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ABSTRACT 

Using Ordered Partial Decision Diagrams 

for Manufacture Test Generation. (December 2003) 

Bradley Douglas Cobb, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. M. Ray Mercer 

 

Because of limited tester time and memory, a primary goal of digital circuit 

manufacture test generation is to create compact test sets.  Test generation programs that 

use Ordered Binary Decision Diagrams (OBDDs) as their primary functional 

representation excel at this task.  Unfortunately, the use of OBDDs limits the application 

of these test generation programs to small circuits.  This is because the size of the OBDD 

used to represent a function can be exponential in the number of the function's switching 

variables.  Working with these functions can cause OBDD-based programs to exceed 

acceptable time and memory limits.  This research proposes using Ordered Partial 

Decision Diagrams (OPDDs) instead as the primary functional representation for test 

generation systems.  By limiting the number of vertices allowed in a single OPDD, 

complex functions can be partially represented in order to save time and memory.  An 

OPDD-based test generation system is developed and techniques which improve its 

performance are evaluated on a small benchmark circuit.  The new system is then 

demonstrated on larger and more complex circuits than its OBDD-based counterpart 

allows. 
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 INTRODUCTION 

Testing for Manufacture Defects 

The production of integrated circuits (IC) has exploded into a multi-billion dollar 

industry whose customers consistently demand faster and more intelligent products.  In 

response to these demands, companies manufacture ICs that are growing increasingly 

larger and more complex.  As with any mass produced product, a strong quality control 

system must be in place to assure that very few, if any, defective parts are sold.  This is 

because the cost, both in terms of profit and reputation, of repair and replacement of 

shipped defective parts far exceeds the cost screening out the defective parts in the first 

place.  For integrated circuits, this quality control is enforced by automatic test 

equipment as described by Turino in [1].  After the IC is manufactured, it is tested by the 

ATE to determine whether it is free from defects.  Figure 1 shows where manufacture 

testing fits into the production flow of an IC.  
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Figure 1. Integrated circuit production flow 

This thesis follows the style and format of IEEE Transactions on Automatic Control. 
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To test an IC, the ATE enters multiple combinations of values into the circuit's 

inputs and observes the outputs to make sure they are correct.  This is one of the only 

possible methods of testing because the ATE does not have access to any of the interior 

points in the circuit.  Therefore, the goal of testing is to strategically choose the inputs to 

the circuit so as to cause any interior defects in the circuit to manifest themselves as 

erroneous logic values at the circuit's outputs. 

One possible strategy to test for a combinational circuit's defects is to apply every 

possible input combination to the circuit and verify that the output values it produces are 

correct.  This strategy will completely test the circuit’s static operation and was 

commonly applied to small circuits in the past.  Unfortunately, today's large and 

complex ICs cannot be tested so easily.  Applying every possible input combination 

requires n2  different combinations to be applied, where n is the number of inputs and 

storage elements in the circuit.  Attempting to test a modern processor in this way using 

the fastest ATE available today would take at least thousands of years.  Functional 

testing, in which test cases that exercise each of the circuit’s basic functions, is another 

popular testing alternative.  Although this approach verifies basic functional correctness, 

it does not attempt to exercise all of the circuit’s structural elements.   Clearly, a testing 

method that test’s all of a circuit’s structurally elements and requires entering far fewer 

than all of the possible input combinations must be used. 

To fully understand the process of testing, one must have a basic knowledge of 

the basic components of an integrated circuit and how they operate.  An integrated 

circuit can be considered a collection of interconnected building blocks called logic 

gates.  The inputs to these gates can only take on the values of logic zero and logic one 

and can ideally only produce an output of logic zero or logic one.  The specific function 

implemented by the integrated circuit is determined by how the gates are interconnected.  

A graphical representation of one specific gate, the AND gate, is shown in Figure 2 

along with its outputs in response to all of the possible input combinations.  Also in 

Figure 2 is an example network composed entirely of AND gates.  Sixty-four input 
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combinations would need to be applied to the sample AND network to completely test 

all of the static defects. 
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Figure 2. AND network 

Stuck-at Fault Testing 

Determining which of the input combinations, or test vectors, to use when testing 

an IC depends on the chosen testing strategy.  The most common approach used in 

industry today is based on the single stuck-at fault model developed by R. D. Eldred in 

[2].  A fault model is a simplified specification of a likely defect in an IC. The single 

stuck-at fault model, often simply referred to as the stuck-at fault model, assumes that 

the only defects that can occur are points in the circuit that are erroneously fixed to a 

logic zero (stuck-at zero) or a logic one (stuck-at one).  This can occur when two parts of 

a circuit are either erroneously connected together or not properly connected at all.  For 

example, such a defect can force a point in the circuit to be either grounded or pulled to a 

high voltage regardless of what the circuit's inputs dictate it to be.  Figure 3 shows an 

AND gate with a static defect that generates an erroneous output of logic zero when both 

inputs are at logic one.  As you can see, the output C does not assume the correct logic 

value when A equals logic one and B equals logic one.  The single stuck-at fault model 

also assumes that only one fault will be present in the IC at a time.  This simplifies the 
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model so that it does not have to deal with all of the possible multi-fault combinations 

that could be present in the IC.  A typical testing strategy would involve generating a set 

of input vectors that tests for both types of stuck-at faults for every wire in a circuit. 
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0
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Figure 3. AND gate with output stuck-at-zero 

Exciting, Observing, and Detecting a Fault 

For a test vector to be successful at detecting a fault, it must accomplish both the 

tasks of exciting and observing the fault.  Exciting a fault involves setting the inputs of 

the circuit to values that will cause a fault to produce erroneous values at its location, or 

site, in the circuit.   In the case of exciting stuck-at faults, this is a simple as configuring 

the circuit to place a logic one (for stuck-at-zero faults) or a logic zero (for stuck-at-one 

faults) at the desired site. For example, to excite a stuck-at-zero fault at the output of a 

gate in a circuit, a test vector must be generated that will produce a logic one at the 

output of that gate in the non-faulty circuit, also known as the good circuit.  When that 

test vector is applied to a faulty circuit with a stuck-at-zero fault at that same site, an 

erroneous logic value of logic zero will appear at that site instead of the correct value of 

logic one. 

Observing a fault requires selecting the input vector so that it propagates the 

value at the desired fault’s site to at least one of the outputs of the circuit.  Extending the 

above example, the chosen input vector must also be generated so that it propagates the 

value at the selected site to the circuit outputs.  This propagation is accomplished by 

determining the connectivity paths from the fault site to the circuit outputs and setting 
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the side inputs to gates along these paths to non-controlling values.  For example, if one 

of the paths passes through an AND gate, the circuit must be configured to place a logic 

zero at each of the other inputs to that gate.  This will allow values to propagate through 

the AND gate along the desired path. 

Test vectors that detect a fault must be able to both excite and observe the fault at 

the same time.  This set of vectors can be thought of as the intersection between the set 

of vectors that excite the fault and the set of vectors that observe the fault, as 

demonstrated in the Venn diagram of Figure 4.  The number of possible input 

combinations that will detect a fault depends on the size of the excitation and 

observation sets and on the overlap between them. 

All possible test vectors

Test vectors 
that excite 

fault i

Test vectors 
that detect 

fault i

Test vectors 
that observe 

fault i

 
Figure 4. Exciting, observing, and detecting a fault 

Multi-Detect Testing 

Testing strategies that require 100% detection of all the stuck-at faults in a circuit 

are successful because they require the generation of a test vector set that has the 

capability of making each site in the circuit observable at the circuit outputs.  The 

weakness of the stuck-at fault model lies in the fact that its excitation requirements often 

do not match those of real circuit defects.  To overcome this limitation, Grimaila [3] 
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demonstrated that applying test sets that detect each fault in a circuit multiple times, each 

with a unique input vector, detects more real manufacturing defects than the application 

of single-detect test sets.  By applying multiple tests for a stuck-at fault, the fault can be 

excited in a different way each time.  This increases the probability of matching the 

excitation criteria for a real defect that might be present at that site.  Recently, multi-

detect testing strategies are gaining favor in the testing community because they do not 

require complicated fault modeling but still achieve impressive results. 

Fault Excitation, Observation, and Detection Probabilities 

The probability that a fault will be excited, given that a random input vector is 

chosen, can be determined by dividing the number of vectors that excite the fault by the 

total number of vectors that can be applied to the circuit.  The same technique can be 

used to find both the probability of observing and detecting a fault.  These probabilities 

have been used in [4] to explore the relationships between the difficulty of exciting, 

observing, and detecting faults within a circuit.  They were also used in [4] to explain 

and predict the difference in test set lengths between tests that target different fault 

models. 

