test

generation tool named sByDDer was enhanced by the addition of OPDDs which enabled

its application to larger and more complex circuits. This was accomplished by placing a

limit on the number of vertices that an OPDD can contain, saving both time and

memory. Various techniques including D-propagation, Terminal Vertex Combination,

and Excitation Guidance were developed and evaluated on a small benchmark circuit,

c432. The techniques, when combined with a vertex limit, were shown to improve the

quality of the functional information obtained by sByDDer and the resulting stuck-at-

fault test sets that it produced. In addition, the vertex limit and added enhancements

allowed sByDDer to be run on larger and more complex circuits that ever before. Fault

information was collected and test sets that obtained at or near 100% stuck-at-fault

coverage were generated for these larger circuits.

Two limiting factors to the performance of the OPDD version of sByDDer were

discovered as a result of running experiments on the larger circuits. The current scheme

allows the Apply operation to run to completion and then removes excess vertices until

the vertex limit is satisfied. This allows the vertices which contribute the least amount

of functional information to be deterministically removed. But as the vertex limit

increases, the Apply operation can grow exponentially and begins to dominate the

runtime of the application. In addition, even the RMV removal procedures take an

increasingly longer time to complete as the vertex limit grows, due to the fact that they

are operating on OPDDs of exponentially increasing size.

Without further increasing the vertex limit, the functional information and test set

quality cannot be significantly improved. Therefore, future work on this topic will

involve exploring early termination of the Apply operation. Instead of letting the Apply

operation run to completion, early termination will halt the operation once the vertex

limit has been reached. This will prevent the time required for the Apply operations

48

from growing exponentially with the vertex limit. Also, it eliminates the need for a

vertex removal procedure because no excess vertices will be created. Many of the ideas

from the current vertex removal procedures can be used to guide the early termination

process and hopefully allow for the retention of the most useful vertices.

49

 REFERENCES

[1] J. Turino, “Semiconductor device test equipment”, VLSI Testing, vol. 76, pp.

229-238, 1986.

[2] R. D. Eldred, “Test routines based on symbolic logic statements”, Journal ACM,

vol. 6, pp. 33-36, 1959.

[3] M.R. Grimaila, S. Lee, J. Dworak, K.M. Butler, B. Stewart, H. Balachandran, B.

Houchins, V. Mathur, J. Park, L. Wang, and M.R. Mercer, "REDO - Probabilistic

Excitation and Deterministic Observation - First commercial experiment," in

Proc. of the 1999 VLSI Test Symposium, 1999, pp. 268-274.

[4] J. Dworak, J. Wingfield, B. Cobb, S. Lee, Li-C Wang, and M. R. Mercer,

"Fortuitous detection and its impact on test set sizes using stuck-at and transition

faults," in Proc. of The 2002 International Symposium on Defect and Fault

Tolerance in VLSI Systems, 2002, pp. 177-185.

[5] C. Y. Lee, “Representation of switching circuits by binary decision programs,”

Bell System Technology Journal, vol. 38, no. 4, June 1959, pp. 985-999.

[6] R. E. Bryant, “Graph-based algorithms for Boolean function manipulation”,

IEEE Transactions on Computers, vol. C-15, no. 8, August 1986, pp. 677-691.

[7] C. Yang, M. Ciesielski, V. Singhal. "BDS: A BDD-based logic optimization

system," in Proc. of Design Automation Conference, 2002, pp. 92-97.

[8] S. Malik, A. R. Wang, R. K. Brayton, A. Sangiovanni-Vincentelli, “Logic

verification using binary decision diagrams in a logic synthesis environment,” in

Proc. IEEE International Conference on CAD, November 1988. pp. 6-9.

[9] J. Wingfield, J. Dworak, and M. R. Mercer, “Function-based dynamic

compaction and its impact on test set sizes,” in Proc. of The 2003 International

Symposium on Defect and Fault Tolerance in VLSI Systems, 2003, to be

published.

[10] S. Lee, J. Dworak, and B. Cobb, M. R. Mercer, "Evaluating a greedy ATPG

algorithm for generating compact transition test sets in accordance with the

50

principles of DO-RE-ME," The 4th International Workshop on Microprocessor

Test and Verification, 2003.

[11] I. Hamzaoglu and J. H. Patel, “Test set compaction algorithms for combinational

circuits” IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 19, no. 8, August 2000, pp. 957-963.

[12] D. E. Ross, “Functional calculations using ordered partial decision diagrams,”

Ph.D. Dissertation, The University of Texas, Austin, TX, 1990.

[13] D. E. Ross, K. M. Butler, R. Kapur, M. R. Mercer, “Fast functional evaluation of

candidate OBDD variable orderings,” in Proc. of The European Conference on

Design Automation, 1991, pp. 4-10.

[14] M. R. Mercer, R. Kapur, and D. E. Ross, “Functional approaches to generating

orderings for efficient symbolic representations,” in Proc. of 29th Design

Automation Conf., 1992, pp. 624-627.

[15] J. Jain, D. Moundanos, J. Bitner, J. A. Abraham, D. S. Fussell and D.E Ross,

“Efficient variable ordering and partial representation algorithms,” in Proc. 8th

International Conference on VLSI Design, 1995, pp. 81-86.

[16] J. Park and M. R. Mercer, “An efficient symbolic design verification system,” in

Proc. International Conference on Computer Design, 1993, pp. 294-298.

[17] W. J. Townsend and M.A. Thornton, “Partial Binary Decision Diagrams,” in

Proc. 34th IEEE Southeastern Symposium on System Theory, 2002, pp. 422-425.

[18] F. Brglez and H. Fujiwara, “A neutral netlist of 10 commercial benchmark

circuits and a target translator in Fortran,” in Proc. IEEE Int. Symp. On Circ.

Syst., 1985, pp. 663-698.

51

 VITA

Bradley Douglas Cobb was born in Ft. Worth, Texas on November 11, 1978. In

1993, he moved with his family to Sugar Land, Texas and attended Clements High

School where he played trumpet in the marching and symphonic bands. Brad graduated

from Clements in 1997 and enrolled that year in the Electrical Engineering program at

Texas A&M University in College Station, Texas. During the summers of his

undergraduate career, Brad worked at Halliburton, Input/Output, and Texas Instruments

as an engineering intern. In his senior year, Brad participated in the Undergraduate

Research Fellows Program where he studied transition-fault test generation methods

under Dr. M. Ray Mercer. In December of 2001 he graduated summa cum laude with a

Bachelor of Science in Electrical Engineering from Texas A&M and married his

wonderful wife Christina Marie Alves. The following year Brad began working on his

Master of Science degree under Dr. Mercer and performed research in the areas of

defective part-level modeling, transition-fault test generation, and OPDD-based test

generation. In December of 2003, Brad graduated with a Master of Science in Computer

Engineering from Texas A&M. He can be contacted at 22 Howell Lane, Sugar Land,

TX 77479.