Binary Decision Diagrams 

Binary Decision Diagrams (BDDs) were first proposed by Lee in [5] as a way to 

represent Boolean functions in the form of directed acyclic graphs.  The BDD 

representation was later developed by Bryant in [6] into a more useful, canonical data 

structure called a Reduced Ordered Binary Decision Diagram (ROBDD), often simply 

referred to as an OBDD, which lends itself to more efficient manipulation by computers. 

Figure 5 shows the OBDD for a simple logic function containing the switching 

variables A through D.  The OBDD is composed of two types of vertices: switching-

variable vertices and terminal vertices. The vertices at the very bottom of the graph are 

the square-shaped terminal vertices, and there exists one terminal vertex for each logic 

value that the function represented by the OBDD can produce.  The circular-shaped 

switching-variable vertices in the graph are assigned to one of the function’s inputs.  
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Each switching-variable vertex has a logic-one arc and logic-zero arc leading away from 

it.  These arcs connect the vertices to form a graph and are used to trace through the 

OBDD when evaluating an input combination.  The vertex pointed to by an arc is called 

the child of vertex where the arc originated.  For example, the logic zero terminal vertex 

is the zero child of the D vertex, and the logic one terminal vertex is the one child of the 

D vertex.  The vertex at the top of the graph is called the root vertex, and the evaluation 

of all input combinations must begin here. 
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1

1

1

1

1
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Figure 5. Example OBDD 

To evaluate the function in Figure 5 when A equals one, and B equals one, C 

equals zero, and D equals one, first start at the root vertex and proceed down the graph 

by following the appropriate arcs.  In our example, the root vertex is assigned to the 

variable A, and because we want to evaluate the functions when A equals one, we follow 

the arc labeled with a one away from the root vertex.  This leads to the vertex assigned to 

the variable B.  At the B vertex we follow the arc labeled with a one, corresponding to B 

equals one, to the terminal vertex logic one.  Thus we have found that the function A 

AND B evaluates to logic one when both A and B equal one.  Often a standard 
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convention is used in place of the labels on the arcs.  In these cases, the arcs that point 

left are the zero arcs, and the arcs that point right are the one arcs. 

All of the normal Boolean operations such as AND, OR, NOT, and XOR can be 

performed quite easily on OBDDs.  Boolean operations between two OBDDs are carried 

out using an algorithm called the Apply operation, which was efficiently implemented 

by Bryant in [6].  The Apply operation produces an OBDD with the correct function, but 

often with redundancies in its structure.  Therefore, a Reduce operation is called on the 

resulting OBDD to eliminate the redundancies.  This is generally required to convert the 

OBDD into its canonical form. 

One important feature of OBDDs is the fact that their vertices follow a strict 

order.  This means that when tracing through the graph of an OBDD, the Boolean 

variables will always be encountered in the same order.  This is another requirement that 

makes OBDDs a canonical form.  In addition, choosing the correct variable ordering for 

an OBDD can, for some functions, greatly affect the number of vertices required to 

represent it. 

Because OBDDs are a canonical form for representing Boolean functions, they 

lend themselves to easily performing common tasks such as finding input combinations 

that satisfy a function, testing functions for equivalence, and combing functions with a 

Boolean operation.  Given these and other advantages, OBDDs have found wide 

application to such CAD problems as logic synthesis [7], logic verification [8], and 

manufacture-test generation [9]. 

An OBDD Package for Manufacture-Test Generation 

In [9], a test generation package named sByDDer was developed.  sByDDer uses 

OBDDs as its primary data structure and the Apply operation as its primary 

manipulation tool.  To generate tests for stuck-at faults in a combinational circuit, 

sByDDer passes through four major phases.  The first phase involves calculating the sets 

of all tests that excite each fault in the circuit.  This is done in a single forward pass 

through the circuit, by first creating the primary input OBDDs then calling the Apply 

operation to calculate the output of each gate.  sByDDer then proceeds to find the sets of 
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all tests that observe each fault.  This is done by using a method that calculates the 

Boolean-difference of each fault site with respect to the primary outputs.  In the third 

phase, sByDDer then determines the set of all tests that detect each fault by finding the 

intersection of the excitation and observation sets for that fault.  The intersection is 

accomplished by computing the AND of the excitation and observation OBDDs using 

the Apply operation.  Finally, sByDDer selects a subset of the generated tests to be 

included in the final test set.  The final test set can be either a single-detect or multi-

detect test set. 

Functionally-based OBDD test generation packages such as sByDDer are useful 

for many reasons.  Recent work by Dworak [4] utilized sByDDer’s facilities to produce 

the exact fault excitation, observation, and detection probabilities of various benchmark 

circuits.  This information was used to explain and predict the difference in test-set 

lengths between test sets that target stuck-at faults verses transition faults.  S. Lee used 

the sByDDer package in [10] to generate truly random manufacture tests for each fault 

in a circuit.  These random test sets were then used as an approximation of current 

industry practice in test generation and served as benchmarks for evaluating the 

effectiveness of newly proposed test generation strategies.   

OBDD-based test generation packages also excel in creating compact test sets 

and multi-detect test sets.  Traditional, structurally-based test generators produce only 

one test at a time and must be run iteratively to obtain multiple tests for each fault.  

Because OBDD-based test generators work on the functional level, they automatically 

produce all possible tests for each fault.  Having a large set of candidate tests for each 

fault is a great benefit for test-set compaction techniques, allowing them to more easily 

find the smallest number of tests that will detect all of the faults in a circuit.  This 

advantage was explored by Wingfield in [9] where sByDDer was used to successfully 

generate compact test sets near the theoretical minimum length presented in [11].  The 

functional representation used by OBDD-based test generators also lends itself to the 

creation of multi-detect test sets.  In [9], the author showed that the multi-detect test sets 
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generated by sByDDer were vastly smaller in size than those generated by a more 

traditional tool. 

Limitations of OBDD Test Generation Packages 

Although OBDDs provide many benefits in the area of CAD and manufacture 

testing, their use can be costly in terms of both memory and computational time.  

Because the memory requirements of OBDDs can be determined by the variable 

ordering chosen to represent them with, much research has been done in the area of 

optimal variable order selection.  Unfortunately, it has been shown in [6] that regardless 

of the chosen variable ordering, some functions exist which require an exponential 

amount of memory resources when represented as OBDDs.  Because of these 

limitations, most of the work done using OBDDs, as in [4] and [9], has been limited to 

the smallest benchmark circuits that have OBDDs of tractable size.  When larger circuits 

are attempted by a package such as sByDDer, one of two things occurs.  Either the 

required memory exceeds the available RAM on the machine, resulting in memory 

thrashing, or the large OBDDs cause the Apply operations to take an excessive amount 

of time to complete.  Under both circumstances, the test generation process cannot be 

completed within a practical time limit. 

Ordered Partial Decision Diagrams 

In order to overcome the limitation of OBDD-based applications, a solution was 

needed to make OBDDs more widely applicable to larger, more complex functions.  

Towards this end, a variation on the OBDD called an Ordered Partial Decision Diagram 

(OPDD) was introduced in [12].  OPDDs contain a subset of the functional information 

contained in OBDDs, but at a lower cost in terms of memory and manipulation time.  

Figure 6 shows an example of a partially specified function represented as an OPDD.  It 

represents the same function as the OBDD in Figure 5, but with only partial information. 

As you can see, a third terminal vertex named X has been introduced into the structure in 

place of one of the vertices containing the variable C.  Now when evaluating the 

function for a specific input combination, the evaluation path taken through the OPDD 
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has the possibility of ending at the X terminal instead of the logic zero or logic one 

terminal.  For these input combinations, the value of the function is unknown.  

Converting an OBDD to an OPDD by replacing some of its vertices with the X terminal 

generally reduces the total number of vertices in the graph, but at the loss of functional 

knowledge.  Therefore, a primary goal when working with OPDDs is to find the optimal 

tradeoff between graph size and functional knowledge. 

A

B B

CC

10 X
 

Figure 6. Example OPDD 

One of the first and most widespread applications of OPDDs, researched by [13], 

[14], and [15], was in the area of determining the optimal variable ordering for OBDDs.  

OPDDs have also been used for logic verification [16] and OBDD partitioning [17].  In 

these and other applications, OPDDs have allowed many of the techniques developed 

using OBDDs to be extended to circuits of much greater size and complexity than ever 

before achieved. 

OPDD-Based Test Generation 

Based on the results mentioned above, an OPDD test generation package has 

been created.  Building on the sByDDer engine by incorporating OPDDs into the 

package, it is able to handle larger and more functionally complex circuits.  Using 

OPDDs as the primary data structure reduces the memory and time requirements that 
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previously limited sByDDer’s application to larger circuits.  This has been accomplished 

by limiting the maximum size of a BDD produced as the result of an Apply operation.  

Of course, not all of the advantages of an OBDD test generation package can be retained 

with the introduction of OPDDs.  Although OPDDs require less memory and time to 

process, by definition they do not contain as much functional information as their OBDD 

counterparts.  Therefore, a large effort is required to maximize the useful information 

content of the OPDDs used to represent fault excitation, observation and detection 

functions.  For the same reason, the test selection process will be less optimal when 

working with OPDD, limiting the possibilities of test compaction techniques. 
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 METHOD 

Converting OBDD Graphs to OPDD Graphs 

When an Apply operation is performed on two BDDs, the resulting BDD will 

often contain more vertices than either of the original BDDs.  In fact, this is one of the 

only operations used in sByDDer that creates larger BDDs than previously exist.  

Because the goal of this research is to limit the size of the BDDs operated on during 

sByDDer’s test generation process, in turn reducing the memory and time requirements 

of the application, a limit is placed on the size of the resulting BDD from an Apply 

operation.  This limit is enforced by eliminating vertices from the BDD until it reaches 

the predefined user specified limit.  For example, if the maximum number of vertices is 

limited to fifty vertices and the Apply operation produces a BDD with fifty-five vertices, 

at least five vertices are removed from the BDD before sByDDer is allowed to continue. 

A vertex is removed from a BDD by replacing it with the X terminal.  The 

represented function is then unknown for the input combinations who’s paths originally 

passed through the removed vertex.  Therefore, the goal when removing vertices is to 

retain the most information possible about the function represented by the BDD.  Take 

for example the situation where only one vertex must be removed from the BDD in order 

for it to satisfy the limit on the maximum number of vertices.  Also, assume that the 

BDD is an OBDD and therefore does not contain an X terminal.  One option for 

determining which vertex to remove would be to try removing each vertex in the BDD 

one at a time and observe how many entries in the truth table of the resulting function 

evaluate to X.  The vertex that affects the fewest truth table entries can then be removed. 

A more practical way of approaching the problem is to pass information down 

the BDD, starting at the root vertex, about the number of input combinations that pass 

through each vertex.  For example, all input combinations pass through the root vertex at 

the top of the BDD.  Therefore, a value of 2n, where n is the number of variables in the 

function, is associated with the root vertex.  Moving down the BDD, half of the input 

combinations flow through each of the two arcs leaving the root vertex and pass through 
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the vertices at the second level of the graph.  A value of 2n/2 will then be associated with 

those two vertices on the second level.  This pattern continues as each vertex passes half 

of its value down each of its two arcs to the vertex below it.  After these values have 

trickled down the BDD, each vertex has a value associated with it that corresponds to the 

number of truth-table entries which will become unknown if the vertex is removed.  The 

optimal vertex to remove is the therefore the vertex with the smallest value associated 

with it.  Figure 7 shows what the actual values would be for our example function.  As 

you can see, the vertex representing the variable D has the smallest value.  Therefore, the 

removal of vertex D would cause the smallest reduction in functional knowledge. 
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Figure 7. Input combination values for example OBDD 

The previous version of sByDDer has the functionally to calculate the input 

combination values mentioned above, but in an inefficient way.  It passes these values 

down the BDD in a depth-first manner using a recursive algorithm.  For example, at the 

root vertex, the value is first passed down to it zero child, and then the zero child 

proceeds to pass a value to its zero child.  This pattern continues until a terminal vertex 

is reached.  At that point, the algorithm backtracks up to the previous vertex and passes a 
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value down to its one child.  The drawback to this algorithm is that it has the possibility 

of visiting a single vertex in the BDD many times.  Vertices that have multiple arcs 

pointing to them will be visited one time for each arc.  The new version of sByDDer 

contains a modified algorithm that passes the values down the BDD in a breadth-first 

manner.  A vertex is only processed when all of the vertices upstream from it have been 

processed.  This guarantees that each vertex in the BDD will only be visited once.  

Therefore, the breadth-first algorithm always requires linear time with respect to vertex 

count as opposed to the possibly exponential time requirements of the depth-first 

algorithm.  In our example function, the far left vertex containing the variable C would 

be visited only once by the breadth first algorithm, but twice by the depth first algorithm. 

The vertex removal procedure previously described requires a modification if the 

oversized BDD already contains an X terminal.  In short, the vertex whose removal will 

convert the fewest additional truth-table entries to unknown should be chosen.  This 

information can be obtained by making an additional pass through the BDD, starting at 

the terminal vertices and passing information up the graph.  The information that should 

be passed up the graph is the percentage of input combinations that pass through the 

vertex and end at the known vertices of zero or one.  These percentage-known values 

can be efficiently calculated as follows.  Starting with the terminal vertices, a value of 

zero percent is associated with the X terminal and a value of 100 percent is associated 

with the zero and one terminals.  Next, the percentage-known values associated with the 

parents of the terminal vertices are calculated.  The percentage-known value for a vertex 

is obtained by simply summing its children’s percentage values and dividing by two.  

Once all of the percentage-known values have been calculated, the percentage-known 

value for each vertex should be multiplied by the number of input combinations that pass 

through that vertex.  The resulting value is called the removal metric.  As before, the 

vertex with the smallest value for this metric should be removed.  Figure 8 shows an 

example of how these metrics are computed.  The leftmost OPDD show the number of 

input combinations that pass through each vertex.  The center OPDD shows the 

percentage-known values for each vertex, and the rightmost OPDD shows the removal 
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metric for each vertex.  The metrics indicate that the rightmost C vertex is the optimal 

choice for removal. 
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Figure 8. Vertex removal metric calculation 

As a final step after the removal of a vertex, the Reduce operation should be 

called on the resulting OPDD to eliminate any redundancies introduced by the 

conversion of that vertex to an X terminal.  This can further reduce the number of 

vertices in the OPDD without losing any functional information.  For example, 

converting a vertex to an X terminal might result in two identical sub-trees inside the 

BDD, one of which can be removed for a substantial savings.  The arcs previously 

pointing to the root of the removed sub-tree are then redirected to the root of the retained 

sub-tree. 

Removing Multiple Vertices from a BDD 

So far we have only considered the case where only one vertex must be removed 

to bring the BDD down to an acceptable size.  The vertex removal process is not as 

straightforward for the cases where multiple vertices must be removed.  Converting only 

one vertex to an X terminal and calling the Reduce operation as described above will 

sometimes remove a sufficient number of vertices.  This will generally work when the 

number of excess vertices is small, but the probability that calling the Reduce operation 



17 

 

 

will be sufficient diminishes as the number of excess vertices increases.  One simple 

solution to this problem is to repeat the steps of converting a vertex to an X terminal and 

calling the Reduce operation iteratively until the OPDD reaches an acceptable number of 

vertices.  While not optimal, this method avoids considering the effects that all possible 

combinations for removing multiple vertices at one time will have on the number of 

known truth-table entries.  It also avoids having to consider which combinations of 

vertices will result in the greatest reductions when the Reduce operation is called. 

One of the major negative aspects of the iterative single-vertex removal 

algorithm is its time requirements.  As an example, consider an Apply operation between 

two BDDs with 500 vertices each.  In the worst case, the resulting BDD can be 250,000 

vertices.  All but 500 of these vertices must be removed, which means that the iterative 

removal algorithm could have to be called 249,500 times for one Apply operation.  For 

each iteration the removal metrics must be recalculated, the desired vertex must be found 

and removed, and the Reduce operation called.  The repetition of these steps can require 

a considerable amount of time. 

One solution to speed up the algorithm involves calculating the removal metrics 

only once, removing all of the excess vertices at once, and calling the Reduce operation 

only once at the end.  Although this method is less optimal, the time saved when dealing 

with large BDDs justifies its use in many cases.  As a compromise between speed and 

quality, another variation can be used which involves determining the number of vertices 

to be removed based on the number of vertices still in excess of the vertex limit.  For 

example, one-half of the excess vertices might be removed, Reduce called, and the 

removal procedure then called again to remove one-half of the remaining excess 

vertices.  This loop can be iterated until the number of vertices has been reduced to the 

maximum limit. 

Calculating Observation Functions using D-Propagation 

The observation function for a site describes all of the possible input 

combinations that will make the logic value at that site visible at one or more of the 

circuit outputs.  Calculating the observation functions for a circuit site is more 
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complicated than simply calculating the function itself at a site.  sByDDer calculates the 

observation functions via a direct application of the Boolean difference.  Figure 9 

illustrates this process. 

The Boolean difference of each output with respect the site-under-test if 

calculated, and the union of all the results is produced as the observation function.  To 

calculate the Boolean difference for a site, two passes through the circuit are required, 

starting from the site-under-test and ending at the outputs.  First, the function logic zero 

is inserted at the site-under-test and is propagated to the outputs, performing the Apply 

operation at each gate along the way.  These are called the f0 residues for the site. 

Second, the function logic one is inserted at the same site and propagated to the outputs 

in the same fashion.  These functions are called the f1 residues for the site. An XOR 

operation is then performed between the f0 and f1 residues at each output to create the 

Boolean difference functions.  Finally, the union of the Boolean difference functions is 

created by performing an OR operation between them. 
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Figure 9. Boolean-difference observation function calculation 

There are two major drawbacks to calculating the observation functions in the 

manner described above, especially when working with OPDDs.  The first drawback is 

the number and kind of operations required by the algorithm.  Calculating each 

observation function requires visiting each gate between the site-under-test and the 
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outputs two times, resulting in twice as many calls to the Apply operation.  In addition, 

the XOR operations performed at the end of the algorithm can be quite time consuming.  

The f0 and f1 residues at each output are most likely represented by OPDDs of the 

maximum allowable size.  Therefore, the Apply operation will probably take a large time 

to complete and the number of vertices to remove afterwards will be quite large. 

The second major drawback centers on the separate calculation of the f0 and f1 

residue functions.  Because and XOR operations will be performed on these functions, 

any input combinations that are unknown for one of the residues will also be unknown in 

the resulting function.  If the parts of the truth table that are known for each residue have 

very little overlap, then the observation function calculated from them will contain little 

functional information.  On the other hand, if the known parts of the truth table greatly 

overlap, the observation function will contain more functional information.  

Unfortunately, the parts of the truth table that are known for each residue depend on the 

way vertices were removed by the all of the Apply operations that occurred along the 

propagation paths through the circuit.  Additionally, only the minterms of the resulting 

function are input combinations that observe the site.  The input combinations in the f0 

and f1 residues must evaluate to opposite logic values to create a minterm in the function 

computed by the following XOR operation. Therefore, even if the known parts of the 

truth table greatly overlap between the f0 and f1 residue functions, little useful 

information about the resulting observation OPDD could be generated.   

Consider the Venn diagram in Figure 10.  The region inside the largest rectangle 

represents all of the possible input combinations to the circuit.  The large region is 

divided horizontally to separate the input combinations into two sets.  The top region 

contains the input combinations that observe the site at one of the circuit outputs, and the 

bottom region contains those input combinations that do not.  After the first pass of the 

observation calculation algorithm, only a subset of the f0 function will be represented by 

the resulting OPDD.  This region is represented by the dashed circle labeled f0, Partial.  

After the second pass, a subset of the f1 function will be represented by the resulting 

OPDD.  This region is represented by the dashed circle labeled f1, Partial.  The intersection 
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of f0, Partial and f1, Partial is the maximum size of the region that can be represented by the 

OPDD that results from the following XOR operation.  The part of this intersection lies 

in the upper rectangle is the set of known input combinations that will observe the site.  

The part in the lower rectangle is the set of input combinations that will be known not to 

observe the site.  In order to maximize the number minterms in the final observation 

BDD, two tasks need to be accomplished.  The f0 and f1 OPDDs must be known for the 

same input combinations and must evaluate to different logical values for as many of 

these input combinations as possible. 

Partialf ,0 Partialf ,1

0,1,0 =⊕ FullFull ff

1,1,0 =⊕ FullFull ff
1,1,0 =⊕ PartialPartial ff

0,1,0 =⊕ PartialPartial ff

 
Figure 10. Boolean-difference unguided 

One possible solution is to use the functional information known from one pass 

to guide the removal of vertices during the second pass.  For example, Figure 11 shows 

one possibility of what might happen if the choice of vertices removed in the f1 residue 

was guided by the f0 residue to preserve input combinations in f1 that are known in the f0 

residue.  As shown in the figure, more input combinations will be included in the 

intersection set as a result of this technique. Therefore, this kind of guidance would most 

probably increase the amount of known functional information represented by the 

observation functions.  But as you can see from the figure, one major drawback still 
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remains.  Although the f0, Partial and f1, Partial greatly overlap, many of the overlapping 

input combinations do not evaluate to different logical values in the residue functions.  

The vertices in the residue OPDDs that represent the input combination in the lower 

rectangle of the figure would have better been used to describe more of each residue 

function that lies in the upper rectangle.  Ideally, both the creation of the f0 and f1 

residues should be guided into the upper rectangle region as shown in Figure 12.  This 

would be quite difficult to do without a priori knowledge about the complete residue 

functions. 

0,1,0 =⊕ FullFull ff

1,1,0 =⊕ FullFull ff

Partialf ,0 Partialf ,1

1,1,0 =⊕ PartialPartial ff

0,1,0 =⊕ PartialPartial ff

 
Figure 11. Boolean-difference partially guided 
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0,1,0 =⊕ FullFull ff

1,1,0 =⊕ FullFull ff

1,1,0 =⊕ PartialPartial ff

0,1,0 =⊕ PartialPartial ff

 
Figure 12. Boolean-difference fully guided 

As an alternative to calculating the observation functions by direct application of 

the Boolean-difference equation, a method called D-Propagation can be used.  D-

Propagation is a technique which inserts a new Boolean variable, D, at the site-under-test 

and attempts to propagate that D to the outputs by setting the side inputs of the gates 

along the propagation path to non-controlling values.  The logic value D acts much like 

any other logic variable.  When the logic value D is the input to an inverter, the logic 

value DBAR is produced at the output.  As another example, when a logic value of D is 

on one of the inputs to an AND gate, the other inputs must have a value of logic one or 

D for a D to be produced at the output.  An input pattern that successfully propagates a D 

to one or more of the outputs is therefore a minterm of the observation function for the 

site at which the D was inserted. 

To calculate the observation function at a site, a BDD that consists of a singe D 

terminal is inserted at that site and propagated to the outputs.  By simply calling the 

Apply operation again at each gate along the propagation path, all possible input 

combinations that observe that site can be found.  If a vertex limit is imposed, some 

subset of entire set of possible input combinations can be found.  Once the D value has 

been propagated to the outputs, the resulting BDDs are converted into traditional 
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observation BDDs.  All of the D and DBAR terminals are changed to logic one 

terminals, and all of the logic one terminals are changed to logic zero terminals.  Finally, 

an OR operation is performed among all of the BDDs at the outputs. 

The D-propagation method of observation function calculation overcomes the 

aforementioned drawbacks to the direct Boolean-difference method.  Only one pass is 

required through the circuit, which cuts the number of Apply operations in half.  Also, 

there is no need for time consuming XOR operations between the residues at each 

output.  Most importantly, there is no need to worry about guiding separate residues 

towards the same useful functional space, because the f0 and f1 residues are not used.  

This allows more functional information to be contained in the final observation BDDs. 

Enhancements to D-Propagation 

To ensure that the most important information is retained when propagating the 

D and DBAR values to the circuit outputs, the vertex removal scheme needs to be 

slightly modified.  When calculating the excitation BDDs for the circuit, the vertices that 

have the most paths through them to the known logic zero and logic one terminals are 

preserved.  A different criterion is employed during D-propagation.  The vertices that 

have the most paths through them the D and DBAR terminals are retained instead.  This 

method preserves the most information about the observation criteria during each vertex 

removal phase, but does not guarantee to be optimal overall. 

Additional steps are also taken to propagate the D and DBAR truth table entries 

through multiple-input gates.  Because the Apply operation is binary, it must be called 

multiple times to compute the output BDD at a multi-input gate.  Experiments show that 

the order in which the input BDDs re processed makes a difference in the resulting 

percentage of D and DBAR terms in the function of the output BDD.  Figure 13 shows a 

three input gate for which only one of the input BDDs contains a D or DBAR terminal.  

Assume that the Apply operation is first called on the two BDDs that do not contain the 

D and DBAR terminals. 
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Figure 13. D-propagation through multi-input gates 

After the Apply operation, the vertex removal procedure will remove vertices 

which will in turn make some of the input combinations in the function change to a 

value of X.  The Apply operation is then called between the resulting BDD and the third 

BDD which contains the D terminal.  If a D or DBAR term in one function corresponds 

to an X term in the other function, then the corresponding term in the resulting function 

will be an X.  The vertex removal procedure has no knowledge of where the D or DBAR 

terms exist in future operands, so it will often remove vertices after the first Apply 

operation which will create the situation described above.  Alternatively, if the BDD 

with the D or DBAR terminals is part of the first Apply operation at the gate, the vertex 

removal procedure will attempt to preserve the maximum number of D and DBAR terms 

before the second Apply operation is called.  This eliminates the need for the removal 

procedure to know information about the location of D and DBAR terms in the 

remaining input BDDs at the gate. 

This observation motivated a modification to the order in which the Apply 

function is called on the inputs of multiple-input gates.  When a multi-input gate is 

reached, the BDDs at the gate’s inputs are scanned and the first BDD to contain either a 

D or DBAR terminal is scheduled for the first Apply operation.  The remaining BDDs 

are scheduled in a random order.  An improvement on this method was envisioned in 

which the BDDs are ordered by the percentage of terms in their function which have a 
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value of D or DBAR.  This idea was not implemented for time saving reasons.  Also, an 

experiment was conducted in which the vertex limit was not imposed after the 

intermediate Apply operations at a gate.  Therefore, no vertices were removed from the 

BDDs until after the last Apply operation.  This method is considered to be even more 

effective at preserving D and DBAR terms than any optimal ordering technique which 

enforces a vertex limit after each Apply operation.  The results from this experiment 

showed that the method which only schedules one of the Apply operations obtained 

results near that of the optimal method. 

Excitation Guidance 

A technique called excitation guidance can be employed when exact fault 

observation statistics are not required.  Excitation guidance involves using the excitation 

BDD for a fault to guide the creation of the corresponding observation BDD in order to 

achieve greater functional overlap.  The greater the functional overlap between the 

excitation and observation BDDs, the more fault detection information retained.  This is 

because the detection function for a fault is simply the intersection of the excitation and 

observation functions.  Therefore, if a term is unknown in the excitation function for a 

fault, it is not useful to retain information about that term in the observation function.  

This can be accomplished by modifying the Apply operation. 

The modified Apply operation takes an addition operand known as the 

excitation-known BDD.  This BDD is created by taking the excitation BDD for the fault 

currently being considered and changing its terminals.  The X terminals are changed to 

logic zero terminals and the logic zero terminals are changed to logic one terminals.  

Now the minterms of the function represents the known parts of the excitation BDD.  

After the standard Apply operation completes, and before any vertices are removed, the 

excitation known BDD is used to prune vertices in the resulting BDD that will not 

contribute useful information in the detection calculation phase. 

The vertices to be pruned are found by running a mock Apply operation between 

the result BDD and the excitation known BDD.  It is referred to as a mock Apply 

operation because a new BDD is not created.  Instead, the vertices that are not reached 
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during the mock Apply operation are marked for removal.  For example, some vertices 

will not be reached because the Apply operation encounters a logic-zero terminal in the 

excitation known BDD and stops proceeding down the corresponding branch in the 

result BDD.  These marked vertices could simply be converted to X terminals like in the 

normal vertex removal procedure, but an alternative technique can be employed that 

preserves more useful vertices. 

This technique involves redirecting the arcs that point to the marked vertices to 

instead point to their sibling’s vertex.  This removes the marked vertices from the graph.  

Additionally, when the Reduce operation is subsequently called, it will remove all of the 

vertices that pointed to a marked vertex because it’s two arcs now point to the same 

vertex.  Figure 14 demonstrates the guidance procedure.  The guidance OPDD indicates 

that the excitation function is unknown for all input combinations in which A equals one.  

This means that the rightmost B vertex in the BDD being guided could be change to an 

X terminal without affecting the information content of the detection BDD that will be 

created later.  Setting that vertex to X would eliminate one vertex from the BDD being 

guided, because both X terminals would be represented by the same vertex in memory.  

In other words, the one arc of the A vertex would be redirected to point to the previously 

existing X terminal.  Alternatively, if the one arc of the A vertex is instead redirected to 

point to its other child, the leftmost B vertex, a greater savings in vertex count can be 

achieved.  The bottom two BDDs in Figure 14 shows the results of calling the Reduce 

operation after the arc is redirected.  The Reduce operation removes the redundant A 

vertex, eliminating two vertices in total from the BDD.  The resulting BDD is not 

incorrect for some inputs combinations such as A equals logic one, B equals logic one, 

and C equals logic zero.  The original OPDD evaluates to logic one for these inputs, but 

the new OPDD evaluated to logic zero.  Fortunately these inaccuracies will not be 

carried over into the detection OPDD. 
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Figure 14. Excitation guidance procedure 

This technique eliminates having to define terms in the observation BDD as 

unknown which would later be ANDed with an excitation BDD for which the same 

terms are also unknown.  Regardless of what these terms evaluate to in the observation 

BDD, they will evaluate to unknown in the detection BDD.  The extra vertices removed 

by this technique allow more vertices to be used to represent the useful part of the 
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function.  Therefore, an inaccurate, yet more compact and useful BDD can be used to 

store the observation function without affecting the accuracy of the subsequently 

calculated detection function. 

An even more effective form of excitation guidance, called dual excitation 

guidance, can be employed when two observation BDDs are used for each site.  One is 

the observation BDD for the stuck-at-one fault and the other is the observation BDD for 

the stuck-at-zero fault.  Two passes through the circuit are thus required to compute the 

separate observation BDDs for a site.  The only difference between the two passes is the 

excitation-known BDD that is passed to the Apply operation. 

When computing the observation BDD for a fault, the excitation-known BDD is 

created by changing the X terminal to a logic-zero terminal.  Therefore, the observation 

BDD for the fault will be guided only into the functional region in which the excitation 

function is a logic one.  Thus no vertices are wasted in describing the functional region 

in which the excitation function is a logic zero.  These vertices were needed in the single 

excitation guidance scheme, however, because only one observation BDD is created for 

the stuck-at-one/stuck-at-zero pair for a site. 

Terminal Vertex Combination 

As mentioned in the previous section, there are some BDDs in which you only 

need to know the input combinations that lead to one of the known terminals, logic zero 

or logic one.  The OPDDs that represent the fault excitations do not need to distinguish 

between input combinations that evaluate to logic zero and those that are unknown.  

Only the input combinations that evaluate to a logic one will be used to compute the 

detection OPDD for that fault.  Also, only the input combinations in the detection 

functions who’s value is logic one can be selected as test for a fault.  If the value of a 

term is unknown in the detection function, it cannot with certainty be considered a valid 

test for a fault by the test generation process.  Terms with a value of logic zero are also 

by definition not valid test for a fault.  Therefore, there is no need to distinguish between 

logic zero terms and unknown terms in the detection functions for test generation 

purposes. 
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For the detection BDDs mentioned above, terms with a value of X can be 

changed to have a value of logic zero, and vice versa, without affecting the test 

generation process.  This fact can be exploited by converting all of the X terminals into 

logic zero terminals during the detection Apply operation.  If this is done before the 

Reduce operation is called, the Reduce operation will have a higher probability of 

detecting redundancies in the BDD structure.  Removal of these redundancies eliminates 

vertices from the detection BDD that are not useful in the test generation process and 

allows the available vertices to be better allocated to preserve useful information.  Figure 

15 illustrates how this procedure can eliminate two vertices from an OPDD. 
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Figure 15. Terminal vertex combination 

This technique of combining known terminals and X terminals in the detection 

BDDs can be carried even farther by using it during the last phase of the observation 

calculations.  It can be used with the same benefits mentioned above when performing 

the Apply operations that compute the OR of the circuit outputs.  This preserves more 

useful functional information earlier in the algorithm.  Because the test generation 

process only cares about the logic one terms in the detection function, vertices do not 

have to be wasted distinguishing between logic zero and X terms. 

This technique can be extended to the creation of the excitation functions during 

the initial pass through the circuit.  During all of the Apply operations at a gate, one of 

the known terminal vertices can be combined with the X vertex to preserve only the 
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useful functional information.  Instead of storing only one BDD for each site in the 

circuit, three BDDs can be stored: a function BDD, a stuck-at-zero excitation BDD, and 

a stuck-at-one excitation BDD.  The terminal-vertex-combination technique can be used 

at each gate when calculating the stuck-at BDDs, and both known terminals can be 

preserved for the function BDD.  The function BDD will be the one used for propagation 

to the next gate in the circuit, therefore it would be unclear which known terminal should 

be combined with the X terminal to optimize future computations. 

Other Speed Improvements to sByDDer 

Some improvements were made to the sByDDer test generation engine to 

improve the speed of various components.  The first of these improvements was the 

elimination of what is called the BDD crusher.  The BDD crusher is a multi-rooted BDD 

that represents all of the excitation, observation, and detection functions.  The functions 

share vertices with each other so that less total memory is required to store them.  After 

the creation of each excitation, observation, and detection BDD, the BDD is compacted 

into the BDD crusher, reusing the maximum number of vertices that already exist in the 

structure.  Unfortunately, the time spent finding the optimal placement of the BDD into 

the BDD crusher can become prohibitive for larger vertex limits.  Although using the 

BDD crusher requires less memory than storing the BDDs individually, the space 

savings is not substantial enough to outweigh extra time required to compact the BDD 

into the BDD crusher. 

The Apply operation in sByDDer was also improved to include early termination 

based on controlling values as described in [6].  When the Apply algorithm is applied 

between two vertices, one of which is a terminal vertex with a controlling value, the 

evaluation can be stopped and a terminal vertex with the controlling value created.  This 

increases the speed of the Apply operation considerably. 

Test Generation 

After the detection BDDs have been computed, a test pattern set must be 

generated.  The test pattern set will be applied to the real circuit after it has been 
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manufactured to screen out defective chips.  Because tester memory and tester time are 

in short supply, the test pattern set should be as small as possible while still ensuring a 

low defective part level.  The current version of sByDDer has multiple built-in test 

generation procedures.  One of the test generation procedures is random in nature.  It 

produces tests for each fault by randomly selecting a test for the least detected fault and 

is not concerned with compact test sets.  Another one of the built-in test generation 

procedures focuses on producing very compact tests.  For the small benchmark circuits it 

operates on, the test pattern lengths produced by this second method are near the 

theoretical minimum size.   

The chosen test-set generation procedure consists of successive AND operations 

to the detection BDDs.  For the generation of each test, the detection BDDs are sorted by 

the number of times they have already been detected by the previously generated tests.  

Once sorted, an AND operation is performed between the detection BDDs for the two 

least detected faults.  This resulting BDD describes the set of tests that will detect both 

of the two least detected faults.  Next, an AND operation is performed again between the 

resulting BDD and the third least detected fault.  This process continues until the 

resulting BDD has only one minterm or all of the undetected faults have been cycled 

through.  If, along the way, one of the resulting BDDs is the logic zero function, that 

BDD is discarded and the process continues to the next fault.  Also, if more than one 

minterm remains in the final BDD, a random minterm is chosen from the final BDD and 

added to the test set. 

The results in this paper on test set length and quality are all produced using the 

procedure that generates compact test sets.  The test generation procedure has remained 

unchanged in order to compare the results to those generated by the current version of 

sByDDer. 
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 RESULTS 

Overview 

The new OPDD test generation package was run on a subset of the ISCAS85 

combinational benchmark circuits published by F. Brglez and H. Fujiwara [18].  Fault 

information was collected and test sets were generated for each of the chosen circuits.  

One of the smaller circuits in the set named c432 was chosen to evaluate the 

performance of the various methods presented in this paper.  Because c432 is small, the 

OBDD version of sByDDer was able to collect complete information about the faults 

and generate a compact single-detect stuck-at-fault test set.  The fault information and 

test sets generated by the OBDD version of sByDDer are the limit to the performance of 

the OPDD package.  Therefore, they will serve as the performance benchmark in 

evaluating the new methods.  Following the performance evaluation of the new methods, 

results from three of the larger ISCAS85 circuits is presented.  They are circuits which 

the OBDD version of sByDDer is not able to process because of either time or memory 

constraints. 

Table 1 provides the key for translating the abbreviations used the following 

tables for the method options.  The method used to collect a specific result is described 

below by a string of the different method option abbreviations.  For example, a result 

collected using D-propagation option and Terminal Vertex Combination option would 

be described by the string D-TVC.  If all of the entries in a table use a common set of 

method options, those options will be placed in the table’s title. 



33 

 

 

Table 1. Method abbreviations 
Abbreviation Method Description 

BD Direct Boolean-difference observation calculations 
D D-propagation observation calculations 

TVC Terminal Vertex Combination 
EG Single Excitation Guidance 

DEG Dual Excitation Guidance 
RMVX Removed 1/X of the excess vertices at a time 

MID Ordering of Multi-input Applies in D-propagation 
Crusher BDD-crusher used to store BDDs 

 

 

Method Evaluation 

Table 2, Table 3, and Table 4 describe how many faults have completely 

unknown excitation, observation, and detection OPDDs, respectively, when basic 

method combinations are used at a variety of vertex limits ranging from 16 to 512.  If 

either the excitation or observation OPDD is unknown for a fault, then the detection 

OPDD will also be unknown.  On the other hand, the fact that the detection OPDD is 

unknown for a fault does not imply that either the excitation or observation OPDD for 

that fault must also be unknown.  It could be the case that the excitation and observation 

OPDDs are each partially known, yet their known parts do not overlap.  This is why the 

values from Table 2 and Table 3 cannot be simply added together obtain the vales in 

Table 4.  Also, if the detection OPDD for a fault is entirely unknown, then no tests can 

be deterministically generated for that fault.  Therefore, a value of zero in Table 4 means 

that at least one test can be deterministically generated for every non-redundant fault in 

the circuit.   

Terminal Vertex Combination is the only basic method option that effects the 

excitation OPDDs, therefore only two rows are shown in Table 2.  The data shows that 

TVC greatly reduces the number of unknown excitation OPDDs, especially at lower 

vertex limits.  This option has a compounding effect in that better excitation OPDDs 

create better observation OPDDs, and better observation OPDDs create even better 
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detection OPDDs.  This can be seen by comparing the D method to the D-TVC method 

in Table 3 and Table 4. 

It is also interesting to note that when excitation guidance is used, the number of 

unknown observation OPDDs is generally greater, yet the number of unknown detection 

OPDDs is generally smaller.  This is because the excitation guidance methods have 

either partially or completely pruned many of the observation BDDs depending on the 

characteristics of its corresponding excitation OPDD.  Therefore, only the observation 

OPDDs that are useful for detection are kept, and the remaining observation OPDDs 

contain more useful information. 

Table 2. Unknown excitation OPDDs of non-redundant faults 
 16 32 64 128 256 512 

No-TVC 105 25 1 0 0 0 
TVC 66 13 0 0 0 0 

 

Table 3. Unknown observation OPDDs of non-redundant faults 
 16 32 64 128 256 512 

BD 722 522 206 19 1 0 
D 193 39 8 1 0 0 

D-TVC 177 29 8 1 0 0 
D-TVC-EG 208 34 10 1 0 0 

D-TVC-DEG 300 97 33 3 0 0 
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Table 4. Unknown detection OPDDs of non-redundant faults 
 16 32 64 128 256 512 

BD 789 675 417 169 94 6 
D 653 453 212 88 8 0 

D-TVC 339 155 51 8 0 0 
D-TVC-EG 342 143 50 9 0 0 

D-TVC-DEG 320 97 33 3 0 0 
 

 

These results offer a high-level view of the performance of each method 

combination.  However, these results do not give detailed information about the quality 

of the excitation, observation, and detection OPDDs.  Table 5, Table 6, and Table 7 give 

more details about the quality of the OPDDs produced by the various methods.  They 

show the average percentage of the total excitation, observation, and detection minterms 

that are known for a fault when the basic method combinations are used at the various 

vertex limits.  These results offer a finer granularity than those presented in Table 4.  For 

example, just comparing the number of unknown detection OPDDs will not show any 

difference between the D and the D-TVC-DEG methods using 512 vertices.  Both detect 

all of the non-redundant faults in the circuit.  However, Table 7 shows that there is a 

significant difference in the average number of known detection minterms between those 

two methods.  Methods will higher percentage values produce more accurate fault 

information and will generally yield more compact test sets. 

Again, Table 5 only contains two rows of data because TCV is the only basic 

method option that effects the excitation BDDs.  Also, Table 6 does not contain data for 

the methods which use excitation guidance.  As mentioned earlier, this is because the 

observation OPDDs generated by those methods are only accurate for the functional 

space in which the excitation OPDDs are known. 
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Table 5. Percentage of excitation minterms known 
 16 32 64 128 256 512 

No-TVC 73.83 83.91 90.50 94.02 99.07 99.99 
TVC 75.87 85.36 91.74 95.33 99.26 99.99 

 

Table 6. Percentage of observation minterms known 
 16 32 64 128 256 512 

BD 4.19 7.69 15.21 35.09 43.03 87.83 
D 7.29 24.05 39.30 49.58 67.54 85.28 

D-TVC 7.39 27.00 43.15 60.69 82.59 96.41 
 

Table 7. Percentage of detection minterms known 
 16 32 64 128 256 512 

BD 0.99 3.33 10.74 27.58 36.59 87.83 
D 1.52 14.31 31.49 42.42 61.96 85.28 

D-TVC 3.26 21.87 39.99 58.37 81.10 96.41 
D-TCV-EG 3.28 22.13 39.95 58.66 81.15 96.41 

D-TVC-DEG 3.38 24.55 42.39 61.11 83.93 97.23 
 

It can be see from Table 4 and Table 7 that dual-excitation guidance is much 

more effective than single-excitation guidance.  On average, the results are about the 

same, and sometimes worse, when single-excitation guidance is used.  With dual-

excitation guidance though, the results are often substantially better.  This can most 

probably be attributed to the fact that DEG prunes more useless vertices from the OPDD 

before sending it to the vertex removal function.  Table 8 compares the number of 

vertices pruned by the two guidance methods.  As the vertex limit increases, it can be 

seen that the disparity between the total number of vertices pruned by each method 

increases dramatically.   

EG uses a combined stuck-at-one and stuck-at-zero guidance OPDD.  As the 

vertex limit increases, causing a larger percentage of the excitation OPDDs to be known, 
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the guidance OPDDs will have decreasingly fewer maxterms.  Because the maxterms of 

the guidance OPDDs are what accomplish the pruning, less pruning will occur with EG 

at higher vertex limits.  Alternatively, DEG uses separate stuck-at-one and stuck-at-zero 

guidance OPDDs.  Assuming that, on average, a given site has a fifty-percent chance of 

being a logic one, half of the terms in the DEG guidance OPDDs will on average be 

logic zero.  This allows for much greater pruning, which eliminates vertices that will not 

contribute any useful information when creating the detection OPDDs. 

Table 8. Single-excitation guidance vs. dual-excitation guidance - D-TVC 

 

Number of 
Pruned 
OPDDs 

Avg. Number 
of Vertices 

Pruned  

Total Number 
of Vertices 

Pruned 
EG-16 1479 3.79 5610 

DEG-16 5131 5.54 28407 
EG-64 571 14.71 8399 

DEG-64 7777 20.27 157669 
EG-256 151 6.85 1035 

DEG-256 10890 56.80 618531 
 

Table 9 contains the single stuck-at-fault test-set lengths generated by the OPDD 

application.  The same method and vertex limit combinations presented above are used 

for comparison.  From Table 4 we know that the only test sets that deterministically 

reached 100% stuck-at fault coverage are the ones that were generated by a method that 

produced zero unknown detection OPDDs.  The other test sets deterministically 

generated tests for only a subset of the total faults.  When the OBDD version of 

sByDDer is run on c432, working with OBDDs that range up to 4834 vertices, it is 

capable of producing a 31-vector test set with 100% stuck-at fault coverage.  Table 9 

shows that the OPDD version of sByDDer obtains a very close result of 33 vectors when 

limited to a maximum of 512 vertices per OPDD. 
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Table 9. Size of single-detect stuck-at-fault test set (vectors) 
 16 32 64 128 256 512 

BD 10 40 63 63 71 38 
D 43 51 62 66 62 38 

D-TCV 79 69 68 57 40 33 
D-TCV-EG 78 71 67 56 40 33 

D-TCV-DEG 81 73 64 52 39 33 
 

 

Although a test set generated by the OPDD version of sByDDer only 

deterministically detects those faults for which the detection OPDD is at least partially 

known, it has the chance of fortuitously detecting more faults.  Table 10 shows the 

results of running the test sets through a structurally-based fault simulator.  As you can 

see, nine of the test sets actually yield 100% stuck-at-fault coverage and most of the 

other test sets actually detect more faults than Table 4 indicates.  It can also been seen 

that the number of fortuitously detected faults decreases as more information is known 

about faults, either by using a higher vertex limit or more advanced method. 

Table 10. Faults undetected by fault simulation 
 16 32 64 128 256 512 

BD 484 231 120 47 12 3 
D 193 77 23 9 2 0 

D-TCV 80 33 1 2 0 0 
D-TCV-EG 80 31 2 2 0 0 

D-TCV-DEG 20 0 2 0 0 0 
 

 

Experiments were also run to study the effect of multi-input D-propagation.  

MID involves ordering the Apply operations at a multi-input gate in order to preserve 

the most D and DBAR terms at the gate output.  Table 11 shows the number of faults 

with unknown detection OPDDs when MID is used and not used.  For larger vertex 
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limits, incorporating MID can achieve substantial gains.  Consequently, MID has been 

used to obtain all of the previous results that used the D-propagation method option. 

Table 11. Multi-input Apply ordering - D-TVC-DEG 

Faults with Unknown 
Detection OPDDs 

No-MID-64 56 
MID-64 43 

No-MID-256 36 
MID-256 10 

 

 

Another modification to the existing version of sByDDer involved removing the 

BDD-crusher.  Table 12 shows the total runtime of sByDDer, with and without using the 

BDD-crusher, at various vertex limits.  As the vertex limit increases, the time required to 

compact the OPDDs into the BDD-crusher increases and begins to dominate everything 

else.  For this reason, the BDD-crusher was removed from sByDDer for all experiments 

except the ones used to collect the data for Table 12.  

Table 12. BDD-Crusher time (seconds) - D 
 Time 

Crusher-64 77 
No-Crusher-64 54 

Crusher-128 170 
No-Crusher-128 113 

Crusher-256 350 
No-Crusher-256 206 

Crusher-512 504 
No-Crusher-512 158 
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Running the OPDD version of sByDDer takes differing amounts of time 

depending on the method options chosen.  Table 13 shows the runtime for different 

methods at varying vertex limits.  Both the BD and DEG options require making two 

passes through the circuit when calculating the observation functions; therefore they take 

the longest time to run.  However, the BD option scales much worse with increasing 

vertex limits, making DEG a more timely choice in most cases.  The last row of the table 

contains the results obtained when the excess vertices are removed from an OPDD all at 

once, with a Reduce operation called at the end.  This option greatly speeds up the 

application, especially at higher vertex limits.  Table 14 demonstrates the loss in quality 

that occurs when for the RMV option is invoked.  Because the number of unknown 

detection OPDDs is not affected too greatly by adding the RMV option, it can be a 

useful way to speed up the application without losing much in the way of quality. 

Table 13. Runtime (minutes) 
 16 32 64 128 256 512 

BD 0.27 0.72 1.93 5.05 13.30 5.60 
D 0.18 0.40 1.07 2.71 6.98 13.30 

D-TCV 0.22 0.33 0.72 1.62 3.82 6.98 
D-TCV-EG 0.27 0.38 0.80 1.73 4.03 7.37 

D-TCV-DEG 0.58 0.70 1.52 3.28 7.28 17.05 
D-TCV-DEG-RMV 0.35 0.53 0.90 1.55 2.42 4.50 

 

Table 14. Removing multiple vertices (Unknown detection OPDDs) - D-TVC-DEG 
 16 32 64 128 256 512 

No-RMV 320 97 33 3 0 0 
RMV 358 123 41 7 5 0 

 

 

One of the reasons that the RMV option sacrifices quality is that it ends up 

removing more vertices than necessary.  This is demonstrated by the data presented in 
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Table 15.  With the RMV option disabled, the average number of vertices in the OPDD 

after the vertex removal procedure finishes is quite close to the specified maximum 

limit.  For the D-TVC-DEG method with a vertex limit of 256, the procedure removed 

only slightly over 2 vertices more than necessary on average.  With the RMV option 

enabled, the vertex removal procedure removed over 18 vertices more than necessary on 

average.  The number of unknown detection OPDDs rose by 5 because the OPDDs did 

not utilize the 256 vertices that they were allowed to contain. 

Calling the Reduce operation after the prescribed number of vertices has already 

been removed presents the possibility that a large number of additional vertices will be 

removed when redundancies are found in the OPDD.  By removing fewer vertices than 

necessary during the vertex removal procedure, this problem can be avoided.  Table 15 

contains the results obtained when one-half (method option RMV2) and one-fourth 

(method option RMV4) of the excess vertices are iteratively removed from the OPDDs, 

calling the Reduce operation in between.  These methods virtually eliminate the problem 

of over-removal caused by the standard RMV method.  In addition, they retain much of 

the speed benefits of the standard RMV method while achieving a quality level closer to 

the single-vertex removal method. 

Table 15. Variations on the RMV option - D-TVC-DEG-256 

 
Number of Vertices After 

Removal Procedure  
Time 
(sec) 

Unknown 
detection OPDDs 

No-RMV 253.88 445 10 
RMV 237.57 143 15 

RMV2 253.19 157 10 
RMV4 253.77 174 11 

 

 

Test Generation for Larger Circuits 

The purpose of integrating OPDDs into the sByDDer test generation engine is to 

allow for processing of larger, more complex circuits.  To test this premise, the new 
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OPDD version sByDDer was run on three larger circuits that the original version of 

sByDDer was unable to process.  Fault information and test sets were generated for each 

circuit and are reported in Table 16, Table 17, and Table 18.  Results from the previous 

section demonstrate that the D, TCV, and DEG method options produces the best results, 

and that the RMV options allow for a major improvement in speed at the cost of an 

modest loss in quality.  Therefore, all of the results in this section were collected by 

using the D-TCV-DEG method and varying the RMV option. 

The results for the smallest of the three circuits, c880, are presented in Table 16.  

Whereas the OBDD version of sByDDer was unable to produce detection BDDs and 

complete test sets for c880, the OPDD version was able to deterministically generate a 

test for every fault in under three minutes with a vertex limit of 64.  It is likely that only 

a few of the faults in c880 require large OBDDs in order to compute their complete 

excitation and observation functions.  Therefore, the original version of sByDDer most 

probably stalled out when processing these few difficult faults and was unable to 

complete its execution.  Using OPDDs, however, prevented the new version of sByDDer 

from spending an excessive amount of time trying to compute the exact entire functions 

for those few difficult faults, but still retained enough information to create a partially 

known detection OPDD for those faults. 

As the vertex limit was without invoking the RMV option, the detection OPDDs 

contained more information and the generated test sets became more compact.  

Unfortunately, using 512 vertices took over six hours of processing time, most of which 

was spent reducing the OPDD after the removal of each vertex.  Turing on the RMV 

option solved this problem and allowed the vertex limit to be increased to 4096 while 

reducing the processing time by a multiple of four.  In addition, increasing the vertex 

limit to 4096 reduced the test set to about three-fourths of the size of the set produced 

without RMV.  For a slight increase in the number of clock cycles used, the RMV2 

option further reduced the test set size when 4096 vertices were used.  Increasing the 

vertex limit even further reduced the test size even more, but the advantage that the 
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RMV2 option had over the RMV option diminished.  The best test set generated 

contained only 24 tests, twice as many as the theoretical lower bound presented in [11] 

Table 16. c880 - D-TVC-DEG 
 U

nk
no

w
n 

E
xc

ita
tio

n 
O

PD
D

s 

U
nk

no
w

n 
D

et
ec

tio
n 

O
PD

D
s 

E
xc

ita
tio

n 
M

in
te

rm
s 

K
no

w
n 

(%
) 

Ti
m

e 
(m

in
) 

M
ac

hi
ne

 S
pe

ed
 

(G
H

z)
 

N
um

be
r 

of
 T

es
ts

 
G

en
er

at
ed

 

32 0 10 93.60 1.85 1.8 92 
64 0 0 96.38 2.55 1.8 69 

128 0 0 97.97 8.83 1.8 62 
256 0 0 98.93 54.5 1.8 52 
512 0 0 99.37 241.2 1.8 42 

RMV-4096 0 0 99.91 75.72 1.8 33 
RMV-8192 0 0 99.94 104.6 1.8 31 

RMV-16384 0 0 99.97 298.8 3.2 24 
RMV2-4096 0 0 99.92 47.9 3.2 29 
RMV2-8192 0 0 99.95 126.6 3.2 27 

RMV2-16384 0 0 99.98 344.4 3.2 24 
 

 

 

Table 17 contains the results from the second of the three large circuits, c3540.  

This circuit, which contains 7080 stuck-at faults, is considerably larger and more 

complex than either c432 or c880.  Just to obtain excitation functional information at the 

90% level required using at least 256 vertices.  Comparatively, 99.26% of the excitation 

minterms were known when 256 vertices were used for c432.  Because the observation 

functions are generated by manipulating the excitation functions, having less information 

known about the excitation functions greatly limits the amount of information that can 

be known about the observation and detection functions.  With a vertex limit of 256, 333 
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of the faults contained unknown detection OPDDs after the six-hour runtime.  

Fortunately, fortuitous detections allowed the resulting test set to detect 63 more faults 

than expected at this vertex limit. 

Table 17. c3540 - D-TVC-DEG 
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16 484 2859 74.45 8.2 1.8 333 6819 2598 
32 114 1377 81.51 19.7 1.8 235 6677 974 

128 15 390 89.22 79.15 1.8 198 6793 103 
256 9 333 91.08 361.2 3.2 169 6810 63 

RMV-16 824 3540 73.07 6.4 1.8 200 6200 2660 
RMV-32 165 1500 80.06 9.1 1.8 253 6687 1107 
RMV-64 77 879 85.47 13.5 1.8 254 6738 537 

RMV-128 45 523 88.21 23.3 1.8 208 6792 235 
RMV-256 15 361 90.00 43.3 1.8 167 6770 51 
RMV-512 1 311 92.34 88.3 1.8 154 6816 47 

RMV-1024 1 267 93.94 119.2 3.2 127 6820 7 
RMV-2048 1 256 95.54 306.0 3.2 112 6824 0 
RMV2-256 9 350 90.89 57.4 1.8 164 6816 86 
RMV2-512 7 283 93.20 132.0 1.8 139 6812 15 
RMV2-768 7 272 94.14 229.8 1.8 122 6819 11 

RMV2-1024 7 272 94.81 344.4 1.8 119 6819 11 
 

 

When the RMV option was invoked, the vertex limit was raised to 2048 while 

still achieving a shorter runtime.  The resulting test set detected ten more faults with 

forty-two fewer tests.  While the RMV2 option produces slightly better results than the 

RMV option, the addition time required for this option made it impractical to use with 
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2048 vertices.  Therefore, the best test set resulted from the RNS-2048 option and 

contained 112 test and detected 6824 of the faults.  This is 1.4 times greater than the 

theoretical length required to detect all of the faults as presented in [11].  At the 2048 

vertex limit, the vertex removal procedure and the Apply operations that calculated the 

observation OPDDs roughly equally dominated the application runtime.  Because the 

times taken for these aspects of the application both scale exponentially with the vertex 

limit, using a higher vertex limit becomes impractical. 

The data collected from the final and largest circuit, c5315, is presented in Table 

18.  Because of the large and complex nature of this circuit, the runtime when using a 

vertex limit as small as 128 is nearly nine hours when the RMV option is no used.  The 

RMV2 option appears to be much more helpful on c5315 than for any of the previously 

considered circuits.  In about three hours, the RMV2 options used with a vertex limit of 

256 produced dramatically fewer unknown observation OPDDs than any of there other 

methods which took up to three times longer.  Using these options, 201 tests were 

generated which detected 10508 out of the total 10630 total faults with the help of 

fortuitous detection.  This test set is about five times larger than the theoretical minimum 

test set size of 37.  Using the RMV2 option with a vertex limit of 512 would most 

probably produce even better results, but the computational time would be excessive.  

Using 512 vertices with the RMV option, 88.9% of the computational time is devoted to 

performing the Apply operations during the observation calculation phase.  Again, 

because the time required by the Apply operation can scale exponentially with the vertex 

limit, attempting to use a vertex limit greater than 512 becomes impractical. 
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Table 18. c5315 - D-TVC-DEG 
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16 784 5563 22.9 1.8 522 9262 4195 
32 332 3524 24.3 1.8 381 10226 3120 
64 118 2295 52.6 1.8 245 10477 2142 

128 62 1692 537.0 3.2 206 10489 1551 
RMV-128 400 3756 26.8 3.2 136 10382 3508 
RMV-256 199 3331 34.7 3.2 132 10425 3126 
RMV-512 191 2314 402.0 3.2 112 10424 2108 

RMV2-128 127 2059 23.0 3.2 176 10576 1905 
RMV2-256 63 1315 189.6 1.8 201 10508 1193 
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 CONCLUSIONS 

This research explored the use of Ordered Partial Decision Diagrams in the 

manufacture-test generation process.  To this end, an existing OBDD-based test 

generation tool named sByDDer was enhanced by the addition of OPDDs which enabled 

its application to larger and more complex circuits.  This was accomplished by placing a 

limit on the number of vertices that an OPDD can contain, saving both time and 

memory.  Various techniques including D-propagation, Terminal Vertex Combination, 

and Excitation Guidance were developed and evaluated on a small benchmark circuit, 

c432.  The techniques, when combined with a vertex limit, were shown to improve the 

quality of the functional information obtained by sByDDer and the resulting stuck-at-

fault test sets that it produced.  In addition, the vertex limit and added enhancements 

allowed sByDDer to be run on larger and more complex circuits that ever before.  Fault 

information was collected and test sets that obtained at or near 100% stuck-at-fault 

coverage were generated for these larger circuits. 

Two limiting factors to the performance of the OPDD version of sByDDer were 

discovered as a result of running experiments on the larger circuits.  The current scheme 

allows the Apply operation to run to completion and then removes excess vertices until 

the vertex limit is satisfied.  This allows the vertices which contribute the least amount 

of functional information to be deterministically removed.  But as the vertex limit 

increases, the Apply operation can grow exponentially and begins to dominate the 

runtime of the application.  In addition, even the RMV removal procedures take an 

increasingly longer time to complete as the vertex limit grows, due to the fact that they 

are operating on OPDDs of exponentially increasing size. 

Without further increasing the vertex limit, the functional information and test set 

quality cannot be significantly improved.  Therefore, future work on this topic will 

involve exploring early termination of the Apply operation.  Instead of letting the Apply 

operation run to completion, early termination will halt the operation once the vertex 

limit has been reached.  This will prevent the time required for the Apply operations 
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from growing exponentially with the vertex limit.  Also, it eliminates the need for a 

vertex removal procedure because no excess vertices will be created.  Many of the ideas 

from the current vertex removal procedures can be used to guide the early termination 

process and hopefully allow for the retention of the most useful vertices. 
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